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For some applications the overall phase of a quantum state is crucial. For the so-calleddisplaced squeezed
number state~DSN!, which is a generalization of the well-known squeezed coherent state, we obtain the
position space representation with the correct overall phase, from the dynamics in a harmonic potential. The
importance of the overall phase is demonstrated in the context of characteristic or moment generating func-
tions. For two special cases the characteristic function is shown to be computable from the inner product of two
different DSNs.@S1050-2947~96!06212-9#

PACS number~s!: 42.50.Dv, 03.65.2w

I. INTRODUCTION

For many purposes the overall phase of a quantum state is
unimportant—for instance, when calculating transition prob-
abilities or expectation values. However, in some applica-
tions the inclusion of the correct overall phase is crucial. A
special class of such applications is the computation of ex-
pectation values using characteristic or generating functions
@1–3# where the overall phase may depend on the parameter
with respect to which differentiation is performed, as dem-
onstrated in this paper for two specific cases.

In the present work we are concerned with various prop-
erties of a generalization of the squeezed coherent state
~SCS! of the harmonic oscillator@4–8# ~for reviews on
squeezed states see, e.g.,@9,10#! which we call thedisplaced
squeezed number state~DSN!. This state is equivalent to the
generalized harmonic-oscillator state~GHO! @11,12#, the
only difference being that the DSN is defined using
‘‘squeezed state terminology.’’

In particular, we are interested in the characteristic func-
tion ~CF! for Cahill-Glauber ordered products@13# of the
canonical annihilator and creatora anda†, respectively, and
in the CF for powers of the number operatora†a, and it is
shown that the CFs in these cases may be computed as inner
products of two DSNs.

The inner product is most conveniently evaluated in posi-
tion space and for this purpose we present an alternative way
of deriving the correct position space representation of the
DSN—correct in the sense that we obtain the correct overall
phase. Our approach differs from previously reported meth-
ods for the SCS@6,14,15# in exploiting the relation between
rotations in phase space and time evolution in a harmonic
potential, thereby rendering our procedure physically more
intuitive.

The paper is organized as follows: In Sec. II the basic
framework is put forward along with the definition of a DSN.
Section III derives the correct position space representation
of the DSN and the general expression for the inner product
is presented. In Sec. IV the above mentioned CFs are ob-
tained as inner products from group-theoretical arguments
and for two special cases they are given explicitly. Finally,

two applications of the CF are presented in Sec. V, and con-
cluding remarks are found in Sec. VI.

II. DEFINITION OF A DISPLACED SQUEEZED
NUMBER STATE

Since the displacement and squeezing operators may be
defined in a variety of ways we find it useful to present our
definitions along with notational aspects.

With a anda† as thecanonicalannihilator~see, e.g.,@16#!
and creator, respectively,

a5
1

A2\
~q1 ip !, a†5

1

A2\
~q2 ip !, ~1!

obeying the canonical commutator

@a,a†#51, ~2!

we define thereferenceharmonic-oscillator Hamiltonian,
with unity mass and frequency, as

HH.O.5\~a†a 1 1/2!51
2 ~p21q2!. ~3!

As defined in Eq.~1! a anda† have the standard properties

aun&5Anun21&, a†un&5An11un11&, ~4!

with un& as thenth eigenstate of the Hamiltonian Eq.~3!.
In accordance with Hollenhorst@7# and Caves@8# we de-

fine the displacement and squeezing operators as

D~z!5exp~za†2z* a!

S~z!5exp$ 1
2 ~za†22z* a2!%, ~5!

respectively. Here,z5uzueif andz5reiu are complex num-
bers andz is related to the real numbersqz ,pz by

z5
1

A2\
~qz1 ipz! ~6!

or

qz5A2\uzucosf, pz5A2\uzusinf. ~7!
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One may also introduce a unitary rotation operator as
R(l)5exp@il(a†a11/2)#, where l is real valued. Then,
from the relationR(l)aR†(l)5a exp(2il) and by use of
the unitary property ofR we have that~see also the appendix
of @7#!

R~l!D~z!R†~l!5D~zeil!,

R~l!S~z!R†~l!5S~ze2il!. ~8!

These relations serve as a basis for the following.
With the displacement and squeezing operators~5! we

now definea DSN by

uz,z,n&5D~z!S~z!un&. ~9!

We immediately recover thesqueezed stateof Caves@8# as
uz,z&[uz,z,0&. At this point it should be noted that Yuen@6#
introduced the squeezed state as a squeezed coherent state
~SCS!, i.e., asS(z)D(z)u0&. However, it follows from the
definitions in Eq.~5! that ~see, e.g.,@9#!

D~z!S~z!5S~z!D~ z̃ !, ~10!

where

z̃5zcoshr2z* eiusinhr , ~11!

and one may therefore easily get from one definition to the
other. For this reason we also refer touz,z& as a SCS.

As for the reference oscillator we may introduce an anni-
hilator and a creator for the DSNs. The DSN annihilatorA is
defined through the requirement

Auz,z,n&5AD~z!S~z!un&5D~z!S~z!aun&. ~12!

From this we immediately obtain

A5D~z!S~z!aS†~z!D†~z!

5~a2z!coshr2~a†2z* !eiusinhr ,

A†5D~z!S~z!a†S†~z!D†~z!

5~a†2z* !coshr2~a2z!e2 iusinhr , ~13!

resulting inA andA† satisfying@A,A†#51 and having the
following properties, analogous to Eq.~4! for a anda†:

Auz,z,n&5Anuz,z,n21&,

A†uz,z,n&5An11uz,z,n11&. ~14!

In essence, for a fixed pair (z8,z8) the set of DSNs with
n50,1, . . . are theeigenstates of another oscillator with a
~complex-valued! frequency different from unity carrying
the same properties as the eigenstates of the reference oscil-
lator @17#.

III. POSITION SPACE REPRESENTATION
AND INNER PRODUCT

A. DSN in position space

In this section we derive an explicit expression for a DSN
in position space, i.e.,

^quz,z,n&5^quD~z!S~z!un&. ~15!

To our knowledge such an expression does not exist—not
even for the ground state. It should be noted, though, that
due to the relation in Eq.~11! an expression for
^quD(z)S(z)un& can be obtained from an expression for
^quS(z)D(z)un&. An expression for the latter~although only
for n50) has already been given by Yuen@6# and it has been
rederived later in different ways by several authors@14,15#.
However, it is common to all these derivations that they
involve evaluation of complicated integrals which is not the
case in the approach we present below. Furthermore, our
approach treats squeezing and displacement equally for all
n.

It has previously been argued that the coordinate repre-
sentation of a DSN can be written on the form of a general-
ized harmonic-oscillator state~GHO! @11,12# which takes the
form

^qufn&5
1

A2nn!
S 1

p\ D 1/4Hn@Ak~q2q8!#G~q!e2 inb,

~16!

where

G~q!5expH i

\
@a~q2q8!21pz~q2q8!1g#J , ~17!

andk52 Ima/\. In this expressiona andg may be complex
while the other parameters are real. With the parameter val-
uesa5 i /2, b5g50, andq85p850, thenth GHO equals
the coordinate representation of harmonic-oscillator eigen-
stateun&. It was shown in@12# that a GHO with given pa-
rameters is proportional to a DSN and thez andz parameters
were determined in terms of the parameters in the GHO.
However, the proportionality constant was left undeter-
mined. In the present work we determine uniquely the pa-
rameters in Eq.~16! so that

^quz,z,n&5^qufn&. ~18!

To evaluate the effect of the squeezing operator with the
complex argumentz we decomposeS(z), as in@15#, into a
product of rotations and a squeezing with a real parameter as
given by Eq.~8!,

S~z!5S~reiu!5R~u/2!S~r !R†~u/2!. ~19!

Then the squeezing part is easy to evaluate since the squeez-
ing operator with a real argument is just a scale transforma-
tion with the scale factor exp(2r) @5,7#, that is,

^quS~r !uc&5e2r /2^e2rquc&. ~20!

To evaluate the effect of the rotation operators we make use
of the relation between rotations in phase space and time
evolution in a harmonic potential. The classical time evolu-
tion in a harmonic potential is a rigid rotation in phase space
about the origin and since the dynamics in a harmonic po-
tential is essentially the same in classical and quantum me-
chanics the same is to be expected in quantum mechanics. In
fact, it follows from the previous section that
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R~u/2!5UH.O.~2u/2!, ~21!

where

UH.O.~ t!5e2 iHH.O.t/\ ~22!

is the time evolution operator for the harmonic oscilla-
tor. Thus

S~z!5UH.O.~2u/2!S~r !UH.O.~u/2!. ~23!

The form of a GHO is well known to be preserved under
time evolution in a harmonic potential@12,18#, the param-
etersa,b,g satisfying

a t5
1

2 S 2a0cost2sint

2a0sint1cost D ,
b t5b012E

0

t

dt8Ima t8 ,

g t 5 g01
1
2 ~qtpt2q0p0!

1
i\

2
ln ~2a0sint1 cost !. ~24!

Here a0, b0,g0 are initial values andqt ,pt are given by
classical evolution of their initial valuesq0 ,p0.

The displacement operatorD(z) displaces the expectation
value of the position byqz and the expectation values of the
momentum bypz according to

^quD~z!uc&5^q2qzuc&eiqpz /\e2 iqzpz /~2\!. ~25!

Putting it all together we therefore find that a DSN can be
written

^quz,z,n&5^qufn&, ~26!

where the right-hand side is a GHO defined in Eq.~16! with
the parameters given by

a5
i

2 S coshr2eiusinhr

coshr1eiusinhr D , b5
i

2
lnS coshr1e2 iusinhr

coshr1eiusinhr D ,
g5

i\

2
ln~coshr1eiusinhr !1

qzpz
2

, ~27!

andq85qz , p85pz . The uncertainties in position and mo-
mentum of a DSN are@12#

~Dq!n
25~112n!

\

4 Ima
5~112n!

\

2 Resu
,

~Dp!n
25~112n!

\uau2

Ima
5~112n!

\ usuu 2

2 Resu
, ~28!

where we have introduced the complex squeezing parameter
su522ia of Schleich and Wheeler@19#. We see that the
uncertainty product equals the uncertainty product for a
harmonic-oscillator eigenstate ifsu is real, that is, ifu5 lp
with l integral.

As a special case we have the coordinate representation of
a SCS

^quz,z&5S 1

p\ D 1/4~coshr1eiusinhr !21/2

3expH 2
1

2\ S coshr2eiusinhr

coshr1eiusinhr D ~q2qz!
2

1
i

\
pz~q2qz/2!J , ~29!

whereqz5A2\ Rez andpz5A2\ Imz. Invoking Eq.~11! we
find that this expression coincides with Eq.~3.24! of Yuen
@6#.

We end this section by mentioning that the momentum
space and the Wigner phase-space representations of a GHO
were found in@12# and with Eq.~27! the expressions in@12#
also give the momentum space and the Wigner phase-space
representations of a DSN.

B. Inner products of DSNs

As mentioned previously, a set of DSNs with
n50,1, . . . for afixed pair (z8,z8) has the same properties
as the reference oscillator. This means that for each pair of
(z8,z8) the set of DSNs constitutes a complete basis~the
harmonic-oscillator eigenbasis being a special case!. The in-
ner product of two DSNs characterized by (z1 ,z1) and
(z2 ,z2) therefore gives the transition amplitude between ba-
sis states belonging to different bases. State expansion into a
basis of DSNs is particularly convenient in the study of dy-
namics in quadratic potentials@11,12,20,21#. For the present
purpose the inner product of two DSNs is desired in order to
evaluate various characteristic functions and their derivatives
as shown in Sec. IV.

Since we have the coordinate representation of the DSNs,
the obvious way to calculate the inner product would be to
evaluate the integral

Edq^z1 ,z1 ,n1uq&^quz2 ,z2 ,n2&. ~30!

This has been done for several special cases in the literature
~in connection with the evaluation of Franck-Condon factors,
see, e.g.,@22,23#! but is rather cumbersome in the general
case. A different approach using annihilators and creators
was used by Meyer@11# in the evaluation of the inner prod-
uct of a harmonic-oscillator eigenstate and a DSN. Meyer
takes advantage of the linearity of the transformation be-
tweenA,A† anda,a† as given in Eq.~13!. This approach can
easily be generalized to the evaluation of the inner product of
two DSNs since, in general, the transformation between
A1 ,A1

† andA2 ,A2
† is a linear canonical transformation, given

by

S A2

A2
†

1
D 5S s21 d21 2h21

d21* s21* 2h21*

0 0 1
D S A1

A1
†

1
D , ~31!

where
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skl5coshr kcoshr l2ei ~uk2u l !sinhr ksinhr l ,

dkl5eiu lsinhr lcoshr k2eiuksinhr kcoshr l ,

hkl5~zk2zl !coshr k2~zk*2zl* !eiuksinhr k . ~32!

Having left the details for the Appendix, we find that the
inner product of two DSNs can be written as

^z1 ,z1 ,n1uz2 ,z2 ,n2&

5
1

As21

expH h21h12*

2s21
1
1

2
~z2z1*2z2* z1!J S h21

s21
D n1S h12*

s21
D n2

3 (
j50

[n1/2]

(
k50

[n2/2]

(
l50

min~m1 ,m2!
~n1!n2! !

1/2

j !k! l ! ~m12 l !! ~m22 l !!

3S 2d21s21

2~h21!
2 D j S d21* s21

2~h12* !2
D kS s21

h21h12*
D l , ~33!

wherem15n122 j andm25n222k.

IV. CHARACTERISTIC FUNCTIONS
AS INNER PRODUCTS

In this section we consider how the general inner product
obtained in Eq.~33! may be employed to facilitate the evalu-
ation of certain transition matrix elements using characteris-
tic functions ~CFs!. Specifically, we are interested in the
transition matrix elements of the following two types of op-
erators:

~i! Cahill-Glauber@13# ordered products$a†kal%s ,
~ii ! powers of the number operator (a†a)k.

Here,s is an ‘‘ordering’’ parameter wheres5(2)1 means
~anti-!normal ordering ands50 is symmetrical or Weyl or-
dering ~see, e.g.,@24#!.

In principle, we only need the transition matrix elements
of the first of the above types of operators since the powers
of the number operator can be expressed as a function of
Cahill-Glauber type products@25#. However, because the
number operator is ‘‘special’’ we find it appropriate to con-
sider the powers of it separately.

In this section we generalize the notion of a ‘‘character-
istic function,’’ in that both expectation values—as usual—
and transition matrix elements should be computable from it.
Hence, in the general case the CFCV(e;C,C8) for the
‘‘transition moments’’ of an operatorV between the states
uC& and uC8& is chosen such that^CuVkuC8& is given by

^CuVkuC8&5 lim
e→0

]e
kCV~e;C,C8!, ~34!

which may be accomplished by defining the CF as

CV~e;C,C8!5^CueeVuC8&. ~35!

In the CFe is a ‘‘dummy’’ parameter used for the temporary
differentiations, according to Eq.~34!. Equation ~35! is a
straightforward generalization of the expectation value CF.
In the following the expectation value CF is referred to as the
diagonal CF.

For the cases of current interest we define the CFs, for
future convenience, slightly differently by

Cs~j,j* !5esjj* /2^z,z,nuexp~ja†2j* a!uz8,z8,n8&,

C~x!5^z,z,nuexp~ ixa†a!uz8,z8,n8&, ~36!

where the ‘‘dummy’’ parametersj andx are complex val-
ued and real valued, respectively.j and j* are considered
independent during differentiation. From this the transition
moments are given by

^z,z,nu$a†kal%suz8,z8,n8&5 lim
j→0

]j
k]2j*

l Cs~j,j* !,

^z,z,nu~a†a!kuz8,z8,n8&5 lim
x→0

] ix
k C~x!. ~37!

To evaluate the CFs Eq.~36! we invoke the properties of
the so-calledtwo-photonLie groupH6 and its corresponding
Lie algebrah6 @26#. The generators of the algebrah6 are
$a†a1 1

2,a
†2,a2,a†,a,I % and the elements of the correspond-

ing group,H6, may be obtained by exponentiation of the
h6 generators~see, e.g.,@27#!. A generalunitaryelementh of
the groupH6 can be expressed as@26#

h5DS R ei tI , ~38!

whereD, S, andR are the operators introduced in Sec. II,
I is the identity, andt is a real-valued parameter. Hence, the
most general state that can be formed by action of a unitary
element ofH6 on a number stateun& is DSRei tI un&. How-
ever, sinceun& is an eigenstate of the operatorR the most
general state reduces toDSun&ei t8. In other words, acting on
a number stateun& with a unitary element of the Lie group
H6 results in a DSN multiplied with a phase factor.

Keeping this in mind, we then return to the definition of
the CFs in Eq.~36!. The exponential operators appearing
there are also seen to be unitary elements ofH6. Hence, we
have that

CF5const3^z,z,nuh1uz8,z8,n8&

5const3^nuh21h1h8un8&

5const3^z,z,nuz,9z,9n8& , ~39!

where ‘‘CF’’ means any of the two CFs of present interest
@28#. Thus, the CFs are nothing but the inner product of two
different DSNs, multiplied with a constant. Below, the diag-
onal CFs for the moments are given explicitly.

A. CF for Cahill-Glauber products

The diagonal CF for Weyl ordering, in general terms, is
perhaps one of the most well-known CFs in quantum me-
chanics, since it is the Fourier transform of the celebrated
Wigner distribution function~see, e.g.,@1,24,29,30#!. Also
the diagonal CFs for normal and antinormal ordering have
been discussed extensively in the literature@1,30# and ac-
cordingly we shall not go into great detail with these.
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1. General case

For a DSN the diagonal CF for Weyl ordering has been
obtained by Zhang, Feng, and Gilmore@26# in the special
case uz,z,0& @31#. The extension to the general case with
DSNs is straightforward using the result above together with
the inner product Eq.~33!. Using the Baker-Campbell-
Hausdorff relation for displacement operators~see, e.g.,
@26,27#! we immediately have

Cs~j,j* !5^z,z,nuj1z8,z8,n8&e~jz8*2j* z8!/2esuju2/2.
~40!

2. Diagonal case

In the diagonal case of the above CF the parameters Eq.
~32! for the inner product are particularly simple,

s2151, d2150,

h2152h125j coshr2j* eiusinhr[j̃, ~41!

and sinced2150 the only contribution from thej andk sums
in Eq. ~33! is unity for j5k50. This, together with
n15n25n resulting inm15m25n, gives us the final ex-
pression

Cdiag
s ~j,j* !5exp[j z*2j* z2~ u j̃u22su ju2!/2]

3 (
k50

n S n
k D ~2u j̃u2!k

k!
, ~42!

where we have replaced the summation indexn2 l in Eq.
~33! by k.

B. CF for powers of the number operator

1. General case

The CF C(x) for powers of the number operator,
(a†a)k, is obtained in a manner similar to the previous one.
Hence, we immediately obtain

C~x!5^z,z,nuR~x!D~z8!S~z8!R†~x!R~x!un8&e2 ix/2

5^z,z,nuz8eix,z8e2ix,n8&ein8x, ~43!

where we have used thatun& is an eigenstate ofR.

2. Diagonal case

The parameters Eq.~32! for the diagonal CF are in this
situation all nonvanishing,

s215cosh2r2e2ixsinh2r

d215eiusinhr coshr ~12e2ix!,

h215uzueiu/2~eix21!$cosf8~coshr1eixsinhr !

1sinf8~coshr2eixsinhr !%,

h12* 52uzue2 iu/2~e2 ix21!$cosf8~coshr1eixsinhr !

2sinf8~coshr2eixsinhr !%, ~44!

where f85f2u/2. This results in the more complicated
final expression

Cdiag~x!5einx~cosh2r2e2ixsinh2r !2~n11/2!3exp$2uzu2~12cosx!~sx
21cos2f82sxsin

2f8!1 i uzu2sinx%

3 (
j50

[n/2]

(
k50

[n/2]

(
l50

min~m1 ,m2!
n!

j !k! l ! ~m12 l !! ~m22 l !! S ~e2ix21!sinh rcoshr

2uzu2~eix21!2~sx
21cos2f81sxsin

2f812cosf8sinf8! D
j

3S ~12e22ix!sinhr coshr

2uzu2~12e2 ix!2~sx
21cos2f81sxsin

2f822 cosf8sinf8! D
k

@ uzu2~12cosx!~sx
21cos2f82sxsin

2f8!#n2 l ,

~45!

wheresx is given by

sx5
coshr2eixsinhr

coshr1eixsinhr
. ~46!

In the case of a SCSuz,z& the sums in Eq.~45! reduce to
unity, simplifying the CF considerably.

From the expressions of the CFs, Eq.~45! and Eq.~42!,
and the prescriptions for the evaluation of the moments, Eq.
~37!, it is evident why the overall phase of a DSN is crucial
in this context. The parameters with respect to which we
differentiate in Eq.~37! enters the DSN together with the

displacement and squeezing angles. Hence, any part of the
DSN depending on these angles is to be differentiated—even
the overall phase.

V. APPLICATIONS

Different aspects of the results obtained in the previous
sections may be applied in different contexts, which in this
section is demonstrated by two examples.

A. Energy transfer in quadratic potentials

A simple application of the moments of the number op-
erator is in the study of vibrational energy transfer in heavy
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particle scattering. A model for this is a forced harmonic
oscillator with time-dependent frequency@11#. In scaled co-
ordinates the model Hamiltonian reads

H~ t !5 1
2 @p21v~ t !q2#2qF~ t !, ~47!

where F(t→2`)5F(t→`)50 and v(t→2`)
5v(t→`)v(t→2`)5v(t→`)51. If the initial state
(t→2`) is expanded in eigenstates of the harmonic oscil-
lator H5(p21q2)/2, i.e.,

uC i&5(
n

cnun&, ~48!

the final state (t→`) is a sum of DSNs with the same ex-
pansion coefficients@11,12#

uC f&5(
n

cnuz,z,n&. ~49!

The energy transfer is given by

DE5^a†a& f2^a†a& i . ~50!

Similarly, the variance in the energy transfer can be defined
as

D25^~a†a!2& f2^a†a& f
21^~a†a!2& i2^a†a& i

2

22 Rê ~a†a! f~a
†a! i&12^a†a& f^a

†a& i . ~51!

Thus the energy transfer and the variance are expressed in
terms of the moments

^~a†a!k& i5(
n

ucnu2nk,

^~a†a!k& f5(
m,n

cm* cn^z,z,mu~a†a!kuz,z,n&,

^~a†a! f~a
†a! i&5(

m,n
ncm* cn^z,z,mu~a†a!kuz,z,n&,

~52!

wherek51,2. One way to evaluate the moments in the sec-
ond line is to rewrite (a†a)k in terms ofA andA† and make
use of Eq.~14! as done in@11# but an alternative way would
be to evaluate them using the CF method discussed in Sec.
IV @32#.

B. Atomic inversion in the Jaynes-Cummings model

Again in this example we are concerned about moments
of the number operator. However, unlike the preceding ex-
ample, where one could argue that the CF method to a cer-
tain degree is ‘‘overkill,’’ it is in this case essential for prac-
tical purposes.

On exact one-photon resonance, the atomic inversion in
the Jaynes-Cummings model~JCM! @33#, with the atom ini-
tially in its ground state, is customarily given by

Pba~ t !5 (
n50

`

Pnsin
2~vnt/2!, ~53!

where vn52gAn/\ is the n-photon quantum Rabi fre-
quency@34#, g is the dipole coupling matrix element, and
Pn is the photon number distribution associated with the ini-
tial field state.

Since Eq.~53! is a sum overn, the standard expression is
inconvenient for high-intensity fields~see the example be-
low!. However, by a Taylor expansion of the square of the
sine in the above expression, and by employing the fact that
(n50

` Pnn
k5^nk&, we may obtain the following alternative

expression for the inversion:

Pba~ t !52 (
k51

`
~24!k

2~2k!!
t2k

^nk&

n̄k
, ~54!

where t is a dimensionless time given byt5gtAn̄/\ and
n̄5^n&. This expression is more suitable than Eq.~53! for
comparatively large field intensities, since the sum is inde-
pendent ofn. A thorough discussion of the expression Eq.
~54!, along with an expression for the case of nonvanishing
detuning, is to appear elsewhere@35#.

For all practical purposes the series Eq.~54! must, of
course, be truncated and in this case it is only valid for short
times. Hence, for thekth order truncation we need the mo-
ments up to orderk. However, fork much larger than two
the direct evaluation of the moments becomes an enormous
task. This is where the CF method comes into play@36#.

To illustrate the usefulness of Eq.~54! we have calculated
the inversion numerically for two different initial fields at
four different intensities:

~i! CS with n̄549,100,900,109 ~Fig. 1!,
~ii ! SCS with n̄549,100,900,109, l50.01, and u50

~Fig. 2!,
wherel is an alternative parameter for the squeezing mag-
nitude r @37#. In all cases we have truncated Eq.~54! at
k550. In comparison, using the standard expression for, e.g.,
a CS one should at least includeAn̄ terms which in the case
of n̄5109 would amount to approximately 30 000 terms.

FIG. 1. Atomic inversion for an initial CS field as a function of
the dimensionless timet defined in the text. At low intensity the
familiar collapse is apparent whereas at high intensities the inver-
sion approximates the classical Rabi oscillation.
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Figure 1 shows the results for the CS and the well-known
fact that the inversion for a CS at high intensities approxi-
mates the classical Rabi oscillation is recovered. In Fig. 2 the
inversion for the SCS is shown. Unlike the CS case, the
inversion does not approximate the classical Rabi oscillation
at high intensities which, to the best of the authors’ knowl-
edge, has not been demonstrated previously.

VI. CONCLUSION

The purpose of the present work has been twofold:~a! We
have obtained the position representation of a displaced
squeezed number state with the correct overall phase using
the relations between geometric operations in phase space
and dynamics, and~b! we have shown by group-theoretical
arguments that certain characteristic or moment generating
functions are obtained as inner products between different
DSNs.

The position representation with the correct overall phase
has been given previously by several authors in the special
case of a squeezed state. However, these derivations all in-
volved the evaluation of complicated integrals and for the
general DSN one has not previously been concerned about
the overall phase. The scheme put forward in this paper for
obtaining the position representation for the general DSN
avoids the evaluation of complicated integrals by exploiting
that rotations in harmonic-oscillator phase space are nothing
but time translations in the corresponding harmonic poten-
tial. Hence, the decomposition of the general squeezing op-
erator into a product of rotations in phase space and a
squeezing along theq axis enables the construction of a DSN
to be regarded as two geometrical operations and two dy-
namical operations: a forward time evolution, a squeeze
along theq axis, a backward time evolution, and finally a
displacement. In this way the construction of a DSN be-
comes physically very intuitive.

The reason for worrying about the overall phase, at all,
became very clear in connection with the considered CFs.
Because of the group relation between the displacement,
squeezing, and rotation~time-evolution! operators we were

able to express the CFs for Cahill-Glauber ordered products
and powers of the number operator as inner products of
DSNs. Since the parameters, with respect to which we have
to differentiate the CFs when evaluating moments, enter the
wave function together with the squeezing and displacement
angles and since the overall phasedependson these angles it
is obvious that omitting the overall phase in this context
would lead to erroneous results for the moments.

The usefulness of the CFs in calculating moments was
demonstrated by two examples:~a! calculation of mean
value and variance of the energy transfer between states in a
quadratic potential, and~b! calculation of the atomic inver-
sion in the Jaynes-Cummings model for high-intensity quan-
tized fields. The results of the first example was simplified by
the CF method but could as well have been obtained by
standard operator reordering, as done by Meyer for a special
case. In the second example, however, the power of the CF
method emerged. In that case we obtained the well-known
result that the atomic inversion approximates the classical
Rabi oscillations for high-intensity coherent fields. More in-
terestingly, we were able to show that the atomic inversion
does not become a classical Rabi oscillation when a high
intensitysqueezedfield is applied.
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APPENDIX

In this appendix we briefly review the method used by
Meyer@11# to find the inner product of two generalized num-
ber states where the annihilator and creator defining one
number state can be obtained by a linear canonical transfor-
mation of the annihilator and creator defining the other. The
essence of Meyers approach is to use the annihilator and
creator for the two DSNs to relate the inner product of these
to the inner product of the corresponding SCSs. This can be
done invoking the relation

(
n

tn

An!
uz,z,n&5etA

†
uz,z,0&5etA

†
uz,z& ~A1!

in order to write

(
n1,n2

sn1tn2

An1!n2!
^z1 ,z1 ,n1uz2 ,z2 ,n2&

5^z1 ,z1uesA1etA2
†
uz2 ,z2&. ~A2!

Using Eq.~31! and @Ak ,Ak
†#51, the right-hand side of Eq.

~A2! can be expanded into a power series ins andt times the
inner product̂ z1 ,z1uz2 ,z2& ~see@11# for details!. Comparing
like powers ofs and t then gives

FIG. 2. Atomic inversion for an initial SCS field as a function of
the dimensionless timet defined in the text. The collapse of the
inversion is seen to persist at even high intensities, which manifests
squeezed light as being truly nonclassical.
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^z1 ,z1 ,n1uz2 ,z2 ,n2&5^z1 ,z1uz2 ,z2&S h21

s21
D n1S h12*

s21
D n2 (

j50

@n1/2#

(
k50

@n2/2#

(
l50

min~m1 ,m2!

3
~n1!n2! !

1/2

j !k! l ! ~m12 l !! ~m22 l !! S 2d21s21

2~h21!
2 D j S d21* s21

2~h12* !2
D kS s21

h21h12*
D l , ~A3!

wherem15n122 j andm25n222k. Since the SCSs are Gaussians in position space one easily gets

^z1 ,z1uz2 ,z2&5Edq^z1 ,z1uq&^quz2 ,z2&5~coshr 2coshr 12ei ~u22u1!sinhr 2sinhr 1!
21/2e2 i ~qz2

pz2
2qz1

pz1
!/~2\!

3expH a2a1* ~qz22qz1!
21~pz22pz1!

2/42~pz22pz1!~a2qz22a1* qz1!

i\~a22a1* !
J ,

~A4!

where againqz5A2\ Rez, pz5A2\ Imz anda is given in Eq.~27!. Introducing the parameters in Eq.~32! the inner product
^z1 ,z1uz2 ,z2& can be written in a more compact form as

^z1 ,z1uz2 ,z2&5
1

As21

expH h21h12*

2s21
1
1

2
~z2z1*2z2* z1!J . ~A5!
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