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For some applications the overall phase of a quantum state is crucial. For the sodésglleded squeezed
number state DSN), which is a generalization of the well-known squeezed coherent state, we obtain the
position space representation with the correct overall phase, from the dynamics in a harmonic potential. The
importance of the overall phase is demonstrated in the context of characteristic or moment generating func-
tions. For two special cases the characteristic function is shown to be computable from the inner product of two
different DSNs[S1050-294{06)06212-9

PACS numbegps): 42.50.Dv, 03.65-w

[. INTRODUCTION two applications of the CF are presented in Sec. V, and con-
cluding remarks are found in Sec. VI.
For many purposes the overall phase of a quantum state is
unimportant—for instance, when calculating transition prob- Il. DEFINITION OF A DISPLACED SQUEEZED
abilities or expectation values. However, in some applica- NUMBER STATE

tlons_the inclusion of the c_orrgct 0\_/erall phase is c_rumal. A Since the displacement and squeezing operators may be
special class of such applications is the computation of ex:

) _ > ) _~"defined in a variety of ways we find it useful to present our
pectation values using characteristic or generating f”“Ct'O”aefinitions along with notational aspects.

[1-3] where the overall phase may depend on the parameter \yiih 5 anda’ as thecanonicalannihilator(see, e.g[16])
with respect to which differentiation is performed, as dem-gq creator, respectively,
onstrated in this paper for two specific cases.
In the present work we are concerned with various prop- 1 _ f 1 _
erties of a generalization of the squeezed coherent state a:\/T_h(q+lp)' a :\/T_h(q_lp)' (1)
(SC9 of the harmonic oscillatof4—8] (for reviews on
squeezed states see, €[§,10]) which we call thedisplaced  obeying the canonical commutator
squeezed number sta@SN). This state is equivalent to the
generalized harmonic-oscillator statéGHO) [11,17, the [aa']=1, (2

only difference being that the DSN is defined USING\e define thereference harmonic-oscillator Hamiltonian,

“squeezed state terminology.” n with unity mass and frequency, as
In particular, we are interested in the characteristic func-

tion (C_F) for _Ce_lhiII-GIauber ordered Er)roduc[i??] of the Huo=%(a'a + 1/2 =% (p2+q?). ?)
canonical annihilator and creataranda’', respectively, and

in the CF for powers of the number operatia, and it is  As defined in Eq.(1) a anda' have the standard properties
shown that the CFs in these cases may be computed as inner

products of two DSNs. alny=n|n—1), a’lny=yn+1|n+1), 4

The inner product is most conveniently evaluated in posiy, it In) as thenth eigenstate of the Hamiltonian E€).

tion space and for this purpose we present an alternative way |, accordance with Hollenhor§7] and Cave$8] we de-

of deriving the correct position space representation of thgne the displacement and squeezing operators as
DSN—correct in the sense that we obtain the correct overall

phase. Our approach differs from previously reported meth- D(z)=exp(za'—z*a)

ods for the SC$6,14,13 in exploiting the relation between

rotations in phase space and time evolution in a harmonic S()=exp{3(¢a"~*a?)}, 5
potential, thereby rendering our procedure physically more

respectively. Herez=|z|e'? and/=re'? are complex num-

intuitive. :
The paper is organized as follows: In Sec. Il the basicbers andz is related to the real numbegs, p, by

framework is put forward along with the definition of a DSN.

Section Il derives the correct position space representation z=—(q,+ip,) (6)
of the DSN and the general expression for the inner product ﬂ

is presented. In Sec. IV the above mentioned CFs are otb-r

tained as inner products from group-theoretical arguments

and for two special cases they are given explicitly. Finally, 0,= \2%|z|cosp, p,= \2%|z|sine. 7
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54 DISPLACED SQUEEZED NUMBER STATES: POSITID. .. 5379
One may also introduce a unitary rotation operator as (alz,£,ny=(aq|D(2)S({)|n). (15
R(\)=exdir(@'a+1/2)], where \ is real valued. Then,

from the relationR(\)aR"(\)=aexp(—i\) and by use of To our knowledge such an expression does not exist—not
the unitary property oR we have thatsee also the appendix even for the ground state. It should be noted, though, that

of [7]) due to the relation in Eq.(11) an expression for
, (q|D(2)S(¢)|n) can be obtained from an expression for
R(ND(2)RT(A)=D(z€™), (q|S(£)D(2)|n). An expression for the lattgalthough only
; 20 for n=0) has already been given by Yugs] and it has been
RIVS(ORY (M) =S(Le™). (8)  rederived later in different ways by several authidrg,15.

However, it is common to all these derivations that they
involve evaluation of complicated integrals which is not the
case in the approach we present below. Furthermore, our
approach treats squeezing and displacement equally for all

z,{,n)y=D(2)S({)|n). 9 n.

124.m=D@S()In) ® It has previously been argued that the coordinate repre-
We immediately recover thequeezed statef Caves[8] as  sentation of a DSN can be written on the form of a general-
|z,{)=1z,£,0). At this point it should be noted that Yuéf] ized harmonic-oscillator stat&HO) [11,12 which takes the
introduced the squeezed state as a squeezed coherent staten

(SCS, i.e., asS({)D(2)|0). However, it follows from the

These relations serve as a basis for the following.
With the displacement and squeezing operai&swe
now definea DSN by

remonsin B fatises, €6 (al )= 1(£JMHHWWWUmmmiw
D(2)S({)=S({)D(), (10 J2mnt \wh

(16)

where
where

Z=zcosh —z* e ’sintr, (11

i
and one may therefore easily get from one definition to the G(Q):eXF’[ g[a(q_Q')erpz(q—Q')Jf v, @7
other. For this reason we also refer|m¢) as a SCS.

As for the reference oscillator we may introduce an anni-and«= 2 Ima/#. In this expressiomr andy may be complex
hilator and a creator for the DSNs. The DSN annihilsétds ~ while the other parameters are real. With the parameter val-
defined through the requirement uesa=i/2, B=y=0, andq’'=p’'=0, thenth GHO equals

the coordinate representation of harmonic-oscillator eigen-
Alz,{,n)=AD(2)S(\)[n)=D(2)S(Haln).  (12) state|n). It was shown in[12] that a GHO with given pa-
rameters is proportional to a DSN and thand{ parameters

From this we immediatel in . X .
om this we ediately obta were determined in terms of the parameters in the GHO.

A=D(2)S(¢)as'(¢)D(z) However, the proportionality constant was left undeter-
o mined. In the present work we determine uniquely the pa-
=(a—z)cosh —(a'—z*)e'’sintr, rameters in Eq(16) so that
A'=D(2)S({)a's'({)D'(2) (alz.¢.ny=(alén). (18)
=(a'-z*)cosh —(a—2z)e ' ’sintr, (13 1o evaluate the effect of the squeezing operator with the

complex argument we decomposé&({), as in[15], into a
product of rotations and a squeezing with a real parameter as
given by Eq.(8),

resulting inA and A" satisfying[A,A']=1 and having the
following properties, analogous to E) for a anda’:

Alz.¢,m)=nlz,£,n-1), S(¢)=S(rei) =R(8/2)S(r)R(612). (19
A'lz,¢n)=\n+1|z,{,n+1). (14 Then the squeezing part is easy to evaluate since the squeez-

ing operator with a real argument is just a scale transforma-

In essence, for a fixed paiz(,{’) the set of DSNs with tion with the scale factor exp(r) [5,7], that is,

n=0,1,... are thesigenstates of another oscillator with a
(complex-valuell frequency different from unity carrying (alS(r)|gy=e""(e "qly). (20)
the same properties as the eigenstates of the reference oscil-
lator [17]. To evaluate the effect of the rotation operators we make use
of the relation between rotations in phase space and time
Ill. POSITION SPACE REPRESENTATION evolution in a harmonic potential. The classical time evolu-
AND INNER PRODUCT tion in a harmonic potential is a rigid rotation in phase space
about the origin and since the dynamics in a harmonic po-
tential is essentially the same in classical and quantum me-
In this section we derive an explicit expression for a DSNchanics the same is to be expected in qguantum mechanics. In
in position space, i.e., fact, it follows from the previous section that

A. DSN in position space
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R(0/2)=Uy o(—6/2), (22) As a special case we have the coordinate representation of
a SCS
where
1 1/4 )
Uy oty =€ Hrot/h (22) (alz.0)= g) (costr +e'’sinfr) ~ 2
is the time evolution operator for the harmonic oscilla- 1 {cosh — el %sintr )
tor. Thus Xexp{ - E(m) (d—dy)
S()=Uno(—02)S(r)Uy0(62). (23) i }
+— -q,/2)¢, (29
The form of a GHO is well known to be preserved under fi P{a- 4
time evolution in a harmonic potential2,1§, the param-
etersa, B,y satisfying whereq,= 2/ Rez andp,= 2% Imz. Invoking Eq.(11) we
find that this expression coincides with E&.24) of Yuen
1[2agcod —sint [6].
*=5 —ZaosinH—cosI , We end this section by mentioning that the momentum

space and the Wigner phase-space representations of a GHO
t were found in[12] and with Eq.(27) the expressions ifl2]
Bi=Bo+ 2[ dt’'Imay , also give the momentum space and the Wigner phase-space
0 representations of a DSN.
— 1
7t = Yo 2(GiPi— doPo) B. Inner products of DSNs
+ fln (2agsint+ cog). (24) As mentioneq prev?ously, a set of DSNs vyith
2 n=0,1, ... for afixed pair @Z’,{") has the same properties
o ) as the reference oscillator. This means that for each pair of
Here ag, Bo,yo are initial values andy,p, are given by (2’ /) the set of DSNs constitutes a complete basfie
classical evolution of their initial valuegy, po. harmonic-oscillator eigenbasis being a special caBee in-

The displacement operatbr(z) displaces the expectation ner product of two DSNs characterized by, (¢;) and
value of the position by, and the expectation values of the (7, ) therefore gives the transition amplitude between ba-
momentum byp, according to sis states belonging to different bases. State expansion into a

. _ basis of DSNs is particularly convenient in the study of dy-
(QlD(2)| ) =(q—q| ) elIP2 e 10zp2/2h) (25 namics in quadratic potential41,12,20,2]. For the present
Jpurpose the inner product of two DSNs is desired in order to
evaluate various characteristic functions and their derivatives
as shown in Sec. IV.
(alz,&,ny=(q ), (26) Sincg we have the coordinate r_epresentation of the DSNs,
the obvious way to calculate the inner product would be to

where the right-hand side is a GHO defined in Ef) with ~ €valuate the integral
the parameters given by

Putting it all together we therefore find that a DSN can b
written

i
T2

fdQ<Zl1§11n1|Q><Q|22,§21n2>- (30

cosh —e'sinhr i I cosh + e~ sintr
cosh +e'’sintr |’ 2™ Coshr + &%sinir |’

This has been done for several special cases in the literature
(in connection with the evaluation of Franck-Condon factors,
quZ, (27) see, €.9.[22,23) but is rather cumbersome in the general
2 case. A different approach using annihilators and creators
was used by Meydrll] in the evaluation of the inner prod-
uct of a harmonic-oscillator eigenstate and a DSN. Meyer
takes advantage of the linearity of the transformation be-
tweenA, A" anda,a’ as given in Eq(13). This approach can

i .
=5 In(coshr + e'sintr) +

andq’'=q,, p'=p,. The uncertainties in position and mo-
mentum of a DSN ar§l2]

(Aq)ﬁz (1+2n) f =(1+2n) , easily be generalized to the evaluation of the inner product of
4 Ima 2 Resy two DSNs since, in general, the transformation between
Hlaf? hls) 2 A1,A] andA,,Al is a linear canonical transformation, given
2_ A _ 9 by
(Ap); (1+2n)|ma (1+2n)2 Res,’ (28
Az o1 21 — M A1
where we have introduced the complex squeezing parameter Al 5 . * Al
s,=—2ia of Schleich and Wheeldr19]. We see that the 2|=| %21 921 T 72 1], 31
uncertainty product equals the uncertainty product for a 1 0 0 1 1

harmonic-oscillator eigenstate sf, is real, that is, if¢=1
with | integral. where
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o= cosh coshr|— ' % Wsintr sintr, For the cases of current interest we define the CFs, for
future convenience, slightly differently by

5= €' %sintr,costr,— e'%sintr coshr, .
C3(&,&%)=e* Xz ¢,nlexp(éa’— £¥a)[2, ¢’ n'),

7]k|:(Zk_Z|)COSh'k_(Z.’kc —Z|*)ei ekSinHk. (32)
C(x)=(z.¢nlexpiixa’a)|z’,¢’,n’), (36)
Having left the details for the Appendix, we find that the { | | )
inner product of two DSNs can be written as where the “dummy” parameter§ and y are complex val-
ued and real valued, respectively.and ¢* are considered
(21,41.M]22,85.1;) independent during differentiation. From this the transition
. . moments are given by
_ 1 exp{ 7]2177124-3(2 I )](77—21) 1(7]_12) 2
Joan 205 220 2V 6] \opy (z.gnl{a™ e}z’ ¢ .n")=lim k' . C(£.€%),
-0
><[nl/Z] [%2] min(%‘mﬂ (n]_!nz!)l/2
S & & KT (m— D (my—1)! (z.¢nl(@'a)4z' ¢ \n")= |imoﬂikXC(x)- (37)
X*}
—621001\'[ 31021 021 ) )
X 21202 ) \2(7%5)2) \ 7poun®) (33 To evaluate the CFs E¢36) we invoke the properties of
2 12 212 the so-calledwo-photonLie groupHg and its corresponding
wherem; =n;—2j andm,=n,— 2k. Lie algebrahg [26]. The generators of the algebhg are

{a'a+1,a™ a%a’,a,1} and the elements of the correspond-
ing group,Hg, may be obtained by exponentiation of the
hg generatorgsee, e.g[,27]). A generalunitary elementh of
the groupHg can be expressed §26]

In this section we consider how the general inner product ,
obtained in Eq(33) may be employed to facilitate the evalu- h=DS R é", (39
ation of certain transition matrix elements using characteris-
tic functions (CFs. Specifically, we are interested in the whereD, S, andR are the operators introduced in Sec. I,
transition matrix elements of the following two types of op- | is the identity, andr is a real-valued parameter. Hence, the

IV. CHARACTERISTIC FUNCTIONS
AS INNER PRODUCTS

erators: most general state that can be formed by action of a unitary
(i) Cahill-Glauber{13] ordered product$a’™a'}s, element ofHg on a number statfn) is DSRé&™|n). How-
(i) powers of the number operatoa'@). ever, sincen) is an eigenstate of the operat@rthe most

Here,s is an “ordering” parameter whers=(—)1 means general state reducesBS|n)e'” . In other words, acting on
(anti)normal ordering ané=0 is symmetrical or Weyl or- 3 number statén) with a unitary element of the Lie group
dering (see, e.g.[24]). - . Hg results in a DSN multiplied with a phase factor.

In principle, we only need the transition matrix elements “Keeping this in mind, we then return to the definition of
of the first of the above types of operators since the powerghe CFs in Eq.(36). The exponential operators appearing

of the number operator can be expressed as a function @here are also seen to be unitary elementsi gf Hence, we
Cahill-Glauber type product§25]. However, because the pave that

number operator is “special” we find it appropriate to con-

sider the powers of it separately. CF=const(z,¢,n|hy|z',¢' ")
In this section we generalize the notion of a “character-
istic function,” in that both expectation values—as usual— =constx(n|h~th;h’|n")
and transition matrix elements should be computable from it. s
Hence, in the general case the @y (e; W, V') for the =consiX(z,¢,n[z,"{,"n") (39

“transition moments” of an operatof) between the states

|¥) and|¥') is chosen such thdﬂ,|ﬂk|\y/> is given by where “CF” means any of the two CFs_ of present interest
[28]. Thus, the CFs are nothing but the inner product of two

(P]QK ¥’ = lim a':cﬂ(e;\p,\p'), (34)  different DSNs, multiplied with a constant. I_Selow, the diag-
€0 onal CFs for the moments are given explicitly.

which may be accomplished by defining the CF as A. CF for Cahill-Glauber products

Co(eW,¥')=(V|et|¥"). (35 The diagonal CF for Weyl ordering, in general terms, is
perhaps one of the most well-known CFs in quantum me-
In the CFe is a “dummy” parameter used for the temporary chanics, since it is the Fourier transform of the celebrated
differentiations, according to Eq34). Equation(35) is a  Wigner distribution function(see, e.g.[1,24,29,30). Also
straightforward generalization of the expectation value CFthe diagonal CFs for normal and antinormal ordering have
In the following the expectation value CF is referred to as thebeen discussed extensively in the literat{ite30] and ac-
diagonal CF. cordingly we shall not go into great detail with these.
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1. General case B. CF for powers of the number operator

For a DSN the diagonal CF for Weyl ordering has been 1. General case
obtained by Zhang, Feng, and Gilmdr26] in the special
case|z{,0) [31]. The extension to the general case with
DSNs is straightforward using the result above together wit
the inner product Eq.(33). Using the Baker-Campbell-

Hausdorff relation for displacement operatoisee, e.g., , , i
[26'27_|) we |mmed|ate|y have C(X):<Z,§,n|R(X)D(Z )S(é, )RT(X)R(X)|n >e X2

=(z,¢,n|z’€'X, ' X n")e" X, (43

The CF C(y) for powers of the number operator,
a'a)k, is obtained in a manner similar to the previous one.
ence, we immediately obtain

Cs(g,f*)=(z,§,n|§+z’,{’,n’)e(gz/*_'f*z/)/zeS'g'z/Z.
(40
where we have used thht) is an eigenstate dR.

2. Diagonal case

. 2. Diagonal case
In the diagonal case of the above CF the parameters Eq. 9

(32) for the inner product are particularly simple, The parameters Ed32) for the diagonal CF are in this
situation all nonvanishing,
on=1, 61=0,

091=costr —e?'Xsintfr

7=~ no=Ecosti—£xellsinr=¢,  (41)
and sinced,;= 0 the only contribution from th¢ andk sums 81=€!’sinir cosir(1—e*Y),
in Eq. (33 is unity for j=k=0. This, together with ' ' .
ny=n,=n resulting inm;=m,=n, gives us the final ex- 7= |z|€'??(e'X—1){cosp’ (cosh + e'Xsintr)

pression

Siad 65 ) =expl¢ 2 — & z— ([¢2— s £2)/2]

<3, (1)l 2 o e
&Eo | K k! ' (42) —sing’(coslhr —e'Xsinhr)}, (44)

+sing’ (coshr —e'Xsintr)},

nt,=—|zle 1"%(e”'X—1){cosp’ (coshr +e'Xsinhr)

where we have replaced the summation ingex| in Eq.  where ¢’ =¢— 6/2. This results in the more complicated
(33 by k. final expression

Caiad X) = €"X(cosHr —e?Xsint?r) ~("* Y2 x exp{ —[2]2(1—cosy) (s}, 'cog ¢’ —s,sirP e’ ) +i|z|*siny}

(/2] /2] mintmy .mz) n! (e?'X—1)sinhrcoshr i

XJZO go EO j!k!l!(ml—l)!(mz—l)!(2|z|2(e‘X—1)2(3;1003%’+sXsin2¢’+2cos¢’sin¢’)

(1—e 2 X)sinhr coshr K
% 2|7]2(1-e ")%(s, 'cos ¢’ +5,sif e’ —2 cosp’sing’ )

[1z]2(1—cosy)(s; ‘cosp’ —s,sirP¢')]" ",

(49)

wheres, is given by displacement and squeezing angles. Hence, any part of the
DSN depending on these angles is to be differentiated—even
, the overall phase.
coshr —e'Xsintr 4
* coshr+e¥sinky V. APPLICATIONS

Different aspects of the results obtained in the previous
In the case of a SC#&,¢{) the sums in Eq(45) reduce to  sections may be applied in different contexts, which in this
unity, simplifying the CF considerably. section is demonstrated by two examples.

From the expressions of the CFs, E45) and Eq.(42),

and the prescriptions for the evaluation of the moments, Eq.
(37), it is evident why the overall phase of a DSN is crucial
in this context. The parameters with respect to which we A simple application of the moments of the number op-
differentiate in Eq.(37) enters the DSN together with the erator is in the study of vibrational energy transfer in heavy

A. Energy transfer in quadratic potentials
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particle scattering. A model for this is a forced harmonic 1
oscillator with time-dependent frequengdl]. In scaled co-
ordinates the model Hamiltonian reads

H(t) =3[p*+ 0(H) 91— qF(t), (47)

where F(t——o)=F(t—»)=0 and w(t— —x)

=w(t—x)w(t——o)=w(t—w)=1. If the initial state
(t— —») is expanded in eigenstates of the harmonic oscil- 04 |
lator H=(p?+q?)/2, i.e.,

08
0.6

o

02

[Wi)=2 caln), (48)

the final state {— =) is a sum of DSNs with the same ex-
pansion coefficientfl1,12]

FIG. 1. Atomic inversion for an initial CS field as a function of
|q/f>:2 cnlz,¢,n). (49 the dimensionless time defined in the text. At low intensity the
n familiar collapse is apparent whereas at high intensities the inver-

o sion approximates the classical Rabi oscillation.
The energy transfer is given by

AE=(a'a);—(a'a);. (500  where w,=2g+n/% is the n-photon quantum Rabi fre-

_ . . . quency[34], g is the dipole coupling matrix element, and
Similarly, the variance in the energy transfer can be def'ne‘in is the photon number distribution associated with the ini-

as tial field state.
A2={((a%a)?),—(ata)2+((ata)?) —(a'a)? Since Eq(59) is a sum oven, the standard expression is
(@& —(@a)i+(@a—(aa) inconvenient for high-intensity fieldésee the example be-
—2Rd(a'a)¢(a’a);)+2(a"a)(a’a);. (51) low). However, by a Taylor expansion of the square of the

_ sine in the above expression, and by employing the fact that
Thus the energy transfer and the variance are expressed ¥ P.nk=(nk), we may obtain the following alternative

terms of the moments expression for the inversion:

©

_ank k
Pty == 3, s )

E12020! T TE

((@'a) =2 |eql®n,

(54)

((@ta)¥y =2 creo(z.gml(a’a) z,¢,n),

where 7 is a dimensionless time given by=gt\n/#% and
((a'a)(a’a)))= 2 ncyea(z.¢.ml(a’a)¥z,¢,n), n=(n). This expression is more suitable than E&3) for
mn (52) comparatively large field intensities, since the sum is inde-
pendent ofn. A thorough discussion of the expression Eq.
wherek=1,2. One way to evaluate the moments in the sec(54), along with an expression for the case of nonvanishing
ond line is to rewrite &'a)* in terms ofA andA' and make ~detuning, is to appear elsewhd®5].
use of Eq(14) as done if11] but an alternative way would ~ For all practical purposes the series E§4) must, of

be to evaluate them using the CF method discussed in SegoUrse, be truncated and in this case it is only valid for short
IV [32]. times. Hence, for théth order truncation we need the mo-

ments up to ordek. However, fork much larger than two
the direct evaluation of the moments becomes an enormous
task. This is where the CF method comes into J2§].
Again in this example we are concerned about moments To illustrate the usefulness of EGi4) we have calculated
of the number operator. However, unlike the preceding exthe inversion numerically for two different initial fields at
ample, where one could argue that the CF method to a cefour different intensities:
tain degree is “overkill,” it is in this case essential for prac- (i) CS withn=49,100,900,19 (Fig. 1),
tical purposes. (i) SCS with n=49,100,900,19 \=0.01, and #=0
On exact one-photon resonance, the atomic inversion ifFig. 2),
the Jaynes-Cummings moddiCM) [33], with the atom ini-  \where\ is an alternative parameter for the squeezing mag-

B. Atomic inversion in the Jaynes-Cummings model

tially in its ground state, is customarily given by nitude r [37]. In all cases we have truncated E&4) at
w k=50. In comparison, using the standard expression for, e.g.,
Poa(t) = 2, Ppsin(wnt/2), (53 @ CS one should at least inclugie terms which in the case
n=0 of n=10° would amount to approximately 30 000 terms.
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able to express the CFs for Cahill-Glauber ordered products
and powers of the number operator as inner products of
DSNs. Since the parameters, with respect to which we have
to differentiate the CFs when evaluating moments, enter the
wave function together with the squeezing and displacement
angles and since the overall phatpendn these angles it

is obvious that omitting the overall phase in this context
would lead to erroneous results for the moments.

The usefulness of the CFs in calculating moments was
demonstrated by two examplega) calculation of mean
value and variance of the energy transfer between states in a
guadratic potential, an¢h) calculation of the atomic inver-
sion in the Jaynes-Cummings model for high-intensity quan-
tized fields. The results of the first example was simplified by
the CF method but could as well have been obtained by
standard operator reordering, as done by Meyer for a special

FIG. 2. Atomic inversion for an initial SCS field as a function of case. In the second example, however, the power of the CF
the dimensionless time defined in the text. The collapse of the method emerged. In that case we obtained the well-known
inversion is seen to persist at even high intensities, which manifesteesult that the atomic inversion approximates the classical
squeezed light as being truly nonclassical. Rabi oscillations for high-intensity coherent fields. More in-

terestingly, we were able to show that the atomic inversion

Figure 1 shows the results for the CS and the well-knowrdoes not become a classical Rabi oscillation when a high
fact that the inversion for a CS at high intensities approxi-intensity squeezedield is applied.
mates the classical Rabi oscillation is recovered. In Fig. 2 the
inversion for the SCS is shown. Unlike the CS case, the
inversion does not approximate the classical Rabi oscillation
at high intensities which, to the best of the authors’ knowl- The authors would like to thank Dr. Niels E. Henriksen
edge, has not been demonstrated previously. and Professor Dr. Wolfgang P. Schleich for stimulating dis-
cussions on the dynamics in harmonic potentials and the
Jaynes-Cummings model. This research was supported by
The Danish Natural Science Foundation.

Py,

ACKNOWLEDGMENTS

VI. CONCLUSION

The purpose of the present work has been twof@dWe
have obtained the position representation of a displaced APPENDIX
squeezed number state with the correct overall phase using
the relations between geometric operations in phase space In this appendix we briefly review the method used by
and dynamics, an¢b) we have shown by group-theoretical Meyer[11] to find the inner product of two generalized num-
arguments that certain characteristic or moment generatinger states where the annihilator and creator defining one
functions are obtained as inner products between differeriiumber state can be obtained by a linear canonical transfor-
DSNs. mation of the annihilator and creator defining the other. The

The position representation with the correct overall phas€ssence of Meyers approach is to use the annihilator and
has been given previously by several authors in the specigreator for the two DSNs to relate the inner product of these
case of a squeezed state. However, these derivations all ite the inner product of the corresponding SCSs. This can be
volved the evaluation of complicated integrals and for thedone invoking the relation
general DSN one has not previously been concerned about
the overall phase. The scheme put forward in this paper for
obtaining the position representation for the general DSN z
avoids the evaluation of complicated integrals by exploiting
that rotations in harmonic-oscillator phase space are nothing
but time translations in the corresponding harmonic poten- .
tial. Hence, the decomposition of the general squeezing ogh ©rder to write
erator into a product of rotations in phase space and a

%|z,§,n>=e‘Af|z,§,O):etAT|z,§> (A1)

Jnt

squeezing along thg axis enables the construction of a DSN g2
i i - ——(Z ’ 1n z ’ 1n
to be regarded as two geometrical operations and two dy = W< 1,41,M1|25,42,n3)

namical operations: a forward time evolution, a squeeze
along theq axis, a backward time evolution, and finally a
displacement. In this way the construction of a DSN be-
comes physically very intuitive.

The reason for worrying about the overall phase, at allUsing Eq.(31) and[A,,Al]=1, the right-hand side of Eq.
became very clear in connection with the considered CF9A2) can be expanded into a power series amdt times the
Because of the group relation between the displacemeninner productz;,{|z,,{>) (see[11] for detaily. Comparing
squeezing, and rotatioftime-evolutior) operators we were like powers ofs andt then gives

:<21:§1|95Alem;|22152>- (A2)
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021 021

i k
(_521‘721)1( 551021)
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=0
wherem;=n;—2j andm,=n,—2k. Since the SCSs are Gaussians in position space one easily gets

<21afl,n1|22:§21n2>:<21:§1|22a§2><

j=0 k=0
(ny!n,)Y2

Tk (my =D (my—1)!

021 )
772177’1(2 ,

(A3)

(21,61125,85) = JdQ<21’§1|Q><Q|Zz ,{2)=(coshr,costry —e'(?2~ sinkr ,sinkr ) ~ Mo (2,Pz, ~ 9Pz (21)

X EXF{

where agairg,= \2% Rez, p,= 24 Imz and « is given in Eq.(27). Introducing the parameters in E@®2) the inner product

azaI (qzz_ qzl)2+ (pzz_ pzl)2/4_ ( pzz_ pzl)(a2q22_ a’{ qzl)

ifi(ar—al)

|

(A4)

(z4,¢4]25,¢5) can be written in a more compact form as

(A5)
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