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We investigate the effect of non-Poissonian pump fluctuations on the micromaser dynamics. Non-Poissonian
micromaser pumping has been described by two, seemingly unrelated, theoretical approaches. The first em-
ploys a discrete pumping process where the pump atoms are allowed to arrive, with certain prqgtadmiliyy
at regularly spaced instants of time, whereas the second refers to continuously distributed arrival times of the
pump atoms. Based on a generalization of the latter, we present a unified approach that can handle both
situations on an equal footing. We find that for any kind of non-Poissonian pumping the resulting dynamics of
the micromaser field is a non-Markovian one. For a micromaser with discrete non-Poissonian pumping, we
show the equivalence of ensemble averaging and time averaging, providing a rare example where the validity
of the ergodic hypothesis can be explicitly demonstrated. Moreover, we investigate the time-delayed field-field
correlation function and a generalizkebhoton spectrum of the cavity field, which fke=1 corresponds to the
usual power spectrum. For the case that the micromaser is operated unklgarhthi®n trapping condition, we
derive exact analytical expressions for tighoton spectrum and the corresponding correlation functions that
result from the exact solution of a non-Markovian evolution problem. Providedp:hé, the spectrum is
found to be split into several equidistant peaks for certain values of the interaction parameters.
[S1050-294{P6)03312-4

PACS numbg(s): 42.50.Dv, 42.55-f

[. INTRODUCTION handle both situations on an equal footing and is based on a
generalization of the model of continuous pumping. With the
In the one-atom micromaser a beam of Rydberg atoméelp of our method, for a micromaser with discrete non-
interacts with the radiation field in a microwave cavity of Poissonian pumping, the equivalence of ensemble averaging
high quality in such a way that, at most, one atom at a timeand time averaging is explicitly shown, providing a rare ex-
is present in the cavityl]. Usually the atoms in the beam are ample where the validity of the ergodic hypothesis can be
excited to the upper level of a resonant microwave transitionexplicitty demonstrated. Moreover, we show that for all
In the conventional micromaser, the injected atoms thakinds of non-Poissonian pumping, the resulting dynamics of
pump the cavity are statistically independent, the pump stathe micromaser field is a non-Markovian one. In each case it
tistics therefore being described by a Poissonian process easily possible to postulate a master equation that can
Due to the atom-field interaction, nonclassical properties oberve as a Markovian approximation to the non-Markovian
the radiation field such as sub-Poissonian photon statistiosvolution equation of the field density matrix and yields the
may arisd 2]. The steady-state properties of the field as wellcorrect stationary state. In particular, for discrete non-
as the field dynamics depend on the character of the pumBoissonian pumping, the approximation is equivalent to a
statistics. In particular, the nonclassical character of the fieldecently proposed “macroscopic” master equatif8i. It
can be enhanced by sub-Poissonian pumping. Therefore, tisfiould be stressed, however, that this approximation is
effect of non-Poissonian pump fluctuations on the micromastrictly justified only as a means to find the steady state.
ser field has attracted a great deal of interest in previousvhen the dynamical properties are of interest, it turns out
years[3-10. It has been investigated by two, seemingly that the results obtained with this Markovian master equation
unrelated, theoretical approaches. The first employs a dignay differ from the smooth approximation to the ensuing
crete pumping model where the atoms are allowed to arrivepon-Markovian dynamics.
with certain probability, only at distinct instants of time that To apply our method we calculate the time-dependent
are separated by a constant time intef@at8]. In contrastto  field-field correlation function and the spectrum of a micro-
this, in the second approach the arrival times of the atoms ammaser with discrete non-Poissonian pumping where the at-
continuously distributed in time. This has been treated withoms arrive with probabilityp at equally spaced time instants.
the help of a quantum-field model of the injected atomicThis has been done already previoufy7] using the con-
beam[9] and by applying the theory of stochastic point pro- ventional mapping model of discrete pumping combined
cesseg10]. Both treatments are somewhat related to a spewith a subsequent time-averaging procedure. In contrast to
cial model of optical pumping in lasef&1]. this, our unified treatment of non-Poissonian micromaser
In this paper we present a unified approach to discrete angumping rests on a pure ensemble-averaging approach. It
continuous non-Poissonian micromaser pumping that caallows for a physical interpretation of the underlying mecha-
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nism and in particular explains the fact that the spectral line © ey - e ty
splitting that is observed for certain interaction parameters +> dtk+1f dtkf dty_q--- | dty
vanishes whemp<i. We calculate a so-calle#-photon k=t o 70 °
spectrum that corresponds to the usual power spectrum when 0

k=1. For a micromaser operated under thoton trap- X f_xdtOQk-%—Z(tOvtla ot et

ping condition, we find exact analytical results for the

k-photon spectrum and the corresponding correlation func- X Myettticv). .. Muett" M et (2.2

tions. It should be stressed that these results are obtained

from the exact analytical solution of a non-Markovian prob-with L being the usual damping operator of the cavity field

lem. and the operatoM,, describing the effect of the transit of a
The paper is organized as follows. In Sec. Il we outlinesingle atom on the density operator of the field according to

the basic ideas that permit a unified treatment of discrete anithe equation

continuous non-Poissonian pumping. We derive the non-

Markovian evolution equation for the density operator of the p(t+tin)=Myp(t) . (2.3

field and we show how two-time expectation values of the

field operators can be calculated in the stationary state. Thkd Eq. (2.2 it has been assumed that the damping of the

results are applied to a micromaser with discrete noncavity field can be neglected over the transit titpg of a

Poissonian pumping in Sec. lll. First, we discuss the statissingle atom that is negligibly short in our model. The func-

tics of the pump atoms in the frame of ensemble averagingions Q. »(tg,ty, ... tx+1) (k=0,1,...) are theexclu-

Then, the density-operator equation of the cavity field is desive probability densities for the injection of exacty2

rived and the equivalence of ensemble averaging and timatoms into the cavity at the time instartig,ty, ... ti1

averaging is explicity shown. Finally, we investigate the without any other atom being injected in between. From the

non-Markovian behavior that is displayed in the time-functions Q. (tg,t;, .. .tx+1) we find the probabilities

delayed field-field correlation functions and the spectrum oW, (7) that the total number of atoms injected into the cavity

the micromaser. over an arbitrary interval of lengthr is equal to k
(k=0,1,...). These atom-number probabiliti¥¥,(7) read
[10]

II. UNIFIED TREATMENT OF DISCRETE
AND CONTINUOUS NON-POISSONIAN PUMPING

© T tk t2
A. Evolution equation for the density operator of the field Wi(7)= L dtk+1fo dtkfo dtey--- fo dty
We start with repeating some important results from the 0
stochastic-process treatment of the pump statigti€g. It xf dtoQuso(toota,s - - - tira) - (2.4)
has been found that one has to discriminate carefully be- —o

tween the unconditioned density opergiaf the cavity field
and so-called injection-time conditioned density operatorsThe stationary stochastic process describing the statistics of
The latter refer to subensembles of the whole quantumthe injection of atoms into the cavity is completely charac-
mechanical ensemble and represent the state of the field t&rized by the whole set of the exclusive probability densities
certain time instants that are defined with respect to the aQy+2(tot1, - - - tk+1) (k=0,1,...). Animportant class of
rival times of the atoms. In particular, when the level- Stationary stochastic processes are the stationary renewal
selective statistics of the atoms leaving the cavity is to beprocesse$12], where the function®Qy, ,(to,t1, . . . txs1)
investigated, one has to know the time evolution of the spefactorize in the form
cific injection-time conditioned field density operaf that

refers to the state of the field immediately prior to the transit

of an atom[10]. In contrast to the injection-time conditioned Qu+2(torty, - - 'tk+1):ri1:[1 fiti—ti-), (29
density operator, the unconditioned field density operator

describes the whole quantum-mechanical ensemble. AS gith r peing the injection rate of the atoms, which can be
consequence of the_ergodlc theorem, with the help of it$.5culated with the help of the equation

steady-state solutiop the time-averaged value of any field

variable can be calculated as the quantum-mechanical expec- ("

tation value of the operator corresponding to this variable. r-= fo tf(t)dt . (2.6)
The most general equation for the evolution of the uncondi-

tioned density operator of the cavity field from the initial
time t=0 to the final timet= 7 takes the form

k+1

Thus the injection statistics is uniquely defined by the func-
tion f(t), which has the meaning of the waiting-time distri-
p(7)=V(7,0)p(0), 2.) bution between consecutive injected atoms, i.e., of the prob-
ability density that an atom is injected at tirtlet-t provided
that the previous atom had been injected at tirhelt has
been showr]10] that for injection of atoms according to a
. o renewal process, a simple mapping equation exists that de-
Vs(T,O)ZJ dtlJ’ dteQ,(ty,t)e"" termines the steady-state solution of the specific injection-
T —o time conditioned density operatgi® of the cavity field,

where[10]
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which refers to the time instants immediately prior to the B. Random choice of pump atoms

transit of an atom. This mapping condition is given by Without the restrictive assumption that the atoms injected

. into the cavity are distributed according to a renewal process,
?:f dt f(t)eLtMtr? _ 2.7) the exploitation of the gen_eral density-mqtrix quaﬁiﬁnl)
0 becomes extremely complicated or even impossible and one
would have to resort to numerical simulations. However, the
Moreover, in this case the steady-state solutionvariety of different pump statistics that are tractable with this
p=lim,_..p(7), following from Eq.(2.1), is connected with ~assumption can be considerably enlarged by introducing an

the operatomn® by the simple equatiofil.0 additional degree of freedom. For this purpose we suppose
P by pie &g o] that not all of the injected atoms interact with the field during

their transit through the cavity because some of them are out
of resonance. Whep with 0sp=<1 is the probability that

an injected atom indeed interacts with the field, the operator
M, introduced in Eq(2.3) takes the form

r(My—1)p°+Lp=0. (2.9

From Eqs(2.7) and(2.8) it becomes obvious that the steady-
state solution of Eq(2.1) does not depend on the initial

operatorp(0) provided that the factorization conditi¢@.5) My=pM+(1—p)l=1+p(M—1), (2.14
is fulfilled. We now derive an operator equation fpr by o B
first writing Eq. (2.7) in the form where the operatoM describes the atom-field interaction
according to the Jaynes-Cummings model ani$ the unit
— % Lt ‘1_c operator. With this splitting of the operatdd,, the basic
Myp©= fo dt f(t)e| p° (2.9 equations(2.7—(2.13 can still be applied when the prob-
ability p is taken into account. In particular, the steady-state
which yields, together with Eq2.8), density operatop then obeys the equation
— Lp - pt+Lp= :
rpcz P — (21@ p(M l) —1pP LP 01 (2 15)

1- f dt f(t)e‘!

0

_ * Lt
1 “0 dt f(t)e

wheref(t) is the waiting-time distribution that refers to all

Therefore, Eq(2.8) can be written as incoming atoms including the nonresonant, i.e., noninteract-
ing, ones.
— Interestingly, the statistics of the interacting atoms, con-
(My—1) —p+Lp=0. (211 9y J

sidered separately, is still described by a renewal process. To
show this, we calculate their exclusive probability densities
M(tooty, .- tme1) (M=2,3,...). These refer to the
The operator equatiof2.11) is interesting for formal rea- Presence of ex_actlm intera_cting atoms that occur with prob-
sons. For practically calculating the field density matrix, ability p each time, at the instantg,t,, . .. ty3, and of an
however, it seems easier to use E@7) and (2.8), as has arbltr_ary ngmber of_randomly dlstr!buted nonllnteractlng. gt-
been done if10] where the waiting-time distribution has ©mMs in the intervals in between, which occur with probability

1—det f(t)ett

0

been modeled as 1—p. Starting from the nonselective exclusive probability
densities of all atoms, which obey the renewal condition
Nhp (2.5), we obtain
fv )\2+a)\1(e tae 7). (2.12 -

3 ir‘?lt(tOltl! LR !tk—l):pmr H F(tl vti—l)! (216)
Here «, \q, and\, are real parameters with=—-1 and i=1

N1,A»=0. The renewal process characterized by the above

equation describes continuous non-Poissonian injection with/"€r€

bunching or antibunching of the injected atoms. The special o .
case of Poissonian injection is contained in the an_@ﬂzz)_ Ftt ) =f(t—t_)+ > (1_p)kf : d7,
whena=0 and\,;=r. On the other hand, discrete injection k=1 ti_q

of atoms with fixed time distanc& between consecutive

atoms, i.e., regular injection, is described by a stationary re- X ka dr_q--- JTZ drf(ti— 7
newal process having the waiting-time distributi®j t_, ti_q !
k
f(t)y=06(t—T), 21
(H=o(t=T) 213 X |:Hz f(r—m-1) [f(r1—ti-1) . (2.17)

with 6 being the Dirac delta function. With the help of Eq.

(2.6) we obtain the injection rate=T 1. Thus, by substitut- The multiplication of all terms=(t;,t;_;) (i=1,...,m) in

ing Eq.(2.13 into Egs.(2.5—(2.7), continuous and discrete Eg.(2.16) just takes into account all possible distributions of
non-Poissonian pumping can be treated on an equal footinghe noninteracting atoms. Obviously, the functions
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F(t; ,t;_,) depend only on the differend¢e-t;_,, which can Finally, it is interesting to calculate the waiting-time dis-

be easily seen by making the substitutidnst;_;=7 and tribution for the renewal process that results from randomly
n—t_1=& (I1=1,... k) in Eq. (2.17. Therefore we can choosing interacting atoms out of regularly distributed in-
write, instead of Eq(2.16), jected atoms, i.e., for the discrete pumping process we will

be interested in. With the help of EqR.13), (2.22, and
(2.23 we obtain

m—1

Mt ty, - - ,tk71)=|ori1]1 fif(t,—t,_4), (2.18

Where 'Fint(z):p e T4 gl (1_p)ke—z(k+1)T :ezT_ (pl—p)’
m ] (2.29
fint( 7)=pf( T)+pk21 (1_p)kfo déf(7— &) which yields
&k & ) ”
Xfo dgk—lf(gk_gk—l)"‘fo déif(&— &) (&) f'”‘(t)=p[ 5(t—T)+k21 (1—p)k5[t—(k+1)T]] .

is the waiting-time distribution of the interacting atoms. From Egs.(2.6) and(2.26 the pumping rate can be calcu-
Equation (2.18 indeed expresses the property of being alated with a little algebra to be
renewal process with ratg for the statistics of the interact-

) ) o -1
ing atoms. Hence, instead of E.15 we could use the Fo= f tfint(t)dt :B_ 2.27
equation 0 T
(M—1) p—+ Lp=0. (2.20 In the double limitT—0, p—0, Eq.(2.25 can be written as
_1 - . .

fi(z)=r,(z+rn) % which is the Laplace transform of
the exponential waiting-time distribution f(t)
=rnweXp(—riyt) characteristic for a Poissonian pumping
In order to show explicitly the equivalence of E¢®.15 and  process, as should be expected in this lif8it

(2.20 we consider the Laplace transforms

1- J dt f™(t)e!
0

C. Manifestation of non-Markovian dynamics

f"(z)= fo dt e #f""(t) (2.21 In classical physics the Markov approximation consists in

the assumption that the conditional probability of a process is

and entirely determined by the knowledge of the most recent
condition[13]. In guantum mechanics, this is equivalent to

~ o the evolution-operator equation
f(z):f dt e #(t) . 2.22 P q
0 V(mt")=V(mH)V(t,t") (2.28

Applying the convolution theorem, we find from A i i

PpYing @19 for 7>t>t’, whereV(t,t’) describes the evolution of the
_ _ © _ pf(2) system from the initial time’ to the final timet. Obviously,
fMz)=pf(z2)+p>, (1-p)Xf(z)]x*'=——<—.  the above equation implies thet can be written as

k=1 1-(1-p)f(2)

2.23 Vit t) =t =v(t-t), (2.29

Therefore, we get

|: focdt eLtf im(t)
0

whereL is the Liouvillian of the total system. Because of
-1 Eqg. (2.1) the density operator of the system then evolves
=[f™-L)]* according top(t) =e*s(t"%)p(t,), which yields the Markov-

ian master equation

Lt .
1—(1—p)fo dt e-*f(t) p=Lep . (2.30
= — (2.24 _ _
pf dt e-tf(t) From inspection of Eq(2.2) we conclude that the Markov
0 condition(2.28 or (2.29, respectively, can be fulfilled only
when the injected atoms are distributed according to a re-
When we substitute the expressith24) into Eq.(2.20 we  newal process obeying the factorization conditi@b) and
immediately arrive at Eq(2.15. We remark that for practi- when, in addition, the waiting-time distributidi(t) decays
cal calculations it is much more convenient to use the operaexponentially in time, thus describing Poissonian injection.
tor M=1+p(M—1) and the original waiting-time distribu- From Eqgs.(2.5) and(2.6) we find, for Poissonian injection,
tion f(t) than to start from the operatdd and the waiting-
time distributionf M{(t). Quia(toty, ... e =rk2e "1t (2.3
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wherek=0,1, ... . Indeed, it has been shojt0] that in  actual dynamical behavidwhich is described by Eq$2.1)
this case Eq92.1) and(2.2) are equivalent to the Markovian and(2.2)] from the predictions made by the Markovian ap-
master equatiop=r(M,—1)p+Lp, which can be written ~Proximation(2.33. In Sec. Il we shall discuss this for dis-
as crete pumping by investigating two-time expectation values
of the steady-state field.
p=rp(M—1)p+Lp (2.32 Whereas for Markovian processes the evaluation of all
multitime expectation values can be easily performed with
when Eq.(2.14 is taken into account. We remark at this the help of the evolution equation for the reduced density
point that the assumption of a negligibly short atom-fieldoperator of the system under consideration, this no longer
interaction time[see EQq.(2.3)] has been essential for the holds true, in general, for non-Markovian processes. How-
manifestation of Markovian dynamics for Poissonian pump-ever, for the calculation of two-time expectation values
ing. Without this assumption, the operator products(A¢(tg+ 7)Bs(tg)) with Ag and By being arbitrary system
M e-{tm~tm-1) occurring in Eq.(2.2) would have to be re- operators, the non-Markovian reduced-density-operator evo-
placed by the expression®(tmy,tm—tin)e-(mtin~tm-1) lution equation is sufficient provided the expectation values
whereV(t,,,tn—tin) describes the evolution of the reduced refer to a timety, where the stategg(ty) andp,(ty) of the
cavity-field density matrix from the initial timg,—t;; to the ~ System and of the reservoir are known separately, i.e., where
final timet,, under the influence of the atom-field interaction. the density operatgs, , (to) of the combined system formed
Hence, despite Poissonian injection the Markovian conditiody the reservoir and by the system under consideration fac-
(2.28 would not be fulfilled on a time scale that takes into torizes according tops,(tg) = ps(to) pr(to). This is true
account the finite duration of the atom-field interaction. when the interaction starts at timhgor when at, the system
For any kind of non-Poissonian injection statistics, whereis in a steady state that is independent of the state of the
Eg. (2.31) does not hold, the field evolution can never be areservoir. Setting, for simplicityty="0, we then find, in anal-
Markovian one. In particular, for injection according to a ogy to the standard treatment for Markovian proce$$8
non-Poissonian renewal process, the field-density-operator
evolution equation has been transformed into an integro¢a (7)B(0))
differential equation, the kernel of which is responsible for
the non-vanishing memory time being characteristic for the

non-Markovian evolutiof9]. We stress once again that the =Trs. [€"7"A{(0)e”™M7"By(0)ps(0)p(0)]
non-Markovian character of EQ2.1) for non-Poissonian in-
jection does not originate from the quantum-mechanical in- =Tr{A(0)Tr,[e "H 7" B4(0)p(0)p,(0)eH 7]}

teraction between the field and the individual atoms, the du-
ration of which has been assumed to be negligibly short.

Rather, the non-Markovian dynamics is caused by the statis- =TrfA{(0)Vy(7,0)Bs(0)ps(0)], (2.39
tics of the arrival times of the atoms that can be described by
a classical stochastic process. whereH is the Hamilton of the combined system avid is

Since the exact solution of the non-Markovian evolutionthe evolution operator for the reduced density operator of the
equation(2.1) is rather difficult even with the assumption systemsee Eq(2.1), where the indes has been suppressed
(2.5, one may ask the question as to how the evolutiorat the density operatpr
equation can be approximated by a Markovian one, which When the injection statistics of the atoms corresponds to a
could then be written in the simple form of E.30. In renewal process, it can be explicitly shown that the system
view of the steady-state solution given by E¢8.11) and under consideration, i.e., the cavity field, indeed reaches a
(2.14) it seems reasonable to use the approximation steady state, described by the density operatowhich is

known separatelysee Eqs.(2.7) and (2.9 or Eq. (2.11),
—p+Lp. (233 respectively. Therefore, we may apply E¢2.35 in the
steady state and obtain, e.g.,

p~p(M—1)

1- J dt f(t)et

0

t — t 3
We remark that for Poissonian injection the equivalence of (al(n)a(0))ss=Tra'Vy(7,0)ap], (2.39

the above equation to the exact re4@l3?) is easily verified
by inserting the Poissonian waiting-time distribution where a and a' are the photon annihilation and creation
f(t)=re " into Eq. (2.33. For regular injection of atoms, operators of the cavity mode, respectively, and the evolution
wheref(t)=48(t—T), Eq. (2.33 takes the form operatorV¢(7,0) is given by Eqs(2.2) and(2.5). Similarly,
if we were interested in the steady-state intensity correlation
. L function of the cavity field, we could write, in analogy to the
p=~|pP(M—1) 1—e T +Lp, (2.34 treatment of Markovian processgk3],

which has been derived [i8] by a time-averaging procedure _ —

and was called there a macroscopic master equation. For all (a'(0)a'(n)a(7)a(0))ss= T CVy(r,0)Cp], (2.37
kinds of non-Poissonian injection statistics E2.33) is only '
an approximation. In these cases the non-Markovian charac- _

ter of the field dynamics is revealed by the deviation of thewhere[Cp],,=(N+1)pni1n+1-
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ll. APPLICATION TO DISCRETE does not depend on the state of the other atoms so that no

NON-POISSONIAN PUMPING additional correlations between the resonant atoms can arise
due to the resonance-producing physical process. The prob-
ability Wy"(mT+xT) for finding k resonant, i.e., interacting
We now use the general results of the preceding section ij\coming atoms in an interval of length=mT+XT, can be

order to investigate the non-Markovian dynamics of the cavypptained with the help of Eq$3.1)—(3.3). We arrive at
ity field for the case that the interacting atoms are chosen

A. Statistics of the pump atoms

with probability p out of a regular atomic beam. To begin WLm(mTJr xT)=0 for k>m+1, 3.7
with, let us calculate the probabilitied/, (7) that exactlyk _
atoms are present in the atomic beam in an interval of length Wi (mT+xT)=xp™"?1, (3.9

7, which is located arbitrarily with respect to the regularly

spaced atomic arrival times being separated by the time dis- it m\ ek
tanceT. For convenience, we express the length of this in- Wi (mT+xT)=(1-x)| |, |P(1=p)
terval by 7=mT+xT, wherem=0,1,2, ... and &x<1.
When we substitute Eq$2.5) and (2.13 into Eq.(2.4) and m+1 . .
perform all integrations we find after some algebra X P (1-p)
W, (mT+xT)=0 for k#mm+1 (3.1 for 0O=k=m. (3.9
Win+21(MT+XT) =X, (32 The mean number of interacting atoms and its relative vari-
W, (mT+XxT)=1—x . (3.3 ance follow to be
: . . Ky r=p(m+ 3.1
Equationg3.1)—(3.3) could have been found immediately by {ymrexr=P(M+X) (3.10
noticing that the probability to have one atom injected in angng
interval of lengthxT is equal torxT=x, with r=T"* being _
the injection rate following from Eqg2.6) and (2.13. The (AKZNE ¢ m+ x?
mean number of atoms injected in an interval of length o 1P L (3.1
m X

7=mT+XT is equal to
which again depend on the length of the intervgirovided
<k>mT+xT=2 KW (MT+XT) =m+x (3.4 thatx cannot be neglected in comparisonno
k

B. Evolution equation for the density operator

and the variance is given by the expression of the cavity field

5 5 5 To derive the evolution equation of the cavity-field den-
(Ak >mT+xT:Ek K Wi(MT+XT) = (K)o 57 =X(1=X), sity operator for regular injection of atoms and random
(3.5 choice of the interacting pump atoms we start from the gen-

eral equations2.1) and (2.2), where the operatoM,, is

which takes its maximum value for=13. Since given by Eq.(2.14). Taking into account Eqs2.5), (2.6),
and(2.13 and performing the integratiorise€]9]) we arrive
AK? X(1—x at
< >mT+xT _ ( ) 1 (3.6)
(KYmTexT m+Xx

1 (xT ,
L L S p(mT+xT)=—f dt’e-xT=[1+p(M—1)]
the injection statistics is always sub-Poissonian, but depends TJo
on the length of the intervat whenm is not large compared

to 1. For the forthcoming considerations it is important to X{et[1+p(M—1)]}"e"" p(0)
keep in mind that, except for the singular case0, at any 10T
given length of the time intervat two different numbers of + Tf dt’etxT-t")

XT

atoms, which differ just by 1, may travel, with appropriate
probability, through the cavity. When we intend to identify ,
time averages with quantum-mechanical expectation values x{e"T[1+p(M—1)]}"e " p(0),
referring to the whole ensemble, it is necessary that the time (3.12
interval over which the averaging is performed is located
arbitrarily with respect to the arrival times of the incoming where again the decomposition 7=mT+xT
atoms as has been assumed above. (m=0,1, ..., 0=x<1) has been used. The physical inter-
For completeness we still calculate the statistics of thepretation of Eq(3.12) is quite obvious in view of the statis-
atoms that actually interact with the field in the model oftics of the injected atoms considered in Sec. ll[gee Egs.
random choice of pump atoms. For this purpose we suppod®.1)—(3.3)]. The first integral on the right-hand side corre-
that before the injection into the cavity each of the regularlysponds to the possibility than+1 atoms arrive over the
spaced incoming atoms is brought into resonance with thenterval 7=mT+XT, which is located arbitrarily with re-
field with probabilityp (0<p=<1), whereby this probability spect to the atomic arrival times, whereas the second integral
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corresponds to the arrival of onty atoms. Both possibilites _ 1 . elT—1 __ 1-eLT__
are taken into account with proper probability, which can be PZJ dx p¥= 7 [1+p(M —l)]PCZ?PC,

; _ Lt_ 0
checked by settind=1 ande-'=1 for all t. In order to (3.18
determine the steady-state solutierr lim _ .p(7) we make '

lézz(zfztffg %irée(rzéllzqu?lﬁrﬁn and(2.8). With the help of where Eq.(3.17 and the mapping condition3.14) have

been used. With the help of the above equatidncan be

p — . — expressed by in Eq. (3.14) and after a short transformation
T(M ~Dp"+Lp=0, (313 we arrive at the desired E¢8.15. Thus, due to the period-

icity of the underlying regular injection process used in our

—< model, it has been possible to show explicitly that for a mi-

e e e o ooy oo e s ETOMaSer Wih iScrets pumping e 2veraging and er-
9 y semble averaging are equivalent in the stationary regime,

an atom. ACC‘??"'”Q to Eqd2.7) and (2.14) it obeys the i.e., to demonstrate the validity of the ergodic hypothesis.
mapping condition

F: et1+p(M— 1)]?_ (3.14 D. Non-Markovian dynamics in the transients
and the spectrum
Combining Egs.(3.13 and (3.14), as it has been done to 1. General equations

derive the general equatid@.11), we finally obtain the for-

mal steady-state equation In the following we want to use the density-operator evo-

lution equation(3.12) in order to calculate the transients and
Lo the spectrum of a micromaser with discrete non-Poissonian
p(M—1) 1= TTP +Lp=0. (3.15 pumping. Whereas the previous considerations have been
—¢€ quite general, from now on we restrict ourselves to the usual
situation that before the interaction the resonant atoms are in
C. Equivalence of ensemble averaging and time averaging  the upper level of the microwave transition. In the photon-

L _ : number representation the effect of the Jaynes-Cummings-
When deriving Eq.(3.19 we had in mind the whole interaction on the field then reafiA]

guantum-mechanical ensemble of cavities with regular injec-
tion of atoms where the arrival time of the first atom varies
statistically in the members of the ensemble. The latter as- [Mp]q n+q=COtinyN+ 0+ 1)coggtinyn+1)pn niq
sumption is equivalent to the fact that the time evolution is , ,

not injection-time conditioned. In the steady state the +SiN(gtin N+ Q) SingtinVN) pn-1n+g-1
guantum-mechanical expectation value of any field variable (3.19
is equal to its time averaged value. Therefore, Bgl5 can

be also obtained by performing the time-average in a singI%

. . 21n,g=0,1,...). Heret;,, andg denote the atom-field inter-
subensemble that belongs to a fixed value of the arrival time *." . n . o
of the first atom, which, for simplicity, we denote by=0. ction time and coupling constant, respectively. For simplic

In this subensemble one can define a steady-state densif , we assume that thermal photons can be neglected. There-

re the damping process can be describe
operatorg(") that refers to the state of the field at the time Ping P ey
instants 7=mT+xT with m=0,1, ... and Gx<1 [5].
This operator obeys the mapping equatiéh

[Lelnneg=Y \/(n+q+1)(n+1)Pn+1,n+q+1
p™M=eT[14+p(M-1)]e T, (3.16 .
. .. . . — - n+§ Pn,n+q (3.20
which for x=1 is identical to Eq.(3.14), i.e., p(® corre-

sponds to the injection-time conditioned density operator

? introduced earlier. Since E¢3.16 can be transformed and
into the mapping conditon e MXTp®=[1
+p(M—1)]e-Te " Tp™® we conclude that the operator

e >Tp™ does not depend om. In particular, we have [eLtP]n,nw:efyt(ﬁq/z)go (1-e )
e DTN =g LT,M=e"LT,¢ Substituting this result into
the right-hand side of E(q3.16 we find the alternative ex-

pression X \/

0

n+j

n+q-+j
j j

i Pn+j,n+q+j: (3.2

X — alxT] _ ¢
pri=eT1+p(M=1)]p". BID with y being the cavity damping constant. Since only

) N _ density-matrix elementg,,, with the same value ofi—n’
When we define the unconditioned steady-state opera®  are coupled by the interaction and damping process, it is
the time-averaged value @f® [5] we can write[8] advantageous to introduce the column vector
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Pog

P11+q

p'¥= , (3.22

Pn

max_ & Mmax

0.25
where we have assumed that the photon-number distribution

is truncated at a certain maximum photon numbgg,.

Equation(3.12 can be decomposed into separate evolution

equations for the vectors® (q=0,1,...), where the op-
eratorse'! and 1+ p(M — 1) are replaced by the correspond-
ing matrices. Making use of E¢3.21), the integration with
respect tot’ in Eq. (3.12 is easily performed analytically.
Finally, the evolution equatio(B8.12 can be replaced by the
set of equations
pO(MT+xT)=VO(mT+xT)p?0)  (3.23
(q=0,1,...),whereV® is a matrix, the elements of which
are explicitly known. With the help of Eq3.23 the tran-

sients of all one-time expectation values of the cavity-field

variables can be directly calculated. In particular, der O,
Eq. (3.23 yields the evolution of the photon statistics. When

we are interested in two-time expectation values we have to oz

use Eq.(3.23 with maodified initial conditions. In particular,
taking into account Eqg2.36), (3.22, and(3.23 we obtain
the steady-state correlation function

r]maxfl o
(a'(n)a(0))ss= nzo Vn+1[Vy(7,00apTnni1

z Wz Vo T

X Pt 1mets (3.24

wherer=mT+xT.

In order to discuss the non-Markovian properties of the
field dynamics, the results obtained with the help of Eq.

(3.23 have to be compared with those that would follow
from the Markovian approximatiof2.33. In the following,
instead of the usual correlation functié®.24 we consider
the more general steady-state two-time expectation values

(a™(7)ak(0))ss=(Vs(7,0)a*pa’™)

Nmax— K |
S Ok >
n=0

[Vs(T, O)a P]n n+k

1 "max~

Nmax™
= E E
n=0

(m+k)!—
X Tl Pmkmk

(k=1,2,...). ByFourier transforming we find the general-
ized spectrum

(n+k) (k)

(3.29

(a™(7)a"(0))ss ook
(a™a)ss

S(w)= ;Refo (3.26
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FIG. 1. Decay of the normalized field correlation function
g:(7)=(a’(r)a(0))ss/(a’a)ss in a micromaser operating under
the one-photon trapping conditiogt,,,=3=/+2 at discrete non-
Poissonian pumping witfi=y~ ! and(a) p=1, (b) p=0.8, and(c)
p=0.5. The dashed line corresponds to the result of the Markovian
approximation. The thermal photon number is equal to zero.

which for k=1 corresponds to the usual power spectrum of
the cavity mode of frequency and which we denote as
k-photon spectrum. Fok=2 it has been shown that this
spectrum could be determined by examining the two-photon
absorption in a weak beam of two-photon resonant atoms
probing the cavity field15].
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2. Analytical results for a micromaser
in the k-photon trapped state

We want to calculate the field correlation function and the
spectrum given by Eqg3.295 and (3.26 for the stationary
regime of a micromaser that is operated underkifmhoton
trapping conditior{ 16]

(1=1,2,...) . (3.27)

a

gtlnt I \/m
In this case the maximum photon numirgt,, in the cavity
is equal tok provided that thermal photons can be neglected
For g=k and n,»=k, Eqg. (3.23 reduces to ac-number
equation for the density-matrix elemesy, so that all results
can be easily obtained analytically. From E%19—(3.20)
we obtain

Y
[LP]Ok:_kEPOKi (3.28
[e"'plok=e""P'py, (3.29

and

[Mp]ok=bi(1) pok (3.30

where in Eq.(3.30 the quantity
b.(l)=coglw)coy | ——|, 3.3
k(1) gl ) S( \/m) (3.3)

following from the k-photon trapping conditiori3.27), has
been introduced. When we apply E§-25 for n,,=k and

take into account that in this caga™a*)s=k! p,, we
arrive at

(a™(m)a"(0))ss W0, _ Po(7)
s 0 5

where use has been made of E(&22 and(3.23. Substi-
tution of Egs.(3.29 and (3.30 into the evolution equation
(3.12 finally vyields, for mT<7s<(m+1)T (m
=0,1,2,...),

1+p(b— 1)(%— m)
(3.33

Vo (1) =e” 1+ p(b— 1))

JANOS A. BERGOU

91 ¢

0.8

0.6

04r

02

FIG. 2. Same as Fig. 1, but fgt,,= 7/2 andp=1.

The k-photon spectrum, defined by E(B.26), of a micro-
maser operated under tHephoton trapping condition is

found to be

1 b,—1

Sdw)="R 1+ yp( D)
E*y—l—l(w—kv) kE-H(a)—kV) T
1_ef[k('y/2)+i(w7kv)]T
X “TK(y2) +i(w—K»)T, 1.
1-[1+p(by—1)Je @ iwmi]
(3.39

Obviously, the properties of the decay curve of the field-field
correlation function described by Eq3.34 and of the
k-photon spectrum crucially depend on the value of the pa-
rameterb, given by Eq.(3.31). Depending on the number

I (I=1,2,...), theparameterd, (1) take on values between
—1 and 1 for anyk. Therefore it is sufficient to discuss Egs.
(3.34) and(3.39 for k=1 and different values di(l); the
behavior fork# 1 is principally the same. In the following
we investigate the normalized correlation function

(a'(na(0))ss

91()= (a'a)ss

(3.39

for the one-photon trapped state and the corresponding one-
photon spectrun®;(w), i.e., the usual power spectrum. We
stress here that Eq$3.34) and (3.35 result from the non-
Markovian density-operator evolution equati@l2, which

can be interpreted as the exact solution of a non-Markovian

To obtain the above equation we used the fact that, becauggolution equation. When we would instead use the Markov-

of the c-number structure of EQq(3.23 resulting for
Nmax=K, the operatoré andM may be commuted when Eq.
(3.12 is applied to calculat@q (mT+xT). By introducing
the notation[ 7/T] for the maximum integer that does not
exceed the value of/ T, we may write

<aTk( T)ak(0)>ss:

A @y e” 21+ p(b,— 1)1t

ik

X[l+ p(b,— 1)(%—[?
(3.39

ian approximation2.34) for the master equation and again
apply Egs.(3.28—(3.30 we would find the approximate re-
sult

1-[1+p(b;—1)]e” Ty
1—e 0T 2

(3.37

T| .

gl(r)~exr{ -

The decay of the normalized field correlation function
01(7) is depicted in Figs. 1 and 2. As it has become obvious
from Eq. (3.34), the functiong,(7) reveals a sawtoothlike
behavior when the quantitydp(b,—1) takes on negative
values[see Figs. (a) and Xb), whereb;=—0.9283. Since
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b,=—-1 [see Eq.(3.31)] the requirement %+ p(b,—1)<0 S1
can be only fulfiled wherp> 3. Physically, the origin for

the sawtoothlike behavior lies in the fact that the interaction
with a single atom can cause a phase reversal of the complex
quantity (a™). In fact, for thek-photon trapped state with
Nmax=K we find with the help of Eq(3.30

(@™ (t+ti))=Tr a™Mp(t)]=by k!, pw(t):bk<aﬂk<(t3>>3 ;

Since we assumed that the micromaser is pumped by atoms
being in a definite energy state, the off-diagonal elements of ok

the field density matrix vanish in the stationary state and the 2 10 0 10 » 30
same is true for the expectation values of the operatdfs 2w —v)/y

To be more precise, instead of E§.38 we therefore con- _ _
sider the field correlation FIG. 3. Steady-state spectru®(w) of a micromaser operating

under the one-photon trapping conditigrtuim:37r/\/§ with zero
thermal photon number for discrete non-Poissonian pumping with

(@™(t+tip)a™(t))ss= Tr[Ma*pa] time distancelT =y~ * and interaction probabilitp=1.

_ — tkyk
bkt prac=bi(@a)ss. sity matrix of the whole quantum-mechanical ensemble.
(3.39 Thus it was possible to explain the fact that line splitting can
occur only forp>3.

Again, for b, <0 the phase of this complex field correlation
is reversed due to the interaction with a single atom. Now, in
our model the probability that an injected atom indeed inter- V. CONCLUSION
acts with the field is given by the parameferTo estimate - .
the average change of the field due to the transit of one atom We have presented a unified treatment of discrete and
one has to take into account both the possibilities that th€ontinuous non-Poissonian micromaser pumping, which
atom traversing the cavity does not interact with the field"®Sts on an ensemble-averaging approach. The resulting dy-
(which occurs with probability % p) and that the atom is in hamics of the micromaser field proved to be a non-
resonance with the fieltprobability p). In the first case the Markovian one. The equivalence of ensemble averaging and
field remains unchanged, whereas in the second case Ed#ne averaging could be explicitly shown for a micromaser
(3.38 or (3.39 can be applied. The average effect of theWIth discrete non-qusomaq pumping. Moreover, for 'thIS
transit of a single atom in the-photon trapped state hence €aS€ an exact analytical solution could be found for the time-

can be described by dependent field-field correlation function_anql the gen_eralized
k-photon spectrumk=1,2, . . .) of thecavity field provided
that the micromaser is operated under khghoton trapping
Tk _ Tk _\ak
(a (::t int)) = (a (HTtk'“tia ()ss condition. It turned out that for certain values of the interac-
(@™(1)) (a™a)ss tion parameter thé-photon spectrum is split into several
—1-p+pby. (3.40 equidistant peaks. We showed that this effect is explained by

The requirement %+ p(b,—1)<0 for the sawtoothlike be- 51

havior to occur therefore becomes obvious from physical [
considerations. ;
In Figs. Xc) and 2 this requirement is not fulfilled; the :
field correlation functiong,(7) decreases monotonically. ,:
Nevertheless, the deviation from the behavior expected from ;'
]

the Markovian approximatiori3.37) is apparent. In these
cases the so-called macroscop® master equation2.34)
hence does not correctly describe the macroscopic behavior
where changes on a time scale of the ord@rdre averaged
out.

As a consequence of the sawtoothlike decagfr) the ol . :
spectrum is split into several equidistant peaks, separated by 75 -50 25 0 25 50 75
Aw=27IT (see Figs. 3 and)4 This behavior has already 2w —v)/v
previously been found6,7] for certain parameter regions
under general operating conditions. The previous treatments F|G. 4. Same as Fig. 3, but fgt,,=27/2 andT=0.5y"L.

have been based on a stroboscopic approach with subsequéht dashed line corresponds to the result of the Markovian approxi-
time averaging. In contrast to this, we investigated the denmation.
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the phase reversal of the entire cavity field due to the transpumping when the dynamics is governed by several expo-

of a single atom. nentially decaying distributions having different time con-
We note here that our analytic approach can also be apstants[18]. Finally, we remark that, though microwave pho-

plied to more general operating conditions of a micromasefons cannot be directly detected, our investigations

with discrete pumping, provided that the resulting photon-nevertheless might be of practical interest since they can be

number distribution is single peaked at a sufficiently largeapplied also to a microlaser that has been successfully oper-
mean photon number. This is planned to be the topic of &ted in the optical regiofL9].

future papef{17], where we plan to show that the spectral

splitting into equidistant peaks that results in certain condi-

tions or, gquwalently, the phgse reversal of the field due to ACKNOWLEDGMENTS
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