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We investigate the effect of non-Poissonian pump fluctuations on the micromaser dynamics. Non-Poissonian
micromaser pumping has been described by two, seemingly unrelated, theoretical approaches. The first em-
ploys a discrete pumping process where the pump atoms are allowed to arrive, with certain probabilityp, only
at regularly spaced instants of time, whereas the second refers to continuously distributed arrival times of the
pump atoms. Based on a generalization of the latter, we present a unified approach that can handle both
situations on an equal footing. We find that for any kind of non-Poissonian pumping the resulting dynamics of
the micromaser field is a non-Markovian one. For a micromaser with discrete non-Poissonian pumping, we
show the equivalence of ensemble averaging and time averaging, providing a rare example where the validity
of the ergodic hypothesis can be explicitly demonstrated. Moreover, we investigate the time-delayed field-field
correlation function and a generalizedk-photon spectrum of the cavity field, which fork51 corresponds to the
usual power spectrum. For the case that the micromaser is operated under thek-photon trapping condition, we
derive exact analytical expressions for thek-photon spectrum and the corresponding correlation functions that

result from the exact solution of a non-Markovian evolution problem. Provided thatp.
1
2 , the spectrum is

found to be split into several equidistant peaks for certain values of the interaction parameters.
@S1050-2947~96!03312-4#

PACS number~s!: 42.50.Dv, 42.55.2f

I. INTRODUCTION

In the one-atom micromaser a beam of Rydberg atoms
interacts with the radiation field in a microwave cavity of
high quality in such a way that, at most, one atom at a time
is present in the cavity@1#. Usually the atoms in the beam are
excited to the upper level of a resonant microwave transition.
In the conventional micromaser, the injected atoms that
pump the cavity are statistically independent, the pump sta-
tistics therefore being described by a Poissonian process.
Due to the atom-field interaction, nonclassical properties of
the radiation field such as sub-Poissonian photon statistics
may arise@2#. The steady-state properties of the field as well
as the field dynamics depend on the character of the pump
statistics. In particular, the nonclassical character of the field
can be enhanced by sub-Poissonian pumping. Therefore, the
effect of non-Poissonian pump fluctuations on the microma-
ser field has attracted a great deal of interest in previous
years @3–10#. It has been investigated by two, seemingly
unrelated, theoretical approaches. The first employs a dis-
crete pumping model where the atoms are allowed to arrive,
with certain probability, only at distinct instants of time that
are separated by a constant time interval@3–8#. In contrast to
this, in the second approach the arrival times of the atoms are
continuously distributed in time. This has been treated with
the help of a quantum-field model of the injected atomic
beam@9# and by applying the theory of stochastic point pro-
cesses@10#. Both treatments are somewhat related to a spe-
cial model of optical pumping in lasers@11#.

In this paper we present a unified approach to discrete and
continuous non-Poissonian micromaser pumping that can

handle both situations on an equal footing and is based on a
generalization of the model of continuous pumping. With the
help of our method, for a micromaser with discrete non-
Poissonian pumping, the equivalence of ensemble averaging
and time averaging is explicitly shown, providing a rare ex-
ample where the validity of the ergodic hypothesis can be
explicitly demonstrated. Moreover, we show that for all
kinds of non-Poissonian pumping, the resulting dynamics of
the micromaser field is a non-Markovian one. In each case it
is easily possible to postulate a master equation that can
serve as a Markovian approximation to the non-Markovian
evolution equation of the field density matrix and yields the
correct stationary state. In particular, for discrete non-
Poissonian pumping, the approximation is equivalent to a
recently proposed ‘‘macroscopic’’ master equation@8#. It
should be stressed, however, that this approximation is
strictly justified only as a means to find the steady state.
When the dynamical properties are of interest, it turns out
that the results obtained with this Markovian master equation
may differ from the smooth approximation to the ensuing
non-Markovian dynamics.

To apply our method we calculate the time-dependent
field-field correlation function and the spectrum of a micro-
maser with discrete non-Poissonian pumping where the at-
oms arrive with probabilityp at equally spaced time instants.
This has been done already previously@6,7# using the con-
ventional mapping model of discrete pumping combined
with a subsequent time-averaging procedure. In contrast to
this, our unified treatment of non-Poissonian micromaser
pumping rests on a pure ensemble-averaging approach. It
allows for a physical interpretation of the underlying mecha-
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nism and in particular explains the fact that the spectral line
splitting that is observed for certain interaction parameters

vanishes whenp, 1
2 . We calculate a so-calledk-photon

spectrum that corresponds to the usual power spectrum when
k51. For a micromaser operated under thek-photon trap-
ping condition, we find exact analytical results for the
k-photon spectrum and the corresponding correlation func-
tions. It should be stressed that these results are obtained
from the exact analytical solution of a non-Markovian prob-
lem.

The paper is organized as follows. In Sec. II we outline
the basic ideas that permit a unified treatment of discrete and
continuous non-Poissonian pumping. We derive the non-
Markovian evolution equation for the density operator of the
field and we show how two-time expectation values of the
field operators can be calculated in the stationary state. The
results are applied to a micromaser with discrete non-
Poissonian pumping in Sec. III. First, we discuss the statis-
tics of the pump atoms in the frame of ensemble averaging.
Then, the density-operator equation of the cavity field is de-
rived and the equivalence of ensemble averaging and time
averaging is explicitly shown. Finally, we investigate the
non-Markovian behavior that is displayed in the time-
delayed field-field correlation functions and the spectrum of
the micromaser.

II. UNIFIED TREATMENT OF DISCRETE
AND CONTINUOUS NON-POISSONIAN PUMPING

A. Evolution equation for the density operator of the field

We start with repeating some important results from the
stochastic-process treatment of the pump statistics@10#. It
has been found that one has to discriminate carefully be-
tween the unconditioned density operatorr of the cavity field
and so-called injection-time conditioned density operators.
The latter refer to subensembles of the whole quantum-
mechanical ensemble and represent the state of the field at
certain time instants that are defined with respect to the ar-
rival times of the atoms. In particular, when the level-
selective statistics of the atoms leaving the cavity is to be
investigated, one has to know the time evolution of the spe-
cific injection-time conditioned field density operator%c that
refers to the state of the field immediately prior to the transit
of an atom@10#. In contrast to the injection-time conditioned
density operator, the unconditioned field density operator%
describes the whole quantum-mechanical ensemble. As a
consequence of the ergodic theorem, with the help of its
steady-state solutionr̄ the time-averaged value of any field
variable can be calculated as the quantum-mechanical expec-
tation value of the operator corresponding to this variable.
The most general equation for the evolution of the uncondi-
tioned density operator of the cavity field from the initial
time t50 to the final timet5t takes the form

r~t!5Vs~t,0!r~0!, ~2.1!

where@10#
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t
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•••M tre
L~ t22t1!M tre

Lt1, ~2.2!

with L being the usual damping operator of the cavity field
and the operatorM tr describing the effect of the transit of a
single atom on the density operator of the field according to
the equation

r~ t1t int!5M trr~ t ! . ~2.3!

In Eq. ~2.2! it has been assumed that the damping of the
cavity field can be neglected over the transit timet int of a
single atom that is negligibly short in our model. The func-
tions Qk12(t0 ,t1 , . . . ,tk11) (k50,1, . . . ) are theexclu-
sive probability densities for the injection of exactlyk12
atoms into the cavity at the time instantst0 ,t1 , . . . ,tk11
without any other atom being injected in between. From the
functions Qk12(t0 ,t1 , . . . tk11) we find the probabilities
Wk(t) that the total number of atoms injected into the cavity
over an arbitrary interval of lengtht is equal to k
(k50,1, . . . ). These atom-number probabilitiesWk(t) read
@10#

Wk~t!5E
t

`

dtk11E
0

t

dtkE
0

tk
dtk21•••E

0

t2
dt1

3E
2`

0

dt0Qk12~ t0 ,t1 , . . . ,tk11! . ~2.4!

The stationary stochastic process describing the statistics of
the injection of atoms into the cavity is completely charac-
terized by the whole set of the exclusive probability densities
Qk12(t0t1 , . . . ,tk11) (k50,1, . . . ). An important class of
stationary stochastic processes are the stationary renewal
processes@12#, where the functionsQk12(t0 ,t1 , . . . ,tk11)
factorize in the form

Qk12~ t0 ,t1 , . . . ,tk11!5r)
i51

k11

f ~ t i2t i21!, ~2.5!

with r being the injection rate of the atoms, which can be
calculated with the help of the equation

r215E
0

`

t f ~ t !dt . ~2.6!

Thus the injection statistics is uniquely defined by the func-
tion f (t), which has the meaning of the waiting-time distri-
bution between consecutive injected atoms, i.e., of the prob-
ability density that an atom is injected at timet81t provided
that the previous atom had been injected at timet8. It has
been shown@10# that for injection of atoms according to a
renewal process, a simple mapping equation exists that de-
termines the steady-state solution of the specific injection-
time conditioned density operatorrc of the cavity field,
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which refers to the time instants immediately prior to the
transit of an atom. This mapping condition is given by

r̄ c5E
0

`

dt f~ t !eLtM tr r̄
c . ~2.7!

Moreover, in this case the steady-state solution
r̄ 5 limt→`r(t), following from Eq.~2.1!, is connected with
the operatorr̄ c by the simple equation@10#

r ~M tr21! r̄ c1L r̄ 50 . ~2.8!

From Eqs.~2.7! and~2.8! it becomes obvious that the steady-
state solution of Eq.~2.1! does not depend on the initial
operatorr(0) provided that the factorization condition~2.5!
is fulfilled. We now derive an operator equation forr̄ by
first writing Eq. ~2.7! in the form

M tr r̄
c5F E

0

`

dt f~ t !eLtG21

r̄ c, ~2.9!

which yields, together with Eq.~2.8!,

r r̄ c5
L r̄

12F E
0

`

dt f~ t !eLtG21 . ~2.10!

Therefore, Eq.~2.8! can be written as

~M tr21!
L

12F E
0

`

dt f~ t !eLtG21 r̄ 1L r̄ 50 . ~2.11!

The operator equation~2.11! is interesting for formal rea-
sons. For practically calculating the field density matrix,
however, it seems easier to use Eqs.~2.7! and ~2.8!, as has
been done in@10# where the waiting-time distribution has
been modeled as

f ~ t !5
l1l2

l21al1
~e2l1t1ae2l2t! . ~2.12!

Here a, l1, and l2 are real parameters witha>21 and
l1 ,l2>0. The renewal process characterized by the above
equation describes continuous non-Poissonian injection with
bunching or antibunching of the injected atoms. The special
case of Poissonian injection is contained in the ansatz~2.12!
whena50 andl15r . On the other hand, discrete injection
of atoms with fixed time distanceT between consecutive
atoms, i.e., regular injection, is described by a stationary re-
newal process having the waiting-time distribution@9#

f ~ t !5d~ t2T!, ~2.13!

with d being the Dirac delta function. With the help of Eq.
~2.6! we obtain the injection rater5T21. Thus, by substitut-
ing Eq. ~2.13! into Eqs.~2.5!–~2.7!, continuous and discrete
non-Poissonian pumping can be treated on an equal footing.

B. Random choice of pump atoms

Without the restrictive assumption that the atoms injected
into the cavity are distributed according to a renewal process,
the exploitation of the general density-matrix equation~2.1!
becomes extremely complicated or even impossible and one
would have to resort to numerical simulations. However, the
variety of different pump statistics that are tractable with this
assumption can be considerably enlarged by introducing an
additional degree of freedom. For this purpose we suppose
that not all of the injected atoms interact with the field during
their transit through the cavity because some of them are out
of resonance. Whenp with 0<p<1 is the probability that
an injected atom indeed interacts with the field, the operator
M tr introduced in Eq.~2.3! takes the form

M tr5pM1~12p!1511p~M21!, ~2.14!

where the operatorM describes the atom-field interaction
according to the Jaynes-Cummings model and1 is the unit
operator. With this splitting of the operatorM tr , the basic
equations~2.7!–~2.13! can still be applied when the prob-
ability p is taken into account. In particular, the steady-state
density operatorr̄ then obeys the equation

p~M21!
L

12F E
0

`

dt f~ t !eLtG21 r̄ 1L r̄ 50, ~2.15!

where f (t) is the waiting-time distribution that refers to all
incoming atoms including the nonresonant, i.e., noninteract-
ing, ones.

Interestingly, the statistics of the interacting atoms, con-
sidered separately, is still described by a renewal process. To
show this, we calculate their exclusive probability densities
Qm
int(t0 ,t1 , . . . ,tm21) (m52,3, . . . ). These refer to the

presence of exactlym interacting atoms that occur with prob-
ability p each time, at the instantst0 ,t1 , . . . ,tm21, and of an
arbitrary number of randomly distributed noninteracting at-
oms in the intervals in between, which occur with probability
12p. Starting from the nonselective exclusive probability
densities of all atoms, which obey the renewal condition
~2.5!, we obtain

Qm
int~ t0 ,t1 , . . . ,tk21!5pmr )

i51

m21

F~ t i ,t i21!, ~2.16!

where

F~ t i ,t i21!5 f ~ t i2t i21!1 (
k51

`

~12p!kE
t i21

t i
dtk

3E
t i21

tk
dtk21•••E

t i21

t2
dt1f ~ t i2tk!

3F)
l52

k

f ~t l2t l21!G f ~t12t i21! . ~2.17!

The multiplication of all termsF(t i ,t i21) ( i51, . . . ,m) in
Eq. ~2.16! just takes into account all possible distributions of
the noninteracting atoms. Obviously, the functions
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F(t i ,t i21) depend only on the differencet i2t i21, which can
be easily seen by making the substitutionst i2t i215t and
t l2t i215j l ( l51, . . . ,k) in Eq. ~2.17!. Therefore we can
write, instead of Eq.~2.16!,

Qm
int~ t0 ,t1 , . . . ,tk21!5pr )

i51

m21

f int~ t i2t i21!, ~2.18!

where

f int~t!5p f~t!1p(
k51

`

~12p!kE
0

t

djkf ~t2jk!

3E
0

jk
djk21f ~jk2jk21!•••E

0

j2
dj1f ~j22j1! f ~j1!

~2.19!

is the waiting-time distribution of the interacting atoms.
Equation ~2.18! indeed expresses the property of being a
renewal process with raterp for the statistics of the interact-
ing atoms. Hence, instead of Eq.~2.15! we could use the
equation

~M21!
L

12F E
0

`

dt f int~ t !eLtG21 r̄1Lr50 . ~2.20!

In order to show explicitly the equivalence of Eqs.~2.15! and
~2.20! we consider the Laplace transforms

f̃ int~z!5E
0

`

dt e2ztf int~ t ! ~2.21!

and

f̃ ~z!5E
0

`

dt e2ztf ~ t ! . ~2.22!

Applying the convolution theorem, we find from Eq.~2.19!

f̃ int~z!5p f̃~z!1p(
k51

`

~12p!k@ f̃ ~z!#k115
p f̃~z!

12~12p! f̃ ~z!
.

~2.23!

Therefore, we get

F E
0

`

dt eLt f int~ t !G21

5@ f̃ int~2L !#21

5

12~12p!E
0

`

dt eLt f ~ t !

pE
0

`

dt eLt f ~ t !

. ~2.24!

When we substitute the expression~2.24! into Eq. ~2.20! we
immediately arrive at Eq.~2.15!. We remark that for practi-
cal calculations it is much more convenient to use the opera-
torM tr511p(M21) and the original waiting-time distribu-
tion f (t) than to start from the operatorM and the waiting-
time distributionf int(t).

Finally, it is interesting to calculate the waiting-time dis-
tribution for the renewal process that results from randomly
choosing interacting atoms out of regularly distributed in-
jected atoms, i.e., for the discrete pumping process we will
be interested in. With the help of Eqs.~2.13!, ~2.22!, and
~2.23! we obtain

f̃ int~z!5pFe2zT1 (
k51

`

~12p!ke2z~k11!TG5
p

ezT2~12p!
,

~2.25!

which yields

f int~ t !5pH d~ t2T!1 (
k51

`

~12p!kd@ t2~k11!T#J .

~2.26!

From Eqs.~2.6! and ~2.26! the pumping rate can be calcu-
lated with a little algebra to be

r int5F E
0

`

t f int~ t !dtG21

5
p

T
. ~2.27!

In the double limitT→0, p→0, Eq.~2.25! can be written as
f̃ int(z)5r int(z1r int)

21, which is the Laplace transform of
the exponential waiting-time distribution f (t)
5r intexp(2r intt) characteristic for a Poissonian pumping
process, as should be expected in this limit@3#.

C. Manifestation of non-Markovian dynamics

In classical physics the Markov approximation consists in
the assumption that the conditional probability of a process is
entirely determined by the knowledge of the most recent
condition @13#. In quantum mechanics, this is equivalent to
the evolution-operator equation

Vs~t,t8!5Vs~t,t !Vs~ t,t8! ~2.28!

for t.t.t8, whereVs(t,t8) describes the evolution of the
system from the initial timet8 to the final timet. Obviously,
the above equation implies thatVs can be written as

Vs~ t,t8!5eLs~ t2t8![V~ t2t8!, ~2.29!

whereLs is the Liouvillian of the total system. Because of
Eq. ~2.1! the density operator of the system then evolves
according tor(t)5eLs(t2t0)r(t0), which yields the Markov-
ian master equation

ṙ5Lsr . ~2.30!

From inspection of Eq.~2.2! we conclude that the Markov
condition~2.28! or ~2.29!, respectively, can be fulfilled only
when the injected atoms are distributed according to a re-
newal process obeying the factorization condition~2.5! and
when, in addition, the waiting-time distributionf (t) decays
exponentially in time, thus describing Poissonian injection.
From Eqs.~2.5! and ~2.6! we find, for Poissonian injection,

Qk12~ t0 ,t1 , . . . ,tk11!5r k12e2r ~ tk112t0!, ~2.31!
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wherek50,1, . . . . Indeed, it has been shown@10# that in
this case Eqs.~2.1! and~2.2! are equivalent to the Markovian
master equationṙ5r (M tr21)r1Lr, which can be written
as

ṙ5rp~M21!r1Lr ~2.32!

when Eq.~2.14! is taken into account. We remark at this
point that the assumption of a negligibly short atom-field
interaction time@see Eq.~2.3!# has been essential for the
manifestation of Markovian dynamics for Poissonian pump-
ing. Without this assumption, the operator products
M tre

L(tm2tm21) occurring in Eq.~2.2! would have to be re-
placed by the expressionsVtr(tm ,tm2t int)e

L(tm2t int2tm21),
whereVtr(tm ,tm2t int) describes the evolution of the reduced
cavity-field density matrix from the initial timetm2t int to the
final time tm under the influence of the atom-field interaction.
Hence, despite Poissonian injection the Markovian condition
~2.28! would not be fulfilled on a time scale that takes into
account the finite duration of the atom-field interaction.

For any kind of non-Poissonian injection statistics, where
Eq. ~2.31! does not hold, the field evolution can never be a
Markovian one. In particular, for injection according to a
non-Poissonian renewal process, the field-density-operator
evolution equation has been transformed into an integro-
differential equation, the kernel of which is responsible for
the non-vanishing memory time being characteristic for the
non-Markovian evolution@9#. We stress once again that the
non-Markovian character of Eq.~2.1! for non-Poissonian in-
jection does not originate from the quantum-mechanical in-
teraction between the field and the individual atoms, the du-
ration of which has been assumed to be negligibly short.
Rather, the non-Markovian dynamics is caused by the statis-
tics of the arrival times of the atoms that can be described by
a classical stochastic process.

Since the exact solution of the non-Markovian evolution
equation~2.1! is rather difficult even with the assumption
~2.5!, one may ask the question as to how the evolution
equation can be approximated by a Markovian one, which
could then be written in the simple form of Eq.~2.30!. In
view of the steady-state solution given by Eqs.~2.11! and
~2.14! it seems reasonable to use the approximation

ṙ'p~M21!
L

12F E
0

`

dt f~ t !eLtG21 r1Lr . ~2.33!

We remark that for Poissonian injection the equivalence of
the above equation to the exact result~2.32! is easily verified
by inserting the Poissonian waiting-time distribution
f (t)5re2rt into Eq. ~2.33!. For regular injection of atoms,
where f (t)5d(t2T), Eq. ~2.33! takes the form

ṙ'S p~M21!
L

12e2LT 1L D r, ~2.34!

which has been derived in@8# by a time-averaging procedure
and was called there a macroscopic master equation. For all
kinds of non-Poissonian injection statistics Eq.~2.33! is only
an approximation. In these cases the non-Markovian charac-
ter of the field dynamics is revealed by the deviation of the

actual dynamical behavior@which is described by Eqs.~2.1!
and ~2.2!# from the predictions made by the Markovian ap-
proximation~2.33!. In Sec. III we shall discuss this for dis-
crete pumping by investigating two-time expectation values
of the steady-state field.

Whereas for Markovian processes the evaluation of all
multitime expectation values can be easily performed with
the help of the evolution equation for the reduced density
operator of the system under consideration, this no longer
holds true, in general, for non-Markovian processes. How-
ever, for the calculation of two-time expectation values
^As(t01t)Bs(t0)& with As and Bs being arbitrary system
operators, the non-Markovian reduced-density-operator evo-
lution equation is sufficient provided the expectation values
refer to a timet0, where the statesrs(t0) andr r(t0) of the
system and of the reservoir are known separately, i.e., where
the density operatorrs1r(t0) of the combined system formed
by the reservoir and by the system under consideration fac-
torizes according tors1r(t0)5rs(t0)r r(t0). This is true
when the interaction starts at timet0 or when att0 the system
is in a steady state that is independent of the state of the
reservoir. Setting, for simplicity,t050, we then find, in anal-
ogy to the standard treatment for Markovian processes@13#,

^As~t!Bs~0!&

5Trs1r@e
iH t/\As~0!e2 iH t/\Bs~0!rs~0!r r~0!#

5Trs$As~0!Trr@e
2 iH t/\Bs~0!rs~0!r r~0!eiH t/\#%

5Trs@As~0!Vs~t,0!Bs~0!rs~0!#, ~2.35!

whereH is the Hamilton of the combined system andVs is
the evolution operator for the reduced density operator of the
system@see Eq.~2.1!, where the indexs has been suppressed
at the density operator#.

When the injection statistics of the atoms corresponds to a
renewal process, it can be explicitly shown that the system
under consideration, i.e., the cavity field, indeed reaches a
steady state, described by the density operatorr̄ , which is
known separately@see Eqs.~2.7! and ~2.9! or Eq. ~2.11!,
respectively#. Therefore, we may apply Eq.~2.35! in the
steady state and obtain, e.g.,

^a†~t!a~0!&SS5Tr@a†Vs~t,0!a r̄ #, ~2.36!

where a and a† are the photon annihilation and creation
operators of the cavity mode, respectively, and the evolution
operatorVs(t,0) is given by Eqs.~2.2! and~2.5!. Similarly,
if we were interested in the steady-state intensity correlation
function of the cavity field, we could write, in analogy to the
treatment of Markovian processes@13#,

^a†~0!a†~t!a~t!a~0!&SS5Tr@CVs~t,0!C r̄ #,
~2.37!

where@C r̄ #nn5(n11)rn11,n11.
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III. APPLICATION TO DISCRETE
NON-POISSONIAN PUMPING

A. Statistics of the pump atoms

We now use the general results of the preceding section in
order to investigate the non-Markovian dynamics of the cav-
ity field for the case that the interacting atoms are chosen
with probability p out of a regular atomic beam. To begin
with, let us calculate the probabilitiesWk(t) that exactlyk
atoms are present in the atomic beam in an interval of length
t, which is located arbitrarily with respect to the regularly
spaced atomic arrival times being separated by the time dis-
tanceT. For convenience, we express the length of this in-
terval by t5mT1xT, wherem50,1,2, . . . and 0<x,1.
When we substitute Eqs.~2.5! and ~2.13! into Eq. ~2.4! and
perform all integrations we find after some algebra

Wk~mT1xT!50 for kÞm,m11 ~3.1!

Wm11~mT1xT!5x, ~3.2!

Wm~mT1xT!512x . ~3.3!

Equations~3.1!–~3.3! could have been found immediately by
noticing that the probability to have one atom injected in an
interval of lengthxT is equal torxT5x, with r5T21 being
the injection rate following from Eqs.~2.6! and ~2.13!. The
mean number of atoms injected in an interval of length
t5mT1xT is equal to

^k&mT1xT5(
k
kWk~mT1xT!5m1x ~3.4!

and the variance is given by the expression

^Dk2&mT1xT5(
k
k2Wk~mT1xT!2^k&mT1xT

2 5x~12x!,

~3.5!

which takes its maximum value forx5 1
2 . Since

^Dk2&mT1xT

^k&mT1xT
5
x~12x!

m1x
,1 ~3.6!

the injection statistics is always sub-Poissonian, but depends
on the length of the intervalt whenm is not large compared
to 1. For the forthcoming considerations it is important to
keep in mind that, except for the singular casex50, at any
given length of the time intervalt two different numbers of
atoms, which differ just by 1, may travel, with appropriate
probability, through the cavity. When we intend to identify
time averages with quantum-mechanical expectation values
referring to the whole ensemble, it is necessary that the time
interval over which the averaging is performed is located
arbitrarily with respect to the arrival times of the incoming
atoms as has been assumed above.

For completeness we still calculate the statistics of the
atoms that actually interact with the field in the model of
random choice of pump atoms. For this purpose we suppose
that before the injection into the cavity each of the regularly
spaced incoming atoms is brought into resonance with the
field with probabilityp (0,p<1), whereby this probability

does not depend on the state of the other atoms so that no
additional correlations between the resonant atoms can arise
due to the resonance-producing physical process. The prob-
ability Wk

int(mT1xT) for finding k resonant, i.e., interacting
incoming atoms in an interval of lengtht5mT1xT, can be
obtained with the help of Eqs.~3.1!–~3.3!. We arrive at

Wk
int~mT1xT!50 for k.m11 , ~3.7!

Wm11
int ~mT1xT!5xpm11 , ~3.8!

Wk
int~mT1xT!5~12x!Smk D pk~12p!m2k

1xSm11

k D pk~12p!m112k

for 0<k<m . ~3.9!

The mean number of interacting atoms and its relative vari-
ance follow to be

^k&mT1xT
int 5p~m1x! ~3.10!

and

^Dk2&mT1xT
int

^k&mT1xT
int 512p

m1x2

m1x
,1, ~3.11!

which again depend on the length of the intervalt provided
that x cannot be neglected in comparison tom.

B. Evolution equation for the density operator
of the cavity field

To derive the evolution equation of the cavity-field den-
sity operator for regular injection of atoms and random
choice of the interacting pump atoms we start from the gen-
eral equations~2.1! and ~2.2!, where the operatorM tr is
given by Eq.~2.14!. Taking into account Eqs.~2.5!, ~2.6!,
and~2.13! and performing the integrations~see@9#! we arrive
at

r~mT1xT!5
1

TE0
xT

dt8eL~xT2t8!@11p~M21!#

3$eLT@11p~M21!#%meLt8r~0!

1
1

TExT
T

dt8eL~xT2t8!

3$eLT@11p~M21!#%meLt8r~0!,

~3.12!

where again the decomposition t5mT1xT
(m50,1, . . . , 0<x,1) has been used. The physical inter-
pretation of Eq.~3.12! is quite obvious in view of the statis-
tics of the injected atoms considered in Sec. III A@see Eqs.
~3.1!–~3.3!#. The first integral on the right-hand side corre-
sponds to the possibility thatm11 atoms arrive over the
interval t5mT1xT, which is located arbitrarily with re-
spect to the atomic arrival times, whereas the second integral
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corresponds to the arrival of onlym atoms. Both possibilities
are taken into account with proper probability, which can be
checked by settingM51 andeLt51 for all t. In order to
determine the steady-state solutionr̄ 5 limt→`r(t) we make
use of the general equations~2.7! and~2.8!. With the help of
Eqs.~2.13! and ~2.14! we find

p

T
~M21! r̄ c1L r̄ 50, ~3.13!

where r̄ c is the injection-time conditioned density operator
referring to the time instant immediately before the transit of
an atom. According to Eqs.~2.7! and ~2.14! it obeys the
mapping condition

r̄ c5eLT@11p~M21!# r̄ c. ~3.14!

Combining Eqs.~3.13! and ~3.14!, as it has been done to
derive the general equation~2.11!, we finally obtain the for-
mal steady-state equation

p~M21!
L

12e2LT r̄ 1L r̄ 50 . ~3.15!

C. Equivalence of ensemble averaging and time averaging

When deriving Eq.~3.15! we had in mind the whole
quantum-mechanical ensemble of cavities with regular injec-
tion of atoms where the arrival time of the first atom varies
statistically in the members of the ensemble. The latter as-
sumption is equivalent to the fact that the time evolution is
not injection-time conditioned. In the steady state the
quantum-mechanical expectation value of any field variable
is equal to its time averaged value. Therefore, Eq.~3.15! can
be also obtained by performing the time-average in a single
subensemble that belongs to a fixed value of the arrival time
of the first atom, which, for simplicity, we denote byt50.
In this subensemble one can define a steady-state density
operatorr̄ (x) that refers to the state of the field at the time
instants t5mT1xT with m50,1, . . . and 0<x,1 @5#.
This operator obeys the mapping equation@8#

r̄ ~x!5eLxT@11p~M21!#eL~12x!T r̄ ~x!, ~3.16!

which for x51 is identical to Eq.~3.14!, i.e., r̄ (1) corre-
sponds to the injection-time conditioned density operator
r̄ c introduced earlier. Since Eq.~3.16! can be transformed
into the mapping condition e2LxTr̄ (x)5@1
1p(M21)#eLTe2LxTr (x) we conclude that the operator
e2LxTr̄ (x) does not depend onx. In particular, we have
e2LxTr̄ (x)5e2LT r̄ (1)5e2LT r̄ c. Substituting this result into
the right-hand side of Eq.~3.16! we find the alternative ex-
pression

r̄ ~x!5eLxT@11p~M21!# r̄ c . ~3.17!

When we define the unconditioned steady-state operatorr̄ as
the time-averaged value ofr̄ (x) @5# we can write@8#

r̄ 5E
0

1

dx r̄ ~x!5
eLT21

LT
@11p~M21!# r̄ c5

12e2LT

LT
r̄ c,

~3.18!

where Eq.~3.17! and the mapping condition~3.14! have
been used. With the help of the above equationr̄ c can be
expressed byr̄ in Eq. ~3.14! and after a short transformation
we arrive at the desired Eq.~3.15!. Thus, due to the period-
icity of the underlying regular injection process used in our
model, it has been possible to show explicitly that for a mi-
cromaser with discrete pumping time averaging and en-
semble averaging are equivalent in the stationary regime,
i.e., to demonstrate the validity of the ergodic hypothesis.

D. Non-Markovian dynamics in the transients
and the spectrum

1. General equations

In the following we want to use the density-operator evo-
lution equation~3.12! in order to calculate the transients and
the spectrum of a micromaser with discrete non-Poissonian
pumping. Whereas the previous considerations have been
quite general, from now on we restrict ourselves to the usual
situation that before the interaction the resonant atoms are in
the upper level of the microwave transition. In the photon-
number representation the effect of the Jaynes-Cummings-
interaction on the field then reads@14#

@Mr#n,n1q5cos~gtintAn1q11!cos~gtintAn11!rn,n1q

1sin~gtintAn1q!sin~gtintAn!rn21,n1q21

~3.19!

(n,q50,1, . . . ). Here t int andg denote the atom-field inter-
action time and coupling constant, respectively. For simplic-
ity, we assume that thermal photons can be neglected. There-
fore the damping process can be described by@14#

@Lr#n,n1q5gFA~n1q11!~n11!rn11,n1q11

2S n1
q

2D rn,n1qG ~3.20!

and

@eLtr#n,n1q5e2gt~n1q/2!(
j50

`

~12e2gt! j

3AS n1q1 j

j D S n1 j

j D rn1 j ,n1q1 j , ~3.21!

with g being the cavity damping constant. Since only
density-matrix elementsrnn8 with the same value ofn2n8
are coupled by the interaction and damping process, it is
advantageous to introduce the column vector
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pW ~q![S r0,q

r1,11q

A

rnmax2q,nmax

D , ~3.22!

where we have assumed that the photon-number distribution
is truncated at a certain maximum photon numbernmax.
Equation~3.12! can be decomposed into separate evolution
equations for the vectorspW (q) (q50,1, . . . ), where the op-
eratorseLt and 11p(M21) are replaced by the correspond-
ing matrices. Making use of Eq.~3.21!, the integration with
respect tot8 in Eq. ~3.12! is easily performed analytically.
Finally, the evolution equation~3.12! can be replaced by the
set of equations

pW ~q!~mT1xT!5V~q!~mT1xT!pW ~q!~0! ~3.23!

(q50,1, . . . ), whereV(q) is a matrix, the elements of which
are explicitly known. With the help of Eq.~3.23! the tran-
sients of all one-time expectation values of the cavity-field
variables can be directly calculated. In particular, forq50,
Eq. ~3.23! yields the evolution of the photon statistics. When
we are interested in two-time expectation values we have to
use Eq.~3.23! with modified initial conditions. In particular,
taking into account Eqs.~2.36!, ~3.22!, and~3.23! we obtain
the steady-state correlation function

^a†~t!a~0!&SS5 (
n50

nmax21

An11@Vs~t,0!a r̄ #n,n11

5 (
n50

nmax21

An11 (
m50

nmax21

Vnm
~1!~t !Am11

3 r̄m11,m11 , ~3.24!

wheret5mT1xT.
In order to discuss the non-Markovian properties of the

field dynamics, the results obtained with the help of Eq.
~3.23! have to be compared with those that would follow
from the Markovian approximation~2.33!. In the following,
instead of the usual correlation function~3.24! we consider
the more general steady-state two-time expectation values

^a†k~t!ak~0!&SS5^Vs~t,0!ak r̄a†k&

5 (
n50

nmax2k A~n1k!!

n!
@Vs~t,0!ak r̄ #n,n1k

5 (
n50

nmax2k A~n1k!!

n! (
m50

nmax2k

Vnm
~k!

3A~m1k!!

m!
r̄m1k,m1k ~3.25!

(k51,2, . . . ). ByFourier transforming we find the general-
ized spectrum

Sk~v!5
1

p
ReE

0

`

dt
^a†k~t!ak~0!&SS

^a†kak&SS
e2 i ~v2kn!t, ~3.26!

which for k51 corresponds to the usual power spectrum of
the cavity mode of frequencyn and which we denote as
k-photon spectrum. Fork52 it has been shown that this
spectrum could be determined by examining the two-photon
absorption in a weak beam of two-photon resonant atoms
probing the cavity field@15#.

FIG. 1. Decay of the normalized field correlation function
g1(t)5^a†(t)a(0)&SS/^a

†a&SS in a micromaser operating under
the one-photon trapping conditiongtint53p/A2 at discrete non-
Poissonian pumping withT5g21 and~a! p51, ~b! p50.8, and~c!
p50.5. The dashed line corresponds to the result of the Markovian
approximation. The thermal photon number is equal to zero.
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2. Analytical results for a micromaser
in the k-photon trapped state

We want to calculate the field correlation function and the
spectrum given by Eqs.~3.25! and ~3.26! for the stationary
regime of a micromaser that is operated under thek-photon
trapping condition@16#

gtint5 l
p

Ak11
~ l51,2, . . .! . ~3.27!

In this case the maximum photon numbernmax in the cavity
is equal tok provided that thermal photons can be neglected.
For q5k and nmax5k, Eq. ~3.23! reduces to ac-number
equation for the density-matrix elementr0k so that all results
can be easily obtained analytically. From Eqs.~3.19!–~3.21!
we obtain

@Lr#0k52k
g

2
r0k , ~3.28!

@eLtr#0k5e2k~g/2!tr0k , ~3.29!

and

@Mr#0k5bk~ l !r0k , ~3.30!

where in Eq.~3.30! the quantity

bk~ l !5cos~ lp!cosS l p

Ak11
D , ~3.31!

following from the k-photon trapping condition~3.27!, has
been introduced. When we apply Eq.~3.25! for nmax5k and
take into account that in this case^a†kak&SS5k! r̄ kk , we
arrive at

^a†k~t!ak~0!&SS
^a†kak&SS

5V00
~k!~t !5

r0k~t!

r0k~0!
, ~3.32!

where use has been made of Eqs.~3.22! and ~3.23!. Substi-
tution of Eqs.~3.29! and ~3.30! into the evolution equation
~3.12! finally yields, for mT<t<(m11)T (m
50,1,2,. . . ),

V00
~k!~t !5e2~k/2!gt@11p~bk21!#mF11p~bk21!S t

T
2mD G .

~3.33!

To obtain the above equation we used the fact that, because
of the c-number structure of Eq.~3.23! resulting for
nmax5k, the operatorsL andM may be commuted when Eq.
~3.12! is applied to calculater0k(mT1xT). By introducing
the notation@t/T# for the maximum integer that does not
exceed the value oft/T, we may write

^a†k~t!ak~0!&SS
^a†kak!&SS

5e2~k/2!gt@11p~bk21!# [ t/T]

3H 11p~bk21!S t

T
2F t

TG D J .

~3.34!

The k-photon spectrum, defined by Eq.~3.26!, of a micro-
maser operated under thek-photon trapping condition is
found to be

Sk~v!5
1

p
ReF 1

k

2
g1 i ~v2kn! H 11

p~bk21!

Fk g

2
1 i ~v2kn!GT

3
12e2[k~g/2!1 i ~v2kn!]T

12@11p~bk21!#e2[k~g/2!1 i ~v2kn!T] %] .

~3.35!

Obviously, the properties of the decay curve of the field-field
correlation function described by Eq.~3.34! and of the
k-photon spectrum crucially depend on the value of the pa-
rameterbk given by Eq.~3.31!. Depending on the number
l ( l51,2, . . . ), theparametersbk ( l ) take on values between
21 and 1 for anyk. Therefore it is sufficient to discuss Eqs.
~3.34! and~3.35! for k51 and different values ofb1( l ); the
behavior forkÞ1 is principally the same. In the following
we investigate the normalized correlation function

g1~t!5
^a†~t!a~0!&SS

^a†a&SS
~3.36!

for the one-photon trapped state and the corresponding one-
photon spectrumS1(v), i.e., the usual power spectrum. We
stress here that Eqs.~3.34! and ~3.35! result from the non-
Markovian density-operator evolution equation~3.12!, which
can be interpreted as the exact solution of a non-Markovian
evolution equation. When we would instead use the Markov-
ian approximation~2.34! for the master equation and again
apply Eqs.~3.28!–~3.30! we would find the approximate re-
sult

g1~t!'expF2
12@11p~b121!#e2~g/2!T

12e2~g/2!T

g

2
tG . ~3.37!

The decay of the normalized field correlation function
g1(t) is depicted in Figs. 1 and 2. As it has become obvious
from Eq. ~3.34!, the functiong1(t) reveals a sawtoothlike
behavior when the quantity 11p(bk21) takes on negative
values@see Figs. 1~a! and 1~b!, whereb1520.9282#. Since

FIG. 2. Same as Fig. 1, but forgtint5p/A2 andp51.

5342 54ULRIKE HERZOG AND JÁNOS A. BERGOU



bk>21 @see Eq.~3.31!# the requirement 11p(bk21),0

can be only fulfilled whenp. 1
2 . Physically, the origin for

the sawtoothlike behavior lies in the fact that the interaction
with a single atom can cause a phase reversal of the complex
quantity ^a†k&. In fact, for thek-photon trapped state with
nmax5k we find with the help of Eq.~3.30!

^a†k~ t1t int!&5Tr@a†kMr~ t !#5bkAk!r0k~ t !5bk^a
†k~ t !& .

~3.38!

Since we assumed that the micromaser is pumped by atoms
being in a definite energy state, the off-diagonal elements of
the field density matrix vanish in the stationary state and the
same is true for the expectation values of the operatorsa†k.
To be more precise, instead of Eq.~3.38! we therefore con-
sider the field correlation

^a†k~ t1t int!a
†k~ t !&SS5Tr@Mak r̄ak#

5bkk! r̄ kk5bk^a
†kak&SS.

~3.39!

Again, for bk,0 the phase of this complex field correlation
is reversed due to the interaction with a single atom. Now, in
our model the probability that an injected atom indeed inter-
acts with the field is given by the parameterp. To estimate
the average change of the field due to the transit of one atom
one has to take into account both the possibilities that the
atom traversing the cavity does not interact with the field
~which occurs with probability 12p) and that the atom is in
resonance with the field~probability p). In the first case the
field remains unchanged, whereas in the second case Eqs.
~3.38! or ~3.39! can be applied. The average effect of the
transit of a single atom in thek-photon trapped state hence
can be described by

^a†k~ t1t int!&

^a†k~ t !&
5

^a†k~ t1t int!a
k~ t !&SS

^a†kak&SS

512p1pbk . ~3.40!

The requirement 11p(bk21),0 for the sawtoothlike be-
havior to occur therefore becomes obvious from physical
considerations.

In Figs. 1~c! and 2 this requirement is not fulfilled; the
field correlation functiong1(t) decreases monotonically.
Nevertheless, the deviation from the behavior expected from
the Markovian approximation~3.37! is apparent. In these
cases the so-called macroscopic@8# master equation~2.34!
hence does not correctly describe the macroscopic behavior
where changes on a time scale of the order 1/T are averaged
out.

As a consequence of the sawtoothlike decay ofg1(t) the
spectrum is split into several equidistant peaks, separated by
Dv52p/T ~see Figs. 3 and 4!. This behavior has already
previously been found@6,7# for certain parameter regions
under general operating conditions. The previous treatments
have been based on a stroboscopic approach with subsequent
time averaging. In contrast to this, we investigated the den-

sity matrix of the whole quantum-mechanical ensemble.
Thus it was possible to explain the fact that line splitting can

occur only forp. 1
2 .

IV. CONCLUSION

We have presented a unified treatment of discrete and
continuous non-Poissonian micromaser pumping, which
rests on an ensemble-averaging approach. The resulting dy-
namics of the micromaser field proved to be a non-
Markovian one. The equivalence of ensemble averaging and
time averaging could be explicitly shown for a micromaser
with discrete non-Poissonian pumping. Moreover, for this
case an exact analytical solution could be found for the time-
dependent field-field correlation function and the generalized
k-photon spectrum (k51,2, . . . ) of thecavity field provided
that the micromaser is operated under thek-photon trapping
condition. It turned out that for certain values of the interac-
tion parameter thek-photon spectrum is split into several
equidistant peaks. We showed that this effect is explained by

FIG. 3. Steady-state spectrumS1(v) of a micromaser operating
under the one-photon trapping conditiongtint53p/A2 with zero
thermal photon number for discrete non-Poissonian pumping with
time distanceT5g21 and interaction probabilityp51.

FIG. 4. Same as Fig. 3, but forgtint52p/A2 andT50.5g21.
The dashed line corresponds to the result of the Markovian approxi-
mation.
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the phase reversal of the entire cavity field due to the transit
of a single atom.

We note here that our analytic approach can also be ap-
plied to more general operating conditions of a micromaser
with discrete pumping, provided that the resulting photon-
number distribution is single peaked at a sufficiently large
mean photon number. This is planned to be the topic of a
future paper@17#, where we plan to show that the spectral
splitting into equidistant peaks that results in certain condi-
tions or, equivalently, the phase reversal of the field due to
the transit of a single atom, is caused by the occurrence of
Rabi oscillations with discrete frequencies. Hence the effect
is due to field quantization and is closely related to the
Jaynes-Cummings revival. It has nothing to do with the line
splitting that can occur for a micromaser with Poissonian

pumping when the dynamics is governed by several expo-
nentially decaying distributions having different time con-
stants@18#. Finally, we remark that, though microwave pho-
tons cannot be directly detected, our investigations
nevertheless might be of practical interest since they can be
applied also to a microlaser that has been successfully oper-
ated in the optical region@19#.
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