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We study the generation of atomic-squeezed states in an optical cavity. The cavity encloses a pair of
two-level atoms and is coupled to a broadband squeezed vacuum. Using the bad-cavity limit, cavity field is
adiabatically eliminated to obtain the equations of motion for collective atomic operators. These equations are
then employed to obtain the atomic density-matrix elements and to study the generation of atomic-squeezed
states in the steady state. To characterize atomic-squeezed states we use the squeezing parameter defined
recently by Winelandet al. @Phys. Rev. A46, 6797~1992!# for spectroscopic purposes. The aforementioned
parameter is also compared with the squeezing parameter obtained from the uncertainty principle satisfied by
the collective atomic operators. We show that in a cavity arrangement, unlike free space, atomic-squeezed
states can be generated only for a restricted range of values of the parametersl andN which characterize the
cavity and the squeezed field driving the cavity, respectively.@S1050-2947~96!03112-5#

PACS number~s!: 42.50.Dv

I. INTRODUCTION

The interaction of a collection of two-level atoms with a
broadband squeezed vacuum field has recently been studied
by many authors and several interesting phenomena have
been predicted. Palma and Knight@1# were the first to study
the spontaneous emission dynamics of two two-level atoms
embedded in a broadband squeezed vacuum. They showed
that for a squeezed vacuum tuned to the atomic resonance,
the steady state of the atomic system is far from thermal
equilibrium. Specifically, for a minimum uncertainty
squeezed vacuum the final atomic state is a highly correlated
pure state. This state is a superposition of the collective
ground state and the collective most excited state. These
states are the atomic counterparts of the two-mode squeezed
state of an electromagnetic field. Thus they have been termed
as two-atom squeezed states@1# or pairwise atomic states@2#
or atomic-squeezed states@3# ~the name that we use in this
paper!. The work of Palma and Knight was further extended
for many-atom systems by Agarwal and Puri@4# to include
the effect of the coherent pumping of the atoms. They dem-
onstrated that atomic-squeezed states can be generated only
for certain discrete values of the pumping field strength.

It has already been pointed out@5# that the experimental
verification of the above predictions is difficult since it re-
quires squeezing of all the field modes that are interacting
with the atoms. In free space this would correspond to hav-
ing a squeezed field incident on the atoms from the entire 4p
solid angle surrounding the atoms; this is impossible to
achieve from the present sources of squeezed light. More-
over, this also does not leave any unsqueezed window which
is essential for the observation of the fluorescence photons.
Thus it has been suggested to perform such experiments by
placing the atoms either in a microscopic Fabry-Pe´rot cavity
@5# or a much bigger optical cavity~which is being used for
experiments testing the predictions of cavity QED@6#!, and
injecting the squeezed vacuum through one of the lossy out-
put coupling mirrors. We note that theoretical studies of the
resonance fluorescence spectrum of a single atom in optical
cavities with an injected squeezed vacuum indicate that all

the features of free space still persist in the cavity environ-
ment @7,8#. In addition, the cavity environment also gives
rise to many different phenomena.

In this paper we investigate the possibility of generating
atomic-squeezed states in an optical cavity driven by a
squeezed vacuum. For this purpose we study the dynamics of
a pair of two-level atoms placed in a single mode optical
cavity with a broadband squeezed vacuum being injected
into the cavity through one of the lossy output mirrors. In
particular, we use the over damped cavity model recently
proposed by Rice and Pedrotti@8#.

The atomic-squeezed states can be characterized in many
different ways@3#. In our study we employ the squeezing
parameter derived on the basis of usual consideration of the
uncertainty principle~we denote this parameter byjN!, as
well as its modified form~jR! given by Winelandet al. @3#
for population spectroscopy purposes. We discuss more
about these squeezing parameters in Sec. II.

The organization of this paper is as follows. In Sec. II we
discuss the model considered in this paper and present the
equations of motion for atomic operator averages. The detail
derivation of these equations are given in Appendix A. In
Sec. III we discuss the results and the conclusion in Sec. IV.

II. DYNAMICS OF THE ATOM-CAVITY SYSTEM
IN BAD-CAVITY LIMIT

A. Model

We consider a system of two identical two-level atoms
placed in a single mode optical cavity. It is coupled to a
broadband squeezed reservoir through the lossy output mir-
ror of the cavity. The master equation for the atom plus
cavity-mode density operatorr is ~\51!

dr

dt
52 i @H,r#1Lar1Lsqr. ~1!

The HamiltonianH contains free atomic and cavity-mode
evolution, and the interaction of the atoms with the cavity
mode. It is given by
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H5v0Sz1va†a1g~S1a1S2a†!. ~2!

In Eqs. ~1! and ~2!, S6 and Sz are collective atomic spin
operators,a† anda are the creation and annihilation opera-
tors for the cavity mode,v0 andv denote resonant frequen-
cies of the atoms and the cavity mode, respectively, andg is
the atom-cavity-mode coupling constant. In the present study
we will consider the resonant casev5v0.

The termLar andLsqr denote, respectively, the dissipa-
tion from the atoms via spontaneous emission in the back-
ground modes, and from the cavity mode which is coupled to
a broadband squeezed vacuum. They are given as@7,8#

Lar5g~2S2rS12S1S2r2rS1S2!, ~3!

Lsqr5k~N11!~2ara†2a†ar2ra†a!1k~N!~2a†ra

2aa†r2raa†!1kMeiu~2a†ra†2a†
2
r2ra†

2
!

1kMe2 iu~2ara2a2r2ra2!. ~4!

Here,g denotes the atomic decay rate to all modes other than
the privileged cavity mode,k is the decay rate of the cavity
electric field,N andM5uM ueiu characterize the broadband
squeezed vacuum injected into the cavity, such that,
M2<N(N11). The equality condition holds for the mini-
mum uncertainty squeezed states~MUS!. The phase of the
squeezed vacuum is denoted byu.

The Hamiltonian above@Eq. ~2!# is derived by assuming
that the distance between the two atoms is much smaller than
the resonant wavelength~Dicke model!. Consequently, the
cooperative decay rate is identical to that of the individual
atomic decay rate. The collective atomic system is repre-
sented by the collective atomic statesuS,m& which are eigen-
states of the total spin operators
S25~1/2!(S1S21S2S1)1Sz

2 andSz . In this representation
the two-atom system Dicke model is equivalent to a three-
level cascade system. These three levels correspond to the
stateuS,m& with S51 andm50,61, and are defined as@9#

u2&5u1,1&5ue1&ue2&,

u1&5u1,0&5
1

&
~ ue1&ug2&1ue2&ug1&),

u0&5u1,21&5ug1&ug2&, ~5!

where uei& and ugi& denote the excited and ground state of
the i th atom, respectively. Later we use these states to rep-
resent the density matrix of the atomic system at steady state.

B. Bad-cavity limit

We derive the equation of motion for atomic operators
under the condition of the bad-cavity limitk@g and k@g.
The bad-cavity condition implies that the cavity-mode re-
sponse to the squeezed reservoir is much faster than to that
produced by its interaction with the atoms. Consequently, the
atoms always see the cavity mode in the state induced by the
squeezed reservoir. Thus one can eliminate the cavity-mode
variables adiabatically. For this purpose we follow the ap-
proach of Ref.@8# and obtain equations of motion for atomic

variables. We also assume that the strength of the dipole-
dipole interaction is much smaller than the cavity damping
rate k and we neglect the dipole-dipole interaction term in
this study. The equation of motion for relevant atomic opera-
tors can be written in a matrix form as~the details are given
in Appendix A!

dY

dt
5AY1L, ~6!

wheret52Gt andG5g2/k denote the cavity induced decay
rate of atoms;Y is a column vector with components

Y15^S1
1S1

21S2
1S2

2&,

Y25^S1
1S2

21S1
2S2

1&,

Y35^S1
1S2

1eiu1S1
2S2

2e2 iu&,

Y45^S1
1S1

2S2
1S2

2&, ~7!

A is a real 434 matrix given by

A5F 2x
2~2x2 l !
4uM u

~x2 l !/2

2 l
2x
2uM u

~x2 l !/2

0
2uM u
2x

2uM u

0
4x

28uM u
22x

G , ~8!

and inhomogenous vector termL has components

L15~x2 l !,

L25~x2 l !,

L3522uM u,

L450. ~9!

In Eqs.~8! and~9!, x52N111l, l511l wherel denotes
the inverse of a single atom cooperativity parameter
C5g2/kg. Moreover, for the model employedS2 is a con-
served quantity. To write this conservation condition, we ex-
press^S2& in terms of theY vector as

^S2&5212Y41Y22Y1 . ~10!

In the present casêS2&5S(S11)52. By putting this in Eq.
~10! we get

Y12Y252Y4 . ~11!

Thus conservation ofS2 leads to a constraint condition given
by Eq. ~11!. As a result of this, the number of independent
variables in Eq.~6! reduces by one. We solve this set of three
coupled equations in the next section for the steady state to
calculate the atomic density matrix and squeezing param-
eters.

C. Squeezing parameters

The commutation relations for angular momentum opera-
tors lead to uncertainty relations between them. For example,
one of these is given by
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DSxDSy>u^Sz&u/2, ~12!

where

~DSi !
25^Si

2&2^Si&
2 ~13!

and

Sx5
S11S2

2

Sy5
S12S2

2i
. ~14!

From these relations, it is natural to define atomic-
squeezed states or squeezed-spin states@3# as states where
(DSi)

2^u^Sj&/2u for iÞ j . So a squeezing parameter for this
definition may be written as

jN5~DSi !/u^Sj&/2u1/2 iÞ jP~x,y,z!. ~15!

The atomic-squeezing condition in terms of this parameter is
given by the relationjN,1. As stated in the Introduction,
Agarwal and Puri calculated this quantity to characterize the
atomic squeezing in Ref.@4#. Recently Winelandet al. @3#
have given an operational definition of squeezing parameter
jR in the context of Ramsey spectroscopy. This is given by

jR5A2S~DSy!/u^Sz&u. ~16!

The quantityjR is the ratio of the statistical uncertainty in the
measurement of the resonance frequency determined by cor-
related states and uncorrelated states. Here alsojR,1 signi-
fies atomic squeezing.

III. RESULTS AND DISCUSSION

A. Atomic density matrix

The steady-state solutions of Eq.~5! are given by

Y15
~3x324x2l212uM u2x1 l 2x116uM u2l !

xD
,

Y25
x22 l 224uM u2

D
,

Y35
28Ml 2

xD
,

Y45
~x322x2l24uM u2x1 l 2x18uM u2l !

xD
, ~17!

where

D53x21 l 2212uM u2. ~18!

First we use these solutions to find the steady-state density-
matrix elements. For this purpose we write density operator
r in uS,m& representation as

r5(
i j

r i j u i &^ j u, ~19!

where density-matrix elementsri j are

r i j5^ i uru j & i , j50,1,2. ~20!

To calculate the elements of the density matrix we use fol-
lowing well known identities@10#:

^S1
1S1

21S2
1S2

2&52r221r11,

^S1
1S1

2S2
1S2

2&5r22,

^S1
1S2

1&5r02,

^S1
2S2

2&5r205r02* . ~21!

Now using Eqs.~17! and~21! we find following expressions:

r225
~x322x2l24uM u2x1 l 2x18uM u2l !

xD
,

r115
x22 l 224uM u2

D
,

r00512r222r11, ~22!

for population and

r025r20* 5
24Ml 2

xD
~23!

for steady-state coherences. The density-matrix elementsr10
and r12 are zero for the present model. For free space,
density-matrix elements can be determined by puttingl50
in the above expressions and these are

r225
~n322n224uM u2n1n18uM u2!

nD8
,

r115
n22124uM u2

D8
,

r025r20* 5
24M

nD8
, ~24!

wheren52N11 and

D85~3n211212uM u2!. ~25!

Before we discuss the results we note that if the free space
decay rate is replaced by the cavity induced decay rate,l50
also corresponds to a closed cavity or an open cavity which
can inhibit spontaneous emission of the atoms out the sides
of the cavity. The latter is possible for certain semiconductor
geometries@11#.

It can be seen from Eq.~24! that for uM u25(1/4)(n221)
~MUS!, the intermediate stateu1& is not populated~r1150!.
This effect has been explained in terms of an absorption
process of the correlated pair of photons from the squeezed
vacuum field@12#. The population of the other two collective
states are given by
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r225
N

2N11
,

r005
N11

2N11
. ~26!

Thus the steady-state atomic population distribution in free
space is nonthermal in nature as it does not satisfy the con-
dition r00.r11.r22. On the other hand, for atoms enclosed
in an optical cavity~lÞ0!, r11 is always nonzero signifying
finite atomic population in the intermediate state. The non-
zero population of the intermediate state is due to the inclu-
sion of the extra decay channel of the atoms associated with
the normal vacuum entering into the cavity from the open
sides. However, we find that the nonthermal nature of popu-
lation distribution is also present in the cavity arrangement.
This is illustrated in Fig. 1 by plotting the population of the
collective states as a function ofl for N50.5 ~the origin of
Fig. 1 corresponds to the free space case!. Figure 1 also
shows that forlÞ0, nonthermal population distribution sur-
vives only if the parameterl<1. As l increases, population
of the lowest collective state~u0&! approaches asymptotically
unity and the population of the other two collective states
~u2&,u1&! go to zero. This feature is characteristic of two atoms
undergoing spontaneous emission in a normal vacuum. This
observation is consistent with the fact that,l.1 implies that
the incoherent decay rate of atoms due to a normal vacuum is
more than the decay rate due to coupling with a squeezed
vacuum. Equation~23! and ~24! also indicate that, both for
free space and cavity arrangement the coherence termr02 is
nonzero only if atoms are interacting with a squeezed
vacuum. In fact, we find that finiteness of this term is essen-
tial for generations of atomic-squeezed states as this coher-
ence term provides appropriate atomic correlation present in
these states.

To characterize the final atomic state we also calculate
Tr~r2!, which is defined as

Tr~r2!5r00
2 1r11

2 1r22
2 12~ ur01u21ur12u21ur02u2!.

~27!

When Tr~r2!51 the final atomic state is a pure state, whereas
Tr~r2!,1 implies that the final atomic state is a mixed state.

Using Eqs.~22!–~25! with Eq. ~27! we find that Tr~r2!51
for l50 @12# and forlÞ0, Tr~r2!,1. Thus in free space or
in a closed cavity the final atomic system is in a pure state in
which only the ground and the most excited states are popu-
lated. On the other hand, in an open cavity the final atomic
state is a mixed state with all three levels populated in ac-
cordance with Eq.~22!. Nonetheless, we show that in a cer-
tain range of parameter space an appreciable amount of
atomic squeezing can be generated in the cavity arrange-
ment.

B. Squeezing

To calculate the squeezing parameter we first redefineSx
andSy @Eq. ~14!# as

Sx5
S1eiu/21S2eiu/2

2

Sy5
S1eiu/22S2eiu/2

2i
. ~28!

This allows us to define quadrature atomic-squeezing opera-
tor with respect to the phase of the injected squeezed
vacuum. We also define the rescaled squeezing parameter as

hR5jR
221 ~29!

and

hN5jN
221. ~30!

Now hR and hN less than zero signify collective atomic
squeezing. Using steady-state solutions given by Eq.~17! we
gethR andhN

hR5@x~3x21 l 2212uM u2!~4x3216uM u2x28uM u l 2!

2D1
2#/D1

2 ~31!

and

hN5@~4x3216uM u2x28uM u l 2!2D1#/D1 , ~32!

where

D154l ~x224uM u2!. ~33!

The detail derivation of Eqs.~31!–~33! is given in Appendix
B.

We find from Eqs.~31! and~32! that for a normal vacuum
~N50, uM u50!, hN,R50 and for a thermal vacuum~NÞ0,
uM u50!, hN,R.0. Thus a collection of two two-level atoms
in a cavity with a normal or thermal vacuum being injected
into it cannot produce atomic-squeezed states. Recall that,
for uM u50, r025r2050 andY350. Therefore, from Eq.~B4!
and ~B5! for the squeezing parametershR andhN , we con-
clude that the nonzero value of these coherence terms is es-
sential for generation of atomic-squeezed states, as men-
tioned earlier. Before discussing the squeezing characteristic
for an arbitrary value of the parameterl, we present the case

FIG. 1. Plot of population of collective atomic states vsl for
N50.5.
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for l50, which corresponds to free space or a closed cavity.
For l50 and uM u25(1/4)(n221), Eq. ~31! and Eq. ~32!
reduce to

hR5An221~An2212n! ~34!

and

hN5An21~An212An11!, ~35!

wheren52N11. It is simple to verify from Eq.~34! and
Eq. ~35! that for allowed values ofn ~i.e., n.1! hR andhN
are always negative signifying squeezing for all values ofN.
To study the dependence of atomic squeezing on the param-
eterl, we plot inhR andhN in Figs. 2 and 3, respectively, as
functions of the parameterN for several values ofl. The
results shown are for minimum uncertainty squeezed states
~MUS!. In these figuresN50 corresponds to the case of a

normal vacuum entering into the cavity. At this value ofN
bothhN andhR are zero indicating no atomic squeezing. We
observe that although qualitative features of atomic squeez-
ing characterized by bothhN and hR are similar, quantita-
tively they differ significantly. For finite values of the param-
eter l, the magnitude of bothhN and hR first increases,
thereby indicating the increase in atomic squeezing with the
increase in the value ofN. It goes through a maximum and
then goes to zero at a particular value ofN5Nc . Here the
quantitative difference betweenhN andhR become evident:
the unsqueezing occurs at different values ofNc for the two
squeezing parameters.

In contrast to this forl50 both hN and hR increase in
magnitude withN and asymptotically approach the follow-
ing values:

hR'2
1

2 S 12
1

n2D ~36!

and

hN'2S 12
1

nD . ~37!

This is shown in Figs. 2 and 3 by solid curves. Thus for this
value of l the collective atomic state is always squeezed
irrespective of the squeezing parameters used to characterize
the atomic-squeezed states at steady state. We find that the
maximum value of atomic squeezing obtained decreases with
the increase in the value ofl. Physically this can be ex-
plained by the fact that the increasing the value ofl corre-
sponds to enhancement of incoherent spontaneous emission
out the sides of the cavity. Because of this, the atomic cor-
relations@13# required for the generation of atomic-squeezed
states are destroyed.

IV. CONCLUSION

In this paper we have investigated the possibility of gen-
erating atomic-squeezed states or squeezed-spin states in a
system of a pair of two-level atoms confined in a single
mode optical cavity which is being driven by a squeezed
vacuum field. The cavity is assumed to be in overdamped
regime. This has allowed us to derive the equation of motion
for atomic averages by adiabatically eliminating the cavity
field mode. We have used solution of these equations at
steady state to calculate atomic density-matrix elements and
atomic-squeezing parameters. We have shown that unlike the
free space case the intermediate state of the collective atomic
states is always populated and the final atomic state is a
mixed one. Nonetheless, the collective atomic population
distribution shows a nonthermal characteristic similar to that
of a free space case. This behavior, however, survives only
for l<1. To characterize the atomic squeezing we have used
a parameter which has been proposed recently in the context
of Ramsey spectroscopy. The natural squeezing parameter
defined in the context of uncertainty relations that exist be-
tween different components of angular momentum has also
been studied and compared with spectroscopic squeezing. It
is found that for a very small spontaneous emission rate of
the atoms out the side of the cavity, atomic-squeezed states
can be generated for all values of field squeezing parameter

FIG. 2. Plot ofhN vs N for different values ofl: l50 ~solid
line!, l50.5 ~dashed line!, l51.0 ~dotted line!, andl54.0 ~dashed-
dotted line!. The horizontal line denotes zero squeezing.

FIG. 3. Plot ofhR vs N with parameters the same as Fig. 2.
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N, provided that the injected squeezed vacuum is in mini-
mum uncertainty state. For a finite value of the parameterl
atomic squeezing can be generated only if the value ofN lies
below some critical valueNc . Moreover, the value ofNc
decreases with the increase inl. Finally, to illustrate the
feasibility of the scheme discussed in the present paper for
the generation of atomic-squeezed, states we note that
present cavity technology and sources of squeezed light can
conveniently satisfy the conditions required for production of
these states. For example, Polziket al. @14# have demon-
strated a frequency-tunable source of squeezed light exhibit-
ing approximately 70% squeezing in a finite bandwidth and
this corresponds to the valueN'0.4. The atom-cavity sys-
tem used by Rempeet al. @15# for experimental investigation
of optical bistability can provide cavity lying in the over
damped regime.
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APPENDIX A

In this appendix we derive equations of motion for the
atomic operators in the bad-cavity limit. For this purpose we
follow the approach of Rice and Pedrotti@8# to adiabatically
eliminate the cavity mode. Using Eq.~1! and commutation
relation it can be shown that

dY1
dt

52 ig^a†~S1
21S2

2!&1H.c.22gY122gY2 ,

~A1!

dY2
dt

522ig^~S1
1S2

1S2
21S2

1S1
1S1

21S1
1/21S2

1/2!a&1H.c.

22gY214gY422gY1 , ~A2!

dY3
dt

5 ig^~S1
21S2

222S2
1S1

1S1
222S1

2S2
1S2

2!a&1H.c.

22gY3 , ~A3!

dY4
dt

5 ig^~S1
1S2

1S2
21S2

1S1
1S1

2!a&H.c.24gY4 . ~A4!

The coupling of atom and cavity field is manifested in terms
like ^Aa& and its conjugates in Eq.~A1!–~A4!, whereA is a
function of atomic operators. To find these coupled expecta-
tion values, once again the above procedure is repeated and
equations of motion are obtained. Here we write one of them

d^S1
2a†&
dt

522ig^S1
1S1

2a†a1a†a/21S1
1S1

2&

12g^S1
1S1

2S2
2a†1S2

2a†/2&2~g1k!^S1
2a†&.

~A5!

In the bad-cavity limit expectation values of the coupled op-
erators are solved in the steady state and then substituted in
Eqs. ~A1!–~A4!. This procedure will further lead to higher-
order joint atom field expectation values. However, in the
bad-cavity limit this hierarchy of equation truncates at sec-
ond order of the field mode. For example, when the cavity
mode is coupled with a broadband squeezed vacuum it can
be shown that

^a†aA&5N^A&,

^a2A&5uM ue2iu^A&,

^a†A&5uM ue22iu^A&. ~A6!

So by using Eq.~A6! and after doing some lengthy algebra
we arrive at Eq.~6!. Here we note that our Eqs.~6!–~9!
correctly reduce to the equations of motion for an ordinary
vacuum entering into the cavity@16#.

APPENDIX B

In this appendix we derive Eqs.~31!–~33!. For this pur-
pose we first express the squeezing parameterhR andhN in
terms ofY vector. It is easy to show that

^Sx
2&5 1

2 @11Y21Y3#,

^Sz&5Y121. ~B1!

Further, for the model employed here the value of^S1
1& and

^S2
1&50 at steady state. As a result of this for our case

^Sx&50,

^Sy&50 ~B2!

and

~DSi !
25^Si

2&. ~B3!

Then by using Eq.~B1! and definitions ofhR andhN we get

hR5
~11Y21Y3!2~Y121!2

~Y121!2
~B4!

and

hN5
~11Y21Y3!2u~Y121!u

u~Y121!u
. ~B5!

Now puttingY2, Y3, andY1 from Eq. ~17! in Eqs.~B4! and
~B5! we get an expression forhR andhN as given in Eqs.
~31! and ~32!.
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