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Generation of atomic-squeezed states in an optical cavity with an injected squeezed vacuum
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We study the generation of atomic-squeezed states in an optical cavity. The cavity encloses a pair of
two-level atoms and is coupled to a broadband squeezed vacuum. Using the bad-cavity limit, cavity field is
adiabatically eliminated to obtain the equations of motion for collective atomic operators. These equations are
then employed to obtain the atomic density-matrix elements and to study the generation of atomic-squeezed
states in the steady state. To characterize atomic-squeezed states we use the squeezing parameter defined
recently by Winelancet al. [Phys. Rev. A46, 6797 (1992] for spectroscopic purposes. The aforementioned
parameter is also compared with the squeezing parameter obtained from the uncertainty principle satisfied by
the collective atomic operators. We show that in a cavity arrangement, unlike free space, atomic-squeezed
states can be generated only for a restricted range of values of the paramatei which characterize the
cavity and the squeezed field driving the cavity, respectii@$050-29476)03112-3

PACS numbd(s): 42.50.Dv

[. INTRODUCTION the features of free space still persist in the cavity environ-
ment[7,8]. In addition, the cavity environment also gives
The interaction of a collection of two-level atoms with a rise to many different phenomena.
broadband squeezed vacuum field has recently been studied In this paper we investigate the possibility of generating
by many authors and several interesting phenomena ha@omic-squeezed states in an optical cavity driven by a
been predicted. Palma and Knidhi were the first to study ~Sdueezed vacuum. For this purpose we study the dynamics of
the spontaneous emission dynamics of two two-level atomd Pair of two-level atoms placed in a single mode optical
embedded in a broadband squeezed vacuum. They showgavity with a broadband squeezed vacuum being injected
that for a squeezed vacuum tuned to the atomic resonanc#to the cavity through one of the lossy output mirrors. In
the steady state of the atomic system is far from thermaparticular, we use the over damped cavity model recently
equilibrium. Specifically, for a minimum uncertainty Proposed by Rice and Pedrofd]. o
squeezed vacuum the final atomic state is a highly correlated The atomic-squeezed states can be characterized in many
pure state. This state is a superposition of the collectivélifferent ways[3]. In our study we employ the squeezing
ground state and the collective most excited state. Thesearameter derived on the basis of usual consideration of the
states are the atomic counterparts of the two-mode squeez&ficertainty principle(we denote this parameter k), as
state of an electromagnetic field. Thus they have been termetell as its modified form(&z) given by Winelandet al. [3]
as two-atom squeezed stafé$or pairwise atomic statgg]  for population spectroscopy purposes. We discuss more
or atomic-squeezed statf3] (the name that we use in this about these squeezing parameters in Sec. Il.
papeJ. The work of Palma and Knight was further extended  The organization of this paper is as follows. In Sec. Il we
for many-atom systems by Agarwal and P[#] to include discuss the model considered in this paper and present the
the effect of the coherent pumping of the atoms. They demequations of motion for atomic operator averages. The detail
onstrated that atomic-squeezed states can be generated offffivation of these equations are given in Appendix A. In
for certain discrete values of the pump|ng field Strength. Sec. Ill we discuss the results and the conclusion in Sec. IV.
It has already been pointed o] that the experimental

verification of the above predictions is difficult since it re- Il. DYNAMICS OF THE ATOM-CAVITY SYSTEM
quires squeezing of all the field modes that are interacting IN BAD-CAVITY LIMIT
with the atoms. In free space this would correspond to hav-
ing a squeezed field incident on the atoms from the entire 4
solid angle surrounding the atoms; this is impossible to We consider a system of two identical two-level atoms
achieve from the present sources of squeezed light. Morgslaced in a single mode optical cavity. It is coupled to a
over, this also does not leave any unsqueezed window whichroadband squeezed reservoir through the lossy output mir-
is essential for the observation of the fluorescence photonsor of the cavity. The master equation for the atom plus
Thus it has been suggested to perform such experiments lpavity-mode density operataris (A=1)
placing the atoms either in a microscopic Fabrye®eavity q
[5] ora much b|gger optical (;ayltgvvhlch is 'be|ng used for 9p _ Ci[H,p]+ Lap+ Logp. )
experiments testing the predictions of cavity QEf), and dt “
injecting the squeezed vacuum through one of the lossy out-
put coupling mirrors. We note that theoretical studies of theThe HamiltonianH contains free atomic and cavity-mode
resonance fluorescence spectrum of a single atom in opticalolution, and the interaction of the atoms with the cavity
cavities with an injected squeezed vacuum indicate that alnode. It is given by

A. Model
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H=woS,+ wata+ g(Sta+ s ah). 2) variables. We also assume that the strength of the dipole-
dipole interaction is much smaller than the cavity damping

In Egs. (1) and (2), S* and S, are collective atomic spin rate k and we neglect the dipole-dipole interaction term in

operatorsa’ anda are the creation and annihilation opera- this study. The equation of motion for relevant atomic opera-

tors for the cavity modew, and w denote resonant frequen- tors can be written in a matrix form dthe details are given

cies of the atoms and the cavity mode, respectively,@igl in Appendix A

the atom-cavity-mode coupling constant. In the present study

we will consider the resonant case= wy. d_Y —AY4L ©6)

The termL,p andL¢qp denote, respectively, the dissipa- dr '
tion from the atoms via spontaneous emission in the back-
ground modes, and from the cavity mode which is coupled tavhere 7=2T't andT'=g?%« denote the cavity induced decay

a broadband squeezed vacuum. They are givei, 86 rate of atomsy is a column vector with components
Lap=¥(25 pS"~S"S p—pS'S"), 3 Yi=(S[S +5; %),
Lep=~x(N+1)(2apa’—a'ap—pa'a) +x(N)(2a'pa Y2=(S1%, +5.S;),
—aa'p—paah)+«xMe(2a’pai—ap—pa™) Ys=(S/S/el’+S; S e 1%,
+kMe "%(2apa—ap—pa?). (4) Y,=(SISSISy), @

Here,y denotes the atomic decay rate to all modes other tha

the privileged cavity modex is the decay rate of the cavity Ais a real 44 matrix given by

electric field,N andM =|M|e'? characterize the broadband —x — 0 0
squeezed vacuum injected into the cavity, such that, —(2x—1) — 2|M| 4x
M2<N(N+1). The equality condition holds for the mini- A= a|Mm| 2|M| “x  —gm|| (8)

mum uncertainty squeezed stat®d4US). The phase of the
squeezed vacuum is denoted &y
The Hamiltonian abovéEq. (2)] is derived by assuming .

that the distance between the two atoms is much smaller thaarl1nd Inhomogenous vector ternhas components

the resonant wavelengttDicke mode]. Consequently, the Ly=(x—1),

cooperative decay rate is identical to that of the individual

atomic decay rate. The collective atomic system is repre- Lo=(x—1),

sented by the collective atomic stat&m) which are eigen-

states of the total spin operators Ly=—2|M],

S?=(1/2(S"'S™+S S")+S2 andS, . In this representation

the two-atom system Dicke model is equivalent to a three- L,=0. (9

level cascade system. These three levels correspond to the

state|S,m) with S=1 andm=0,+1, and are defined 49]  In Egs.(8) and(9), x=2N+1+X\, | =1+\ where\ denotes

the inverse of a single atom cooperativity parameter

12)=[1,D=ey)|e2), C=g% xy. Moreover, for the model employe®f is a con-

served quantity. To write this conservation condition, we ex-

press(S?) in terms of theY vector as

(x—=D2  (x=Dl2 —|M| —2x

1
|1>:|110>:E (ler)]g2)+1e2)l91)),

(S2)y=24+2Y,4+Y,—Y;. (10)
10)=11,—1)=[91)[92), (5 In the present casg?)=S(S+1)=2. By putting this in Eq.
. (10) we get
where|e;) and|g;) denote the excited and ground state of
theith atom, respectively. Later we use these states to rep- Yi—-Y,=2Y,. (11)

resent the density matrix of the atomic system at steady state.
Thus conservation d8” leads to a constraint condition given
B. Bad-cavity limit by Eq.(11). As a result of this, the number of independent
) ] ) ) variables in Eq(6) reduces by one. We solve this set of three
We derive the equation of motion for atomic operatorsgqpled equations in the next section for the steady state to

under the condition of the bad-cavity limi>g and x>v.  cajculate the atomic density matrix and squeezing param-
The bad-cavity condition implies that the cavity-mode re-gters.

sponse to the squeezed reservoir is much faster than to that
produced by its interaction with the atoms. Consequently, the

atoms always see the cavity mode in the state induced by the
squeezed reservoir. Thus one can eliminate the cavity-mode The commutation relations for angular momentum opera-
variables adiabatically. For this purpose we follow the ap-tors lead to uncertainty relations between them. For example,
proach of Ref[8] and obtain equations of motion for atomic one of these is given by

C. Squeezing parameters
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ASAS=[(S,)|/2, (12)  where density-matrix elements; are
where pij=(ilplj) 1,j=0,1,2. (20
(AS)*=(S))—(S)? (13)  To calculate the elements of the density matrix we use fol-
lowing well known identitied 10]:
and
St +s (S{S1+5, S, )=2p2t pu1,
2 <SISIS;52_>:P22a
b oo
_S 2,8 _ (14) (S1S3)=poa,
[

(S1S;)=p20=p52- (22)

Now using Eqgs(17) and(21) we find following expressions:

From these relations, it is natural to define atomic-
squeezed states or squeezed-spin s{@psas states where
(ASi)2<|<Sj>/2| for i#j. So a squeezing parameter for this

definition may be written as (x3—2x2 — 4|M|2x+12x+ 8|M|2)
L P22~ ,
E=(AS)/(S)/2Y* i#je(xy2. (19 XD
The atomic-squeezing condition in terms of this parameter is _X2=12—4Mm|?
given by the relationfy<1. As stated in the Introduction, p11= D '
Agarwal and Puri calculated this quantity to characterize the
atomic squeezing in Ref4]. Recently Winelancet al. [3] Poo=1—par—pi1. (22)
have given an operational definition of squeezing parameter
&r in the context of Ramsey spectroscopy. This is given byfor population and
&r=2S(AS))/[(S,)]. (16) . —4MI2
P02= P20~ 3 (23

The quantityéy is the ratio of the statistical uncertainty in the

measurement of the resonance frequency determined by cor- . .
related states and uncorrelated states. Heregalsd signi- 10 Steady-state coherences. The density-matrix elemgpts
fies atomic squeezing. and p,, are zero for the present model. For free space,

density-matrix elements can be determined by puthrd)

IIl. RESULTS AND DISCUSSION in the above expressions and these are

A. Atomic density matrix (n®=2n2—4|M|?n+n+8|M|?)
. . P22= 7 ,
The steady-state solutions of E&) are given by 2 nD
(3x3—4x21 — 12M| %+ 1%x+ 16| M| ?) n2—1-4|M|2
1= <D ' P pr
_X2=12—4m[? —4M
2 D ’ Po2= p;OZ nD’ ' (24)
:_8'\/”2 wheren=2N+1 and
7 xD
D’=(3n?+1-12M|?). (25)
(x3—2x21 — 4|M|?x+1%x+8|M| )
Y4= <D ) (17 Before we discuss the results we note that if the free space
decay rate is replaced by the cavity induced decay kat®)
where also corresponds to a closed cavity or an open cavity which
can inhibit spontaneous emission of the atoms out the sides
D=3x2+12-12M|2. (18)  of the cavity. The latter is possible for certain semiconductor
geometrie§11].

First we use these solutions to find the steady-state density- |t can be seen from Eq24) that for|M|?=(1/4)(n®>—1)
matrix elements. For this purpose we write density operatoyMus), the intermediate statd) is not populatedp;;=0).

p in |S,m) representation as This effect has been explained in terms of an absorption
process of the correlated pair of photons from the squeezed
p= E pil i) (19 ~ vacuum field 12]. The population of the other two collective
ij

states are given by
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. T T When Trp?) =1 the final atomic state is a pure state, whereas

Tr(p?)<1 implies that the final atomic state is a mixed state.
Using Eqgs.(22)—(25) with Eq. (27) we find that T¢p?) =1

for A=0[12] and forA#0, Tr(p?)<1. Thus in free space or

in a closed cavity the final atomic system is in a pure state in

which only the ground and the most excited states are popu-

lated. On the other hand, in an open cavity the final atomic

state is a mixed state with all three levels populated in ac-

cordance with Eq(22). Nonetheless, we show that in a cer-

tain range of parameter space an appreciable amount of

atomic squeezing can be generated in the cavity arrange-
ment.
Py

0.0 : ' : ;
0.0 0.5 1.0 1.5 2.0 B. Squeezing

A To calculate the squeezing parameter we first red&jne
andS, [Eq. (14)] as

0.8 | Poo 4

Population
(=]
~

FIG. 1. Plot of population of collective atomic states vgor

N=05 S+ei0/2+s—ei0/2
2
N : :
Pro= s, S+ el 012 _ S el 0/2
2N+1 - - -
S 5 . (28
_ N+1 26) This allows us to define quadrature atomic-squeezing opera-
PoO=oN+1" tor with respect to the phase of the injected squeezed

vacuum. We also define the rescaled squeezing parameter as

Thus the steady-state atomic population distribution in free >

space is nonthermal in nature as it does not satisfy the con- 7R= &R 1 (29
dition pgg>p11>>p2s. ON the other hand, for atoms enclosed
in an optical cavity(A#0), p;; is always nonzero signifying
finite atomic population in the intermediate state. The non- 77N=§§—1- (30)
zero population of the intermediate state is due to the inclu-

sion of the extra decay channel of the atoms associated Withow 7, and 7, less than zero signify collective atomic
the normal vacuum entering into the cavity from the opensqueezing. Using steady-state solutions given by(Ef).we
sides. However, we find that the nonthermal nature of popuget 5, and 7,

lation distribution is also present in the cavity arrangement.

This is illustrated in Fig. 1 by plotting the population of the  7g=[x(3x?+12—12/M|?)(4x3— 16/M|?x—8|M|I?)
collective states as a function affor N=0.5 (the origin of 9112

Fig. 1 corresponds to the free space ¢a$égure 1 also —D1]/D] (31)
shows that foi #0, nonthermal population distribution sur-
vives only if the parametex<1. As \ increases, population and
of the lowest collective statg0)) approaches asymptotically
unity and the population of the other two collective states
(|2),]1)) go to zero. This feature is characteristic of two atomsWhere
undergoing spontaneous emission in a normal vacuum. This

observation is consistent with the fact that;1 implies that D,=4(x2—4|M|?). (33

the incoherent decay rate of atoms due to a normal vacuum is

more than the decay rate due to coupling with a squeezegihe getail derivation of Eq$31)—(33) is given in Appendix
vacuum. Equatiori23) and (24) also indicate that, both for g

free space and cavity arrangement the coherence ggyis We find from Eqs(31) and(32) that for a normal vacuum
nonzero only if atoms are interacting with a squeezeqn=0, |M|=0), 7, r=0 and for a thermal vacuurfN#0,
vacuum. In fact, we find that finiteness of this term is essen M|=0), 7y r>0. Thus a collection of two two-level atoms
tial for generations of atomic-squeezed states as this coheg; 5 cavity with a normal or thermal vacuum being injected
ence term provides appropriate atomic correlation present ifyto it cannot produce atomic-squeezed states. Recall that,

n=[(4x3-16M|>x—8|M|I1?>)—D,]/D;, (32

these states. , _ for [M|=0, po,=po0=0 andY;=0. Therefore, from EqB4)
To characterize the final atomic state we also calculatgnq (B5) for the squeezing parameterg and 7y, we con-
2 . . . 1
Tr(p), which is defined as clude that the nonzero value of these coherence terms is es-
sential for generation of atomic-squeezed states, as men-
Tr(p?) = p5o+ P21+ p3at 2(|pod >+ p12®+ | pod ). tioned earlier. Before discussing the squeezing characteristic

(27)  for an arbitrary value of the parameferwe present the case
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normal vacuum entering into the cavity. At this valueNf
0.8 I a both 7y and 75 are zero indicating no atomic squeezing. We
L0 observe that although qualitative features of atomic squeez-
S ing characterized by bothyy and 7z are similar, quantita-
0.4 PRSP tively they differ significantly. For finite values of the param-
SO eter \, the magnitude of bothyy and 7y first increases,
R » thereby indicating the increase in atomic squeezing with the
- R - increase in the value dfl. It goes through a maximum and
& 0O then goes to zero at a particular valueNE N, . Here the
P quantitative difference betweem, and 7z become evident:
the unsqueezing occurs at different valuesNgffor the two
—0.4 - - squeezing parameters.

In contrast to this foia=0 both 7y and 7g increase in
magnitude withN and asymptotically approach the follow-
ing values:

-0.8 | .
0.0 0.2 N 0.4 0.6 nR%_% (1_%) (36)
FIG. 2. Plot of 5y vs N for different values of\: A=0 (solid  and
line), A\=0.5(dashed ling A=1.0 (dotted ling, and\=4.0 (dashed- 1
dotted ling. The horizontal line denotes zero squeezing. N~ — ( 1 ﬁ) 37)

for A=0, which corresponds to free space or a closed cavity.
For A=0 and |M|?=(1/4)(n>-1), Eq. (31) and Eq.(32)  This is shown in Figs. 2 and 3 by solid curves. Thus for this

reduce to value of A the collective atomic state is always squeezed
irrespective of the squeezing parameters used to characterize
nr=n>—1(yn?—1-n) (34  the atomic-squeezed states at steady state. We find that the
q maximum value of atomic squeezing obtained decreases with
an

the increase in the value of. Physically this can be ex-
plained by the fact that the increasing the value\aforre-
7n=n—1(yn—1-yn+1), (39 sponds to enhancement of incoherent spontaneous emission
out the sides of the cavity. Because of this, the atomic cor-
relations[13] required for the generation of atomic-squeezed
states are destroyed.

wheren=2N+1. It is simple to verify from Eq(34) and
Eq. (35) that for allowed values of (i.e.,n>1) 7z and 7y
are always negative signifying squeezing for all valueslof
To study the dependence of atomic squeezing on the param-

eter\, we plot in 7z and 7y in Figs. 2 and 3, respectively, as IV. CONCLUSION

functions of the parameteX for several values ok. The In this paper we have investigated the possibility of gen-

results shown are for millimum uncertainty squeezed state§ating atomic-squeezed states or squeezed-spin states in a
(MUS). In these figures\=0 corresponds to the case of & gystem of a pair of two-level atoms confined in a single

mode optical cavity which is being driven by a squeezed

0.8 I ' ' ' ] vacuum field. The cavity is assumed to be in overdamped
regime. This has allowed us to derive the equation of motion

for atomic averages by adiabatically eliminating the cavity
field mode. We have used solution of these equations at
0.4 - 7 steady state to calculate atomic density-matrix elements and
atomic-squeezing parameters. We have shown that unlike the
free space case the intermediate state of the collective atomic
states is always populated and the final atomic state is a

mixed one. Nonetheless, the collective atomic population

distribution shows a nonthermal characteristic similar to that
of a free space case. This behavior, however, survives only
for A<<1. To characterize the atomic squeezing we have used
a parameter which has been proposed recently in the context
of Ramsey spectroscopy. The natural squeezing parameter

defined in the context of uncertainty relations that exist be-
L L 1 tween different components of angular momentum has also
0.0 0.2 0.4 0.6 been studied and compared with spectroscopic squeezing. It

N is found that for a very small spontaneous emission rate of
the atoms out the side of the cavity, atomic-squeezed states
FIG. 3. Plot of 5 vs N with parameters the same as Fig. 2.  can be generated for all values of field squeezing parameter
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N, provided that the injected squeezed vacuum is in mini- +2y<31+31—52—a‘f+32—af/2>_(7+ K)(Sl_aT>.
mum uncertainty state. For a finite value of the parameter
atomic squeezing can be generated only if the value bés (A5)

2elow some _crziti(;]al _vaIueNc. Molrfovltler, the_”v alue ONﬁ In the bad-cavity limit expectation values of the coupled op-
ecreases with the Increase n inafly, to lllustrate the = ora10rs are solved in the steady state and then substituted in
feasibility of_the scheme _dlscussed in the present paper fQéqs.(Al)—(A4). This procedure will further lead to higher-
the generation o;: a’:omm-sgueezed, s':cates we dnl(')til thalder joint atom field expectation values. However, in the
present cavity technology and sources of squeezed light Ca&;\d—cavity limit this hierarchy of equation truncates at sec-
conveniently satisfy the conditions required for production Ofond order of the field mode. For example, when the cavity

these states. For example, Polzikal. [14] have demon-. .mode is coupled with a broadband squeezed vacuum it can
strated a frequency-tunable source of squeezed light exhibi 5e shown that

ing approximately 70% squeezing in a finite bandwidth an

this corresponds to the vallé~0.4. The atom-cavity sys- (aTaA)=N<A),
tem used by Rempet al.[15] for experimental investigation _
of optical bistability can provide cavity lying in the over (aA)=|M|e? % A),

damped regime. _
(aTA)y=|M|e 2% A). (A6)
ACKNOWLEDGMENTS So by using Eq(A6) and after doing some lengthy algebra
| wish to thank Dr. Manoj Harbola and Mr. Mahesh Chan-we arrive at Eq.(6). Here we note that our Eq$6)—(9)
dran for fruitful discussions and a critical reading of the correctly reduce to the equations of motion for an ordinary
manuscript. vacuum entering into the cavifyl6].

APPENDIX A APPENDIX B

In this appendix we derive equations of motion for the In this appendix we derive Eq§31)—(33). For this pur-
atomic operators in the bad-cavity limit. For this purpose wepose we first express the squeezing paramatesnd 7y in
follow the approach of Rice and Pedrd#i] to adiabatically terms ofY vector. It is easy to show that
eliminate the cavity mode. Using E¢l) and commutation o
relation it can be shown that (S =32[1+Y,+Ys],

dY; (S)=Y:—1. (B1)

=—ig(a"(S; +S,))+H.c—2yY,;—2yY,,

dt (A1) Further, for the model employed here the valug$jf) and
(S3)=0 at steady state. As a result of this for our case
dy.
d—tzz—2ig<(sfs;s;+s;sfs;+sl+/2+s;/2)a>+H.c. (S0 =0,
—2yYa+4yYa— 29V, (A2) (§)=0 (B2)
and
%=ig((S’+SZ’—282+S+S’—ZS’SZ+SZ’)a)+H c
dt ' et " (A8)%=(S). (B3)
—2yYs, (A3)  Then by using Eq(B1) and definitions ofpg and 7y we get
dy, . _ _ 1+Y,+Yg) — (Y —1)?
ot ~19((S(S;'S, +5; 81 S )ayH.c—4yY,. (A4) nR=( 2+ Y3) (2 b (B4)
t (Y1—1)
The coupling of atom and cavity field is manifested in termsgng
like (Aa) and its conjugates in EGA1)—(A4), whereA is a
function of atomic operators. To find these coupled expecta- (L+Y,o+Y3)—|[(Y—1)]
tion values, once again the above procedure is repeated and INT (Y= 1) (BS)

equations of motion are obtained. Here we write one of them

Now puttingY,, Y3, andY, from Eq.(17) in Egs.(B4) and
(B5) we get an expression fagg and 7y as given in Egs.
(31 and(32).

(s, a’)

T —2ig(S/s;a'a+a'a/2+S]S;)
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