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Tunneling in a cavity
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The mechanism of coherent destruction of tunneling found by Grossetaain[Phys. Rev. Lett67, 516
(1991)] is studied from the viewpoint of quantum optics by considering the photon statistics of a single mode
cavity field which is strongly coupled to a two-level tunneling systd8). As a function of the interaction
time between TS and cavity the photon statistics displays the tunneling dynamics. In the semiclassical limit of
high photon occupation number, coherent destruction of tunneling is exhibited in a slowing down of an
amplitude modulation for certain parameter ratios of the field. The phenomenon is explained as arising from
interference between displaced number states in phase space which survives thditaigdue to identical
n~2 scaling between orbit width and displacemd1050-2947®6)02712-§

PACS numbdss): 42.50—p, 05.30--d

In recent years the idea of modulation and therefore con- Let us start with a description of the physical situation we
trol of tunneling by a monochromatic electromagnetic fieldhave in mind. Att=0 a single two-level tunneling system
has been a subject of considerable interest. The typicdllS) prepared in a state localized in say the left Wl is
Hamiltonian describes a particle in an isolated double-welinjected in a cavity and starts to tunnel between its left and
potential(DWP) which is periodically driven by an external right state|L) and |R). The cavity contains a single mode
force which has been prepared in a number staje We consider

an ideal cavity, i.e., we neglect any kind of dissipation. After
(1) an interaction time;,, the TS leaves the cavity and the pho-
ton number distribution is measured irrespective of the state
of the TS.
HereHpwp(X) is the Hamiltonian of the DWPS is the am- Thus our aim will be to calculate the transition probability
plitude, andw, the driving frequency. The attention has from the product statéL,n)=|L)|n) at t=0 to another
mainly focused on a possible enhancement or suppression pfoduct statdi,|) for anyi=L,R at timet=t;,,,
coherent tunneling: Lin and Ballentingl] have demon-
strated that the tunneling probability is highly enhanced due V= ; W2
to periodic modulation for high-field strengths and driving P'”(t'”)_i:EL,R AP ), @
frequencies close to the classical oscillation frequency at the )
bottom of each well. In the opposite limit Grossmann andwhere| ¥ (t;,))=e~"tin/"|L n). For fixedt;, this is the pho-
co-workerg 2] found complete suppression of tunneling suchton number distribution withP,(0)=&,. For fixed I,
that a particle initially localized in one of the two wells will P,(t;,) describes the dynamics of the cavity mode interact-
never escape to the other well. They termed this effect “coing with a TS.
herent destruction of tunneling.” It has since been of con- An important aspect of the present problem is the strong
tinuing interes{3—9]. The most surprising feature is tpe-  coupling between the cavity mode and the TS, and the sepa-
riodicity of the destruction of tunneling for certain parameterration of time scales between tsow tunneling motion and
ratios of S andw, . So far there is no clear understanding of the fast field oscillations. If we denote the coupling energy
this phenomenon. by g and the tunneling frequency hy, this means that we

By using the Floquet formalism it has been shown thatare interested in the limA<w, andg~#w,_ for low and
many characteristic features of the tunneling suppression cafng~7%w, for high number of photons in the field.
already be described in a two-level approximation of the In this regime the field strongly dresses the TS and both
DWP [3,4]. Many different aspects of the effect have beenTS + field have to be treated as a single unit. In contrast to
iluminated in this framework: Makaro{5] and Plata and the situation wherev, ~A>g/#, we are confronted in the
Gomez Llorentd 6] quantized the electromagnetic field and present case with a situation in which the rotating-wave ap-
recovered the effect in the limit of a large number of photonsproximation is not applicable. Thus instead of using the
in the field. Wang and Shdd@] mapped the driven two-level Jaynes-Cummings Hamiltonianl4], we must include
dynamics to a classical one of a charged particle moving in @ounter-rotating terms so that our Hamiltonian reads
harmonic potential plus a magnetic field in a plane. Kay-
anumd 8] explained the suppression of tunneling as an effect _ t t 9
arising from interference at periodic level crossings. H=-— 70x+ goja'+a)+hw a’at ﬁ_wL 3

In the present paper, an alternative explanation is pro-
posed which uses the concept miiase-space interference where a', a are the bosonic creation and annihilation
known from squeezed statg$0,11] and displaced number operators of the cavity mode. We have identified
stateg12,13 in quantum optics. oy=|LY{R|+|R)XL| and o,=|L){L|—|R)(R|. Expressing
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the spin operator in the eigenstates of the TS, 05
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ered. We also have added a constant energy shift for later
convenience. It has to be noted that suppression of tunneling
the situation here is fundamentially different from the one FETS— TS —
usually encountered in quantum optics. photon number photon number

n= n=10
formulation of the Hamiltionian in quantum optics is recov- "
does not occur in the Jaynes-Cummings mdégl Hence i /ﬁﬂg HI‘I
Owing to the separation of time scales between the tun-
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neling and the oscillation dynamic®,,(t;,) can be calcu- 031 (@) o e g P
f . . . . S n= S =
lated in perturbation theory id/w, by introducing dressed g(’:z 2.,
states g g
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with j=0,1 and FIG. 1. Characteristic oscillations in the photon-number distri-

+ bution of dynamically displaced number states fort;,= 250,
U=exd —o,a(a’—a)], (5 Alw, =0.2, andn)=|10). In (a) and(b) the quantum limit, Eq(9),
is displayed for different values at=g/# . In (c) and(d) the
where a=g/fw . Equivalently, one may perform the po- semi-classical limit, Eq.(10), is shown for different values of
laron transformatiorH —U'HU and continue to use the (/w, =2ne. The full line shows the Poisson distribution with
product state instead of the dressed state basis. In the dressged10.
state basis the Hamiltonian can be written as

and P, (tip) =Pp(t;s) if I<n. We conclude that the tunnel-
ing dynamics can be seen in the spectrum of the transition
_ HAL) probability of the cavity fieldln addition to harmonics of
=2 lji(m) mhi o —(—1)—= (i(m)] w, its power spectrum also contains resonances agris-
m,j . . . . X
ing from the tunneling motion. This behavior strongly de-

H=Hp+V

3 » o , pends on the initial preparation of the TS. Injecting it in its
-7 E FmY (=D [1+ (=17 Tm=m] ground state|0), for instance, yields only resonances at
mm’.j.j’ Mo, +(—)¢3A,, where£=0,1 depending on whether—m
XDy (20) (1= 8} ) }(j " (M), (6) i; even or odd, respectively, and hence only rapid oscilla-
tions.
with The effect of a strong coupling between the cavity mode
and the TS is to mix a coherent amplitude=g/% w, with
Ay=ADyn(2a) (7)  the intial number state of the mode. This happens by displac-
ing the oscillator wave function¢,(x)=(x|n) like
and X—X—/2a in dimensionless coordinates= (uw, /%)4.
0 Thus by injecting a TS which strongly couples to the cavity
! o 2 field, it is possible to realize displaced number stai€513.
Dln(“):<||D(“)|”>:(ﬁ) o' ~"e” W2l N |a]?), The statistical properties of displaced number states have
(8) been discussed in RdflL3]. The photon-number distribution
is simply given byPpys(l)=|Din(@)|? becauseD,,(«) is
where D(a)=exda(a’—a)] is the shift operator and the probability amplititude of finding photons in a dis-
L!""(x) an associate Laguerre polynomiain). The diag-  Placed number stater,n)=D(a)[n).
onal partHp, builds a ladder of tunneling doublets with in-  The photon distributior(9) for number states which are
tradoublet spacing A, and interdoublet spacinjw, . Be- ~ dynamicallydisplaced by the tunneling process resembles
cause(1(m)|V|0(m))=0, V induces only mixing between Pons(l). The displaced number states can either be shifted
dressed states belongingdifferentdoublets. Hence, correc- into the same wel[first term in Eq.(9)] or opposite wells
tions to the dressed states @¢A/w,). NeglectingV for ~ [second term in Eq.(9)]. As expected for =0,

this reason we find for the transition probabilityl i n Pin(tin) = din independent of the interaction time.
In Figs. 1@ and Xb) we have plottedP,(t;,) for

2 n=10, o tj,=250, anda=0.25 and 0.5. Whereas a coher-
ent state wittn=10 obeys the familiar Poisson distribution
[11] shown by the line, the dynamically displaced number

2 states exhibit oscillations shown by the histogram. Increasing
«a results in further oscillations. This effect is independent of
the specific value ofv t;, for t;;#0, though the absolute

(9)  value of P,(tj,) depends onwt;,. These modulations are

. 1
Pin(tin) = ’ 2 Dim(a@)Dmn(— a)elmwl‘ti”cog{EAmtin)

+
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clearly exhibited in the asymptotic expansion of E§). in

the semiclassical limitBohr's correspondence principie
[,n—oo, n/l—1 with| —n=0 finite. If we scale the coupling
constant between the field and the TSgasn~*? and note
that associate Laguerre polynomials asymptotically approach
Bessel function§15] one finds in the semiclassical limit

transition probability
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Here 0

transition probability

is the renormalized tunneling frequency, and FIG. 2. Coherent destruction of tunneling monitored in the cav-

_ ity field. Displayed is Eq(10) for |=n, A/ =0.2 as a function of
Q—Z\/ﬁg/ﬁ (12 w ti,: upper figure, 8/ w =2; lower figure, 22/ w =2.3. The
is the Rabi frequency. In Figs.(d and Xd), Eq. (10) is first_ r_oot of Jo(2Q}/w,) occurs at Z)/wL%ZAOS. The _effect is _
plotted forQ/w, =1 and 3.3. It shows the same oscillations exhibited py a decrease of the amplitude modulation in the cavity
as the exact expressid8). mode oscillations.
The expressioiil0) is easily understood. The cosine and
the sine factors represent the probability for the tunnelingconstructive and destructive overlap between displaced
particle to stay in the well where it has been prepared iniharmonic-oscillator wave functions by noting thiay,(«) is
tially, or to escape to the other well, respectivg8). The a polynomial inl of order min{,m), i.e., has mink,m)
Bessel functions represent the probability for the correspond-oots.
ing displaced number state to contaiphotons if it hadn From this consideration it becomes apparent that varying
initially [note thatPpyg(l)—J2 (Q/w,) in the semiclassi- the relative radius of the two bands by changings n, or
cal limit]. Hence the Bessel functions represent the photoiarying the relative displacement by changiador fixed |
statistics of displaced number states with an effective disandn should result in similar effects. If one notices further
placement (2)/w,)sin(wty,) or (2Q/w )cost;y,). From  that the factodo(2Q/w ) in Eq. (11) is the probability am-
Eq. (11) and the cosine and sine factors in Ef0) we fur-  plitude of finding in a number state displaced by
ther see that for specific parameter values of the drivingi—X—2[Q/(w_+2n)], again exactly the same number of
field—where 2)/w, hits the roots of the zero order Bessel photons, one expects that the periodic suppression of tunnel-
function—the tunneling process is completely suppressedng arises from destructive and constructive interference of
Note that localization cannot occur for small photon numbedisplaced harmonic-oscillator wave functions in phase space.
in the field because there is no valuemfvhich is simulta- To verify this argument, tha— « limit has to be consid-
neously a root of all Laguerre polynomials. We conclude thaered with care. First take the number of photons in the cavity
in the largen limit the tunneling dynamics is displayed in the mode to be finite. The factdd,,(2a) which scales the dou-
photon statistics by an amplitude modulation of the cavityblet splitting (7) is the overlap between a number staig
mode oscillations. Coherent destruction of tunneling mani-shifted into the right well with the same number state shifted
fests itself in the slowing down of this amplitude modulationinto the left well. If we note thab ,,(2«) is a polynomial in
as depicted in Fig. 2. |a|? of degreen, and consequently has zeros, we expect
We now show how the present picture can give a quantin+ 1 oscillations oD ,,(2«) as a function otx. Then zeros
tative understanding of this effect. First recall that the oscil-between the maxima result from tinepossible ways of de-
lation in the photon-number statistics in Fig. 1 originate fromstructive overlap between displaced harmonic oscillator
phase-space interferenfg3]: the nth number state can be wave functions. This explains Fig. 2 in RéB]. However,
associated with a circular band of widthr(2 ¥? around its ~ contrary to the claim there, this picture remains also valid if
orbit with radius2(n+ 1/2) and centered around the origin. the oscillator energy is larger than the reorganization energy
Analogously so can thith displaced number state which is (n+3)%Aw >g%%hw,, and even in the limith—c. The
shifted by V2a. According to the area-of-overlap concept simple reason for this is that in the semiclassical limit
[10], the transition amplitude between two states is governefi— = with 2y/ng/%— Q fixed, both the distance between the
by the sum of all possible overlap areas weighted with aphodes of the harmonic-oscillator wave functitas a func-
propriate phases. This results in the interference betweetion of x) and the displacemenk— x—2[(Q/(w, \2n)]
contributions from different overlaps which can be construc-scale a1~ Y2 Based on this argument, we expect oscillation
tive or destructive, thus giving rise to oscillations in the to become noticable as soon as the displacement exceeds the
photon-number distribution. Another way of understandingbandwidth, i.e., 2/w >1. Finally, we note that with the
the oscillations is that they arise from the possibility of ascaling chosen above both displaced orbits will always inter-
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sect no matter how larg@/w, is. This results in the infinite Hence a number state with largeis needed which is diffi-

number of oscillations seen in the zero-order Bessel functiogult to realize experimentally. Possibly a trap is more suited

(12). o _ o because of its lower driving frequenay, ~O(MHz) [17].
Summarizing, coherent destruction of tunneling is eX-Damping of the cavity mode which is too strong will also

plained as aqugntum effect arising frqm the destruCtiVe_in' render an observation impossible. Furthermore, the tunneling
terference of displaced harmonic-oscillator wave functlonsdynamiCS must still be coherent. Finally the superposition

in phase spaceThe effect is strictly speaking only observ- tate|L)=2"Y2(|0)+|1)) is difficult to prepare because the

able in the semiclassical limit for the reasons mentloneciarticle experiences strong electromagnetic fields when it en-

above, and survives the largelimit since boththe band- . . . . )
S . ’ . t dl th 7] (f f th t
width of the orbit and the displacement scale in the SamE?fegsnznuseia\éﬁzntjmci\\/léﬁ%s]s(e(;r Séifgs];:ussmn orthis poin

way to zero as Ao,

In closing, we note that experimental study of the effects This research has been supported in part by the NSF and
described here is presently still out of range. In a microcavityby the Alexander von Humboldt Foundation. We also thank
the driving frequencyw, is O(GHz) whereas typical values Professor Peter Hagi and Professor Herbert Walther, as
of the one-photon Rabi frequenay/# are O(kHz) [16].  well as Dr. Min Cho and Dr. Jochen Rau for discussions.
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