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The mechanism of coherent destruction of tunneling found by Grossmannet al. @Phys. Rev. Lett.67, 516
~1991!# is studied from the viewpoint of quantum optics by considering the photon statistics of a single mode
cavity field which is strongly coupled to a two-level tunneling system~TS!. As a function of the interaction
time between TS and cavity the photon statistics displays the tunneling dynamics. In the semiclassical limit of
high photon occupation numbern, coherent destruction of tunneling is exhibited in a slowing down of an
amplitude modulation for certain parameter ratios of the field. The phenomenon is explained as arising from
interference between displaced number states in phase space which survives the largen limit due to identical
n21/2 scaling between orbit width and displacement.@S1050-2947~96!02712-6#

PACS number~s!: 42.50.2p, 05.30.2d

In recent years the idea of modulation and therefore con-
trol of tunneling by a monochromatic electromagnetic field
has been a subject of considerable interest. The typical
Hamiltonian describes a particle in an isolated double-well
potential~DWP! which is periodically driven by an external
force

H~ t !5HDWP~x!1Sxcos~vLt !. ~1!

HereHDWP(x) is the Hamiltonian of the DWP,S is the am-
plitude, andvL the driving frequency. The attention has
mainly focused on a possible enhancement or suppression of
coherent tunneling: Lin and Ballentine@1# have demon-
strated that the tunneling probability is highly enhanced due
to periodic modulation for high-field strengths and driving
frequencies close to the classical oscillation frequency at the
bottom of each well. In the opposite limit Grossmann and
co-workers@2# found complete suppression of tunneling such
that a particle initially localized in one of the two wells will
never escape to the other well. They termed this effect ‘‘co-
herent destruction of tunneling.’’ It has since been of con-
tinuing interest@3–9#. The most surprising feature is thepe-
riodicity of the destruction of tunneling for certain parameter
ratios ofS andvL . So far there is no clear understanding of
this phenomenon.

By using the Floquet formalism it has been shown that
many characteristic features of the tunneling suppression can
already be described in a two-level approximation of the
DWP @3,4#. Many different aspects of the effect have been
illuminated in this framework: Makarov@5# and Plata and
Gomez Llorente@6# quantized the electromagnetic field and
recovered the effect in the limit of a large number of photons
in the field. Wang and Shao@7# mapped the driven two-level
dynamics to a classical one of a charged particle moving in a
harmonic potential plus a magnetic field in a plane. Kay-
anuma@8# explained the suppression of tunneling as an effect
arising from interference at periodic level crossings.

In the present paper, an alternative explanation is pro-
posed which uses the concept ofphase-space interference
known from squeezed states@10,11# and displaced number
states@12,13# in quantum optics.

Let us start with a description of the physical situation we
have in mind. Att50 a single two-level tunneling system
~TS! prepared in a state localized in say the left welluL& is
injected in a cavity and starts to tunnel between its left and
right stateuL& and uR&. The cavity contains a single mode
which has been prepared in a number stateun&. We consider
an ideal cavity, i.e., we neglect any kind of dissipation. After
an interaction timet in the TS leaves the cavity and the pho-
ton number distribution is measured irrespective of the state
of the TS.

Thus our aim will be to calculate the transition probability
from the product stateuL,n&5uL&un& at t50 to another
product stateu i ,l & for any i5L,R at time t5t in ,

Pln~ t in!5 (
i5L,R

z^ i ,l uC~ t in!& z2, ~2!

whereuC(t in)&5e2 iHt in /\uL,n&. For fixedt in this is the pho-
ton number distribution withPln(0)5d ln . For fixed l ,
Pln(t in) describes the dynamics of the cavity mode interact-
ing with a TS.

An important aspect of the present problem is the strong
coupling between the cavity mode and the TS, and the sepa-
ration of time scales between theslow tunneling motion and
the fast field oscillations. If we denote the coupling energy
by g and the tunneling frequency byD, this means that we
are interested in the limitD!vL andg;\vL for low and
Ang;\vL for high number of photons in the field.

In this regime the field strongly dresses the TS and both
TS 1 field have to be treated as a single unit. In contrast to
the situation wherevL'D@g/\, we are confronted in the
present case with a situation in which the rotating-wave ap-
proximation is not applicable. Thus instead of using the
Jaynes-Cummings Hamiltonian@14#, we must include
counter-rotating terms so that our Hamiltonian reads

H52
\D

2
sx1gsz~a

†1a!1\vLa
†a1

g2

\vL
, ~3!

where a†, a are the bosonic creation and annihilation
operators of the cavity mode. We have identified
sx5uL&^Ru1uR&^Lu and sz5uL&^Lu2uR&^Ru. Expressing
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the spin operator in the eigenstates of the TS,
u0&5221/2(uL&1uR&) and u1&5221/2(uL&2uR&), the usual
formulation of the Hamiltionian in quantum optics is recov-
ered. We also have added a constant energy shift for later
convenience. It has to be noted that suppression of tunneling
does not occur in the Jaynes-Cummings model@6#. Hence
the situation here is fundamentially different from the one
usually encountered in quantum optics.

Owing to the separation of time scales between the tun-
neling and the oscillation dynamics,Pln(t in) can be calcu-
lated in perturbation theory inD/vL by introducing dressed
states

u j ~n!&5Uun&
1

A2
~ uL&1~21! j uR&) ~4!

with j50,1 and

U5exp@2sza~a†2a!#, ~5!

wherea5g/\vL . Equivalently, one may perform the po-
laron transformationH→U†HU and continue to use the
product state instead of the dressed state basis. In the dressed
state basis the Hamiltonian can be written as

H5HD1V

5(
m, j

u j ~m!&Sm\vL2~21! j
\Dm

2 D ^ j ~m!u

2
\D

4 (
m,m8, j , j 8

u j ~m!&$~21! j 8@11~21! j2 j 81m2m8#

3Dmm8~2a!~12d j j 8dmm8!%^ j 8~m8!u, ~6!

with

Dn5DDnn~2a! ~7!

and

Dln~a!5^ l uD~a!un&5S n!l ! D
1/2

a l2ne2~1/2!uau2Ln
l2n~ uau2!,

~8!

where D(a)5exp@a(a†2a)# is the shift operator and
Ln
l2n(x) an associate Laguerre polynomial (l>n). The diag-

onal partHD builds a ladder of tunneling doublets with in-
tradoublet spacing\Dm and interdoublet spacing\vL . Be-
cause^1(m)uVu0(m)&50, V induces only mixing between
dressed states belonging todifferentdoublets. Hence, correc-
tions to the dressed states areO(D/vL). NeglectingV for
this reason we find for the transition probability ifl>n

Pln~ t in!5U(
m

Dlm~a!Dmn~2a!e2 imvLtincosS 12DmtinD U2

1U(
m

Dlm~a!Dmn~a!e2 imvLtinsinS 12DmtinD U2
~9!

andPln(t in)5Pnl(t in) if l,n. We conclude that the tunnel-
ing dynamics can be seen in the spectrum of the transition
probability of the cavity field.In addition to harmonics of
vL its power spectrum also contains resonances atDm aris-
ing from the tunneling motion. This behavior strongly de-
pends on the initial preparation of the TS. Injecting it in its
ground stateu0&, for instance, yields only resonances at
mvL1(2)j 1

2Dm wherej50,1 depending on whethern2m
is even or odd, respectively, and hence only rapid oscilla-
tions.

The effect of a strong coupling between the cavity mode
and the TS is to mix a coherent amplitudea[g/\vL with
the intial number state of the mode. This happens by displac-
ing the oscillator wave functionwn(x)5^xun& like
x→x2A2a in dimensionless coordinatesx5(mvL /\)

1/2q.
Thus by injecting a TS which strongly couples to the cavity
field, it is possible to realize displaced number states@12,13#.
The statistical properties of displaced number states have
been discussed in Ref.@13#. The photon-number distribution
is simply given byPDNS( l )5uDln(a)u2 becauseDln(a) is
the probability amplititude of findingl photons in a dis-
placed number stateua,n&5D(a)un&.

The photon distribution~9! for number states which are
dynamicallydisplaced by the tunneling process resembles
PDNS( l ). The displaced number states can either be shifted
into the same well@first term in Eq.~9!# or opposite wells
@second term in Eq. ~9!#. As expected for a50,
Pln(t in)5d ln independent of the interaction time.

In Figs. 1~a! and 1~b! we have plottedPln(t in) for
n510, vLt in5250, anda50.25 and 0.5. Whereas a coher-
ent state withn̄510 obeys the familiar Poisson distribution
@11# shown by the line, the dynamically displaced number
states exhibit oscillations shown by the histogram. Increasing
a results in further oscillations. This effect is independent of
the specific value ofvLt in for t inÞ0, though the absolute
value ofPln(t in) depends onvLt in . These modulations are

FIG. 1. Characteristic oscillations in the photon-number distri-
bution of dynamically displaced number states forvLt in5250,
D/vL50.2, andun&5u10&. In ~a! and~b! the quantum limit, Eq.~9!,
is displayed for different values ofa[g/\vL . In ~c! and ~d! the
semi-classical limit, Eq.~10!, is shown for different values of
V/vL[2Ana. The full line shows the Poisson distribution with
n̄510.
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clearly exhibited in the asymptotic expansion of Eq.~9! in
the semiclassical limit~Bohr’s correspondence principle!:
l ,n→`, n/ l→1 with l2n>0 finite. If we scale the coupling
constant between the field and the TS asg}n21/2 and note
that associate Laguerre polynomials asymptotically approach
Bessel functions@15# one finds in the semiclassical limit

Pl2n~ t in!5cos2S 12 D̃t inD Jl2n
2 S 2V

vL
sin~vLt in! D

1sin2S 12 D̃t inD Jl2n
2 S 2V

vL
cos~vLt in! D . ~10!

Here

D̃5DuJ0~2V/vL!u ~11!

is the renormalized tunneling frequency, and

V52Ang/\ ~12!

is the Rabi frequency. In Figs. 1~c! and 1~d!, Eq. ~10! is
plotted forV/vL51 and 3.3. It shows the same oscillations
as the exact expression~9!.

The expression~10! is easily understood. The cosine and
the sine factors represent the probability for the tunneling
particle to stay in the well where it has been prepared ini-
tially, or to escape to the other well, respectively@3#. The
Bessel functions represent the probability for the correspond-
ing displaced number state to containl photons if it hadn
initially @note thatPDNS( l )→Jl2n

2 (V/vL) in the semiclassi-
cal limit#. Hence the Bessel functions represent the photon
statistics of displaced number states with an effective dis-
placement (2V/vL)sin(vLtin) or (2V/vL)cos(vLtin). From
Eq. ~11! and the cosine and sine factors in Eq.~10! we fur-
ther see that for specific parameter values of the driving
field—where 2V/vL hits the roots of the zero order Bessel
function—the tunneling process is completely suppressed.
Note that localization cannot occur for small photon number
in the field because there is no value ofa which is simulta-
neously a root of all Laguerre polynomials. We conclude that
in the largen limit the tunneling dynamics is displayed in the
photon statistics by an amplitude modulation of the cavity
mode oscillations. Coherent destruction of tunneling mani-
fests itself in the slowing down of this amplitude modulation
as depicted in Fig. 2.

We now show how the present picture can give a quanti-
tative understanding of this effect. First recall that the oscil-
lation in the photon-number statistics in Fig. 1 originate from
phase-space interference@13#: the nth number state can be
associated with a circular band of width (2n)21/2 around its
orbit with radiusA2(n11/2) and centered around the origin.
Analogously so can thel th displaced number state which is
shifted byA2a. According to the area-of-overlap concept
@10#, the transition amplitude between two states is governed
by the sum of all possible overlap areas weighted with ap-
propriate phases. This results in the interference between
contributions from different overlaps which can be construc-
tive or destructive, thus giving rise to oscillations in the
photon-number distribution. Another way of understanding
the oscillations is that they arise from the possibility of a

constructive and destructive overlap between displaced
harmonic-oscillator wave functions by noting thatDlm(a) is
a polynomial in l of order min(l ,m), i.e., has min(l ,m)
roots.

From this consideration it becomes apparent that varying
the relative radius of the two bands by changingl vs n, or
varying the relative displacement by changinga for fixed l
andn should result in similar effects. If one notices further
that the factorJ0(2V/vL) in Eq. ~11! is the probability am-
plitude of finding in a number state displaced by
x→x22@V/(vL A2n)#, again exactly the same number of
photons, one expects that the periodic suppression of tunnel-
ing arises from destructive and constructive interference of
displaced harmonic-oscillator wave functions in phase space.

To verify this argument, then→` limit has to be consid-
ered with care. First take the number of photons in the cavity
mode to be finite. The factorDnn(2a) which scales the dou-
blet splitting ~7! is the overlap between a number stateun&
shifted into the right well with the same number state shifted
into the left well. If we note thatDnn(2a) is a polynomial in
uau2 of degreen, and consequently hasn zeros, we expect
n11 oscillations ofDnn(2a) as a function ofa. Then zeros
between the maxima result from then possible ways of de-
structive overlap between displaced harmonic oscillator
wave functions. This explains Fig. 2 in Ref.@5#. However,
contrary to the claim there, this picture remains also valid if
the oscillator energy is larger than the reorganization energy
(n1 1

2)\vL.g2/\vL , and even in the limitn→`. The
simple reason for this is that in the semiclassical limit
n→` with 2Ang/\→V fixed, both the distance between the
nodes of the harmonic-oscillator wave function~as a func-
tion of x) and the displacementx→x22@(V/(vL A2n)#
scale asn21/2. Based on this argument, we expect oscillation
to become noticable as soon as the displacement exceeds the
bandwidth, i.e., 2V/vL.1. Finally, we note that with the
scaling chosen above both displaced orbits will always inter-

FIG. 2. Coherent destruction of tunneling monitored in the cav-
ity field. Displayed is Eq.~10! for l5n, D/vL50.2 as a function of
vLt in : upper figure, 2V/vL52; lower figure, 2V/vL52.3. The
first root of J0(2V/vL) occurs at 2V/vL'2.405. The effect is
exhibited by a decrease of the amplitude modulation in the cavity
mode oscillations.
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sect no matter how largeV/vL is. This results in the infinite
number of oscillations seen in the zero-order Bessel function
~11!.

Summarizing, coherent destruction of tunneling is ex-
plained as aquantum effect arising from the destructive in-
terference of displaced harmonic-oscillator wave functions
in phase space. The effect is strictly speaking only observ-
able in the semiclassical limit for the reasons mentioned
above, and survives the largen limit since boththe band-
width of the orbit and the displacement scale in the same
way to zero as n→`.

In closing, we note that experimental study of the effects
described here is presently still out of range. In a microcavity
the driving frequencyvL is O~GHz! whereas typical values
of the one-photon Rabi frequencyg/\ are O~kHz! @16#.

Hence a number state with largen is needed which is diffi-
cult to realize experimentally. Possibly a trap is more suited
because of its lower driving frequencyvL;O~MHz! @17#.
Damping of the cavity mode which is too strong will also
render an observation impossible. Furthermore, the tunneling
dynamics must still be coherent. Finally the superposition
stateuL&5221/2(u0&1u1&) is difficult to prepare because the
particle experiences strong electromagnetic fields when it en-
ters and leaves the cavity@17# ~for a discussion of this point
if one uses quantum wells, see Ref.@18#!.
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