
Multilevel quantum beats: An analytical approach

C. Leichtle, I. Sh. Averbukh,* and W. P. Schleich†

Abteilung für Quantenphysik, Universita¨t Ulm, D-89069 Ulm, Germany
~Received 30 July 1996!

We study the temporal behavior of generic transient signals originating from multilevel quantum systems.
Such signals typically arise in the physics of wave packets in atoms, molecules, cavity QED, and ion traps and
consist of a sum of a large number of harmonics whose frequencies depend nonlinearly on the sequential
number of the harmonic. In particular, we focus on the semiclassical limit. Here, quantum beats between
individual terms in the underlying sum lead to characteristic features of the signal in different time regimes,
such as collapse, fractional revivals, and full revivals. We present a universal recipe for describinganalytically
all of the details of these features. Our approach is based on a specific representation of the sum of harmonics,
which is most convenient in each of these time regions of interest. This brings out in a most natural way the
phenomenon of fractional revivals and full revivals and explains their fine structures observed in recent
experiments.@S1050-2947~96!01512-0#

PACS number~s!: 42.50.Md, 32.90.1a

I. INTRODUCTION

Ultrashort laser pulses have opened a new and fascinating
research area—the physics of atomic and molecular wave
packets. Short pulses not only allow the excitation of a co-
herent superposition of many quantum states, but they also
provide a tool to monitor its subsequent dynamics@1#. Being
highly localized and hence particlelike objects, wave packets
enable us to explore the quantum-classical border, and to
touch such fundamental aspects of quantum mechanics as the
correspondence principle@2#. On the other hand, the physics
of wave packets is closely related to a practical field of laser
femtochemistry, which studies molecular dynamics and
chemical reactions ‘‘in real time.’’ Complicated time-
resolved signals from packetlike excitations provide valuable
information about the molecular energy spectrum and the
shape of molecular potential surfaces@3,4#.

Similar time-dependent signals originating from a large
number of simultaneously excited quantum levels were re-
cently studied in the context of atomic@5–19# and molecular
@20–24# wave packets, cavity QED@25–35#, and atom optics
@36,37#, only to mention a few. Despite the different physical
nature of these systems and the studied signals, there is a
surprising similarity in the overall structure of the temporal
behavior of these signals.

In Figs. 1 and 2 we present two typical examples for such
time-dependent quantities. Figure 1 shows the time-resolved
emission of an electronic Rydberg wave packet created by a
short laser pulse@5#. Figure 2 presents the calculated auto-
correlation functionC(t)5 z^c(0)uc(t)& z for a vibrational
wave packet propagating in the excited potential surface
A1Su

1 of a sodium dimer. Although the physical nature of
the two systems as well as the displayed observables are
rather different, both graphs show some surprising similari-
ties. Initially, both pictures exhibit a sequence of regular

peaks. The periodT1 of this pattern corresponds to the typi-
cal energy separation between neighboring excited levels.
After some periods this behavior gradually disappears. How-
ever, the initial pattern recurs after a timeT2, which is much
longer thanT1. For this reason this time scaleT2 is usually
referred to@5# as therevival time@38#.

For the electronic Rydberg wave packet in Fig. 1,T2 is
given by 5.2 ns, whereas for the nuclear wave packet of Fig.
2 one findsT2594 ps @39#. Moreover, these graphs also
show that atfractions of this revival time again a periodic
structure calledfractional revivals @40# emerges, however
now with a period, which is afractionof T1. The occurrence
of full revivals and fractional revivals was observed in a
number of experiments in atomic@14–19# and molecular

*Also Weizmann Institute of Science, Rehovot, 76100, Israel.
†Also Max-Planck-Institut fu¨r Quantenoptik, D-85748 Garching,

Germany.

FIG. 1. Dynamics of an electronic wave packet monitored by
the time-resolved intensity of spontaneous emission@5#. The wave
packet was created by a short laser pulse resonant to a manifold of
closely lying Rydberg states in hydrogen centered about the princi-
pal quantum numbern̄585. Here, the initial beat pattern with pe-
riod T1593.4 ps repeats itself after approximatelyt.2.6 ns. For
further details, in particular for the method of calculating this sig-
nal, we refer to Ref.@5#.
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@23,24# systems. On the other hand, these phenomena have
also attracted a lot of theoretical attention, e.g., in the context
of atomic physics@5–13#, molecular physics@20–22#, quan-
tum optics@25–31,34#, and atom optics@36,37#.

In the present paper we study such multilevel transient
signals from a very general point of view. For time intervals,
in which relaxation is still negligible, we present these sig-
nals in the most general form as

S~ t !5(
n

Pne
iv~n!t, ~1.1!

wherev(n) denotes the frequency of the harmonic with the
sequential numbern. The universal features of such transient
signals are almost independent of the details of the weights
Pn and the absolute sizes of the frequenciesv(n). Therefore
we do not specify the physical meaning of these quantities,
but only assume rather general properties such as smooth-
ness, normalizability, etc.

Starting from Eq.~1.1!, we present an analytical approach
towards the typical features of transient signals, such as qua-
siperiodical behavior, dephasing, fractional revivals, and full
revivals. All these physical phenomena are a result of quan-
tum beats, which represent interference effects between
manycontributing terms in Eq.~1.1!. However, due to this
very reason it is hard to recognize the fine structure of the
signal from the representation ofS given in Eq.~1.1!. In this
paper we present a method to find closed-form expressions in
distinguished time intervals of interest. These expressions
depend only on general parameters determined by the system
and the time interval under consideration. For this reason our
approach allows us—despite its generality—to understand
even quantitatively all the fine details of experimentally mea-
sured transient signals. As an example we explain the occur-

rence of oscillatory structures in the shape of fractional re-
vivals observed experimentally in Rydberg wave packets
@17#.

The article is organized as follows. In Sec. II we cast the
sum Eq.~1.1! into a form which reveals the different time
regimes of the temporal behavior ofS(t). In Sec. III we
present a method convenient for analyzing the signal at the
initial stage of the evolution by using the Poisson summation
formula. With the help of this transformation we obtain a
new representation of the sumS, which brings out most
clearly its features in this time regime. We generalize this
method in Sec. IV to the description of fractional revivals
and full revivals: We decompose the sum into subsums in a
way which allows us to apply the same technique used in the
analysis of the early stage of the evolution. Sections V and
VI are devoted to the discussion of fractional revivals and
full revivals with the help of this new representation. We
finally summarize the main results of the paper in Sec. VII.

II. NATURAL TIME SCALES OF THE DYNAMICS

In the present section we rewrite the signalS(t), Eq.
~1.1!, so as to bring out the different time scales in its evo-
lution. For the remainder of the paper we assume that the
normalized distribution of weight factorsPn has a dominant
maximum at the integern̄@1 and a widthDn such that
n̄@Dn@1. In this largen regime, that is, the semiclassical
regime, the frequenciesv(n) of a physical system depend
smoothly on the indexn. This allows us to expandv(n) in a
Taylor series

v~n!5v~ n̄!1
dv~n!

dn U
n5 n̄

~n2n̄!1
1

2

d2v~n!

dn2 U
n5 n̄

~n2n̄!2

1
1

6

d3v~n!

dn3 U
n5 n̄

~n2n̄!31••• ~2.1!

aroundn̄, which we write as

v~n!5v~ n̄!1s1

2p

T1
~n2n̄!1s2

2p

T2
~n2n̄!2

1s3

2p

T3
~n2n̄!31•••. ~2.2!

Here, we have defined 2p/Tj[( j !)21uv ( j )(n̄)u, and
s j561 accounts for the sign of thej th derivative
v ( j )(n̄)[djv/dnj un5 n̄ . Note that the value ofs1 can al-
ways be assumed to be11, since the energy of a bound state
of a quantum system increases with the quantum numbern.

When we insert Eq.~2.2! into Eq. ~1.1! we find

S~ t !5exp@ iv~ n̄!t#S~ t !, ~2.3!

where

FIG. 2. Dynamics of a vibrational wave packet propagating in
the excited electronic potentialA1Su

1 in a sodium dimer. We show
the autocorrelation functionC(t)[ z^c(0)uc(t)& z, where the initial
stateuc(0)& is a replica of the ground state of the lower potential
X1Sg

1 . This state may be created by a short laser pulse via a ver-
tical electronic transition, and consists of several vibrational states
of the potentialA1Su

1 . For this system the initial periodicity of
T15300 fs shown in the inset in the left upper corner of the figure
repeats itself after approximately 46 ps as shown by the inset in the
upper right corner. The other insets which magnify the behavior of
C(t) over a time duration of 1 ps aroundt523 ps andt531 ps
reveal periods different fromT1. To bring this out most clearly we
indicate the periodT1 by the arrow.
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S~ t !5 (
m52`

`

Pn̄1mexpF2p i S t

T1
m1s2

t

T2
m2

1s3

t

T3
m31••• D G . ~2.4!

Here, we have introduced the summation indexm5n2n̄. It
is the sumS(t), Eq.~2.4!, which we analyze in the remainder
of this article.

We gain deeper insight into the expansion Eq.~2.1! of
v with respect ton and into the time scalesTj when we
recall that in the semiclassical limit the actionJ is propor-
tional to the quantum numbern of the bound state. With
J5n\ andE5\v5H, whereH denotes the Hamiltonian,
we therefore arrive at

]v

]n
5

]~\v!

]~\n!
5

]H

]J
. ~2.5!

This relation allows us to express the derivativesv ( j ) of the
frequencyv with respect ton in terms of derivatives of the
Hamiltonian and Planck’s constant\. Indeed, we find using
J5n\ the relation

] jv

]nj
5

] j21

]nj21

]H

]J
5\ j21

] jH

]Jj
. ~2.6!

Hence the expansion~2.1! of v corresponds to an expansion
in powers of\. Since the timesTj are the inverse of the
derivativesv ( j ), they are proportional to the inverse powers
\2 j11 and therefore satisfy the hierarchy

T1!T2!T3!•••. ~2.7!

To illustrate the typical temporal behavior of a sum of the
form Eq. ~2.4!, we use the specific example of a Gaussian
distribution @41#

Pn5
1

A2pDn2
expF2

~n2n̄!2

2Dn2 G , ~2.8!

with the varianceDn58. Note that due to the shift in the
summation overm5n2n̄, Eq. ~2.4!, the parametern̄ only
enters into the timesTj . In the present example we do not
specify the functional dependence ofv(n) on n but choose
T25160T1 and T351000T2. Moreover, we set all higher
time scales in the expansion in Eq.~2.2! equal to infinity.
Hence in this wayn̄ does not enter explicitly. In addition we
have takens25s351.

In Fig. 3 we show the overall structure of the sum
uS(t)u over a long-time interval. Here and in all of the fol-
lowing figures time is scaled in units ofT1. This graph re-
veals a complicated temporal dependence ofuS(t)u similar to
the quantities displayed in Figs. 1 and 2.

Figures 4 and 5 magnify specific time intervals of Fig. 3
in order to resolve the fine structure of the signal. Figure 4
presents the early stage of the evolution: After a rapid decay
shown in the inset we find in the beginning a periodic se-
quence of symmetric peaks separated by a period ofT1.
However, in the course of time the peaks become broader
until they overlap and form a complicated beat pattern. In

our example, this happens approximately after three periods.
Later on, as soon as the beats set in, we find fractional re-
vivals @40# of various order, which follow each other very
closely.

In Fig. 5 we present magnified sections of Fig. 3 in the
vicinity of the timest5 1

4T2540T1 ~a!, t5 1
3T2553.33T1 ~b!,

t5 1
2T2580T1 ~c!, and t5T25160T1 ~d!, respectively. We

recognize the following characteristic features: The sumS
again involves periodic sequences of peaks; however, now
the period between two neighboring peaks is given by
T1/2, T1/3, T1, as well asT1, respectively. Figures 5~a!–5~c!
show fractional revivals whereas Fig. 5~d! depicts a full re-
vival. The larger the timet5(1/r )T2 ~herer54,3,2,1), the
larger the difference of the fine structure compared to the
symmetric peaks in the initial stage of the evolution. Espe-
cially, for larger times the fractional revivals become more

FIG. 3. Generic signal represented here by the time dependence
of the sumuS(t)u, Eq. ~2.4!, for the case of a Gaussian distribution
Pn with variance Dn58. We have chosen the parameters
T25160T1 andT351000T2 with s15s25s351 and have set all
higher time scales in Eq.~2.2! equal to infinity. The sum reveals a
fairly complicated temporal behavior.

FIG. 4. Generic signal of Fig. 3 in its early stage, that is, for
times up tot512T1. After a rapid decay magnified in the inset we
note symmetric peaks with periodT1 which broaden and decay in
height. At aroundt>3T1 rapid oscillations set in and a complicated
beat structure develops. Note that as soon as this pattern emerges,
we find fractional revivals of various orders. In the vicinity oft5
1
20T258T1 we find ten peaks within a period ofT1, whereas in the
vicinities of t5 1

18T258.9T1, t5
1
16T2510T1, and t5

1
14T2511.4T1

we find nine, eight, and seven peaks within a period ofT1, respec-
tively.
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and more asymmetric: They show an abrupt break-off on the
right domain to their center, whereas on the left domain they
decay much more slowly. Moreover, they show oscillations
on top of this slow decay. Note that similar structures were
found experimentally in the case of a Rydberg wave packet
in rubidium @17#. We further notice that the heights of the
fractional revivals seem to be modulated by a slowly varying
amplitude with its center at the time pointt5(1/r )T2: As
fractional revivals are located further away from this center,
their dominant maximum decreases, the width broadens, and
the small oscillations on the left to their center smear out.

This behavior is not obvious from theform of S in Eq.
~2.4!. In the next two sections we therefore cast the sum into
a form which brings out in a clear way the period of the
peaks and the fine details of their shape. In Sec. III we start
with the analysis of the initial evolution and in Sec. IV we
present our approach to analyzing the fine structure of frac-
tional revivals and full revivals.

III. THE EARLY STAGE OF THE EVOLUTION

The phase factor of each term in Eq.~2.4! consists of the
product of the factors exp(2pimt/T1), exp(2pis2m

2t/T2),
exp(2pis3m

3t/T3), etc. The relative importance of these fac-
tors depends strongly on the specific time under consider-
ation. In the early stage of the evolution, that is, for timest
of the order ofT1, the main contribution to the phase comes

from the first factor exp(2pimt/T1). Hence all the terms in the
sumS(t) are in phase for timest which are multiples of the
periodT1. Therefore we expect a sequence of spikes in the
signal located near the time pointst l5 lT1, where
l51,2, . . . . However, as time increases, the second factor
exp(2pis2m

2t/T2) also becomes important. Its contribution
leads to a growing dephasing of neighboring terms in the
sum Eq.~2.4! at the time pointst l , which results in a broad-
ening of the spikes. This becomes apparent@42# when we
rewrite the sumS with the help of the Poisson summation
formula @43#

(
m52`

`

f m5 (
l52`

` E
2`

`

dmf~m!exp~22p i lm !, ~3.1!

which yields

S~ t !5 (
l52`

` E
2`

`

dmP~ n̄1m!expH 2p i F S t

T1
2 l Dm

1s2

t

T2
m21s3

t

T3
m31••• G J . ~3.2!

Here,P(n̄1m) denotes the continuous version of the dis-
crete distributionPn̄1m . We note that there are many con-

FIG. 5. Generic signal of Fig. 3 at later times. Here we magnify the behavior ofuS(t)u for time intervals of length 6T1 around
distinguished times. The cases~a! and~b! show fractional revivals in the vicinity oft5 1

4T2540T1 andt5
1
3T2553.33T1, respectively. Note

that the period of the fractional revivals in~a! is given byT1/2 and in~b! by T1/3. A complicated beat pattern arises as soon as neighboring
peaks start to overlap considerably as exemplified by the behavior ofuS(t)u at the edges of~a! and~b!. Moreover, we recognize that the shape
of the peaks becomes asymmetric, and oscillations appear on the left hand side of the maximum. The cases~c! and~d! focus on fractional
revivals in the vicinity oft5 1

2T2580T1, and on the full revivals in the vicinity oft5T25160T1. The period of the fractional revivals in~c!
as well as of the full revivals in~d! is given byT1. However, the fractional revivals are shifted by half of the periodT1. Moreover, the shapes
of the fractional revivals and the full revivals are highly asymmetric, that is, they show a slow oscillatory onset to the left of their maximum,
and a rapid decay to the right. In all four cases the height of the peaks is controlled by a slowly varying envelope. The scales of the vertical
axes are identical in all four examples.
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tinuous extensions of the discrete weightsPn . For the ex-
ample of the Gaussian Eq.~2.8! we choose the extension

P~x!5
1

A2pDn2
expF2

~x2n̄!2

2Dn2 G , ~3.3!

but emphasize that the treatment presented here is valid for
an arbitrary weight distributionPn .

What is the physical meaning of the transformation Eq.
~3.1!? The Poisson summation formula allows us to represent
a discrete superposition of many harmonics such as the sum
S as a sequence of time-dependent signals numbered by the
index l and arriving one after another. The application of this
formula leads to a significant simplification when the width
of each signal in time is shorter than the separation between
two signals.

To bring this out most clearly we now consider times
much smaller thanTj /(Dn)

j , where j>3, and keep the first
two terms in the exponent of Eq.~3.2! only. In this case, the
integral for the Gaussian distribution Eq.~3.3! is of the form

E
2`

`

dx exp~2ax21bx!5Ap

a
expS b24aD , ~3.4!

with

a[
1

2Dn2
22p is2

t

T2
~3.5!

and

b[2p i S t

T1
2 l D . ~3.6!

When we make use of this relation the sumS reads

S~ t !> (
l52`

`
1

A12 is24pDn2t/T2

3expF2
2p2Dn2

12 is24pDn2t/T2
S t

T1
2 l D 2G . ~3.7!

We separate the real and imaginary parts in the exponent and
arrive at

S~ t !> (
l52`

`
1

A12 is24pDn2t/T2
expF2

~ t2 lT1!
2

2s r
2~ t ! G

3expF2 is2

~ t2 lT1!
2

2s i
2~ t ! G , ~3.8!

where the width

s r
2~ t ![F 1

4p2Dn2
14Dn2S t

T2
D 2GT12 ~3.9!

and

s i
2~ t ![F 1

16p3Dn2t/T2
1
1

p
Dn2

t

T2
GT12 ~3.10!

of the real and the imaginary Gaussians increase as a func-
tion of time.

Indeed, Eq.~3.8! gives the coherent signalS(t) as a se-
quence of complex Gaussians centered at the time points
t l5 lT1. Two consecutive terms of the sum Eq.~3.8! separate
in time, when their temporal separationt l2t l215T1 is larger
than their widthdt l52A2s r(t l), that is, if T1.dt l . We il-
lustrate this with the help of the previous example shown in
Fig. 4. For the parameters used there, we estimate the
first term in the brackets in Eq. ~3.9! by
1/(4p2Dn2);431024. The second contribution we esti-
mate by 4Dn2(t/T2)

2;4Dn2(T1 /T2)
2;1022. Hence we

can neglect the first contribution compared to the second one
and estimate the widthdt l of the l th Gaussian by

dt l52A2s r~ t l5 lT1!>4A2Dnl
T1
T2

T1 . ~3.11!

Hence the Gaussians overlap and interfere with each other
when 4A2DnlT1 /T2;1 or l;T2 /(4A2DnT1). In our ex-
ample this corresponds tol;3.5. This is in good agreement
with Fig. 4, where indeed the complicated beat pattern starts
after approximatelyt53.5T1.

In Fig. 6 we compare by a dashed line the approximation
Eq. ~3.8! to the exact curve shown by the solid line. Whereas
initially in ~a! a difference between the exact sum and ex-
pression Eq.~3.8! can hardly be recognized, the approxima-
tion, which neglected the cubic term in the exponent, be-
comes worse for longer times as shown in~b!.

IV. A NEW REPRESENTATION OF THE SUM

We now turn to larger times for which the phase differ-
ence between two consecutive terms at the time pointst l in
the sum Eq.~2.4! is not close to an integer multiple of 2p. In
this time regime the representations Eqs.~3.2! and ~3.8! are
inconvenient since the interference between neighboring sig-
nals is important. Indeed, it is the interference of the com-
plex Gaussians in Eq.~3.8! which eventually leads to the
formation of fractional revivals, as shown in Figs. 4 and 6 for
timest;3T1 and larger. However, neither the period nor the
shape of the fractional revivals can be seen from the form of

FIG. 6. Comparison between exact numerical evaluation of the
generic signaluS(t)u, Eq. ~2.4!, ~solid line! and the approximate
expression Eq.~3.8! ~dashed line! in the early stage of the evolu-
tion. Whereas for times shown in~a! the two curves are almost
indistinguishable, they show deviations for larger times displayed in
~b!. In both cases the approximation works well for times at the
center of each frame and gets worse towards the edges. The scales
on the vertical axes in~a! and ~b! are identical.
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the sumS in Eq. ~3.8!. Thus in this time regime the repre-
sentation Eq.~3.8! of the sum Eq.~1.1! is no longer useful.
But can we cast the sumS Eq. ~2.4! in a form which brings
out the period and the shape of the fractional revivals and
revivals?

The answer is yes. The key idea of our approach is a
decomposition of the sum Eq.~2.4! into a number of sub-
sums, each of which contains only terms whose phases are
close to each other. We achieve this by combining eachr th
term of the original sum Eq.~2.4! to one subsum. The par-
ticular choice ofr depends on the time interval under con-
sideration.

Indeed, consider the behavior ofS in the neighborhood of
the time t5(q/r )T2 of a fractional revival@40,49#. Here,
q/r are mutually prime integers. It is of advantage to shift
the origin of time into the region of (q/r )T2 and choose it to
be an integer multiplel of T1, that is,

t[ lT11Dt[
q

r
T21eq/rT11Dt. ~4.1!

Here, the absolute value of the remaindereq/rT1[ lT1
2(q/r )T2 is less than or equal to half of the periodT1, that
is, ueq/r u<1/2. This choice allows us to bring the sumS, Eq.
~2.4!, into the form

S~Dt ![SS t5 q

r
T21eq/rT11Dt D5 (

m52`

`

gm
~r !Wm~Dt !,

~4.2!

where

gm
~r ![expS 2p is2

q

r
m2D ~4.3!

and

Wm~Dt ![Pn̄1mexpH 2p i FDtT1m1s2S eq/r1
Dt

T1
DT1T2m2

1s3S l1 Dt

T1
D T1T3m31••• G J . ~4.4!

Here, we have used the relation exp(2pimt/T1)
5exp(2piml)exp(2pimDt/T1)5exp(2pimDt/T1). We note
that this representation of the sumSdepends on the choice of
the origin of time and thus on the fractionq/r . Hence for
every different time region under consideration we adopt a
different representation of the sumS.

We proceed by noting that the functiongm
(r ) Eq. ~4.3! is

periodic in m with period r , that is, gm1r
(r ) 5exp@2pis2q/

r(m1r)2#5gm
(r) . This periodicity depends only on the de-

nominatorr of the fractionq/r . In order to make use of this
periodicity we rearrange the summation with the help of the
relation

(
m52`

`

am5 (
p50

r21

(
k52`

`

ap1kr , ~4.5!

that is, we first sum the termsam at all multipleskr of this
period r and then sum these subsums over one period@44#.
Sincegp1kr

(r ) 5gp
(r ) we find

S~Dt !5 (
p50

r21

gp
~r ! (

k52`

`

Wp1kr~Dt !. ~4.6!

For the subsum over the indexk we now face the same
situation as for the entire sumS Eq. ~2.4! at the initial stage
of the temporal evolution. We can therefore apply the Pois-
son summation formula Eq.~3.1! to the subsums overk
which yields

S~Dt !5 (
p50

r21

gp
~r ! (

m52`

` E
2`

`

dkW~p1kr,Dt !

3exp~22p ikm!, ~4.7!

whereW(x,Dt) is the continuous version ofWm(Dt), Eq.
~4.4!. As discussed in Sec. III the Poisson summation for-
mula allows us to represent each time-dependent subsum as a
sequence of time-dependent signals numbered by the index
m.

When we introduce the new integration variable
x5p1kr, the integral overx is independent ofp, that is,

S~Dt !5
1

r (p50

r21

gp
~r ! (

m52`

`

expS 2p i
p

r
mD

3E
2`

`

dxW~x,Dt !expS 22p i
m

r
xD . ~4.8!

We interchange the two summations and write the sumS in
the form

S~Dt !5 (
m52`

`

Wm
~r !I m

~r !~Dt !, ~4.9!

where

Wm
~r !5

1

r (p50

r21

expF2p i S s2p
2
q

r
1p

m

r D G ~4.10!

are time-independent coefficients and the factors

I m
~r !~Dt !5E

2`

`

dxP~ n̄1x!expH 2p i F S Dt

T1
2
m

r D x
1s2S eq/r1

Dt

T1
D T1T2 x2

1s3S l1 Dt

T1
D T1T3 x31 . . . G J ~4.11!

represent the time-dependent signals.
Hence we have cast the infinite sum Eq.~2.4! into another

infinite sum Eq.~4.9!. The transformation of the sum, made
possible by the shift of the origin of time as in Eq.~4.1!,
together with the decomposition of the sum into subsums as
in Eq. ~4.5! and the Poisson summation formula Eq.~3.1! is
exact. But what is the advantage of this on-first-sight more
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complicated representation ofS? It reveals in the most obvi-
ous way the fractional revivals: Each termI m

(r )(Dt) is a frac-
tional revival. However, in complete accordance with Sec.
III this statement is correct, and hence the representation Eq.
~4.9! is useful, only when the temporal width of the signal
I m
(r )(Dt) is smaller than the separation between two neigh-
boring signals.

V. CONSTITUENTS OF THE NEW REPRESENTATION

In the new representation Eq.~4.9!, each term in the sum
consists of the product ofWm

(r ) andI m
(r )(Dt). We now discuss

these constituents in more detail.
The factorWm

(r ) is independent of the distributionP(n)
and the timeDt. Thus it acts in the sum Eq.~4.9! as a weight.
It is a well-known quantity in the context of fractional reviv-
als@40#. According to Eq.~4.10!,Wm

(r ) is a sum ofr complex
numbers each with the modulus 1/r . Hence the modulus of
Wm

(r ) ranges from zero to unity. The individual terms in the
finite sum interfere and this interference depends on the pa-
rametersm andr via the phase angle 2pm/r . Moreover, an
additionalr dependence enters via the phase 2pq/r . Hence
the value ofWm

(r ) is on first sight a complicated function of
m, r , and q. However, the detailed analysis of Ref.@40#
reveals the following simple features:~i! For r even,Wm

(r )

vanishes for every second value ofm, whereas forr odd
Wm

(r ) is nonzero for every value ofm, and ~ii ! the modulus
uWm

(r )u of each nonzero weighting factor is independent of
q; in particular, one findsuWm

(r )u51/Ar for r odd and
uWm

(r )u5A2/r for r even.
Now we turn to the discussion of the time-dependent term

I m
(r )(Dt), which contains the information about the location,
the duration, and the detailed shape of the signal. To be
specific, we employ our previous example of a Gaussian dis-
tribution for the weight functionP(n). If higher order terms
in the exponent in Eq.~4.11! indicated by the dots are still
negligible, we again can evaluate the integralI m

(r )(Dt) ana-
lytically as shown in Appendix A, which yields

I m
~r !~Dt !5exp@ iFm~Dt !#G~Dt !Fm~Dt !Ai „zm~Dt !…. ~5.1!

Here, the functionsG(Dt) andFm(Dt) are defined by

G~Dt ![AexpF2lS eq/r1
Dt

T1
D 2G ~5.2!

and

Fm~Dt ![expFmS Dt

T1
2
m

r D G ~5.3!

and Ai(z) denotes the Airy function of complex argument.
The quantitiesFm , A, l, andm are real whereaszm is com-
plex. In the neighborhooduDtu;T1 of a fractional revival
time t5(q/r )T2 the quantitiesA, l, andm can be consid-

ered as time independent whereasFm(Dt) and zm(Dt) de-
pend onDt. For the definition of these quantities we refer to
Appendix A.

According to Eq.~5.1! the time dependence ofI m
(r )(Dt) is

governed by the time dependence of the phaseFm(Dt), by
the GaussianG(Dt), by the simple exponentialFm(Dt), and
an Airy function of complex argument. We now discuss the
time dependence of each of these terms separately. For this
purpose we use the specific fractional revival region in the
vicinity of t5 1

2T2580T1 shown in Fig. 7~a!. In this case the
parametersl and e1/2 take on the valuesl580 and hence
e1/250, as can be found from Eq.~4.1!.

We start our discussion with the GaussianG(Dt) shown
in Figs. 7~b! and 7~c! by the dashed curve. Note that this
function is independent of the summation indexm. It is cen-
tered atDt50 and has the widthdtG52/Al, which equals
dtG.3.8T1 for the example at hand. Next, we consider the
exponential factorFm(Dt), which is equal to unity at the
time pointDtm5(m/2)T1. Since in our casem.0 as shown
in Eq. ~A25!, the exponential increases for increasingDt as
shown in the middle and the bottom of Fig. 7 by the dotted
curve for the casesm51 andm55, respectively.

The Airy function of the complex-valued argument
zm(Dt) requires more detailed considerations. Every value of
m defines via Eq.~A21! a pathzm(Dt) in the complex plane.
Since in our example the weighting factorWm

(2) vanishes for
all even values ofm as mentioned above, it is sufficient to
restrict the discussion to odd values ofm. In Fig. 8 we show
the paths corresponding tom527,25,23,21,1,3,5,7 for
the time interval23T1,Dt,3T1 of Fig. 7. For our param-
eters these paths are almost straight lines. We note from Eq.
~A21! that only the real part ofzm(Dt) depends on the index
m and that this dependence is a linear one: Paths correspond-
ing to different values ofm are just shifted with respect to
each other. This figure also includes by a dotted and a dashed
line two of the anti-Stokes lines of the Airy differential equa-
tion defined@45# by arg(z)56p/3. Note that due to the
different scales on the horizontal and the vertical axis these
anti-Stokes lines appear as a single vertical line. Whenever a
path traverses one of these anti-Stokes lines, the behavior of
the Airy function changes drastically@45#: Whereas the Airy
function decays exponentially in the domain on the right of
the anti-Stokes lines, that is foruarg@zm(Dt)#u,p/3, it oscil-
lates in the left domain, that is, foruarg@zm(Dt)#u.p/3. This
behavior becomes immediately apparent when we recall the
asymptotic behavior of the Airy function, which reads
Ai( z); 1

2p
21/2z21/4exp(22

3z
3/2) for z→` and uarg(z)u,p.

In order to study this behavior in more detail we show in
Fig. 9 the absolute value of the complex Airy function as a
rolling valley above the complex plane. For the analysis of
fractional revivals in this time regime it is enough to under-
stand the time dependence of the absolute value of the Airy
function as we show in Sec. VI. In Fig. 9 we have also
indicated by thick lines the pathszm(Dt) for
m525,23,21,1,3,5 as well as two of the anti-Stokes lines
in the complex plane. The thick lines running on the rolling
valley display the value ofuAi( z)u along these pathszm as
well as along these anti-Stokes lines, that is, these lines de-
pict uAi „zm(Dt)…u and uAi( z5uzue6 ip/3)u, respectively. We
recognize that indeed the Airy function oscillates in the do-
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main left of these anti-Stokes lines, whereas it decays rapidly
in the domain right of these anti-Stokes lines. Note also the
strong sensitivity of this function to the imaginary part of its
argument. When we increase the absolute value of the imagi-
nary part the oscillation amplitude decreases and the function
increases. In Figs. 7~b! and 7~c! we show by a broken line
the third factor of uI 1

(2)u and uI 5
(2)u, that is, the values of

uAi( zm)u along the pathszm51 andzm55, respectively.
Each crossing of an anti-Stokes line arg(z)56p/3 im-

plies the end of the time-dependent signalI m
(r )(Dt). To find

this moment we calculate in Appendix B the timeDtm
(a) at

which the pathzm(Dt) traverses an anti-Stokes line. We
show that for our parameters and values ofumu of the order
of unity, this happens in the immediate vicinity of
Dtm5(m/2)T1 where the exponential functionFm assumes
the value of unity, that is,Dtm

(a)>Dtm . Since we are inter-
ested in the time interval23T1<Dt<3•T1, that is,
2(6/2)T1,Dt,(6/2)T1, only paths corresponding to values
umu<6 can traverse the anti-Stokes lines. This is in agree-
ment with Fig. 8 where indeedz67 do not cross the anti-
Stokes lines. Note that the pathsz66 are not present since
Wm52k

(2) 50. Paths corresponding to values ofm smaller than
m,27 haveuarg@zm(Dt)#u,p/3 and hence yield vanishing
values for the Airy function.

VI. UNIVERSAL SHAPE
OF FRACTIONAL REVIVALS AND REVIVALS

By combining all properties of the constituents discussed
in the preceding section we are now in a position to under-
stand the location, the shape, and the fine structure of each
fractional revival shown in Fig. 7~a!. The multiplication of
the Airy function by the exponentialFm and the Gaussian
G results in a function, which has a pronounced peak in the
vicinity of the timeDtm5(m/2)T1. Since the Gaussian var-
ies slowly compared to the exponential and the Airy func-
tion, it only affects the height of this peak, but not its indi-
vidual structure. This stands out most clearly in Fig. 7, where
we show in~b! and ~c! the functionI m

(2)(Dt) together with
the Gaussian G(Dt), the exponential Fm(Dt), and
uAi „zm(Dt)…u for m51 andm55, respectively. We note that
the functionsI m51

(2) (Dt) and I m55
(2) (Dt) reproduce the frac-

tional revivals centered att580.5T1 or Dt50.5T1 and
t582.5T1 or Dt52.5T1, respectively. Hence we can identify
each termI m

(2) in the sum Eq.~4.9! as a fractional revival
labeled by the summation indexm. In this case the terms
I m
(2) in the sum Eq.~4.9! do not have significant overlap and
we can approximate the absolute value of the sum in the
immediate neighborhood ofDtm5(m/2)T1 by themth term
in the sum. Hence we find forDt.Dtm

FIG. 7. Fractional revivals described by a single term in
the new representation Eq.~4.9! of the generic signal
uS(t)u. In ~a! we repeat Fig. 5~c! and show the signal in the
neighborhood oft5 1

2T2580T1. Moreover, we indicate on
the top of the figure the relative timeDt introduced in Eq.
~4.1!. In ~b! and ~c! we show the termsuI m51

(2) (Dt)u and
uI m55
(2) (Dt)u, Eq. ~5.1!, of the new representation Eq.~4.9!

of the sumuS(Dt)u by a solid line. The individual contri-
butions due to the GaussianG(Dt), Eq. ~5.2!, the exponen-
tial Fm(Dt), Eq. ~5.3!, and the absolute value
uAi „zm(Dt)…u of the complex-valued Airy function are de-
picted by the dashed, dotted, and broken lines, respectively.
Note that the scales of the vertical axes are different in all
three cases. Whereas the exponential decays to the left and
increases to the right ofDtm515

1
2T150.5T1 as shown in

~b!, the reverse is true for the Airy function. Hence it is the
product of these two functions, which yields the pro-
nounced peak ofuI m51

(2) (Dt)u centered atDt50.5T1. The
Gaussian, which is centered atDt50, just influences the
height of this peak, since this function varies very slowly
compared to the other two functions. Note that the fine
structure of the peak results exclusively from the Airy func-
tion: Since in the vicinity ofDtm5150.5T1 the pathz1 runs
very close to the real axis, as can be seen from Figs. 8 and
9, the absolute value of the Airy function of the complex
argumentz1(Dt) is almost identical to an Airy function of
real argument. Hence the oscillations of the peak on top of
the slow decay to the left ofDt50.5T1 are very deep and
almost reach zero. In~c! it is again the product of the Airy
function and the exponential which yields the peak of
uI m55
(2) (Dt)u centered now atDtm555

5
2T1. However, since

the pathz5 contains a significant imaginary part as seen in
Figs. 8 and 9, the Airy function exhibits only small oscil-
lations aroundDt52.5T1. Therefore the oscillations on top
of the slow decay to the left of the peak are not as pro-
nounced as in~b!. The Gaussian is the overall envelope of
this structure as already alluded to in Fig. 5.
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uS~Dt !u>uWm
~2!uuI m

~2!~Dt !u, ~6.1!

which with the help of Eq.~5.1! reads

uS~Dt !u>uWm
~2!uG~Dt !Fm~Dt !uAi „zm~Dt !…u. ~6.2!

Note that in this case the weight factorWm
(2) takes on the

values uWm52k
(2) u[0 and uWm52k11

(2) u[1. Moreover, due to
the separation of the individual terms only the absolute value
of the Airy function enters and the phase factor
exp@iFm(Dt)# has no influence on the modulus ofS. This
discussion clearly shows that the representation Eq.~4.9! of
the sumS has the advantage that in an appropriate time
domain uDtu around the fractional revival time (q/r )T2 it
allows a simple interpretation of the fractional revivals posi-
tioned in the neighborhood ofDtm5(m/r )T1: Themth term
in the sum corresponds to themth fractional revival. This
identification, however, only works when the timeDt is in
the immediate vicinity of the time (q/r )T2. When uDtu be-
comes too large, consecutive terms in the sum overlap, inter-
fere, and give rise to a complex structure. In this regime
there is no simple one-to-one correspondence between indi-
vidual terms of this representation and the signal pattern.

Before we discuss the conditions under which these terms
separate, we first investigate the shape and the fine structure
of the individual terms. From Fig. 7 we recognize that the
striking oscillations on top of the slow decay to the left of the
center of each fractional revival are a consequence of the
oscillations of the Airy function@46#. We note that this os-
cillatory structure is also apparent in the measured fractional
revivals of Ref.@17#. Comparing the fractional revival cor-
responding tom51 to that ofm55 we find the latter to be
broader with less pronounced oscillations. The sensitivity of
the Airy function on the imaginary part of its argument as

discussed in Fig. 9 explains this feature. To understand this
we first recall that the oscillatory behavior ofI m

(r ) results from
the temporal dependence of the argumentzm(Dt) of the Airy
function in the vicinity of the crossing timeDtm

(a) . Figure 8
shows that a larger absolute value of the indexm corre-
sponds to a larger absolute value of the imaginary part of
zm(Dtm

(a)). Since the Airy function increases dramatically
with an increase of the imaginary part of its argument on the
left domain of the anti-Stokes lines, that is, for
uarg(z)u.p/3, and loses at the same time in depth of its
oscillations, the peak of the functionI m

(r )(Dt) not only broad-
ens for increasing values ofumu, but also shows less pro-
nounced oscillations.

In the discussion of these oscillations the signs3 of the
cubic term in the expansion Eq.~2.2! plays a role. We note
from Eqs.~A21! and~A25! that its value determines the side
of the fractional revival on which the oscillatory pattern
manifests itself: Fors3511 this phenomenon occurs on the
left hand side, whereas fors3521 it occurs on the right
hand side@47#. In contrast, the value ofs2 does not affect
the shape of the signal. Indeed, Eq.~A21! shows that this
quantity only determines the sign of the imaginary part of
zm(Dt). When we recall the property Ai(z!)5Ai!(z) fol-
lowing from the definition of the Airy function, Eq.~A12!,
we realize that a conjugation of its complex argument does
not change the modulus of the Airy function.

We now address the conditions under which neighboring
functionsI m

(r ) with nonvanishing weightsWm
(r ) separate. They

separate, if their widthsdtm
(r ) are smaller than the distance

dt r between their dominant peaks located in the neighbor-
hood of the crossing timeDtm

(a).Dtm5(m/r )T1, that is,
dtm

(r ),dt r . Note that the separationdt r depends neither on

FIG. 8. The pathszm(Dt) in the complex plane governing the
time dependence of the Airy function for the time interval
23T1,Dt,3T1 of Fig. 7. The paths correspond to
m527,25, . . .,5,7. The two anti-Stokes lines arg(z)56p/3
~dotted and a dashed line! appear as a single vertical line due to the
drastically different scales of the real and imaginary axes. During
this time interval only the paths corresponding tom525, . . . ,5
cross these anti-Stokes lines. Note that the larger the absolute value
of the indexm, the larger the absolute value of the imaginary part
of zm when it crosses the anti-Stokes line.

FIG. 9. The modulusuAi( z)u of the Airy function of complex
argument as a rolling valley above the complex plane. Thick lines
in the complex plane represent the pathszm for
m525,23, . . .,3,5 starting withm525 in the back of the figure.
Two of the anti-Stokes lines are depicted by dotted and dashed lines
in accordance with Fig. 8. The valuesuAi( zm)u and
uAi( z5uzue6 ip/3)u of the Airy function along the pathszm and along
these anti-Stokes lines are indicated by thick lines. Note that this
figure does not cover the entire excerpt of the complex plane shown
in Fig. 8, but corresponds only to a thin vertical stripe in the vicinity
of the anti-Stokes lines.
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the indexm nor on the timeDt, but is only a function of
r : Due to the properties of the weight factorWm

(r ) it is given
by dt r5(1/r )T1 for r odd anddt r5(2/r )T1 for r even. Thus
this separation is completely determined by the choice of the
fraction q/r in Eq. ~4.1!. On the other hand, the widthdtm

(r )

of the functionI m
(r )(Dt) depends on the indexm: As shown

in Figs. 7~b! and 7~c! a larger value ofumu results in a
broader fractional revival. Hence neighboring nonvanishing
terms in Eq.~4.9! inevitably overlap asumu exceeds a certain
value. If two functionsI m

(r )(Dt) andI m8
(r )(Dt) overlap consid-

erably, interferences between these terms in Eq.~4.9! arise.
Then the function exp@iFm(Dt)# and the phase of the complex
Airy function start to play an important role. Consequently,
the sumS exhibits a more complicated pattern. This is ap-
parent in Figs. 5~a! and 7~b! from the behavior of the sum
uS(t)u at the edges of the time intervals.

We note, however, that for even larger times, we can
analyze the structures again by noting that larger values of
uDtu correspond to a different time regime and a new char-
acterization (q/r )T2 in Eq. ~4.1!: A new choice of the frac-
tion q/r enables us to separate again neighboring peaks,
since the separationdt r of the peaks is only a function of
r , whereas the widths of the peaksdtm

(r ) depend viam on
Dt.

VII. SUMMARY

In this paper we investigate in detail the time dependence
of typical transient signals encountered in many different
fields of physics and chemistry. Instead of focusing on a
specific system, we adopt a rather general point of view and
study a generic signal, which consists of a coherent sum of
many harmonics whose phases depend nonlinearly on the
summation index. Signals of this kind exhibit interesting
phenomena such as quasiperiodic evolution, dephasing, frac-
tional revivals, and full revivals. These features are the result
of interference between many contributing states. In this pa-
per we present analytical expressions for such signals in dif-
ferent time regimes.

The key to the deeper understanding of the phenomena
springs from a new representation of this sum. However,
there exist many equivalent representations of such signals.
Most convenient, to understand the time dependence of the
signal in a specific time region of interest, is the one which
represents it as a sequence of signals separated in time. In the
short-time limit, that is, fort!T2, the application of the
Poisson summation formula is enough to achieve such a new
representation. However, for times of the order ofT2 a more
complicated transformation of the initial sum is necessary.
The resulting new representation enables us to provide
closed-form expressions for each single peak of the signal as
in the short time limit. These expressions depend on param-
eters, which are determined by the specific physical system
and the time interval of interest.

Our approach allows us to understand even the fine details
of each individual peak of a transient signal. We find that the
peaks in the pattern in the early stage of the evolution are
symmetric. In contrast, the fractional revivals and full reviv-
als have asymmetric shapes depending on the parameters of
the system: On one side of their center they may show an

oscillatory behavior. This behavior stems from an Airy func-
tion of complex argument which results from the cubic term
in the expansion Eq.~2.2! of the relevant frequencies of the
system. Whether the Airy function manifests itself in the
shape of the fractional revivals and full revivals depends on
the specific parameters such as the time scaleT3 and the
widthDn of the distributionPn @48#. The signs3 of the third
derivative of the frequenciesv(n) with respect to the param-
etern determines on which side of the center the oscillations
occur. In contrast, the sign ofs2 does not affect the shape of
the signal. We also note that each individual fractional re-
vival in a group may differ from its immediate neighbor,
although overall features such as their mutual distances are
the same within one group.

We conclude by emphasizing that due to the generality of
our approach this method can describe many phenomena in
atomic and molecular physics as well as quantum optics.
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APPENDIX A:
EVALUATION OF THE INTEGRAL EQ. „4.11…

In this appendix, we evaluate the integral

I m
~r !~Dt !5E

2`

`

dxP~ n̄1x!expH 2p i F S Dt

T1
2
m

r D x
1s2S eq/r1

Dt

T1
D T1T2 x21s3S l1 Dt

T1
D T1T3 x3G J

~A1!

for the example of a Gaussian distribution

P~ n̄1x!5
1

A2pDn2
expS 2

x2

2Dn2D . ~A2!

For this purpose it is of advantage to have a positive coeffi-
cient in front of x3 in the exponent inI m

(r ) . We therefore
introduce the new integration variabley5s3x which yields

I m
~r !~Dt !5E

2`

`

dyP~ n̄1y!expH 2p i Fs3S Dt

T1
2
m

r D y
1s2S eq/r1

Dt

T1
D T1T2 y21S l1 Dt

T1
D T1T3 y3G J .

~A3!

Note that this substitution leaves the terms quadratic inx
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invariant, but does change the terms linear and cubic inx.
Moreover, the limits of integration are unchanged.

Hence the integralI m
(r ) is of the form

J5E
2`

`

dyexp@ i ~ay1by21dy3!#, ~A4!

where

a[2ps3S Dt

T1
2
m

r D ~A5!

and

d[2pS l1 Dt

T1
DT1T3.0 ~A6!

are real-valued parameters, whereas the parameter

b[bR1 ib I52ps2S eq/r1
Dt

T1
DT1T2 1 i

1

2Dn2
~A7!

becomes complex. Sinced.0 we can substitute

y[S 1

3d D 1/3x2
b

3d
, ~A8!

which eliminates the term quadratic in the integration vari-
abley via the relation

ay1by21dy35
x3

3
1S 1

3d D 1/3S a2
b2

3d D x1
2b3

27d2
2

ab

3d

[
x3

3
1zx1k, ~A9!

where

z[S 1

3d D 1/3S a2
b2

3d D ~A10!

and

k[
2b3

27d2
2

ab

3d
. ~A11!

This transformation allows us to express the integralJ in a
product consisting of an Airy function

Ai ~z!5
1

2pE2`

`

dx expF i S x33 1zxD G ~A12!

of complex argumentz, and a complex-valued exponential.
Indeed we find from Eq.~A4! using Eqs.~A8!, ~A9!, and
~A12!

J5
2p

~3d!1/3
exp~ ik!Ai ~z!. ~A13!

Sinceb is a complex number it is of advantage to express
z andk in their real and imaginary part. The relations

b25bR
22b I

21 i2bRb I ~A14!

and

b35bR
323bRb I

21 i ~3bR
2b I2b I

3! ~A15!

yield

z5S 1

3d D 1/3S a2
bR
22b I

2

3d D 2 i S 1

3d D 1/32bRb I

3d
~A16!

and

k[kR1 ik I5
2

27d2
~bR

323bRb I
2!2

abR

3d

1 i F 2

27d2
~3bR

2b I2b I
3!2

ab I

3d G . ~A17!

Using these abbreviations and the result Eq.~A13! for J, the
integral I m

(r ) Eq. ~A3! with P(n) given by Eq.~A2! reads

I m
~r !~Dt !5

A2p

Dn~3d!1/3
exp~2k I !exp~ ikR!Ai ~z!. ~A18!

We conclude by substituting the expressions fora, d, and
b, that is, Eqs.~A5!, ~A6!, and ~A7! into Eqs. ~A16! and
~A17! and arrive at

kR[Fm~Dt !5
4p

27
s2S eq/r1

Dt

T1
DT1T2 F T3

2p~ lT11Dt !G
2

3H F2pS eq/r1
Dt

T1
DT1T2G

2

2
3

4Dn4 J
2
4p2

3
s2s3S eq/r1

Dt

T1
D T1T2 S Dt

T1
2
m

r D T3
2p~ lT11Dt !

~A19!

and

k I5F T3
3Dn~ lT11Dt !G

2F S eq/r1
Dt

T1
D 2S T1T2D

2

2
1

48p2Dn4G
2

s3T3
6Dn2~ lT11Dt ! S Dt

T1
2
m

r D ~A20!

together with
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z[zm~Dt !

5F T3
6p~ lT11Dt !G

1/3

2ps3S Dt

T1
2
m

r D
2F T3

6p~ lT11Dt !G
4/3F4p2S eq/r1

Dt

T1
D 2S T1T2D

2

2
1

4Dn4G
2 i F T3

6p~ lT11Dt !G
4/32ps2

Dn2 S eq/r1
Dt

T1
DT1T2 . ~A21!

With these expressions we find from Eq.~A18!

I m
~r !~Dt !5Aexp@ iFm~Dt !#expF2lS eq/r1

Dt

T1
D 2G

3expFmS Dt

T1
2
m

r D GAi @zm~Dt !#, ~A22!

where the quantities

A5A~Dt !

[
A2p

Dn F T3
6p~ lT11Dt !G

1/3

expF13 S T3
12pDn3~ lT11Dt ! D

2G ,
~A23!

and

l5l~Dt ![F T1T3
3Dn~ lT11Dt !T2

G2 ~A24!

and

m5m~Dt ![
s3T3

6Dn2~ lT11Dt !
~A25!

are functions ofDt.
So far the calculation is exact. We note that in general the

time dependence ofI m
(r )(Dt) originates from the time depen-

dence of the phaseFm(Dt), the Gaussian, the exponential,
and the Airy function as well as from the time dependence of
the quantitiesA(Dt), l(Dt), andm(Dt). However, for the
parameters used in this paper, this time dependence simpli-
fies considerably: In the vicinityuDtu;T1 of a fractional
revival time t5q/rT2. lT1 where l@1, we can replace
lT11Dt. lT16T1. lT1, that is, we can neglect the time
dependence ofA, l andm and evaluate these quantities at
Dt50.

APPENDIX B: CROSSING AN ANTI-STOKES LINE

In this appendix we determine the timeDtm
(a) at which the

pathzm(Dt) crosses an anti-Stokes line arg(z)56p/3. This
time follows from the equation

tan$arg@zm~Dtm
~a!!#%5

Im@zm~Dtm
~a!!#

Re@zm~Dtm
~a!!#

5tanS sp

3 D5sA3.

~B1!

Here, s561 corresponds to the anti-Stokes line arg(z)
5p/3 and arg(z)52p/3, respectively. Note that the real
part of zm must be positive ands561 corresponds to a
positive and negative imaginary part ofzm , respectively.
When we insert the real and imaginary parts of Eq.~A21!
into Eq. ~B1!, we arrive at the quadratic equation forDtm

(a)

aS Dtm
~a!

T1
D 21b

Dtm
~a!

T1
1c50, ~B2!

where the quantitiesa, b, andc are defined by

a[6ps3

T1
T3

22pS T1T2D
2

, ~B3!

and

b[6ps3S l2 m

r D T1T3 24peq/r S T1T2D
2

1ss2

1

A3Dn2
T1
T2

,

~B4!

and

c[
1

8pDn4
1ss2

eq/r

A3Dn2
T1
T2

26p l
m

r

T1
T3

22peq/r
2 S T1T2D

2

.

~B5!

Now we turn to our specific example, Fig. 7. For the
parameters we use in this figure we findu4ac/b2u!1. In this
caseDtm

(a) can be well approximated byDtm
(a).2(c/b)T1,

and the parametersb andc now read

b56pS l2 m

2 D T1T3 1s
1

A3Dn2
T1
T2

, ~B6!

and

c5
1

8pDn4
26p l

m

2

T1
T3

, ~B7!

since e1/250 for the example at hand. Moreover, for
umu,7 corresponding to Fig. 9, the parametersb andc can
be further simplified to b.6p lT1 /T3 and
c.26p lmT1 /(2T3). Hence in this case the time point
Dtm

(a) is given by

Dtm
~a!.2

c

b
T1.

m

2
T1 , ~B8!

that is, the pathzm(Dt) crosses an anti-Stokes line in the
immediate vicinity ofDtm5(m/2)T1.
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