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Multilevel quantum beats: An analytical approach
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We study the temporal behavior of generic transient signals originating from multilevel quantum systems.
Such signals typically arise in the physics of wave packets in atoms, molecules, cavity QED, and ion traps and
consist of a sum of a large number of harmonics whose frequencies depend nonlinearly on the sequential
number of the harmonic. In particular, we focus on the semiclassical limit. Here, quantum beats between
individual terms in the underlying sum lead to characteristic features of the signal in different time regimes,
such as collapse, fractional revivals, and full revivals. We present a universal recipe for desamidiytecally
all of the details of these features. Our approach is based on a specific representation of the sum of harmonics,
which is most convenient in each of these time regions of interest. This brings out in a most natural way the
phenomenon of fractional revivals and full revivals and explains their fine structures observed in recent
experiments[S1050-294{®6)01512-0

PACS numbds): 42.50.Md, 32.90+a

I. INTRODUCTION peaks. The period, of this pattern corresponds to the typi-
cal energy separation between neighboring excited levels.
Ultrashort laser pulses have opened a new and fascinatingfter some periods this behavior gradually disappears. How-
research area—the physics of atomic and molecular wavever, the initial pattern recurs after a timig, which is much
packets. Short pulses not only allow the excitation of a colonger thanT;. For this reason this time scalg is usually
herent superposition of many quantum states, but they als@ferred to[5] as therevival time[38].
provide a tool to monitor its subsequent dynanjitk Being For the electronic Rydberg wave packet in Fig.T},is
highly localized and hence particlelike objects, wave packetgiven by 5.2 ns, whereas for the nuclear wave packet of Fig.
enable us to explore the quantum-classical border, and t® one findsT,=94 ps[39]. Moreover, these graphs also
touch such fundamental aspects of quantum mechanics as thRow that atfractions of this revival time again a periodic
correspondence princip[€]. On the other hand, the physics structure calledfractional revivals[40] emerges, however
of wave packets is closely related to a practical field of lasehow with a period, which is &action of T,. The occurrence
femtochemistry, which studies molecular dynamics andof full revivals and fractional revivals was observed in a
chemical reactions *“in real time.” Complicated time- number of experiments in atomid4—19 and molecular
resolved signals from packetlike excitations provide valuable
information about the molecular energy spectrum and the
shape of molecular potential surfad@&s4].

Similar time-dependent signals originating from a large & —_')E '(_ 93.4 p;ec ' s
number of simultaneously excited quantum levels were re- ‘|
cently studied in the context of atomi6—19] and molecular 2
[20—24] wave packets, cavity QE[25-35, and atom optics E
[36,37], only to mention a few. Despite the different physical ot
nature of these systems and the studied signals, there is a 3
surprising similarity in the overall structure of the temporal 5
behavior of these signals. =
In Figs. 1 and 2 we present two typical examples for such >
time-dependent quantities. Figure 1 shows the time-resolved
emission of an electronic Rydberg wave packet created by a § | WJIN jv
short laser puls¢5]. Figure 2 presents the calculated auto- E 1 ]

L
0.0 1.0 2.0 3.0

correlation functionC(t)=[((0)|(t))| for a vibrational Tine after laser pulse (nsec)

wave packet propagating in the excited potential surface
A3 " of a sodium dimer. Although the physical nature of
the t\NO.systemS as well as the displayed obsgrvaple; a_lre FIG. 1. Dynamics of an electronic wave packet monitored by
r_ather C_“_fferent’ both_graphs 5“9"‘_’ some surprising SImIIarI'the time-resolved intensity of spontaneous emis$&nThe wave
ties. Initially, both pictures exhibit a sequence of regularp,cyet was created by a short laser pulse resonant to a manifold of
closely lying Rydberg states in hydrogen centered about the princi-
pal quantum numben=85. Here, the initial beat pattern with pe-
*Also Weizmann Institute of Science, Rehovot, 76100, Israel. riod T;=93.4 ps repeats itself after approximatékt2.6 ns. For
TAlso Max-Planck-Institut fu Quantenoptik, D-85748 Garching, further details, in particular for the method of calculating this sig-
Germany. nal, we refer to Ref[5].
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rence of oscillatory structures in the shape of fractional re-
vivals observed experimentally in Rydberg wave packets
[27].

The article is organized as follows. In Sec. Il we cast the
sum Eqg.(1.1) into a form which reveals the different time
regimes of the temporal behavior &ft). In Sec. Il we
present a method convenient for analyzing the signal at the
initial stage of the evolution by using the Poisson summation
formula. With the help of this transformation we obtain a
new representation of the su, which brings out most
clearly its features in this time regime. We generalize this
method in Sec. IV to the description of fractional revivals
and full revivals: We decompose the sum into subsums in a
way which allows us to apply the same technique used in the
analysis of the early stage of the evolution. Sections V and
the autocorrelation functiod(t)=|((0)|(t))|, where the initial XJI”arreevic\jlz\(:t\?vﬁhtotﬁgehg;gcgfsstlﬁig g;xagggzg;?;iﬁ? \?Vned

state|#(0)) is a replica of the ground state of the lower potential .. . . .
Xlzg . This state may be created by a short laser pulse via a verf-maIIy summarize the main results of the paper in Sec. VII.

tical electronic transition, and consists of several vibrational states
of the potentialA'S ' . For this system the initial periodicity of
T,=300 fs shown in the inset in the left upper corner of the figure IIl. NATURAL TIME SCALES OF THE DYNAMICS
repeats itself after approximately 46 ps as shown by the insetin the | the present section we rewrite the sigr(t), Eq.
upper right cgrner. The_ other insets which magnify the behavior Of(l.l), so as to bring out the different time scales in its evo-
C(t) over a time duration of 1 ps arourtd=23 ps andt=31 pS | sion For the remainder of the paper we assume that the
reveal periods different frorii,. To bring this out most clearly we 1, aii764 distribution of weight factof, has a dominant
indicate the period'y by the arrow. maximum at the integen>1 and a widthAn such that
n>An>1. In this largen regime, that is, the semiclassical
[23,24 systems. On the othc_ar hand, t_hese phe_nomena ha\fggime, the frequencies(n) of a physical system depend
also attracted a lot of theoretical attention, e.g., in the Contexémoothl on the inder. This allows us to expana(n) in a
of atomic physic§5-13], molecular physic$20-22, quan- Tavior sizries : P
tum optics[25-31,34, and atom optic$36,37). y

In the present paper we study such multilevel transient

1.0

)

FIG. 2. Dynamics of a vibrational wave packet propagating in
the excited electronic potenti&l'S ! in a sodium dimer. We show

signals from a very general point of view. For time intervals, _ dw(n) 1 d2w(n)
in which relaxation is still negligible, we present these sig- w(n)=w(n)+ d (n—n)+§ - (n—n)?
nals in the most general form as L P L P
1 d3w(n)
. —_— — —_3 ...
S(t)=2 Pye™, (1.1) T8 ane | (T 21
n =

wherew(n) denotes the frequency of the harmonic with the
sequential numbaet. The universal features of such transient
signals are almost independent of the details of the weights
P, and the absolute sizes of the frequencig¢s). Therefore . o om
we do not specify the physical meaning of these quantities, w(n)=w(n)+al_|_—(n—n)+02_|_—(n—n_)2
but only assume rather general properties such as smooth- 1 2
ness, normalizability, etc. 2

Starting from Eq(1.1), we present an analytical approach + ogT—(n—n_)3+ e (2.2
towards the typical features of transient signals, such as qua- 8
siperiodical behavior, dephasing, fractional revivals, and full
revivals. All these physical phenomena are a result of QUaleere, we have defined AT =(j!) Yw® (M|, and
tum beats, which represent interference effects betweep — +1 accounts for the sigjn of thgth derivative
many contributing terms in Eq(1.1). However, due to this wJ(j)(n_)Edjw/dnj“:n_. Note that the value ofr, can al-

very reason it is hard to recognize the fine structure of th‘?/vays be assumed to bel, since the energy of a bound state

signal from the representation éTgiven in Eq.(1.1). In thi_s of a quantum system increases with the quantum number
paper we present a method to find closed-form expressions in When we insert Eq(2.2) into Eq. (1.1) we find

distinguished time intervals of interest. These expressions

depend only on general parameters determined by the system

and the time interval under consideration. For this reason our S(t)=exdiw(n)t]S(t), (2.3
approach allows us—despite its generality—to understand

even quantitatively all the fine details of experimentally mea-

sured transient signals. As an example we explain the occuwhere

aroundn, which we write as
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*° t t 1.0
S(t)= Z Pn—+mex;{2wi(—m+02—m2
m=2 T, T,
. 1S(t) |
+ozg—m3+. - } (2.9
T3
Here, we have introduced the summation indexn—n. It

is the sumS(t), Eq.(2.4), which we analyze in the remainder
of this article.

We gain deeper insight into the expansion E241) of
o with respect ton and into the time scale$; when we
recall that in the semiclassical limit the actidnis propor-
tional to the quantum number of the bound state. With
J=nf andE=#Aw=H, whereH denotes the Hamiltonian,
we therefore arrive at

FIG. 3. Generic signal represented here by the time dependence
of the sum|S(t)|, Eq. (2.4), for the case of a Gaussian distribution
o dhw) oH P, with variance An=8. We have chosen the parameters
— == (2.5 T,=160T,; andT3=1000T, with o0;=0,=03=1 and have set all
an9(hn)  9J higher time scales in Eq2.2) equal to infinity. The sum reveals a

. . G fairly complicated temporal behavior.
This relation allows us to express the derivative® of the iy compl P .

frequencyw with respect tan in terms of derivatives of the
Hamiltonian and Planck’s constafat Indeed, we find using
J=n# the relation

our example, this happens approximately after three periods.
Later on, as soon as the beats set in, we find fractional re-
vivals [40] of various order, which follow each other very
dow oY 9H ~ 9H closely.
W:Wﬁ:ﬁrlﬁ- (2.6) In Fig. 5 we present magnified sections of Fig. 3 in the
vicinity of the timest=3T,=40T, (a), t=3T,=53.33T, (b),
t=3T,=80T, (c), andt=T,=160T, (d), respectively. We
recognize the following characteristic features: The sBm
again involves periodic sequences of peaks; however, now
the period between two neighboring peaks is given by
T,/2,T4/3, T4, as well asT,, respectively. Figures(8—5(c)
TI<T,<Tg<---. 2.7 show fractional revivals whereas Fig(dp depicts a full re-
vival. The larger the time=(1/r)T, (herer=4,3,2,1), the
To illustrate the typical temporal behavior of a sum of thelarger the difference of the fine structure compared to the
form Eq. (2.4), we use the specific example of a Gaussiansymmetric peaks in the initial stage of the evolution. Espe-

Hence the expansiof2.1) of w corresponds to an expansion
in powers offi. Since the timesT; are the inverse of the
derivativesw()), they are proportional to the inverse powers
#7171 and therefore satisfy the hierarchy

distribution[41] cially, for larger times the fractional revivals become more
Pt ;{ (n—ny” (2.9
= exg — , . 14
" 27An? 2An? 05
1 1 1 1
with the varianceAn=8. Note that due to the shift in the 0 SISO
summation ovem=n-n, Eq. (2.4), the parameten only I1S(t) | 0 0.1 mm m
enters into the timed; . In the present example we do not
| |

specify the functional dependence ©fn) on n but choose | 3

T,=160T, and T;=1000T,. Moreover, we set all higher Wi

time scales in the expansion in E@.2) equal to infinity. i

Hence in this way does not enter explicitly. In addition we

have takenr,=o03=1. 0 , , ,
In Fig. 3 we show the overall structure of the sum 0 3 6 9

|S(t)| over a long-time interval. Here and in all of the fol-

lowing figures time is scaled in units df,. This graph re-

veals a C‘?mp"c‘f"ted tempora_l dependenctSl)| similar to times up tot=12T,. After a rapid decay magnified in the inset we

the quantities displayed in Figs. 1 and 2. __note symmetric peaks with peridf, which broaden and decay in

_ Figures 4 and 5 magnify specific time intervals of Fig. 3 eignt. At around=3T, rapid oscillations set in and a complicated

in order to resolve the fine structure of the signal. Figure 4,eat structure develops. Note that as soon as this pattern emerges,

presents the early stage of the evolution: After a rapid decaye find fractional revivals of various orders. In the vicinity tof

shown in the inset we find in the beginning a periodic se-1T,=8T, we find ten peaks within a period @, whereas in the

quence of symmetric peaks separated by a period,0f vicinities of t=:5T,=8.9T,, t=%T,=10T;, andt=5T,=11.4T,

However, in the course of time the peaks become broadege find nine, eight, and seven peaks within a period gfrespec-

until they overlap and form a complicated beat pattern. Intively.

£/ T, 12

FIG. 4. Generic signal of Fig. 3 in its early stage, that is, for
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(a) (b)

0.5 4

1S(t) |

77 80 83 157 160 163

t/ Ty

FIG. 5. Generic signal of Fig. 3 at later times. Here we magnify the behavidB@j| for time intervals of length &, around
distinguished times. The cas@s and(b) show fractional revivals in the vicinity df= %T2= 40T, andt= %T2= 53.331,, respectively. Note
that the period of the fractional revivals {g) is given byT,/2 and in(b) by T,/3. A complicated beat pattern arises as soon as neighboring
peaks start to overlap considerably as exemplified by the behaviig(t)f at the edges dfa) and(b). Moreover, we recognize that the shape
of the peaks becomes asymmetric, and oscillations appear on the left hand side of the maximum. Tt @adéd) focus on fractional
revivals in the vicinity oft= %TZ: 80T, and on the full revivals in the vicinity df=T,=160T,. The period of the fractional revivals {ic)
as well as of the full revivals ifd) is given byT;. However, the fractional revivals are shifted by half of the pefigdMoreover, the shapes
of the fractional revivals and the full revivals are highly asymmetric, that is, they show a slow oscillatory onset to the left of their maximum,
and a rapid decay to the right. In all four cases the height of the peaks is controlled by a slowly varying envelope. The scales of the vertical
axes are identical in all four examples.

and more asymmetric: They show an abrupt break-off on thérom the first factor exp(2imt/T;). Hence all the terms in the
right domain to their center, whereas on the left domain theumS(t) are in phase for timeswhich are multiples of the
decay much more slowly. Moreover, they show oscillationsperiod T,. Therefore we expect a sequence of spikes in the
on top of this slow decay. Note that similar structures weresignal located near the time point§=IT,;, where
found experimentally in the case of a Rydberg wave packef=1,2 . ... However, as time increases, the second factor
in rubidium [17]. We further notice that the heights of the exp(2rio,n?t/T,) also becomes important. Its contribution
fractional revivals seem to be modulated by a slowly varyingieads to a growing dephasing of neighboring terms in the
amplitude with its center at the time poit= (1/r) T, AS sum Eq.(2.4) at the time points; , which results in a broad-
fractional revivals are located further away from this centerening of the spikes. This becomes appare®] when we

their dominant maximum deCI’easeS, the width broadenS, a%write the sunS with the he'p of the Poisson summation
the small oscillations on the left to their center smear out. formula[43]

This behavior is not obvious from thierm of S in Eq.
(2.4). In the next two sections we therefore cast the sum into o % .
a form which brings out in a clear way the period of the fo= > f dmf(m)exg —2milm), (3.1
peaks and the fine details of their shape. In Sec. Il we start m=—c == J-o
with the analysis of the initial evolution and in Sec. IV we
present our approach to analyzing the fine structure of fracwhich yields
tional revivals and full revivals.

lll. THE EARLY STAGE OF THE EVOLUTION S(t):|:2_o0 _mde(n+m)exp<27-r|[<T—l— | ) m
The phase factor of each term in E§.4) consists of the ¢ ¢
product of the factors exp(@mtT,), exp(2mio,MPt/T,), + o, =M+ oz=—m3+- . H (3.2
exp(2mio3nTt/T,), etc. The relative importance of these fac- T2 T3

tors depends strongly on the specific time under consider- o
ation. In the early stage of the evolution, that is, for times Here, P(n+m) denotes the continuous version of the dis-
of the order ofT,, the main contribution to the phase comescrete distributionP7=,,. We note that there are many con-
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tinuous extensions of the discrete weights. For the ex-
ample of the Gaussian ER.8) we choose the extension

1
P(X)= —=expg —
) 27wANn? F{

(x—n)?

2An?

= (3.3

but emphasize that the treatment presented here is valid for

an arbitrary weight distributio®, .
What is the physical meaning of the transformation Eq.
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0.5

(a) (b)

1S(t) |

t /T,

(3.2)? The Poisson summation formula allows us to represent

a discrete superpOSIt!on of many harmonlcs such as the sum FIG. 6. Comparison between exact numerical evaluation of the
S as a sequence of time-dependent signals numbered by thgneric signalS(t)|, Eq. (2.4), (solid line) and the approximate
|ndeX| and arr|V|ng one aftel’ another. The appllcatlon Of th|Sexpression Eq(38) (dashed ||n§3|n the ear|y s’[age of the evolu-

formula leads to a significant simplification when the width

tion. Whereas for times shown i@ the two curves are almost

of each signal in time is shorter than the separation betweeiAdistinguishable, they show deviations for larger times displayed in

two signals.

To bring this out most clearly we now consider times
much smaller thafT;/(An)’, wherej=3, and keep the first
two terms in the exponent of E3.2) only. In this case, the
integral for the Gaussian distribution E@®.3) is of the form

fw d 2+ bx) = \ﬁ il 3.4
_dxexp—axtb=/gexp o). B4
with
1 o t 35
a= —2mio,— .
2An? 2T,
and
b=2i ! | 3.6
=277 _ITl . ( )
When we make use of this relation the s@meads
- 1
S(t)=
® |:E-w Vi—ioAmAn?t/T,
o 2m%An? t | 2 3
R T IS amAnT, | T, - 37

(b). In both cases the approximation works well for times at the
center of each frame and gets worse towards the edges. The scales
on the vertical axes if@) and(b) are identical.

of the real and the imaginary Gaussians increase as a func-
tion of time.

Indeed, Eq.(3.8) gives the coherent sign&l(t) as a se-
quence of complex Gaussians centered at the time points
t;=1T,. Two consecutive terms of the sum E§.8) separate
in time, when their temporal separatign-t,_,=T, is larger
than their widthst,=220,(t)), that is, if T;>8t,. We il-
lustrate this with the help of the previous example shown in
Fig. 4. For the parameters used there, we estimate the
first term in the brackets in Egqg. (3.9 by
1/(4m?An?)~4x10 4. The second contribution we esti-
mate by An?(t/T,)2~4An%(T,/T,)?~10"2. Hence we
can neglect the first contribution compared to the second one
and estimate the widtht, of the Ith Gaussian by

.
5t|=2\/§ar(t|=IT1)E4\/§AnIT—lTl. (3.11
2

Hence the Gaussians overlap and interfere with each other
when 4/2AnIT,/T,~1 or [~T,/(4y2AnT,). In our ex-
ample this corresponds te-3.5. This is in good agreement
with Fig. 4, where indeed the complicated beat pattern starts
after approximately=3.5T;.

We separate the real and imaginary parts in the exponent and In Fig. 6 we compare by a dashed line the approximation

arrive at

- 1 (t—ITl)T
t)= expg —
= |:E—oc Vi—iodmAn?t/T, F{ 207(1)
(t=1Ty)?
X —ioy—>—— .
ex;{ o 20'i2(t) , (3.8
where the width
t 2
U?(t)E[W+4An2(T—2) }Ti (3.9
and
ai(t)= —+EAn2L T2 (3.10
' 16m3ANt/T, 7 T, t '

Eq. (3.8) to the exact curve shown by the solid line. Whereas
initially in (a) a difference between the exact sum and ex-
pression Eq(3.8) can hardly be recognized, the approxima-
tion, which neglected the cubic term in the exponent, be-
comes worse for longer times as shown(li.

IV. A NEW REPRESENTATION OF THE SUM

We now turn to larger times for which the phase differ-
ence between two consecutive terms at the time pojrits
the sum Eq(2.4) is not close to an integer multiple of2 In
this time regime the representations E(&2) and(3.8) are
inconvenient since the interference between neighboring sig-
nals is important. Indeed, it is the interference of the com-
plex Gaussians in Eq.3.8 which eventually leads to the
formation of fractional revivals, as shown in Figs. 4 and 6 for
timest~3T, and larger. However, neither the period nor the
shape of the fractional revivals can be seen from the form of
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the sumS in Eq. (3.8). Thus in this time regime the repre- that is, we first sum the terng,, at all multipleskr of this
sentation Eq(3.8) of the sum Eq(1.1) is no longer useful. periodr and then sum these subsums over one pgrdjl
But can we cast the su Eq. (2.4) in a form which brings  Since ()= ¥{” we find
out the period and the shape of the fractional revivals and
revivals? =
The answer is yes. The key idea of our approach is a S(At)= 20 Vp k;_w Wp i (AL). (4.6)
decomposition of the sum E@2.4) into a number of sub- P
sums, each of which contains only terms whose phases afgr the subsum over the inddx we now face the same
close to each other. We achieve this by combining edlsh  sjtuation as for the entire SUBIEq. (2.4) at the initial stage
term of the original sum E¢(2.4) to one subsum. The par- of the temporal evolution. We can therefore apply the Pois-
ticular choice ofr depends on the time interval under con- son summation formula Eq3.1) to the subsums ovek

sideration. which yields
Indeed, consider the behavior &fin the neighborhood of

r—1 ®

the timet=(qg/r)T, of a fractional revival[40,49. Here, -1 ~ o

g/r are mutually prime integers. It is of advantage to shift S(At)= ZO 7y Zx dkW(p+kr,At)

the origin of time into the region ofgfr) T, and choose it to P~ m o

be an integer multiplé of T,, that is, X exp(—2mikm), (4.7

q where W(x,At) is the continuous version oV, (At), Eq.
t=I1T,+ AtEFT2+ €qr T1T AL (4.))  (4.49. As discussed in Sec. lll the Poisson summation for-
mula allows us to represent each time-dependent subsum as a
sequence of time-dependent signals numbered by the index
m.

When we introduce the new integration variable
x=p+kr, the integral oveK is independent op, that is,

Here, the absolute value of the remaindey, T,=IT;
—(qg/r)T, is less than or equal to half of the peridd, that
is, |€qr|=<1/2. This choice allows us to bring the suBnEq.
(2.4), into the form

11 o
q ” S(At)=;2 vy ex 21Ti$m>
S(At)ES<t:FT2+€q/rT1+M = 2 n Wa(AD), pro T me
o m
4.2 xf deV(x,At)exp(—ZwiTx . (4.8
where
We interchange the two summations and write the Siim
q the form
Y= exp( 2mioy- m? 4.3
S(AH= > WD (A, (4.9
and m=— o
W (At)=P7; 2 at + +At)Tl 2 were
m(At) =P nexp 2mi T_lm 02| €qir T_l T_Zm , 12 ' ,d m
WD == exg 27i| o,p?—+p— (4.10
At Tl rp=0 r r
+0'3 |+T— T—m3+~- . (44)
1/ 73 are time-independent coefficients and the factors

Here, we have wused the relation expi@t/T,) o _ 1At m

: - - ID(At)= |  dxP(n+x)exp 2mi| | =— — —|x
=exp(2riml)exp(2mimAt/T) =exp(27imAt/T,;). We note m . ™ T, r
that this representation of the si8lepends on the choice of

the origin of time and thus on the fractiayir. Hence for At) Ty,
every different time region under consideration we adopt a oy eq/r+-|-_l -|T2X
different representation of the suf
' ion” ' AR\ T
\.Ne'pr(.)ceed py notmg that the funczlr()yﬁn Eq. (4:3) is fogl 142 LESET 419
periodic in m with period r, that is, vy, =exd2wio.0/ T, T3

r(m+r)?]=4". This periodicity depends only on the de-
nominatorr of the fractiong/r. In order to make use of this
periodicity we rearrange the summation with the help of the

represent the time-dependent signals.
Hence we have cast the infinite sum E24) into another

relation infinite sum Eq.(4.9). The transformation of the sum, made
possible by the shift of the origin of time as in E@t.1),
o -1 o together with the decomposition of the sum into subsums as
a.= a , 4. in Eq. (4.5 and the Poisson summation formula E8.1) is
m;w m pZO k;oc prkr 49 exact. But what is the advantage of this on-first-sight more
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complicated representation 8P It reveals in the most obvi- ered as time independent wherebhg(At) andz,(At) de-
ous way the fractional revivals: Each tellﬁﬁ\)(At) isafrac- pend onAt. For the definition of these quantities we refer to
tional revival. However, in complete accordance with Sec Appendix A.
1l this statement is correct, and hence the representation Eq. According to Eq.(5.1) the time dependence o&?(m) is
(4.9 is useful, only when the temporal width of the signal governed by the time dependence of the phlggAt), by
|$Tr])(At) is smaller than the separation between two neigh-the Gaussiaﬁ;(At)' by the Simp|e exponenti&[m(At), and
boring signals. an Airy function of complex argument. We now discuss the
time dependence of each of these terms separately. For this
purpose we use the specific fractional revival region in the
V. CONSTITUENTS OF THE NEW REPRESENTATION vicinity of t=3T,=80T, shown in Fig. 7a). In this case the
parameterd and e, take on the value$=80 and hence
€1,=0, as can be found from E#.2).
We start our discussion with the GaussiagAt) shown
in Figs. Ab) and 7c) by the dashed curve. Note that this
function is independent of the summation indaexlt is cen-
tered atAt=0 and has the widttftg=2/\\, which equals
otg=3.8T, for the example at hand. Next, we consider the

; exponential factor,(At), which is equal to unity at the
numbers each with the modulus 1Hence the modulus of ;- pointAt, = (m/2)T,. Since in our casg>0 as shown

r i indivi i
W‘m ranges from zero to unity. The individual terms in the ;| Eq. (A25), the exponential increases for increasiigas

finite sum interfere and this interference depends on the pasown in the middle and the bottom of Fig. 7 by the dotted
rametersm andr via the phase angles2m/r. Moreover, an e for the casesi=1 andm=5 respectively.

additionalr dependence enters via the phaseq? . Hence The Airy function of the complex-valued argument
the value of V) is on first sight a complicated function of 7 (At) requires more detailed considerations. Every value of
m, r, and q. However, the detailed analysis of R¢40]  m defines via Eq(A21) a pathz,,(At) in the complex plane.
reveals the following simple featureé) For r even, W)  since in our example the weighting factor®) vanishes for
vanishes for every second value wf, whereas for odd  g|| even values ofn as mentioned above, it is sufficient to
W) is nonzero for every value ah, and i) the modulus  restrict the discussion to odd valuesrof In Fig. 8 we show
W] of each nonzero weighting factor is independent ofthe paths corresponding tm= —7,—5,—3,—1,1,3,5,7 for
q; in particular, one finds)W)|=1/yr for r odd and the time interval-3T,<At<3T, of Fig. 7. For our param-
IW(,T?I =\/2Ir for r even. eters these paths are almost straight lines. We note from Eq.
Now we turn to the discussion of the time-dependent ternfA21) that only the real part at,,(At) depends on the index
1)(At), which contains the information about the location, M and that this dependence is a linear one: Paths correspond-
the duration, and the detailed shape of the signal. To b#g to different values ofn are just shifted with respect to
specific, we employ our previous example of a Gaussian diseach other. This figure also includes by a dotted and a dashed
tribution for the weight functiorP(n). If higher order terms line two of the anti-Stokes lines of the Airy differential equa-

in the exponent in Eq(4.11) indicated by the dots are still tion defined[45] by arg@z)==* /3. Note that due to the
negligible, we again can evaluate the integrf{;ﬂ(At) ana- different scales on the horizontal and the vertical axis these

lytically as shown in Appendix A, which yields anti-Stokes lines appear as a single vertical line. Whenever a
path traverses one of these anti-Stokes lines, the behavior of
the Airy function changes drasticalf$5]: Whereas the Airy

IE{])(At):exp[id)m(At)]G(At)Fm(At)Ai (Zn(AY)). (5.2 function decays exponentially in the domain on the right of

the anti-Stokes lines, that is feard z,,(At)]|< /3, it oscil-

lates in the left domain, that is, féard z,(At)]|> /3. This
behavior becomes immediately apparent when we recall the
asymptotic behavior of the Airy function, which reads

At)2 Ai(2)~ 3~ Y%z~ Y4exp(— 22°?) for z—= and|arg(z)|< .

Eq/r+-|-_> } (5.2 In order to study this behavior in more detail we show in

1 Fig. 9 the absolute value of the complex Airy function as a
rolling valley above the complex plane. For the analysis of
fractional revivals in this time regime it is enough to under-
stand the time dependence of the absolute value of the Airy

At m function as we show in Sec. VI. In Fig. 9 we have also
Fm(At)EeXF{M T__T” (5.3 indicated by thick lines the pathsz,(At) for
m=—5,—3,—1,1,3,5 as well as two of the anti-Stokes lines
in the complex plane. The thick lines running on the rolling
and Ai(z) denotes the Airy function of complex argument. valley display the value ofAi(z)| along these paths, as

The quantitiesb,,, A, A, andu are real whereas,, is com-  well as along these anti-Stokes lines, that is, these lines de-

plex. In the neighborhoodiAt|~T; of a fractional revival pict |Ai(z,(At))| and |Ai(z=|z|e*'™3)|, respectively. We

time t=(q/r)T, the quantitiesA, A, and u can be consid- recognize that indeed the Airy function oscillates in the do-

In the new representation E@.9), each term in the sum
consists of the product a") andl{)(At). We now discuss
these constituents in more detail.

The factornW!!) is independent of the distributioR(n)
and the timeAt. Thus it acts in the sum E¢4.9) as a weight.
It is a well-known quantity in the context of fractional reviv-
als[40]. According to Eq(4.10, W\ is a sum of complex

Here, the function&(At) andF,(At) are defined by

G(At)EAeXL{ -\

and
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At / T, FIG. 7. Fractional revivals described by a single term in
3 2 1 0 1 9 3 the new representation Ed4.9 of the generic signal
|S(1)]. In (a) we repeat Fig. &) and show the signal in the
neighborhood ot = %T2=80T1. Moreover, we indicate on
the top of the figure the relative timgt introduced in Eq.
(4.1). In (b) and (c) we show the term$l?),(At)| and
[112.(At)], Eq. (5.1), of the new representation E¢4.9)
of the sum|S(At)| by a solid line. The individual contri-
butions due to the Gaussi&(At), Eq.(5.2), the exponen-
tial F(At), Eg. (5.3, and the absolute value
|Ai(z(At))| of the complex-valued Airy function are de-
picted by the dashed, dotted, and broken lines, respectively.
Note that the scales of the vertical axes are different in all
three cases. Whereas the exponential decays to the left and
increases to the right dkt,,_,= %T1=0.5I'1 as shown in
(b), the reverse is true for the Airy function. Hence it is the
product of these two functions, which yields the pro-
nounced peak ofl(2 ,(At)| centered atAt=0.5T. The
Gaussian, which is centered At=0, just influences the
height of this peak, since this function varies very slowly
compared to the other two functions. Note that the fine
structure of the peak results exclusively from the Airy func-
_ tion: Since in the vicinity ofAt,,—,=0.5T, the pathz, runs
P very close to the real axis, as can be seen from Figs. 8 and
A 9, the absolute value of the Airy function of the complex
/ i argumentz, (At) is almost identical to an Airy function of
/ real argument. Hence the oscillations of the peak on top of
the slow decay to the left cit=0.5T, are very deep and
almost reach zero. Ifr) it is again the product of the Airy
- il function and the exponential which yields the peak of
A . ' //\ [112 ((At)| centered now aft,,_s=3T,. However, since
77 80 83 the pathzg contains a significant imaginary part as seen in
" / T, Figs. 8 and 9, the Airy function exhibits only small oscil-
lations around\t=2.5T;. Therefore the oscillations on top
of the slow decay to the left of the peak are not as pro-
nounced as irfb). The Gaussian is the overall envelope of
this structure as already alluded to in Fig. 5.

e

main left of these anti-Stokes lines, whereas it decays rapidly VI. UNIVERSAL SHAPE

in the domain right of these anti-Stokes lines. Note also the OF FRACTIONAL REVIVALS AND REVIVALS

strong sensitivity of t.h's function to the imaginary part O.f Its By combining all properties of the constituents discussed
argument. When we increase the absolute value of the imagj

o ; 9in the preceding section we are now in a position to under-
nary part the oscillation amplitude decreases and the functiog; 4 the location, the shape, and the fine structure of each

increases. In F|gs.(l5)2 and 7c) e show by a broken line  factional revival shown in Fig. . The multiplication of
the third factor of[1?)] and [I{”], that is, the values of the Airy function by the exponentid¥,, and the Gaussian
|Ai(zy)| along the pathg,,—; andz,_s, respectively. G results in a function, which has a pronounced peak in the
Each crossing of an anti-Stokes line agé = #/3 im-  vicinity of the time At,,=(m/2)T,. Since the Gaussian var-
plies the end of the time-dependent sighl(At). To find  ies slowly compared to the exponential and the Airy func-
this moment we calculate in Appendix B the tim&® at tion, it only affects the height of this peak, but not its indi-
which the pathz,(At) traverses an anti-Stokes line. We vidual structure. This stands out most clearly in Fig. 7, where
show that for our parameters and valuesrof of the order we show in(b) and (c) the function! Z)(At) together with
of unity, this happens in the immediate vicinity of the Gaussian G(At), the exponential F,(At), and
At,=(m/2)T, where the exponential functiof,, assumes |Ai(zn(At))| for m=1 andm=5, respectively. We note that
the value of unity, that isAt®=At,,. Since we are inter- the functions!{?,(At) and I{?5(At) reproduce the frac-
ested in the time interval—3T,;<At<3-T;, that is, tional revivals centered at=80.5T; or At=0.5T; and
—(6/2)T,<At<(6/2)T, only paths corresponding to values t=82.5T; or At=2.5T, respectively. Hence we can identify
|m|<6 can traverse the anti-Stokes lines. This is in agreeeach terml{?) in the sum Eq.(4.9 as a fractional revival
ment with Fig. 8 where indeed..; do not cross the anti- labeled by the summation indaxr. In this case the terms
Stokes lines. Note that the pathsg are not present since Ifnz) in the sum Eq(4.9) do not have significant overlap and
nfi%:o. Paths corresponding to valuesmfsmaller than we can approximate the absolute value of the sum in the
m< —7 have|ard z,,(At)]|< /3 and hence yield vanishing immediate neighborhood dft,,=(m/2)T; by themth term
values for the Airy function. in the sum. Hence we find fakt=At,,
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Imfz,(A)

Z7 Zy 23 2y 2, Z3 Zpy Zyq

1Ai(z)!

-200 -100 0 100 200
Rez,(At)]

FIG. 8. The pathg,(At) in the complex plane governing the
time dependence of the Airy function for the time interval
—3T;<At<3T; of Fig. 7. The paths correspond to in the complex plane represent the pathg, for

n;: _;’_‘Z’ . d5r71 d1|-_he two anti-St_okeles lines l?_'zg(:di /3 he M= —5,—3,...,3,5 starting withm= —5 in the back of the figure.
( Ott? and a dashe nappear as a single _vertlt_:a ine duetot '® Two of the anti-Stokes lines are depicted by dotted and dashed lines
drastically different scales of the real and imaginary axes. During,,  ,..ordance with Fig. 8 The valuedAi(z,)| and

. 8. m

this time intervgl only th_e paths correspondingno=—5, . .., 5 |Ai( z=|z|e="™3)| of the Airy function along the pattis, and along

cross t.h ese antl-Stokes lines. Note that the larger th_e ab§olute ValW?ese anti-Stokes lines are indicated by thick lines. Note that this

OI the |r;]dexm, the Iargﬁr the _absoiiutel_value of the imaginary partfigure does not cover the entire excerpt of the complex plane shown

of z,, when it crosses the anti-Stokes line. in Fig. 8, but corresponds only to a thin vertical stripe in the vicinity
of the anti-Stokes lines.

FIG. 9. The modulugAi(z)| of the Airy function of complex
argument as a rolling valley above the complex plane. Thick lines

|s(an)|=WRIIEY Al 6.1
. . discussed in Fig. 9 explains this feature. To understand this
which with the help of Eq(5.1) reads we first recall that the oscillatory behavior I8 results from
, the temporal dependence of the argungftAt) of the Airy
= 2)
|S(At)|—|l/\/<m [GADFR(AD[AIEZR(AD)]. (6.2 function in the vicinity of the crossing timAtEﬁ‘). Figure 8

Note that in this case the weight factow(® takes on the SHOWS that a larger absolute value of the indexcorre-
sponds to a larger absolute value of the imaginary part of

values|[W,,|=0 and |[W2),, ,,|=1. Moreover, due to @ o : - )

the separation of the individual terms only the absolute valué”ﬁ(mm ) Since the A!ry fu_nctlon Increases dramatically

of the Airy function enters and the phase factorW'th an increase of the imaginary part Qf its argument on the
. X ; left domain of the anti-Stokes lines, that is, for

ex{idy(Af)] has no influence on the modulus 8f This largz)|>m/3, and loses at the same time in depth of its

discussion clearly shows that the representation(&§) of 9 " b

the sumS has the advantage that in an appropriate time?SCilations, the peak of the functiof)(At) not only broad-

domain |At| around the fractional revival timeq(r)T, it NS fordmcre_ﬁsmg values ¢fn|, but also shows less pro-
allows a simple interpretation of the fractional revivals posi-"ounced oscillations.

tioned in the neighborhood a¥t,,= (m/r)T: The mth term Ir_w the di_scussion of th_ese oscillations the sign of the
in the sum corresponds to thmeth fractional revival. This cubic term in the expansion E_q2.2) plays a ro[e. We hote
identification, however, only works when the tind is in from Eqs.(A_21) and(A25) that |ts_value deter_mmes the side
the immediate vicinity of the timer)T,. When|At| be- of the frac_:nonal revival on WhICh the oscillatory pattern
comes too large, consecutive terms in the sum overlap, inter- anifests |t_self: Fobrg=+1 this phenomenon oceurs on the
fere, and give rise to a complex structure. In this regim eft hand side, whereas fary=—1 it occurs on the right
there is no simple one-to-one correspondence between ind?—and sidg[47]. In cqntrast, the value of, does not affth
vidual terms of this representation and the signal pattern. the sr_]ape of the S|gr1al. Indeeq, Ha21) ;how; that this
Before we discuss the conditions under which these term@uantity only determines the sign of the imaginary part of
separate, we first investigate the shape and the fine structu @(_At)' When we r_e(_:a_;lll the property Aﬂ().: Ai*(2) fol-
of the individual terms. From Fig. 7 we recognize that the owing f_rom the defln!tlon .Of the _A|ry function, EqA12),
striking oscillations on top of the slow decay to the left of the W€ realize that a conjugation of its complex argument does
center of each fractional revival are a consequence of thBot change the modulus of the_ Airy funct|on.. . .
oscillations of the Airy functior{46]. We note that this os- e nov(vr)ad_dress the conditions underr)wh|ch neighboring
cillatory structure is also apparent in the measured fractiondHnctionsly,” with nonvanishing weights)) separate. They
revivals of Ref.[17]. Comparing the fractional revival cor- Separate, if their widthst() are smaller than the distance
responding tan=1 to that ofm=5 we find the latter to be dt, between their dominant peaks located in the neighbor-
broader with less pronounced oscillations. The sensitivity ohood of the crossing time\tf,?):Atmz(m/r)Tl, that is,
the Airy function on the imaginary part of its argument as ﬁtﬁ{,)< St, . Note that the separatiofit, depends neither on
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the indexm nor on the timeAt, but is only a function of oscillatory behavior. This behavior stems from an Airy func-
r: Due to the properties of the weight fact)zxr‘nﬁ) it is given  tion of complex argument which results from the cubic term
by 6t,=(1/r) T, for r odd andst,=(2/r)T, for r even. Thus in the expansion Ed2.2) of the relevant frequencies of the
this separation is completely determined by the choice of théystem. Whether the Airy function manifests itself in the
fractiong/r in Eq. (4.1). On the other hand, the widtﬁtﬁrﬂ) shape of the fractional revivals and full revivals depends on
of the functionl {)(At) depends on the index: As shown the specific parameters such as the time sgleand the

in Figs. 7b) and 7c) a larger value ofim| results in a Wld_th A_n of the d|str|but|onPn [48]._The signo; of the third
broader fractional revival. Hence neighboring nonvanishing€rivative of the frequencias(n) with respect to the param-

terms in Eq(4.9) inevitably overlap asm| exceeds a certain etern determines on which side of the center the oscillations
. . occur. In contrast, the sign of, does not affect the shape of
value. If two functiond ) (At) and1")(At) overlap consid- gn of; P

. : . the signal. We also note that each individual fractional re-
erably, interferences between these terms in(B® arise. 9

: : vival in a group may differ from its immediate neighbor,
T_hen the funcuon expP(AD)] :?md the phase of the complex although overall features such as their mutual distances are
Airy function start to play an important role. Consequently,

the sumS exhibits a more complicated pattern. This is ap—the same within one group.
parent in Figs. &) and b) from the behavior of the sum We conclude by emphasizing that due to the generality of

(0| at the ed f the time int I our approach this method can describe many phenomena in
S(t)| at the edges of the time intervals. . atomic and molecular physics as well as quantum optics.
We note, however, that for even larger times, we can

analyze the structures again by noting that larger values of

|At| correspond to a different time regime and a new char-

acterization ¢/r) T, in Eq. (4.1): A new choice of the frac- We thank M. Shapiro and D. Abrashkevich for providing

tion g/r enables us to separate again neighboring peakshe data for the autocorrelation function shown in Fig. 2. We

since the separatioft, of the peaks is only a function of acknowledge valuable discussions with V. M. Akulin in the

r, whereas the widths of the peals?sff]) depend viam on  early stage of this work and thank him for a critical reading

At. of the final manuscript. We are grateful to M. V. Berry for
his stimulating comments and for sending us his work on this
topic prior to publication. One of ufl.A.) appreciates the

VII. SUMMARY kind hospitality and support at the Universitdlm. C.L.
thanks the Deutsche Forschungsgemeinschaft for its support

In t.h's paper we investigate in detail thg time depe.ndenceomd acknowledges the warm hospitality during his stay at the
of typical transient signals encountered in many d'ﬁerem\Neizmann Institute of Science. Rehovot
fields of physics and chemistry. Instead of focusing on a ' '

specific system, we adopt a rather general point of view and
study a generic signal, which consists of a coherent sum of APPENDIX A:
many harmonics whose phases depend nonlinearly on the EVALUATION OF THE INTEGRAL EQ. (4.1
summation index. Signals of this kind exhibit interesting |n this appendix, we evaluate the integral
phenomena such as quasiperiodic evolution, dephasing, frac-
tional revivals, and full revivals. These features are the result _ At m
of interference between many contributing states. In this pa- Im (At)_f T, X
per we present analytical expressions for such signals in dif-

X2+ (|+ at Ex3
7T T

ACKNOWLEDGMENTS

dxP(n+ x)exp[ 2

At
Gq/r +T—l

ferent time regimes.
The key to the deeper understanding of the phenomena to3

springs from a new representation of this sum. However,

there exist many equivalent representations of such signals. (A1)

Most convenient, to understand the time dependence of thl%

signal in a specific time region of interest, is the one which

Ty
T,

r the example of a Gaussian distribution

represents it as a sequence of signals separated in time. In the 1 X2
short-time limit, that is, fort<T,, the application of the P(n+x)= exp{ — 2). (A2)
Poisson summation formula is enough to achieve such a new V2wAn? 2An

representation. However, for times of the ordeffgfa more For thi it is of advant toh i p
complicated transformation of the initial sum is necessary. or thiS purpose 1t is ot advantage o have a positive Coetli-

The resulting new representation enables us to provid&i€nt in front of x” in the exponent iny’. We therefore
closed-form expressions for each single peak of the signal d8troduce the new integration variabje= o-3x which yields

in the short time limit. These expressions depend on param- " At m
eters, which are determined by the specific physical system |§T§>(At)=f dyP(n+ y)exp[ 2i 03(—— —)y
and the time interval of interest. —o T,

Our approach allows us to understand even the fine details AT At T
of each individual peak of a transient signal. We find that the +o,l € /r+_) y2y ( |+ _) 1 3“ _
peaks in the pattern in the early stage of the evolution are T T, T1) Ts
symmetric. In contrast, the fractional revivals and full reviv- (A3)
als have asymmetric shapes depending on the parameters of
the system: On one side of their center they may show ailote that this substitution leaves the terms quadratix in
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invariant, but does change the terms linear and cubix. in ,32=,3§—,3|2+i2ﬂRﬂ| (A14)
Moreover, the limits of integration are unchanged.

Hence the integral{!) is of the form

and
J=f dyexdi(ay+By?+ 6y%)], (A4)
B3=Br—3BrBI +1 (3B~ BY) (A15)
where
At m i
_ At m yield
a—2770'3( T r) (AS5)
and () BRB) [ )28 (ALE
AT, 138/ % T35 35] 36
o=2m |+T—1 T—3>0 (AB)
are real-valued parameters, whereas the parameter and
B=Pr+iB=2 Pl LE (A7) 2 8
SPpRrTIp|=2m0Oy| €y — |=— I > . apr
Ty T, 2An KEKR+|K|=W(33§_3ER3?)—§
becomes complex. Sina&>0 we can substitute > ap
. |
1\ g i 5752 (3BRBI— B)) 35 - (A17)
YE(3—5) X~ 35 (A8)
which eliminates the term quadratic in the integration vari-Using these abbreviations and the result &d.3) for J, the
abley via the relation integrall ") Eq. (A3) with P(n) given by Eq.(A2) reads
X3 1 1/3 BZ 2B3 Olﬂ
IURSUNSE A PR W =
3139 36j 271" 35 (AL = ———qzexp — k) exp(i kp) Ai(2). (A18)
@ An(39)
E§+zx+ K, (A9)
We conclude by substituting the expressions dgrd, and
where B, that is, Eqs.(A5), (A6), and (A7) into Egs.(A16) and
1\ 13 B2 (A17) and arrive at
= (3—5) ( a— 3—5> (A].O)
and — b (At 4ar At\T, T, 2
Kr=Pm(Al) = 57 07 fq/r+T—1 T, 2a(IT,+ A0
2B%  ap At Tlr 3 }
K= oo — = A1l X1 | 27| €q+ = |=| — 2
278° 36 (ALD art T,)T,]  4An?
This transformation allows us to express the integrah a 3 4_772 - At) T, (At m T3
product consisting of an Airy function 3 7203\ Car T T T \T, T T 20T+ AY)
. 1 (= (%3 (A19)
A'(Z):ﬂf_wdx ex;{l §+zx (A12)
and
of complex argument, and a complex-valued exponential.
Indeed we find from Eq(A4) using Egs.(A8), (A9), and
(A12) B T, 2 At)\?[T,\? 1
K= 3An(T,+ A0 | |\ 9T T, \T,) T 28x2an?
27
J= ——mexpik)Ai(2). (A13) _ 03Tg At m
(39) 6ANZ(IT+AD | T, T (A20)

Since B is a complex number it is of advantage to express
z and « in their real and imaginary part. The relations together with
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z=7,(At) Im[zp(AtR)] T
tanfard z (At} =————"-"— =tan s=| =sy3.
Ts  [%, (At m R T PRGN 3
T6a(IT rAy] “TRT, Y (B1)
T 4 AL\ 2/ T\ 2 1 Here, s=*1 corresponds to the anti-Stokes line aig(
_[—3} 3[47,.2 €+ — (_1) — . =/3 and argg)=— m/3, respectively. Note that the real
67 (1T +At) Ty Ty 4An part of z,, must be positive anéd=+1 corresponds to a

T W3y AL\ T positive and negative imaginary part af,, respectively.
—j 8 22( €qr _)_1_ (A21)  When we insert the real and imaginary parts of E&21)
6m(IT,+AD)  An Ta) T2 into Eq. (B1), we arrive at the quadratic equation tht(?
With these expressions we find from E#18) At@\2  At@
) a T”‘) b Tm +¢=0, (B2)
IETf])(At)erXLIiCIDm(At)]eX[{—)\ eqrt - } ! !
1 where the quantitiea, b, andc are defined by
At m i Tl Tl 2
Xexg u 7 Ai[z(A1)], (A22) a=6mos——2m| —| (B3)
! T3 T2
where the quantities and
A=A(AD) m\ T, T,\2 10T,
\/E T, 3 1 T, 2 b=6mos;| |- T _I_—?’—4’7qu/r _ITZ +SO-2W T—z,
~An |67(IT,+AD) exF{§(127rAn3(lTl+At) } (B4)
(A23) and
and 1 egr T mT T.\2
— ar t e 1 52| 1
T , C= g An? +SUZ\/§An2 T, 6l T, 2776q/r(_|_2> .
A=MAn= 3An(IT1+At)TJ (A24) (BS)
Now we turn to our specific example, Fig. 7. For the
and parameters we use in this figure we fidcc/b?|<1. In this
osTs caseAt!® can be well approximated bgt®=—(c/b)T;,
u=u(At)= m (A25) and the parameteis andc now read
1
are functions ofAt. . bzew( | — T) E+S;2 E (B6)
So far the calculation is exact. We note that in general the 2)/T3 ~\3An2 T2
time dependence df!)(At) originates from the time depen- q
dence of the phas®,,(At), the Gaussian, the exponential, an
and the Airy function as well as from the time dependence of 1 mT,;
the quantitiesA(At), N(At), and w(At). However, for the C=gand 073 T, (B7)

parameters used in this paper, this time dependence simpli-

fies considerably: In the vicinityAt|~T, of a fractional since e,,=0 for the example at hand. Moreover, for

revival time t=q/rT,=IT,; where |>1, we can replace |m|<7 corresponding to Fig. 9, the parametbrandc can
IT,+At=IT,+T,=IT,, that is, we can neglect the time pe further simplified to b=6«IT,/T; and

dependence oA, N and x and evaluate these quantities at c=—6xImT,/(2T;). Hence in this case the time point
At=0. At® is given by

APPENDIX B: CROSSING AN ANTI-STOKES LINE _ E

b

m

At = >

le Tl' (88)
In this appendix we determine the timeﬁﬁ‘) at which the
pathz.,,(At) crosses an anti-Stokes line azy¢ = /3. This  that is, the patte,,(At) crosses an anti-Stokes line in the

time follows from the equation immediate vicinity ofAt,,=(m/2)T;.

[1] Over the last few years numerous papers about this subject review of vibrational wave packets in molecular physics see,
appeared, mainly in atomic physics and molecular physics. For  e.g., M. Gruebele and A. Zewail, Phys. Tod&$, 24 (1990;
a review of electronic wave packets in Rydberg atoms, see, B. Garraway, S. Stenholm, and K.-A. Suominen, Phys. World
e.g., G. Alber and P. Zoller, Phys. Ref89, 231(1990. For a 6, 46 (1993; and B. Garraway and K.-A. Suominen, Rep.
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