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By contour integration we show that the phase operatore2 i f̂ ~one of the pair of Susskind-Glogower

operators! also possesses eigenketsug&* , which are the dual vector ofei f̂’s eigenkets. The properties ofug&*
are studied and we see thatug&* and ei f̂’s eigenkets can also make up a phase-state representation.
@S1050-2947~96!01212-7#

PACS number~s!: 42.50.Dv, 03.65.Ca

I. INTRODUCTION

The phases of optical fields play the decisive role in many
optical phenomena, particularly in diffraction and interfer-
ence of light. Therefore much attention has been paid to the
problem of defining and measuring an appropriate phase for
radiation fields@1–3#. There are quite a few ways to propose
phase operators. For example, Paul@4# defined the phase
operator by the diagonal coherent state representation~called
Glauber-SudarshanP representation! as

E d2z

p
eiuuz&^zu5eP

i û, with z5uzueiu, ~1!

whereuz& is the coherent state.
One can also use Weyl correspondence@5,6# to map a

classical phaseeiu onto a quantum-mechanical operator by

E d2aD̂~a,a* !eiu5eW
i û, a5uaueiu ~2!

whereD̂~a,a* ! is the Wigner operator, usually expressed as
an integration,

D̂~a,a* !5E d2z

2p2 e
2z* ~a2â!1z~a*2â†!. ~3!

Using the technique of integration within an ordered product
~IWOP! of operators@7#, one can derive the explicit normally
ordered form ofD̂~a,a* ! @see Eq.~2.1! in Ref. @8##,

D̂~a,a* !5
1

p
:e22~ â†2a* !~ â2a!: ~4!

and @7#

uz&^zu5:e2~ â†2z* !~ â2z!:. ~5!

Substituting Eqs.~4! and ~5! into Eqs.~1! and ~2!, respec-

tively, one can obtain the explicit form ofeP
i û andeW

i û.
Another widely used and apparently easier phase operator

is the Susskind-Glogower~SG! phase operator@2#. This
phase operator comes from classical optics by introducing
the phase as the ‘‘approximate’’ polar decomposition of the
annihilation and creation operators, e.g.,

â†5e2 i f̂Aââ†, â5Aââ† ei f̂. ~6!

Although the SG phase operators are nonunitary, as

ei f̂ e2 i f̂51 and e2 i f̂ ei f̂512u0&^0u, ~7!

whereu0& is the ground state, andu0&^0u effectively vanishes
for those states with a negligible vacuum component, they
are still widely used and studied in theoretical calculations in
quantum optics@9#. Despite the fact that a more practical
way is to operationally define a phase operator for a given
experimental arrangement as was done by Mandel and co-
workers@10#, an appropriate phase operator can still be very
useful in theoretical investigations of quantized radiation
fields. Thus it will be helpful to investigate the SG phase
operator in more detail. In Ref.@11#, the relation between SG
phase operators and the inverse operatorsâ21 and~â†!21 are
shown as

ei f̂5~ â†!21AN̂ and e2 i f̂5AN̂â21, ~8!

which indicates that the nonunitarity of SG phase operators
is intrinsically related to the noncommutative property ofâ
and â21 @â† and ~â†!21#, e.g.,

@ â,â21#5@~ â†!21, â†#5u0&^0u, ~9!

which implies thatâ and â† cannot have regular polar de-
compositions due to their singularities.N̂[â†â is the num-
ber operator.

The eigenstate ofei f̂ is given by@12#*Permanent address.
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ug&5 (
n50

`

gnun&, ugu,1 with g5ugueiw, ~10!

whereun& is the number state. Equations~10! and ~6! yield
the expectation values

^sin ŵ&5ugusin w and ^cos ŵ&5ugucosw, ~11!

with corresponding variances

^~D sin ŵ !2&5^~D cos ŵ !2&5
12ugu2

4
. ~12!

Whenugu→1, one gets the~non-normalizable! SG phase state

ueif&[ (
n50

`

einfun&, 2p,f<p, ~13!

which is an eigenket ofei f̂ and a ‘‘phase’’f can be as-
signed. The SG ‘‘phase state’’ can lead to an approximate
description of phase measurement via the relation

PSG@fP~u0 ,u012p!uc#5^F~D!&c , D:angle window,
~14!

where

F~D!5E
D

df

2p
ueif&^eifu. ~15!

WhenD52p,

F~2p!5 R df

2p
ueif&^eifu51. ~16!

However, one can easily show that

^eif8ueif&5 (
n50

`

e2 inf8K nU (
n850

`

ein8fUn8L 5 (
n50

`

ein~f2f8!

5
1

2
1pd~f2f8!1

1

2i
cot

1

2
~f82f!, ~17!

which means that the eigenstates of the SG phase operator

ei f̂ are non-orthogonal.
A question thus naturally arises. Can we find an orthogo-

nal relation within the SG phase scheme? This question is

closely related to whethere2 i f̂ possesses an eigenket or the

creation operator â† has an eigenket, sincee2 i f̂

5â†(1/Aââ†!. In Refs. @13–15#, we have shown explicitly
that â†’s eigenket is not identically zero, instead, it can be
composed in terms of complexd-function and Fock states
and is useful in constructing the Drummond-Gardiner com-
plex P representation@15,16#. This encourages us to derive

e2 i f̂’s eigenkets and then study their properties. In Sec. II

we constructe2 i f̂’s eigenketsug&
*
. In Sec. III we discuss

ug&
*
’s properties. This work complements earlier work on

phase-state representation and seems to be important in
quantum optics.

II. e2 i f̂’s EIGENKETS

We now discuss ife2 i f̂ possesses eigenkets. Operating

e2 i f̂ on ueif&, we have

e2 i f̂ueif&5e2 if (
n50

`

ei ~n11!fun11&5e2 if~ ueif&2u0&),

~18!

which means thatueif& is not the eigenket ofe2 i f̂. This is
due to the fact that

@ei f̂, e2 i f̂#512u0&^0u. ~19!

Thus we must reconsider this problem using another ap-
proach.

Supposinge2 i f̂ has eigenketsug&
*
, satisfying

e2 i f̂ug&*5g* ug&* . ~20!

Then, expandingug&
*
in terms ofun& leads to

ug&*5 (
n50

`

Cnun&. ~21!

Using â†un&5An11un11&, we have

e2 i f̂ug&*5 (
n50

`

un11&Cn

5g* (
n50

`

un&Cn . ~22!

The recursive relations then follow:

C0g*50, C05g*C1 , C15g*C2 ,..., Cn5g*Cn11 .
~23!

The first equation, if one notices the relationxd(x)50, has
the solution ofd-function form

C05d~g* !, ~24!

whered~g* ! is a contour integration, defined by Heitler@17#
as

d~g* !5
1

2p ig* U
C

, ~25!

where the contourC encircles the origin. Obviously
g*d~g* !50, which holds in the sense of contour integration.
Thus
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Cn5
Cn21

g*
5•••5

C0

g* n
5

1

2p ig* n11U
C

. ~26!

Therefore the eigenket ofe2 i f̂ is

ug&*5
1

2p i (
n50

`
1

g* n11 un&uC . ~27!

Now, one can easily check that

e2 i f̂ug&*5
1

2p i (
n50

`
1

g* n11 un11&uC

5g* F 1

2p i (
n50

`
1

g* n11 un&uC2d~g* !u0&G
5g* ug&* . ~28!

When ug* u51, g*5eif, Eq. ~27! becomes

ueif&*5
1

2p i (
n50

`

e2 i ~n11!fun&uC , ~29!

and

e2 i f̂ug&*5eifug&*5eif (
n50

`

e2 i ~n11!fun&uC . ~30!

III. THE PROPERTIES OF zg‹*
When ug* u.1, ug8u,1, we calculate the overlap between

^g8u @the conjugate of Eq.~10!# and ug&
*
,

^g8ug&*5
1

2p i (
n,n850

`

g8* n^nun8&
1

g* n811U
C

5
1

2p i (
n50

`
g8* n

g* n11U
C

5d~g*2g8* !. ~31!

Operatingei f̂ on ug&
*
yields

ei f̂ug&*5
1

AN11

1

2p i (
n50

` An
g* n11 un21&uC

5
1

g*
1

2p i (
n50

`
1

g* n11 un&uC5
1

g*
ug&* . ~32!

Using ^gu ~ug& is the eigenket ofei f̂! and ug&
*
, we make

up the following contour integration:

R
C
ug&* ^gudg*5 (

n,n850

` R
C
dg*

un&^n8ug* n8

2p ig* n11

5 (
n50

`

un&^nu51, ~33!

which represents a completeness relation in contour integra-
tion form.

Equation ~33! is a generalization of Eq.~16!, because
wheng*5eif, the left-hand side of Eq.~33! becomes~with
dg*5deif5 ieifdf!

R
C
dg* ueif&* ^eifu5

1

2p E
0

2p

df (
n,n850

`

e2 infun&

3^n8uein8f51. ~34!

The phase distribution over the window2p,f<p for any
state is then defined either by

P~f!5
1

2p
z^eifuc& z2 ~35!

or by

P~f!5
1

2p
^eifuc&^cueif&* uC , ~36!

with the normalization integration

E
2p

p

dfP~f!51. ~37!

As an application ofe2 i f̂’s eigenket, we calculate

exp~le2 i f̂!

5 R
C
elg* ug&* ^gudg*

5 R
C
dg* (

n,n850

`
elg* un&^n8ug* n8

2p ig* n11

5 (
n,n850

`
1

~n2n8!! S d

dg* D
n2n8

elg* un&^n8u ug*50

5 (
n,n850

`
1

~n2n8!!
ln2n8un&^n8u. ~38!

In summary, we have derived the eigenket of the SG

phase operatore2 i f̂, which can be considered as a dual vec-

tor ~or a partner! of ei f̂’s eigenket. The completeness rela-
tion ~33! in contour integration form is an extension of the
phase distribution completeness relation~16!. That is to say
that Eqs.~27!, ~31!, and ~33! should be included in the SG
phase operator formalism. Although a lot of works have dis-
cussed the phase-state representation in quantum optics~for
example, Ref.@18#, @19#!, so far as we know, the eigenkets of

operatore2 i f̂, which form a complementary part for the SG
phase operators, have not been given in the literature before.
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