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The reconstruction of the density operator from the tomographic data~rotated quadrature components! via
the normally ordered moments of the density operator is investigated. It is shown how arbitrary normally
ordered moments of arbitrary ordern can be obtained from the quadrature components forn11 discrete angles
that can be chosen arbitrarily. An integration over the angles of the rotated quadrature components multiplied
by discrete phase factors is not necessary and uses more than the minimally necessary information about the
rotated quadrature components.@S1050-2947~96!00312-5#

PACS number~s!: 42.50.Ar, 42.50.Dv, 03.65.Bz

Tomographic reconstruction is the reconstruction of a
field function over anN-dimensional space from the inte-
grated field functions over all possible (N21)-dimensional
hyperplanes, which means from their Radon transform. The
importance of the paper of Vogel and Risken@1# for quan-
tum optics is that it practically applies the inverse Radon
transformation ~e.g., @2,3#! to the reconstruction of the
Wigner quasiprobability in two-dimensional phase space.
However, to the author’s knowledge, the Radon transforma-
tion is first mentioned in this connection in@4#. In quantum
optics of a single mode the Radon transform corresponds to
the rotated quadrature components dependent on the angle.
Reference@1# gives the inversion of the Radon transform
leading to the Wigner quasiprobability by three integrations
that correspond to the transition from the quadrature compo-
nents to the Fourier transform of the Wigner quasiprobability
in the first step and to the inversion of the two-dimensional
Fourier transform in the second step. The recent interest in
this field is connected with the progress in experiments to
determine the quadrature components dependent on the angle
by homodyne detection@4–7#, which makes it possible to
determine the Wigner quasiprobability. Some theoretical pa-
pers are concerned with the problem of determining directly
from measured data some other characteristics of the density
operator such as, for example, the matrix elements of the
density operator in the Fock-state representation@8–17#.

Recently, Richter@18# has shown that the normally or-
dered moments of the density operator can be determined
from the rotated quadrature components by twofold integra-
tion over pattern functions including one integration over the
angle. However, this uses more than the necessary minimal
information about the rotated quadrature components. I show
in this paper that the integration over the angle is not neces-
sary and that any normally ordered moment of ordern ~sum
of the powers ofâ andâ†) can be obtained from the rotated
quadrature components forn11 discrete different angles.
This is of great importance for the experiment. Usually, one
does not intend to determine normally ordered moments of
very high order. For example, in photon statistics one is of-

ten satisfied by the incomplete information about the state
consisting of the mean value of the number operator and its
variance that corresponds to normally ordered moments up
to fourth order. For this purpose one needs minimally only
the quadrature components for five arbitrary different angles.
Any additional angle provides redundancies that can be used
to check the consistency of the results by combining five
different angles. This becomes impossible if we integrate
from the beginning over the angle, which is equivalent to
averaging over the angle.

Let us derive our basic result. The knowledge of all nor-
mally ordered momentŝâ†kâl& is equivalent to the complete
information contained in the density operator%̂ via the re-
construction relation
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which was derived in@19#, later in @20#, and recently in a
different way in @21#. The operators for the reconstruction
âk,l(k,l50,1,2,. . . ) aregiven here in the Fock-state repre-
sentation. The measurable quadrature components

^q;wu%̂uq;w&, together with their connection to the Radon
transform W̆(u,v;c) of the Wigner quasiprobability
W(q,p), are defined by

W̆~cosw,sinw;q![^q;wu%̂uq;w&

[^qu„R̂~w!…†%̂R̂~w!uq&,

R̂~w![exp~ iwâ†â!,

W̆~u,v;c![E dq`dpd„c2~uq1vp!…W~q,p!

5umuW̆~mu,mv;mc!, mÞ0, ~2!

with arbitrarym. The two-dimensional vector (cosw,sinw) is
the normal unit vector to the hyperplanes~here lines! in the
Radon transform. In~2! the unitary rotation operatorR̂(w)
has been introduced. Its most important properties for our
purpose are
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and the relation of the eigenvalue problem ofQ̂(w) to the
eigenvalue problem ofQ̂

Q̂uq&5quq&, uq;w&[R̂~w!uq&,

→Q̂~w!uq;w&5R̂~w!Q̂uq&5quq;w&. ~4!

To obtain the connection of^q;wu%̂uq;w& with the normally
ordered momentŝâ†kâl& we have to use Eq.~1!,

^q;wu%̂uq;w&5 (
k50

`

(
l50

`

^q;wuâk,l uq;w&^â†kâl&. ~5!

By using the explicit representation ofâk,l given in ~1! and
the action of the rotation operatorR̂(w) onto Fock states
un& resulting in a multiplication by the phase factor
exp(inw) and, furthermore, the well-known position repre-
sentation̂ qun& of the Fock states by Hermite functions, we
find @22#
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where a known identity for finite sums over Hermite poly-
nomials is used@formula~36!, Chap. 10.13 in@23##. It can be
proved by complete induction. The Hermite polynomial in
this relation is not specific fork andl separately, but only for
the sumk1 l5n. Therefore by multiplication of~5! with
Hn(q/A\), integration over the variableq with the derived
form of ^q;wuâk,l uq;w& in ~6!, and using the well-known
orthonormality relations for the Hermite functions one ob-
tains the following linear combination of normally ordered
momentŝ â†kâl& with n5k1 l :
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whereN$ % denotes normal ordering of the content in curly
braces.

The moment of zeroth order is simply the trace of the
density operator%̂ or according to Eq.~7!,
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for arbitrary anglesw, and obviously no integration overw is
necessary. To determine the moments of first order one can
choose two arbitrary different anglesw1Þw2 ~pairs of angles
w andw1p are equivalent and cannot be used as ‘‘differ-
ent’’ angles! and after solution of the corresponding two
equations of~7! with H1(z)52z, one obtains
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In particular, forw150 andw25p/2,
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~^â&1^â†&!,

^P̂&5E
2`

1`

dqK q; p

2 U%̂Uq; p

2 L q52 iA\

2
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The normally ordered moments of second order
^â2&,^â†â&, and ^â† 2& can be found from the special case
n52 in ~7! that is dependent on the quadrature components
for three arbitrary different angles. Because of the length of
the formulas I will not write them down. However, there is a
general simple form of the solution of Eq.~7! with respect to
the normally ordered moments of arbitrary ordern if one
choosesn11 equally spaced angles from 2(n11) angles
that solve the circle division problem. This solution has the
form
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wherew0 is an initial angle that can be chosen arbitrarily.
The proof can be given by considering the solutions of the
circle division problem. The complex solutionsz for the di-
vision of the unit circle inton11 equal parts satisfy the
equation

05zn11215~z21!~zn1zn211•••1z11!

5~z21! (
m50

n

zm, z5expS is 2p

n11D . ~12!

From this relation it follows that each solution
z5exp$is 2p/(n11)% of the circle division problem with
exception ofz51 corresponding tos50 satisfies the equa-
tion (m50

n zm50. By inserting~7! into ~11! and by using the
discussed properties of the circle division problem one
proves the solution~11!. The solution given by Richter@18#
corresponds to an additional averaging over all possible ini-
tial anglesw0 in ~11! and is true but needs more than the
minimally necessary information about the quadrature com-
ponents.

Let us consider squeezed coherent states as an important
example with nontrivial angular dependence. The Wigner
quasiprobability of such states has the form@24#
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with Q̄[^Q̂& and P̄[^P̂& as the real displacement parameters with respect to canonical coordinates (q,p) and withz as the
squeezing parameter in the nonunitary approach@25,26#. The Radon transformW̆(u,v;c) according to the definition in~2! is
explicitly given by
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Now, by formingW̆(cosw,sinw;q) from ~14! and after its multiplication with the Hermite polynomials and integration one finds
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with ā[^â& andā*[^â†&. In ~15! I have omitted some, in principle, simple intermediate steps of the transition from the result
of the integration to its representation similar to~7!. The result of integration@the first line in~15!# can also be written by
means of the Hermite polynomialHn(z), however, without an advantage for our purpose. By comparison with~7! one finds
that the normally ordered moments for squeezed coherent states are given by
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which coincides with special moments up to fourth order
calculated in another way in@25,26#. Therefore, sometimes it
is possible to use the relation~7! for the calculation of the
normally ordered moments themselves, apart from its impor-
tance for analyzing experimental results.

In conclusion, by using formula~1! for the reconstruction
of the density operator from its normally ordered moments I
have derived in a simple way the basic equations~7! and~11!

which relate the measurable quadrature components to the
normally ordered moments, where no integration over the
angle is necessary. The approach is illustrated for squeezed
coherent states. The determination of the normally ordered
moments has some advantages in comparison to the determi-
nation of the matrix elements of the density operator in the
Fock-state representation and is more simple. In the Fock-
state representation one often has to determine matrix ele-

ments ^mu%̂un& for relatively high numbers ofm and n,
which is difficult. On the other hand, according to the usual
belief, a small number of low-order normally ordered mo-
ments^â†kâl& gives sufficient information about the state of
the system. This last statement is not fully clear when we
look to the reconstruction formula~1! of the density operator
and its background should be investigated in the future.

I would like to thank Th. Richter from Berlin for stimu-
lating discussions.

@1# K. Vogel and H. Risken, Phys. Rev. A40, 2847~1989!.
@2# I. M. Gel’fand, M. I. Graev, and N. Ya. Vilenkin,Generalized

Functions Vol. 5: Integral Geometry and Representation
Theory~Academic, New York, 1966!.

@3# H. H. Barrett, inProgress in Optics, edited by E. Wolf~North-
Holland, Amsterdam, 1984!, Vol. 21, p. 217.

@4# M. G. Raymer, D. T. Smithey, M. Beck, and J. Cooper, Acta
Phys. Pol. A86, 71 ~1994!; in Proceedings of the International
Conference on Quantum Optics III, Szczyrk, 1993, edited by
M. Kolwas and J. Mostowski~Polish Academy of Sciences,
Institute of Physics, Warsaw, 1994!. Here I first heard about
the relation of the tomographic reconstruction of the Wigner
quasiprobability to the Radon transformation and its inversion.

@5# D. T. Smithey, M. Beck, J. Cooper, and M. G. Raymer, Phys.
Rev. A 48, 3159~1993!.

@6# D. T. Smithey, M. Beck, J. Cooper, M. G. Raymer, and A.
Faridani, Phys. Scr.48, 35 ~1993!.

@7# D. T. Smithey, M. Beck, J. Cooper, M. G. Raymer, and A.
Faridani, Phys. Rev. Lett.70, 1244~1993!.

@8# G. M. D’Ariano, C. Machiavello, and M. B. A. Paris, Phys.
Rev. A 50, 4298~1994!.
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@23# A. Erdélyi, Higher Transcendental Functions~McGraw-Hill,

New York, 1953!, Vol. 2.
@24# A. Wünsche, inProceedings of the Fourth International Con-

ference on Squeezed States and Uncertainty Relations,
Taiyuan, 1995, edited by D. Han, Kunchi Peng, Y. S. Kim, and
V. I. Man’ko, NASA Conference Publication No. 3322~God-
dard Space Flight Center, Greenbelt, 1996!, p. 73.

@25# A. Wünsche, Ann. Phys.~Leipzig! 1, 181 ~1992!.
@26# A. Wünsche, in Proceedings of the Second International

Workshop on Squeezed States and Uncertainty Relations, Mos-
cow, 1992, edited by D. Han, Y. S. Kim, and V. I. Man’ko,
NASA Conference Publication No. 3219~Goddard Space
Flight Center, Greenbelt, 1993!, p. 277.

5294 54ALFRED WÜNSCHE


