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The Monte Carlo wave-function method has recently proved to be an efficient tool in the analysis of linear
dissipative quantum systems, i.e., systems with linear equations of motion for their density matrix. We gen-
eralize this method to systems with nonlinear master equations of a parametrized Lindblad form, which
includes master equations obtained by Hartree-Fock approximations. Convergence properties of the algorithm
are discussed in detail. The method is illustrated by a numerical analysis of the bosonic enhancement of laser
cooling of trapped particle$S1050-294706)08411-9

PACS numbg(s): 42.50.Ct, 02.70.Lq, 32.80.Pj, 42.50.Fx

I. INTRODUCTION tions apply to any linear master equation of the so-called
Lindblad form. A brief review of the algorithm is presented
In quantum mechanics we are used to dealing with lineain Sec. Il. It has been speculatéd] that such a treatment
equations of motion for wave functions or density matricescannot be generalized to nonlinear master equations, and,
In cases with a large number of interacting particles theséhdeed, modifications are necessary as presented in Sec. lIl.
equations may be difficult or even impossible to solve, andrhe idea is to propagate in parallel a number of state vectors:
one may try to replace them by an approximate few particledt each time step in the calculation the whole ensemble is
equation. In such an equation the effect of the other particleseeded to determine the coefficients in the equation of mo-
is incorporated in a mean field term which is, in turn, derivedtion of the individual state vectors. The resulting coupling
from the current few-particle state itself. An example of suchamong the state vectors in the simulation makes it difficult to
a self-consistent approach is the Hartree or Hartree-Foc&Ssess the accuracy of the method. This is why in Sec. IV we
treatment applied in many fields of physics. The resultingshall discuss the convergence properties of the method pro-
approximate equation of motion is a nonlinear one. posed. Our conclusion, supported by an analytical and a nu-
With the low temperatures and high densities available irmerical analysis, is that the statistical error follows the usual
laser cooling and trapping, samples of ultracold atoms havecaling law 14/n, wheren is the number of state vectors, and
become promising new states of matter for the study of colthat there exists a bias of the results relative to the exact
lective behavior. By laser cooling and evaporative cooling itdensity matrix solution, scaling only asnland which is
has been possibld—3] to produce samples in thermal equi- therefore negligible for larga. Nonlinear master equations
librium with a macroscopic number of atoms in a singlederived from the coupled Maxwell-Bloch equatiof&och-
guantum state — termed a Bose-Einstein condensate. Afdartree and Bloch-Hartree-Fock equatipase discussed in
other interesting possibility is to produce a Bose-EinsteinSec. V. A simplified form of these equations, keeping only
condensate directly with laser coolifg—6]. Also, interest- the bosonic enhancement of optical pumping in a laser cool-
ing phenomena occur in the propagation of multiply popu-ing situation, is simulated with Monte Carlo wave functions
lated atomic wave packet states in laser fields where both Sec. VI.
guantum statistical effects and the actual interaction between
particles come into play7-9]. All these phenomena can IL. SIMULATION ALGORITHM FOR LINEAR MASTER
fi\grp:.rommately be described by nonlinear equations of mo- EQUATIONS OF LINDBLAD TYPE
In laser cooling, dissipatiofby spontaneous emission of |t has been provefil5] that to preserve the required prop-
light) is an essential ingredient in the dynamics, makingerties of a density matrignormalization, positivity any lin-
these problems very difficult to treat numerically. Already, ear master equation must be of the so-called Lindblad form:
the integration of the master equation for a single atom
cooled in a laser field presents a formidable task, and in three 1
dimensions numerical solutions hav_e only be_en prowc_ied by —p= -_[Heffp_pH;ff]"’_E CmPC:n, (1)
use of the Monte Carlo wave-function techniqu]. It is dt™ if m
therefore natural to consider the application of this technique
also to the nonlinear master equations considered in the 1
many-body situation. He=H— Eiﬁz ClCm. )
It has been provefil1-14 that Monte Carlo wave func- m

The effective HamiltonianH; is a sum of a Hermitian

*Unitée de recherche de I'Ecole Normale Supere et de HamiltonianH and an anti-Hermitian part leading to a re-
I'Universite Paris 6, assoceeau CNRS. duction of the norm of the density operator. This reduction,
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representing the decay of unstable states induced by a cowhere(---) denotes the average over an infinite number of
pling to the environment, is exactly balanced by the lasindependent realizations, angt) is the exact solution of
“sandwich-terms” in Eq.(1). Eq. (1.

As discussed by several authdisd—14,16,17, it is pos- In practice one deals with a finite number of re-
sible to evolve wave functions in time, so that an averagalizations. The finite sample estimate of the mean value
over a large number of independent realizations leads to thef B, b(™=(1/n)="_,(;(t)|B|i(t)), is itself a stochastic
same predictions as the master equation for the system. variable. The precision with whichb™ approximates

Assume the Monte Carlo wave functidg(t)) at time Ty p(t)B] is thus related to the fluctuations in this stochastic
t. To propagate this function in time we first calculate thevariable. To determine these fluctuations one would in prin-
wave function| #io(t+dt)) obtained by evolving(t)) with  ciple have to repeat the simulation withwave functions a
the non-Hermitian Hamiltoniakhi g : large number of times, and from this calculate the mean and

the variance. This procedure is well known in the present

case of linear master equations, because the various wave
[y (1)) (3 functions are statistically independent. It is useful, however,
to give here a detailed discussion in order to facilitate the
transposition to the case of nonlinear master equations. We
therefore define the averages over repetitions of the simula-
tion with n wave functions:

1
1+ —Hopdt

|¢O(t+dt)>: i

for a “small” time step dt. The square of the norm of
|o(t+dt)) is 1— Sp, where Sp reads

5p=§ 5pm=§ dt(y(t)|CL.Crl (1)) 4 <b<n>>,ep=<%_21 <</fi(t)|B|z/1i(t))> , @)
= rep
At this stage we introduce a random element in the evolu- Varre[{b(n))E<(b(n>)2>rep_<b(n)>r2ep- (8)

tion. Either the wave functiofyo(t+dt)) replaces i(t)),

or with a probabilitysp we apply a quantum jump, i.e., the |nserting the expression fd™ in this equation we obtain
wave function is collapsed on a specific statg|¢(t)) with

a probability 6p,,/dp. At time t+dt we have one of the 1
normalized wave functions: Varrep(b(n)):Fijzl (OBl (D)) (1) Bl (1)) Mrep

| o(t+dt)) —(b™) g 9

with probability 1-6p, |¢(t+dt))= ——;
vi-4dp We now make use of the following identities, expressing the
fact that the expectation valuég;(t)|B];(t)) are indepen-
C dent stochastic variables:
with probability Sp |p(t+dt))= M (5)
) Vopn/dt (OBl (D= (pD[BI(D)), (10

In this description of the Monte Carlo method we have  {{#i(D)[B] i ()){j(t)[B];(t)) hrep= {( /(1) B[ sh(1))?)
introduced a “small” time stemt. In fact, the proper sto-

chastic process for the wave functipp(t)) is obtained for for i=j (11
an infinitesimally smalldt. In a numerical calculation this o
mathematical limitdt—0 may be difficult to achieve in ={((0)[Bly(t))y* for i#]. (12

practice, and a direct implementation of the previously de-
scribed random walk with a finitelt may lead to severe This leads to
accuracy problems. The solution is to formulate the Monte

Carlo wave function method in terms of the “delay func- (b'™)rep= (9 (1)|Bl (1)), (13
tion” [18]. The quantum jumps are then not decided from 1
the expressiorn4), linear in the “small” time stepdt, and (My_ =
the user may apply a more accurate numerical integration Valeg ™) n var({¢(B[¢)). (14

technique, e.g., higher order Runge-Kutta, suitable for the

derivation of the delay function and the wave function in theThe variance scales asnlAvhich implies that the error bars

problem; this point is particularly relevant for the nonlinear shrink as 1{/n as usual for sampling statistics. In explicit

situations to be described, where an adaptive stepsize contmumerical implementations only one realization is made with

for the integration scheme may be required. n wave functions and the quantity vag|B|y)) is esti-
For any Hermitian operatoB, the expectation value mated by the sample variance

((1)|B]y(t)) is now a stochastic variable, and the corre-

spondence between the Monte Carlo simulation and the so- 1 (4112

lution of the master equation implies that mgl [(i(D[Bli(1)) —b™(1)] (15

{p(V)|B|y(t))y= Tr[p(t)B], (6) as discussed in more detail ii4].



54 MONTE CARLO WAVE FUNCTIONS AND NONLINEAR ... 5277

lll. SIMULATION ALGORITHM FOR NONLINEAR Second, we suppose tHafo)[ p] can be put in the Lind-
MASTER EQUATIONS OF PARAMETRIZED blad form Eq.(1) where theC, operators and the Hamil-
LINDBLAD TYPE tonian H may now depend on the density matix The

existence of such parametrized Lindblad forrs crucial for
We assume a physical problem leading to the first ordeour ability to simulate the master equation with Monte Carlo

differential equation in time: wave functions. Note that this will at the same time ensure
that Eq.(16) preserves all the desired properties of a density
matrix.
aiP=Fleln (16) It is not evident that a nonlinear master equation will

naturally appear in this form. Using the nonuniqueness of
wherep is a density matrix andt acts nonlinearly op as  L(o), however, one may succeed in bringing E#6) into
indicated by the subscript “NL.” the desired form. We treat here in detail the case of a non-
To make the following discussion less abstract we shallinear term of the form
refer to the example of spontaneous emissioll divo-level
atoms(ground statey and excited state) in the case where
all atoms are assigned the same classical center-of-mass po-
sition. In the absence of a mean atomic dipole, the excited
state population of the atoms may be described by the phavhich will appear in the physical examples of Sec. V. We
nomen0|ogica| equation for Superradia[ﬁd@]: assume that in this equation the operaN(rp) is Hermitian
for any Hermitian matrixp so that the density matrig re-
d mains Hermitian. The trace gf has to be preserved by Eq.
giPee= ~TIL+(N=1)(1-pedIpee- (17 (20), which implies

d 1 1
Fri E{W(p),p}z — 5 [W(p)p+pW(p)], (20

It is written here without a geometrical reduction factor and TW(p)p]=0 @D

we have replacetll by N—1 to recover the usual one-atom o 5y, We want to bring Eq(20) into the parametrized
case forN=1. The coefficient” denotes the single atom orm (18) and (19) where the LiouvillianL(o)[p] is of the
spontaneous emission rate. This equation W|_II be_denved aSindblad form. Eq.(20) contains the equivalent of the first
an example of the Bloch-Hartree-Fock equations in Sec. Viarm on the RHS of Eq(1), but the “sandwich-term” is

_In the nonlinear case we do not have an equivalent of,issing. We use Eq21) to provide such a term vanishing
Lindblad’s theorem, giving a necessary formRoensuring o, o=p [20]:

that the norm and positivity o is conserved in Eq(16).

We propose a class of equations which we believe will em- 1

brace most of the relevant nonlinear master equations. L(o)lp]==5{W(0),p}+ TH{W(o)plo.  (22)
First, we write Eq.(16) in the suggestive parametrized

form: A second step is to ensure that the last term in 6) is

positive. This is not immediately the case as shown by Eq.

(21), but it can be made positive whai (o) is bounded

from below, i.e., when one can find a real numbéo) such

thatW(o) + y(o) is positive. This is the case in the physical
o=p, (19 discussion of Sec. V. Replacing(o) by W(o) + y(o) we

finally obtain instead of Eq(20):

where the Liouvillian operatdr (o) acts linearly on the den- L

sity matrix p, without necessarily being a linear function of _

its density matrix argument. It should be expected that the L(o)lp]==5{W(o)F y(a),p}+ THLW(0) + y(o))plo-

derivation of the nonlinear master equation would lead to (23

such a parametric appearanceFpp ]y, . For example, in a ) ) i

mean field treatmenty represents the density matrix for the One can then check that this expression reduces to the_rlght—

other atoms in the sample, and E49) represents the self- Nnand side of Eq(20) for o=p. It can furthermore be put in

consistency in such a treatment. For the superradiance ef{}® parametrized Lindblad form, with jump operators

ample, such a parametrization is clearly possible: Equatiofm,.m,= \/Tm,|M)(Ma[W(a) + ¥(0)]"? where {|m)} is

(17) is equivalent to the usual equation for the single atonthe set of eigenstates of(t): o=, 7,/m){m|. This dis-

decay problem but with an effective rat€.s=I[1  cussion is also relevant wher=p, is a fixed density matrix

+(N=1)(1-0.d], where as in Eq(19), 0ec=pee. We  andW(o)=0. Equation(23) in this case reduces to the lin-

note that the parametrized for(h8) and(19) does not gen- ear inhomogeneous master equation often used to describe

erally defineL (o) in a unique way. For example, a product open systems where particles enter at a certainyatith a

of two density matrix elements;; p,; appearing on the right- given density matrixp, and leave the sample by some loss

hand side(RHS of Eg. (16) may both be represented by mechanisni21].

aijpx and byp;; oy . Similarly, a HamiltoniarH (o) may be We now turn to the wave-function treatment of nonlinear

replaced byH (o) + f(o), wheref (o) is anyc-number func- master equations of parametrized Lindblad form. Clearly, for

tion, without changing the pertaining commutator in the masany fixed value ofa(t) one is able to simulate Eq18)

ter equation Eq(16). which is linear inp with the usual algorithm Ed5). The fact

d
giP=L(@lpl, 18
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that o should be set equal tp at each time stepaccording R IRRNRRERSRaRS= Y S RNERERERRREE=

to Eq.(19)] leads to the following suggestion: A large num- 08 E n=5 3 o8E n=20 3

bern of wave functions are evolved in parallel, and we as- _ 06 2 3 = 06 2 3

sume that at time these wave functions produce a good % — E 3 S E 3

approximation to the density matrixt). In the subsequent < %*E 3 < 04E IE

time evolution of the wavefunctions, the nonlinearity is ac- 02 ' 3 02E 3

counted for by constructing the curremft) by the approxi- 0B LI kL L= 0 B RENREE
mation 0 05 1 15 0 05 1 15

It Tt

1IIII|IIII|IIII: l'IIIIIIIIIIIIII:

10 08EY n=100 3 085 n=100 3

a(t)=pM==2 |y" N (1. (29) S 06 3 = 06F 3

ni=1 = E E :"g E E

< 04| - < 04 F -3

This o(t), treated as a parameter, now yields the linear mas- 02 E 02 3

ter equation forp(t), Eq. (18), which is simulated by the o Bt Liod o HLLL L s
Monte Carlo wave functions in the usual way. It is important 0 o8 b 18 o o5 1 18

that the wave functions are propagated in parallel, so that
o(t) can be upda}ted Wit,h sufficient prgcision for the subse- FIG. 1. Excited state population as function of time for a num-
quent time eVOIUt_'O_n' This procedure yields the correct reS_UIBer of N=10 atoms in the superradiance model. Predictions of the
for n—oo. For a finiten, however, one expects a systematic \jonte Carlo method are shown for various numbersf wave
error (biag due to the approximation in E¢24). That is, i fynctions: the curves with jumps correspond to a single realization
addition to the statistical error, found also in the linear CaSewith n wave functions, the solid curves are the averages over
a discrepancy with the exact density matrix is due to the use4 000 realizations. Numerical errors are reduced by use of the
of inaccurate terms in the Liouvilliab(o) inferred from Eq.  “delay function” technique. The dashed line is the exact density
(24). Also, then wave functions in a given realization are no matrix resuilt.
longer statistically independent, so that the statistical error
cannot be estimated from a single realization as in(E§), The convergence df("(t) towards the density matrix result
and the scaling law for the statistical error is not obvious.
Section 1V is devoted to a discussion of these aspects. _

Our simple superradiance example illustrates these fea- Ped)= N—1+exp(NI't)
tures. For this problem the simulation algorithm is particu-
larly simple: we start with a number of wave functions, all ~ for increasing values of the number of wave functionsan
equal to the excited state vector at titme0. This number of be followed in Fig. 1. For each value of the n-step solid
wave functions should not be confused with the number ofurve corresponds tb(™(t) for a single realization, the
atoms,N. At any time during the evolution, each wave func- smooth solid curve corresponds to the averéidé’(t))rep of
tion may experience a quantum jump, collapsing it to theb(™(t) over a large number of realizations, and the dashed
ground state with a transition rate given By, the previ- line represents the exact solution E&6). The number of
ously collapsed wave functions remaining forever equal taatoms isN=10 in the figures. It will be shown in the next
the ground state vector. As the simulation proceeds, theection that for this particular superradiance problem a num-
value ofl"; increases according to the current numingof  ber of wave functionsi>N is required in the simulation in
wave functions equal to the ground state vector,order to produce accurate results. In the numerical calcula-
Feg=T+T'(N—1)ng/n. This causes the known deviation tion, as emphasized in the preceding section, we use the
from the exponential decay law. technique of the “delay function’{18] to avoid time dis-

By taking a small number of wave functions we may cretization errors.
readily explore the bias effects mentioned above. With only We end this section with a practical consideration on the
one wave function, the decay ralgy is seen to have the simulation of the nonlinear master equati@®); this will be
constant valud™ until the state is collapsed onto the ground useful in Sec. VI. Our presentation of the jump operators
state vector, i.e., irrespective of the valueNothe simulation ~ Cp, m, after Eq.(23) might indicate that a costly diagonal-
proceeds as a simulation of usual single atom decay. Alreadyation of o is required for each time stepvhere a quantum
with two wave functions a difference appears: initially we jump occurs. Fortunately this is not necessary. According to
have the single-atom decay rdfebut as soon as one of the Eq. (24), ¢(t) is already obtained in the simulation as a
states has been collapsed into the ground state, the decay rafgtistical mixture of stately;(t)). Equation(23) can then
for the remaining state vector attains the larger valuegiso be represented by jump operator€; y(t)
Te=(N+1)I'/2. Averaged over a large number of realiza- = (1/,n)| y; (t) )(eq|[W(o(t)) + y(a(1))]¥2 wherej ranges
tions, this will produce a nonexponential behavior for thefrom 1 to n and where{|e,)} is any orthonormal basis.
mean excited state population. With the notation of Sec. ”Cj,ml #i(t)) is proportional to|¢j(t)> for any m, and if
(B=[e)(el), we get the wave function|y;(t)) experiences a quantum jump

N-1 ) at time t+dt, which occurs with a probability 5p

2 _N~= = (i (1) |W(a(1))+ y(a ()| ¢;(t))dt, either nothing hap-

(b )(t)>rep—mexp(—21“t)— N—3 &A= (NFD)I't2). pe<ns (=]) or it is simpl|y rep>laced by another member
(25 |1//,-(t)> of the current ensemble of Monte Carlo wave func-

(26)
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tions. The relative probability of a collapse to a specific —— T ———
|#4(1)) s S| Cj | #4(1))]1%/(Sp/dt)=1in, and one simply n=100,400,e

has to choosg with uniform weights on the numbers be- 15 (@)
tween 1 anch.

IV. CONVERGENCE PROPERTIES OF THE SIMULATION
IN THE NONLINEAR CASE

The aim of the calculation is to determine the mean value
of some operatoB, b(t)= Tr[p(t)B], wherep is the exact
solution of Eq.(16). When the master equatid6) can be
put in the parametrized Lindblad form, a simulation by
Monte Carlo wave functions is possible, where the maximal
value of n in the numerical implementation is limited by 0
both the calculation time and the required memory. The re- 0
sult of the simulation is a stochastic variabk€™(t)
= Tr p(™(t)B], where the density matrig"(t) is given by
Eq. (24). i

To estimate to which extedt™(t) is a good approxima-
tion of b(t), we consider, as in Eq$7) and(8), the average

n[(pee™ (1)) =Pee(t)]

0.5

and the variance db(™(t) over an infinite number of real- 3
izations of then wave-function simulation. To ease our no- =
tation we will omit the subscript “rep” in what follows. We g
define a systematic errga “bias”) due to the finite size of &3
the sample and a statistical uncertainty: 5
d

Bias=(b™(t))—b(1), 27) 2

(Uncertainty?= var(b™(t)) (29

=((Tr(p'™B))*)— (Tr((p'")B))?
= T ((p™M@p)—(pM)@(p"))(B®B)]. (29

FIG. 2. Superradiance model fdf=10 atoms;(a) systematic

We have introduced the tensor producB®B and bias andb) statistical uncert_alnty on the exqted stgte population in
the Monte Carlo wave-function results, for increasing numbes$

p™Mep™ and used the definition of the trace on the tensor

. . wave functions. To display the scaling withwe have multiplied
pr?ql—uft(n);?;fe which yields  [lp™® p™)(BoB)] the bias byn and the statistical uncertainty by*2 The line
= rp .

) n=o is the analytical prediction. As in Fig. 1, the averages are
From Eq.(24) it appears that the expanded form of the performed over 64 000 realizations.

tensor producp™® p(™ involves two types of terms. The

first type is a product of dyadics/(™)(y("|®|y{™) (") 1

with i#j [n(n—1) termg; as discussed below, the mean of var(b™(t))= ﬁTr[(<50(ﬂ>)(B® B)]

such a product is expected to decorrelate in the limit of

n—oo. The second type of term has | in the tensor prod- n—1

uct (n term9; the mean of such a product does not decorre- +TTr[<50<lt‘2)(t))(B® B)], (33
late even fom—x. It is therefore necessary to consider the

behavior of such individual terms, and we introduce the Noyyhere the additional quantities have been introduced:
tation

(607")=(01")—(0"), (34)

oM =[yM )" )], (30
(801(1))=(0f(1) (O (1)) @(Of" (1)), (35
o )y=0(t)@0o{"(t)- - -. (31)
’ J (8073(1))=(OY3(1)) —(OY" (1) &(O5"(1)).  (36)
The expressions leading to the bias and the statistical unce

tainty in Eqe.(27) and (29) now read: fii the derivation of Eqs(32) and(33) we have taken advan-

tage of the interchangeability of thewave functions which
" allows us to replace mean valud®)) by (Of?)) or
(b'™(t)) —b(t)= Tr((501")B), (32 (o) depending on whethér=j ori#j.
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The form of Eq.(33) is logically split into two terms. For therefore that the sample variance estimate(Eg). does not
a linear master equation problem, the first one scaling agive the correct statistical uncertainty for a simulation of a
1/n is identical to the expression E¢l4), and the second nonlinear master equation.
one, which explicitly involves the statistical correlation be-  The average of the quantities defined in E§§) and(31)
tween the wave functions, exactly vanishes in this case. Iis required to estimate the convergence of the proposed
the nonlinear case, the wave functions are coupled and treimulation scheme towards the exact density matrix result.
second term will in general not vanish for a finiteWe shall ~ We shall now derive equations of motion for these averages.
present arguments below showing that this contribution van- Consider the Monte Carlo wave functipa{"(t)) at time
ishes as 11 for largen, which could not be simply inferred t. Its time evolution front to t+dt proceeds as given by Eq.
from the behavior of the{—1)/n prefactor. In this limit  (5), but with theC,, operators andH in Eqg. (1) now de-
n—oo the first term retains the usual interpretation of apending on then wave-function estimate of the density ma-
sample variance for wave functiohg{"(t)) simulating the trix Eq. (24) at timet. According to Eq.(5) the average of
parametrized equatiof18) with a(t)=<O(l°°)> being the ex- 0(1”)(I+dt) over all possible realizationgno jump with
act solution of the master equation. An interesting featurgorobability 1— 6p, jump to one of theCm|¢/f(1”)(t)) with
due to the same ti/scaling law of both terms in Eq33) is  probability 5p,,,] reads

Ol (t+d=(1 5p)(1+(dt/iﬁ)Heﬁ(p(”)(t))]o(ln)(t)[l—(dt/iﬁ)HZﬁ(P(”)(t))]
0 —(1-

V1-46pvy1—46p
S Crnlp™ ()0 (1) Ch(p ™ (1)) -
+ .
= OPm Jopm/dty/dp,/dt
|

After cancellation of - §p and of thesp,,'s one recognizes 1
the evolution duringdt due to the Liouvillian of param- Uncertaintyc —. (40
etrized Lindblad form. With a further average over all pos- Jn

sible realizations between the initial time of the evolution

and the timet, we get The values of the time dependent coefficients in the propor-

tionality relations(39) and(40) are also relevant in practice:
d n) ) - as mentioned in the Appendix, they can be subject to ampli-
§<Ol () =(L MO (38 fication when the solution of the nonlinear master equation is
unstable, a situation that is not forbidden by the parametrized

. . . Lindblad form and leads to convergence problems in the
In the linear case one directly obtains the agreement betweef .\ 1ation for too long interaction times

the master equation and the Monte Carlo wave-function In the Appendix explicit equations are given in the limit

simulation. Due to the™ dependence of the Liouvillian in .. ¢ the statistical uncertainty and for the bias in the
the nonlinear case the right-hand side of B38) may differ case of an affine dependence E41) of L(o) on o [see

from the a priori required form L(<_P(r_1)>)[<o(1n)>]- We  Egs. (A8), and (A10)]. For the simple model of superradi-
should expect, however, that in the limit of largethe sto-  gnce discussed in Sec. IlI, we have found an analytical solu-
chasticp(™ fluctuates less and less so thap™) may be tion to these equations. The corresponding predictions for the
considered as a constant in the mean value calculation.  pias and the statistical uncertainty in the excited state popu-
Equation(38) is not closed i O{), and in the Appendix |ation (B=|e)(e|) are shown as function of time in Fig. 2.
we shall expand the dependencelgp™) on p™ in order  To display the scaling of these quantities withwe have
to obtain a hierarchy of equations couplingd{™),  multiplied them byn and n, respectively.
<O(1'2 , .... Thesolution of this hierarchy ascertains the = We have also plotted in Fig. 2 the exact bigisnes n)
above expectation, wheln(p) depends polynomially op: and the exact statistical uncertairttimes y/n) for the finite
the proposed procedure converges to the exact density matrsalues ofn considered in Fig. 1. Note that this bias is simply
results in the limit of largen. More precisely, simulations obtained as the difference between the smooth solid curves
performed in the way proposed withwave functions repro- (average over a large number of realizatjoasd the dashed
duce the mean values with a bias, EZj7), line (exact master equation resutt Fig. 1. The convergence
of the numerical results to the asymptotic analytical ones is
1 observed in Fig. 2, as increases.
Biasx —, (39 The analytical formulas for the bias and the statistical
n uncertainty in the excited state population are involved but
can be simplified in the limit of a large number of atoms
and within a statistical uncertainty, E9), N:



54 MONTE CARLO WAVE FUNCTIONS AND NONLINEAR ... 5281

Bias=(p{y) — pee=pearygN/N, (42) 5 f d3K S ke e o
@ == 5. _\3 €€
g @m) i
H 2__ (ny._ 2 2
(Uncertainty”= van(pee) = peeggN/N, (42 1 1 1 25 -
“2\ o —ckri0® @ _tckrio®) 3%« (r)
wherep(? is the mean excited state population obtained by a .
single simulation witm wave functions, ang.. is the exact ke 3i 3 \rafp
excited state population E¢6). T 4w ker + keoro k2r2) r2
i 1
V. PHYSICAL EXAMPLES OF NONLINEAR M T T iz Ges| - (46)
L L

MASTER EQUATIONS

In this section, we consider a real physical system, a ga¥he expression Eq45) is inserted into the optical Bloch
of N atoms coupled by the electric dipole interaction to theequation for the density matrix of atom 1,
electromagnetic field. A nonlinear master equation for the
one-atom density matrig, has been derived by several au- d 1 s o o
thors[7,8]. In Ref.[7] the starting point is a master equation giPr(O=LIpa(O]+ [~ D1 Ea(Ry, 1), pa(V], (47)
for the N-atom density matrixp, , . From this equation
a master equation for the one-atom dengityis derived,
involving a coupling to the two-atom density matpy ,; it
is turned into an approximate closed equationdpthrough
Hartree or Hartree-Fock approximationsgp,.

Whereli1 is the atomic center-of-mass position operator and

D, is the atomic dipole operator. In EG17) the Liouvillian
L incorporates the atomic kinetic and internal energies and
the effect of spontaneous emission. In a mean field treatment
the same one-atom density matrix is used for all atoms and
A. General Bloch-Hartree-Fock equations the driving electric field in Eq(45) depends omp; through

The nonlinear equation obtained by the Hartree approxithe mean polarization density:
mation p; ;= p(1,2)=p1(1)®p1(2) has a simple interpreta-
tion in terms of the coupled Maxwell-Bloch equations used P(r,t)=(N—1)Tr(ps(t)8(r—R;)Dy) (48
to described the propagation of a classical field through an
atomic mediun{9]. In these equations the atom 1 is consid-(with a trace Tr taken over both internal and external atomic
ered as a probe particle; it is driven by the field degrees of freedom Finally, one is left with a nonlinear
master equation fas;. This equation is clearly in the param-
E,=E+ iﬁ' (43) etrized Lindblad form Eq(18) with L(o) having an affine
3eg dependence owr, and it can be simulated by Monte Carlo
wave functions. We shall refer to this equation as the Bloch-
The first termE(r,t) is the sum of the incoming laser field, ;i%e?n E?ster equation. A discussion of its validity can be
E (r,t) and of the mean field created by the-1 other A nonlinear equation with a further approximation is ob-
atoms. The second term containing the density of polarizagined if one assumes that theparticle system is described
tion P(r,t) created by theN—1 atoms is a local field cor- by a pure state which factors into a productMfidentical
rection[22]. In the case of a monochromatic laser field of effective single particle state vectotblartree wave func-
angular frequencyw, we introduce the positive frequency tion). Dissipation of a kind that formally preserves this prop-

componentsty of the driving field,&,_ of the laser field, and erty has been studied by Goldsteihal, and the application

P of the polarization of the medium. That is, the driving field ©f Monte Carlo wave functions has been discusszg).
is decomposed as When quantum statistical effects caused by the bosonic or

fermionic nature of the atoms come into play, the Hartree
approximation has to be supplemented by an exchange term,
Eq(r,t)=Eq(re e+ c.c. (44)  as itis done in the Hartree-Fock approximation for the two-
atom density matrix:

and similar relations hold for the laser field and the polariza-

tion. Equation(43) then reduces to 1AL, =(1+ 7Py )lp1(1)@pa(2)], (49

where P, , exchanges the states of particles 1 and 2, and
O N T where n=+1 for bosons,n=—1 for fermions. This for-
&a(r) :gL(r)"'g_Of dr'[g(r=r)IP(r'), (49 myla(49) may be applied only to weakly degenerate systems
[Tr(p3)<1], since otherwise the two-particle density matrix
. does not have unit trac@ve shall come back to this point
with the expression for the >83 matrix [g(r)]  and an alternative symmetrization ansatz in Sec.)V B
(@,8=x,y,2) giving the field radiated by a dipole for  The extra term in the master equation due to this ex-
r+0: change correction reads
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qiP :E[Hexchol_legxch]’ (500 Equation(54) shows that for bosonsy=1), W(o) is nega-
tive in the internal atomic ground state and positive in the
internal atomic excited state; the conclusion is reversed for
ermions (p=—1). W therefore represents the expected en-
hancement or reduction of transition rates associated to Bose
-1 .. or Fermi statistics. Note that the effect of the positive and
Hexcd o) p1= ﬂ(N—l)sz{—(E G.p(Ri—R,)DY) negative parts ofV on the total population cancel: in the
fo\ap nonlinear master equation, thg dependence o, en-
sures that Eq(50) preserves the trace gf.
. (51 The incorporation of Eq(50) into the Bloch-Hartree Egs.
(47) leads to an equation of motion fpr, which we refer to

. . . as the Bloch-Hartree-Fock equation. This equation is not of
The superscripts +/~) stand for the raising or lowering the parametrized Lindblad ?‘orm' the Herqmitian part of

parts of the atomic dipole operatdds andD, for t_he atoms Heaxch is treated in the usual way, but the non-Hermitian part
1 and 2. A more transparent form can be obtained, withoul; ", o+ compensated by a “sandwich” term. In order to pro-
the permutation operatd?, ,, by performing explicitly the —4e 5 simulation scheme for the Bloch-Hartree-Fock equa-

trace over atom 2. The result reads in the continuous basis @bn we thus need a means to treat a master equation of the
localized atomic states,

( d ) 1 cients.I' =d?k?/3msofi is the rate of spontaneous emission.
exch

We have introduced the exchange Hamiltonian, dependin
on o=p, and acting orp;:

X D<2j5>+ H.c.) P dpi(l)®0(2)]

form
> SN _ ~ 2 2N (+) d 1
<r|HeXCf{0-)|r > 77(N 1)/80;’3 [gaﬁ(r r )Da ap: — E{W(p)'p}—}-LLmd(p)[p], (56)
X(r|o|r")D} ) +gk,(r—r")D,” where the LiouvillianL;,4(p) is of the parametrized Lind-

blad type. We have shown already in Sec. Il that the type of
nonlinear term{W(p),p} can be put in a parametrized Lind-

: . blad form also, with a Liouvillian given by Eq23). As
where the asterisk stands for the complex conjugate. explained in Sec. IIl, one has to bouhd(c) from below

It appears thaH,.{o) has no matrix element between with some(negative number— (), which is clearly pos-

the internal atomic ground state and the internal atomic exg = [see Eq. (54), [|[W(o)|| is bounded by
cited state, it merely consists of a complex and spatially nonz

local modification of the energy of the atomic levels. The3F(N_1)]'

s ) i ] o Once this form(23) has been obtained it can be straight-
real part ofg'aﬁ(r) obviously gives rise to the Hermitian part forwardly simulated: As above, see E(R4), the Monte

of Hexer(0): it leads to a shift of the atomic energy levels, carlo wave functions are used to provide the valueoof
which will modify, e.g., the polarizability of the gd24]. Each wave functiony{™) in a simulation withn wave func-

The imaginary part ofg,s(r) gives rise to the anti- tions is now propagated as follows. With a probability
Hermitian part ofH...{ o), which is as in Eq(20) conve- 1-8p, where Sp=idt(y™(t)|Her—Hid v (1)),

niently characterized by the operator |¢{"(t)) is evolved duringdt according to the effective
AW(0)=i[Hexed 0) —Ho e )] (53) Hamiltonian

x(r|a|r')D§], (52)

_ yLind_;
so that a positive contribution t@V is a departure rate, a Her=Herr —1A[W(o)+y(0)]/2, (57)

negative one is a feeding rate. Transforming Esp) with
the help of the Fourier decomposition of the imaginary par
of 'ﬁaﬁ leads to the more explicit operatorial form for
W(o):

where the first term is the regular contributionlqgf,,y, and
Y4 is subsequently renormalized. With the probability
op, |¢i(”)) experiences a quantum jump. This quantum jump
can be of two types. Type 1 is generated by the sandwich
ar R o L R terms of L j,q in the usual way; it has the probability
W(o)= n(N—l)gf d?nY, e T[(AM . g)a (AT 8)  spr=idt(yM(t)|HL—HL| ™M (t))/A. Type 2 corre-
eln sponds to the exchange jumps discussed at the end of Sec.
(B S (A §)JeTkunT, (54 I |y{") is collapsed to one of they{™(t)) wherej is
chosen with uniform weights on the numbers between 1 and
whered?n stands for the usual invariant integration over the"-

unit sphere [n|=1). We have introduced in Eq54) the o _
dimensionless operator B. Application to superradiance
. The phenomenon of superradiance is often considered in
A=D/d, (55  the limiting case of atoms localized within a region much
smaller than the optical wavelength. In principle this should
where the constard is the electric dipole moment of the lead to strong resonant dipole-dipole interaction between
atomic transition; the matrix elements Af in the standard ground and excited state atoms, diverging as With the
angular momentum basis are simply Clebsch-Gordan coeffinteratomic distancer. The effect of this interaction is
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present in the real part @,,(r). It is generally neglected In the absence of laser light; is diagonal in thele),|g)
(see[25] for a discussion of this approximatipand one is basis @=e,b=g) and contrary to Eq49) the resulting ap-
left with the so-called Dicke model. The atoms are then allproximation foroy , for =1,

localized inr=0: o1~ ee)(ed + momy(led)+|ge))((eg +(gel)
p1.. n(D=[r1=0,... [y=0)(r;=0,... ry=0| +72gg)(gd, (62)

----- N(D), (58) has both Tg(o; ) =0 and it is correctly normalized.
Equation(49) differs from Eq.(62) by double counting of

01,0 N(t? being a pur?'¥ inter'naI. mat.rix, and th'eéradiated the first and the last terms in the latter equation, and accord-
field (46) is replaced by times its imaginary part im=0:  jng to Eq.(50) it provides an extra contribution
d?_ . inl Tr[(D{Y)DS )+ H.c)(nm?lee)(ed+ w2 )]1=0
_ ;Ogaﬁ(r)_’_ T5aﬁ- (59 A[(D1,/Dog cleeed g|gg><gg| ] 63

CIEO the master equation. The fact that this contribution van-
é'shes implies that the questionable approximatid® leads

Eo the same master equation for as the more correct ansatz
62).

; . . . _ The agreement between the master equations following
considered. At this stage the consideration of quantum st fom Egs. (49) and (62) holds in the absence of a driving

tistical properties of the atoms may seem surprising: supe . :
prop Y P g. sup beld only. When a laser is present, the eigenstatesrof

radiance can take place even if the atoms are distinguishab, . . N .
P 9 [?ecome time dependent and they no longer coincide with

entities with identical resonance frequencies. The use ﬂe) Ig). We have here checked numerically that the predic-

bosonic statisticgrather than fermionic or boltzonic statis- i  the Dick del ol duced b
tics) is dictated by the internal symmetry of the initial atomic lons of the LIcke model aré more accurately reproduced by
the application of the symmetrizatiof8l) in this case.

state: if all the atoms are prepared initially in the excited
state,o;  n(t=0) has the bosonic symmetfgompletely ) _
symmetric eigenstatesind keeps this symmetry by further C. In the low saturation regime

evolution, because the atoms are coupled the same way to The Bloch-Hartree-Fock master equation can be simpli-
the electromagnetic field. Contrary to the derivation of Eq.fied when the atomic sample is subject to laser cooling. In-
(17) presented i19], which intermediately assumes a non- deed laser cooling routinely leads to a mean atomic kinetic
vanishing mean dipole moment, the collective atomic behavenergy on the order of a few recoil energig®?/2M or less

ior here appears as an exchange effect — like in the Dickgk =, /c is the laser wave vectprin the usual regime of a
model no optical coherences are postulated. broad linewidth ¢I'>%2k?/2M, wherel is the spontaneous

As a side remark we wish to come back to the Hartreeymission ratg this allows one to neglect the atomic motion
Fock symmetrlzatlon ansgI(ZLQ). This expression has twWo , the internal excited state:
problems, which are particularly severe close to pure state
situations: it does not have unit trace < p?

m><hF. (64)

We want to emphasize here that the Hartree-Bloch-Fo
equations simplified in the Dicke limit reduce, in the absenc
of laser light, to the standard phenomenological equation fo
superradiancél7), provided that Bose statisticsp&E 1) is

Tryd (14 7P1o)pa(1)®py(2)]=1+ 7Try(pi(1)#1,
Furthermore in laser cooling configurations the laser field

and it does not yield the single atom density matrix1) by s often sufficiently detuned from the atomic resonance that
a partial tracep;(1)# Trop; A1,2). If we want to deal with  the fraction of atoms in the internal excited state remains
the natural initial state for superradiance, the pure state witemall. In this low saturation regime the coupling from the
all atoms excited at=0, we may therefore worry that the internal ground state to the internal excited state by the driv-
ansatz(49) does not lead to an appropriate nonlinear masteing field in the mediun(45) can be treated perturbatively:
equation. However, a better Hartree-Fock ansatz can be ob-
tained by diagonalizingr;: |Vad?<#i?(5°+1%/4). (65

1= 1,/a)(al+ mp|b)(b| (60) 0= w_ — w, is the detuning between the laser frequency and
the resonance frequency of the atom. The symhglstands
and by symmetrizing and normalizing the product states irfor the atom-driving field coupling operator:
each dyadic term i, ® o4 independently: Vad=Vg§)+Vg§)=V;§)+ He. (66)

|aa)y—|aa), L
e Vig'= =D &), (67)
[bb)—|bb), 204) - - .
whereD(*) is the raising part of the atomic dipole operator.

Note that the time dependence of the atom-driving field cou-

|ab>,|ba>—>i(|ab)+|ba>). (61)  bling at the angular frequency, has been suppressed by
V2 use of a “rotating frame” at the same frequency.
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In the absence of collective effectdl€1) it is known ing expression for the polarizability differs from the Lorentz-
that the internal atomic excited state can be eliminated adid-orenz formula for a classical gas by the contribution of
batically [26] when both condition$64) and (65) are satis- (Hexenee- A rigorous derivation of the polarizability24]
fied. One is left with a master equation on the restriction ofconfirms the existence of this term; it also gives another qua-
the density matrix to the internal ground statg; {;). Itis  dratic correction in the atomic density sensitive to the Bose
possible to generalize this calculation to the Bloch-Hartreestatistics, involving the effect of the resonant dipole-dipole
Fock equations foN# 1 and we briefly give the main steps interaction between the atoms, which is left out in the
of the derivation. Hartree-Fock mean field treatment.

First, we write explicitly the equations of motion for ma-  The next step is to obtain the excited state matrix ele-
trix elements between states from either the same or differements. A slightly less straightforward derivation than the one

internal energy manifolds: of the optical coherences leads to

d . 1 . 1 (+) _ 1 (+) (=)

apl,eg_m[_h5_|hr/2+(Hexch)ee]Pl,eg+ mvad P1gg: pl'ee_ﬁ5+ihr/z_(Hexch)eevad pl,ggvad
(68) 1

X - . (72
d 1 hS—ihT /12— (Hexen) s
apl,ee: - 1_‘pl,ee"' E[(Hexch)eepl,ee_ Pl,ee(Hexch)ge] 2= excl")ee
The last step is to use the expressidi$) and (72) to
1 (=) eliminate all the excited state matrix elements from the time
+ @(Vad Prge™ P1egVad ) (69 derivative of the ground state density matrix in E€Q). The
substitution ofp; ¢¢ by EQ.(72) gives rise to feeding terms of

d p? ) the sandwich forrrCmplyggCL, where the indexm repre-
Epl@g:ﬁ{(WHHGXCQQQ)’JLQQJFVN Pieg sents all possible directiomsand polarizationg. Departure
terms — %{C:ncm,plygg} counterbalancing these sandwich-
terms in the Lindblad fornil) appear when we transform the
contributions ofp; ¢ andp; 4¢ to Eq.(70) according to iden-
tities of the typeA *=(A") *ATA™L. This leads to the fol-

2
p
- Pl,gg( oM + (Hexcrbgg) - Pl,geVgg)

3r - . - .. > | .
+ EJ d?nY, A& explikon-)pyee lowing nonlinear master equation for the ground state one-
eln atom density matrix:
xexp(—ik n-rAH) . g. (70) d 1

N apl,gg:m[le,gg_Pl,ggHT]
A is given by Eq.(55). Taking advantage of Eq64) we

have kept the contribution of the atomic kinetic energy in the 3r . .. ..
evolution ofp; 44 Only. According to conditior(65) we have + %j d2nY, [C(n,8)p14,C(N,e)T
neglected in Eq(68) the coupling top;ee by Vaq Which eln

would account for saturation effects. In this equation we —3{C(n,e)'C(n,£),p14g}]- (73)

have also disregarded the contribution Bif() 44 it is pro-

portional to the excited state populatitsee Eq(52)] and it Al the operatorsi andC(n,s),C(n,5)" entering as coeffi-

beﬁ_%n;?ass':‘tgm f?g"gé?ﬁ&léhae;mtc()sg)r' the direct cients in this master equation depend on the density matrix
- o, d KRR € direc '9” P1gg itself. The non-Hermitian Hamiltoniaft includes the
n (n“=1) and the polarizatioe of the spontaneously emit- [ightshift of the ground state internal sublevels by the driving

ted photon. _ _ S _field plus the contribution of the ground state exchange
From Eq.(69) one first expresses in the adiabatic approxi-Hamiltonian Hexe)gg'

mation the optical coherences @f in the rotating frame as a
function of the ground state elemenig,g: p? 1

= ——+ +v&)
1 = oy F (Heranggt Vag h =11 12— (Hexar) be
PLeo= ST TR (Hom)o Vo0 P1ow (7D
X[10 (He el 5T = (o) o Vad
exchee

where Heqychee Stands for the restriction of the exchange
Hamiltonian(51) to the internal excited state. In this expres- (74)
sion the effect of the exchange Hamiltonian readily appears ..

as a modification of the atomic line. This modification indi- The jump operator€(n,e) contain the quantum statistical
cates that the optical response of the medium to a light fielg@orrections to the atomic line:

is sensitive to quantum statistics. For example, E4d) can ... . L

be used to derive the polarizability of a homogeneous Bose C(n,e)=A")- g exp(—ik.n-r)

gas (p=1) for an atomic transition from §,=0 angular 1

momentum ground state toja=1 angular momentum ex- % i
cited state. To second order in the atomic density, the result- fi6+I1RT 12— (Hexcnee

vis) (75
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Equation (73) has the same structure as the Bloch-

Hartree-Fock master equation without elimination of the ex- pl,gg(t)zzn: Iy n(H)]g,n(t)){g,n(t)], (76)

cited state. It can therefore also be simulated by Monte Carlo

wave functions, as illustrated in Sec. VI.

D. Rate equations with quantum statistical effects (g,n()|g,n"(t))= 6, - (77)

It is possible to obtain physically suggestive equations
from the master equatio(v3). The idea is to introduce the
time dependent orthonormal atomic basis diagonalizing thén this basis the time evolution of the populatidig (t) is
density matrixpy 4(t) at each time: given by

d d
ang,n(t) = a[<g1n(t)|91,gg|g-n(t)>]

d d d
(0.0 100 (1) 115,00 | @m0l + @t laonion |

d d
=<g,n(t>|(ap1,gg) |9.n(6) + g ,n(t) g [(g.n(V)]g.n()]. (78)
|
Since the state vectofg,n(t)) are normalized to unity, the d
last term in Eq(78) vanishes and the time derivative of the (ang,n(t)) =—p(N=1)> My ygn_gnllgn-
exch,ee n’

populations reduces to 83
d d When both quantum statistical corrections to E@P) are
angv“(t):@’n(t)l(ﬁpmg) |g.n(t) (79 included, one gets transition rates between states depending

on the occupation number of the final state in the intuitively
A first type of contribution to Eq(79) comes from the €xpected manner:
Lindblad part of Eq(73), i.e., the part containing thé and
t .
C' operators: (&Hg,n(t)

:E {7g,n’—>g,an,n’[1+n(N_l)Hg,n]
HF n’

d
(&Hg'n(t)> ZE (’yg'nr*}gynngynr_’ygynﬂg'nrng'n). _Vg,nﬂg,n’ng,n[lﬁ'ﬂ(N_l)Hg,n’]}-
Lind n’ (84)
(80)

Finally the difference between the Bloch-Hartree-Fock mas-
The transition rates appearing in this system differ from theer equation and simple rate equations including quantum
transition rates in the single atom case because of the quastatistics lies in the fact that) the jump operators contain
tum statistical corrections to the atomic line: quantum statistical corrections to the atomic line, éincthe
. eigenbasigg,n(t)) is not knowna priori but is determined
3 - - - by the time evolution and for the nonlinear problem this has
Ygn—g.n' = QJ’ d?n2 [(g.n’[C(n,e)lg,n)2. (81) tgbe done in a complicated self—consistentpmar[ﬁé].

eln

A second type of contribution to Eq79) comes from the VI. A NUMERICAL EXAMPLE: LASER
anti-Hermitian part oft{. The first exchange term in E(j4) COOLING OF BOSONIC ATOMS

is SiMply (Hexe) gg: it leads to a modification of the feeding IN' A WEAK HARMONIC TRAP

term of Iy, due to quantum statistics: We now illustrate the Monte Carlo wave-function tech-

nique with the solution of a nonlinear master equation of the
form (73) for laser cooling of trapped bosong€1). The
laser field is detuned on the blue side>0) of a

(82 jg=1—]e=1 atomic transition. It is obtained as a superpo-

sition of linearly polarized running waves with wave vectors
The second exchange term in E@d4) involves Hege)eeand  *k €, (&, is the unit vector along axis) and with linear

leads to a quantum statistical correction of the departure ratgolarizations making a relative angle of4. Its positive fre-
from |g,n): guency part is therefore given by

d
ang,n(t) :U(N_l)E Hg,n’?’g,n’ﬁg,an,n-

exch,gg n’



5286 YVAN CASTIN AND KLAUS MO LMER 54

C= 2)e,+sin(6/2)e,]e'? o kP i 1+u?
&= &l[cog 012)e,+sin(62)ey]e gxx(2)=gyy(2)=i§ffldu e (80

+[cog 6/2)e,—sin(0/2)e,]e 17}, (85)
— K2 1 _

gzz(z)=i 8_f du(l_UZ)elkLuz. (87)
where 6 is equal ton/4. m)-1

It is known that this configuration leads to subrecoil laser, - . . .
. L : : More explicit expressions can be deduced from the identit
cooling[29] for free atoms. There exists indeed in this case P P y

an atomic(internak-externa) state|p) (the “dark” state 111  sink cosc  sink

which is not coupled to the laser and which is stationary with Ef du Uze"‘“=7+ =72 7. (89
respect to the kinetic energy operaf®0]. The atoms are -t

confined in momentum space by a Sisyphus eff@d], Numerically the Monte Carlo wave functions are dis-

within an interval of a fewsik,, and pile up in long-lived = ¢retized in position space. The evolution due to the
atomic states close to the dark state. When time proceeds, jndependent part oft,

two peaks emerge in the momentum distribution around

=ik . . P 2 2. o) (+)
Extensions of dark state cooling of atoms in a trap have HO—WJF EMQ osZ tVaL mVAL '

been proposed if82]. They rely either on flat bottom poten- (89)

tials or harmonic traps in the Lamb-Dicke reginfenergy

level separatior ), much larger than the recoil energy is obtained by a splitting between the kinetic energy term

#2k2/2M); in both cases an almost dark state exists. Weand the potential energy terms. A Fast Fourier transform is

consider here a harmonic trap with an oscillation frequency/Sed to calculate the effect of the kinetic energy operator.

smaller than the recoil energy. This is more easily achieved N€ contrlbutlon’ of ther-dependent part df is treated by a

experimentally, but it does not provide as good a dark staté‘!rst order Euler's scheme with an adaptl\_/e stepsize control;
As we shall discuss later, the Hartree-Fock ansatz doel 'S represented by a dense matrix both in position and mo-

not give a complete account of the collective effects involved;(anuejTji:gzrii':gﬁ?ms‘eosttzat qrohsélécrjg?[ticz ;nult|;) I'i(r‘;i_t'ons
in laser cooling of atoms. We simply want here to illustrate q P AL

the positive effect of the bosonic enhancement factors in E .osed by the simulation scheme is optimally obtained by a

(84) on the efficiency of the cooling process, which has beeqiumencal diagonalization of the anti-Hermitian psvt de-

. ! X ) ned in Eq.(53); — y(o) is then the smallednegative ei-
d.escrllbed by simple rate quatlons[m—ﬁ]. We therefore genvalue ofW. The contribution of the last term of E(74)
simplify Eq. (73) by the following approximations.

! 2 ) to y(o) is a small(negative quantity, since the atoms are
(i) We neglect the renormalization of the jump operatorsyainyyin states noncoupled to the laser, and it suffices to

C. by the bosonic line shift and broadening. The resumngdiagonalize Blexen) gg ONIY.

master equation is nonlinear only because of the dependence aos done in[32], we introduce as a convenient basis the
of the effective Hamiltoniar¥ with p;. We neglect the dif-  gjgenstatesl),|=1 of H,. These states differ from the one
ference between the mean electric field and the incomingg the bare harmonic oscillator because of the coupling to the
laser field(the atoms are pumped by the cooling process intQaser field. The energy spectrum as a functiort bas now
states weakly coupled to the laser light ~an irregular distribution of energy levels around a straight

(il) We construct a one-dimensional model by assumingine reminiscent of the purely harmonic case. The time evo-
that some additional cooling mechanignot included in the  |ution of the populationsr;=(I|a|l) of the first energy lev-
master equatiorkeeps the atoms in the ground stig) of  g|s ||} for N=20 atoms is shown in Fig.(8. The initial
a harmonic trap in the,y plane. Only the atomic motion state is a thermal distribution of the harmonic oscillator at a
along z is left as a dynamical variable. At each time temperature of 10 times the recoil temperatufig
p1gg IS assumed to factorize 48,0(0,d@o(t). The corre-  _322/\, . It evolves into a steady state after a time on
sponding master equation fot(t) is obtam_ed by taking the i1a order of 100 times the recoil timey=M/# k2. The av-
trgce of Eq.(73) over the transverse motion. The effect of erage over time of ther,’s for 250r<t<500rg is shown in
this tr_ace IS tc_) Suppress they dependent terms from the Fig. 3b). As compared to the one-atom cadé=1), the
effe_ct|ve Hamiltoniari+ (tran;verse kinetic energy and po- populations of the first two energy levels are strongly in-
tentia), to contract to unity the translation operators creased by the bosonic effect; the more populated level is
exp(xik, (nx+ an)) in the sandwich-terms, and to replace .. 1=2) instead of|l=1) in t’he one-atom case. The po-
the functiong,s(r) in M by its transverse averagg,5(z) sition distributionll(z) = (z|o|z) [see Fig. &)] and the mo-
over the distribution {1 Qo/h)exp(—MQo(x*+y?)/24),  mentum distributioriI(p) = (p|c|p) [see Fig. &l)] are also
whereQ,. is the transverse oscillation frequency. clearly different.

(iii ) We neglect the real part @ﬁ(z), i.e., the Hermitian To see the influence of the number of Monte Carlo wave
part of H depending on the Bose statistics. The transverséunctions on the results of the simulation we have done a
trap is supposed for simplicity to be in the Lamb-Dicke re-calculation with a smaller number of wave functions than in
gime (Qi.>%k?/my), so that the resultinaﬁ(z) is easy to  Fig. 3,n=250 rather tham=1000. The steady staié,’s for
calculate. The only nonvanishing components included are= 250 andn= 1000 (averaged over 25<t<500rg) are
then given by very close(the difference for the most populated leved 2
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FIG. 3. Laser cooling ofN bosons in the litm/4)lin laser configuration. The oscillation frequency in the harmonic trap is given by
Q= 0.41k?/M . The atom-laser detuning=2I" and the Rabi frequend = — d&y/2% = (5/2) 1A% k?T'/M)*? lead to a modulation depth
of the lightshift of theg,m,#0 coupled state of 25 cos4)4%k?/M. The calculations are performed with=1000 Monte Carlo wave
functions in the casdl=20 andn=250 in the casé&l=1. (a) Populations of the energy levels #f, as function of time foN=20 atoms.
(b) Populations averaged over times 250M/#k? for N=1 andN=20. (c) Time averaged position distribution arid) time averaged
momentum distribution foN=1 (solid lineg and forN=20 (solid lines with symbols

is 3% only). The time averaged position and momentum dis-We have shown how to bring certain nonlinear terms in a
tributions are also similar, but are asymmetric for250.  master equation into a form such that our simulation scheme
We have checked that this asymmetry is decreased by afipplies.

average over a longer interaction time, so that it corresponds Monte Carlo wave functions may now be applied in simu-

to statistical uncertainty, not to a systematic error. lations of nonlinear master equations. Such equations may be
purely phenomenological, containing nonlinear terms as ef-
VIIl. CONCLUSION fective physical corrections, or they may be derived in more

systematic ways, e.g., by application of a Hartree or a

In summary we have generalized in this paper the appliHartree-Fock ansatz to the BBGKY hierarchy of equations
cation of Monte Carlo wave functions to the solution of non-for an N-body system. We focused on examples of the latter
linear master equations. We have focused on a special clakind, for which we both pointed out how to arrive at equa-
of nonlinear equations, termed “of parametrized Lindbladtions of the parametrized Lindblad form and performed
form,” for which we have discussed in detail the conver- simulations to test the feasibility of the method. Quantum

gence properties of the method. In particular, we identified a&tatistical enhancement of spontaneous emission in velocity-

systematic error inversely proportional to the number of apselective coherent population trapping has recently been
plied wave functions and a statistical uncertainty of thestudied by a direct numerical solution of the Fock-Bloch

method having the usual i dependence on the number of master equation; the calculation, however, was restricted to
wave functions, but with a numerical factor that cannot sim-periodic boundary conditions and relatively short interaction
ply be estimated from a single run with wave functions. times[28]. We have shown that with the Monte Carlo wave-
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function technique the effect of a realistic trapping potential+1 lead to a contributiorﬁ(n—1)/n]<0(1"‘%>, and the single

could be included and the long time limite., the steady j=1 term leads tcﬁlln](O(l”{ :

statg of laser cooling could be investigated. ’
The study of cold and dense samples of atoms is an inter- 4 n—1

esting field in its own right. The nonlinear equations studied —(O{™)=L,[(O{)]+

have been put forward as a foundation of nonlinear atom dt

optics, and they bear on the interesting problems associated

with propagation of light through quantized media. Most re- tthi int b th df i f motion f
cently the role of quantum statistical effects has becomf IS point we observe the need for equations of motion for

prominent in connection with Bose-Einstein condensatio 0%_ gnd(O(li‘%), and more generally for the mean value of
and the prospects of atom-lasers. Our major example weduantities(O!" ) with 1+ p indices wherL (o) has a poly-
exactly one where the effects of quantum statistics on th&@omial dependence of orderin o.

center-of-mass motion of atoms in a laser cooling situation The equation of motion for the mean value of 10§
was studied. However, simple models have suggested thaperator, obtained with the same reasoning as the one lead-
the possibility of obtaining a Bose-Einstein condensate withing to Eq.(37), is quite involved. This is due to the fact that
laser cooling only is hampered by the reabsorption of fluothe probabilities of the various evolution brancligs e.g.,
rescence photons by the atof@g and by the exchange of 1—48p, are not canceled by the normalization factors,
virtual photons (resonant dipole-dipole interactipr33]. 1/(1— 8p)?, of the product state vector. Actually, due to the
Neither of these phenomena are incorporated by the Hartreéactor 1h in Eq. (A2), we just need to know the(to(lr"{
Fock ansat449) and by the resulting master equatiéf8).  converges to a finite value in order to derive the asymptotic
Phenomenological or more elaborate modifications to Edbehavior of{ O{™) for largen. Furthermore the factor a/in
(73) would have to take these effects into account, if theyhe first term in Eq.(33) shows that(O(l”‘b contributes as

method suggested in this paper is applied to the study of; i {5 the scaling of the statistical uncertainty of the simu-
laser cooling of bosons. The dynamics of formation of Aation.

Bose-Einstein condensate with evaporative cooling is also an To derive the equation for the mean value of t@é‘%

Important pr_oblem, directly conneqted t'o the recent .eXpe”'operator, we consider simultaneously the evolution of the
mental achievements of Bose-Einstein condensation. It

i (n) (n) i
theoretical study leads to nonlinear master equatigvith Monte Carlo wave functiong/y™) and|y2”). From timet

Hartree-Fock and quantum Boltzmann teymsnd Monte (0 time t+dt, the wave function| y4") has a continuous

Carlo wave-function methods could be useful in this case a§volution with a probability ¥ g or it jumps under the
well. action of the operato€,,(p(™(t)) with probability 8q,,. At

An aspect of Monte Carlo wave functions is their ability €ach time step the stochastic evolution applied to each wave
to shed more light on the role of different mechanisms in thdunction is decided in the numerical simulation with the help
density matrix evolution, and we anticipate that the wave-Of independent random numbers so that the considered pair
function approach may be helpful at the present stage, whe® Wave functions experienced) no jump at all, with a
we still have much to learn about the structure and the vaProbability (1—6p)(1—4q), (2) jump of the wave function
lidity of the nonlinear master equations. |4{™) only, with a probabilitydp(1—8q), (3) jump of the
wave function ") only, with a probabilitysq(1— 5p), (4)
both wave functions jump, with a probabilijpsq. To first
order indt and after averaging over all realizations from the

We are grateful to Jean Dalibard and Ralph Dum for useinitial time of the simulation, we get
ful comments on the manuscript. One of (¥sC.) acknowl-
edges financial support from the Japanese NEDO and allo- d
catgiJon of time on Cfe?y C-90 compute?s by the French IDRIS. a<o(1r3 =(L(p™[O0"®0F"+ 0V L(p™[OF"])

1
L1[(OF)]+=La[(OFD].
(A2)

n
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=([L(p™®@1+1xL(pM™)][OM1). A3
APPENDIX HIERARCHY OF EQUATIONS <[ (p ) (p )][ 1’2]> ( )

(n) (n)
FOR (O™, (012). - - In the affine casgAl) this equation takes the explicit

As emphasized in Sec. IV, E(38) for the time evolution form
of the mean value 0®{" is not a closed equation. To show
this more explicitly let us consider an affine dependence of

d
L(O’) ono: a<ogn2) I(L0®l+1®LO)[<O(1rB>]
n—2
L(o)lp]=Lolp]+Lilp@0], (A1) +——(Li®1+18 L1)[(Of} 9]
where thel; is a linear operator from the two-particle Liou- 1 - -
ville space into the one-particle Liouville space. After the + - (Li®D[(O112+(0122]
substitution of Eq(24) for p(™, Eq.(38) now involves mean
values of operatorgL/n]O{(t), i=1, ... n in addition to

1
T e += M p+(0M 1.
O{" After average over realizations, tine- 1 terms withi n(18L[012) T (O122].  (A4)
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Again terms with two identical indices lead to a contribution where P, , exchanges the first and second components in a

scaling as I, whereas the terms with three different indicestensorial product. Note that this goes one step further than

have to be determined by the successive equation in the hihe usual decorrelation prescription. We substitute this ex-

erarchy. pression into Eq(A4). We linearize the resulting equation in
We are now able to anticipate the general form of theterms of the variables Eq&34) and(36), which vanish in the

hierarchy. The unknown&O{") ) can be grouped as el- limit n—c. We keep only the leading terms in the equation,

ements in a vector obeying the équatlon ie, a term lke (OM)®(s0{"D) is replaced by

(0(1“))®(5O(f‘)). We get finally

(of") (of") s
d O(n) O(n) 1 S(n)
dt < <?{>2> =[M] < <T1>2 ta <?1>2 - (AS) i(a‘o%z—é 75+ (Lo® 1+1®Lo)[(50))]
(0139 (O3, Sios dt 12 0 0
+(L1®)[(0f”) ®(501))]
In the affine case[M] is a matrix coupling given +(18LN{ 80"y & (0O
(O} toitself and to{Of} ) so that{M] is up- ( V1{6012)@(017)]
per block triangular with one single block off-diagonal. In a +(L1®1+1® Ll)[P1,2<O(1°°))®<5O(1”‘%>Pl,j

more general polynomial dependence §tr] on o of order
p [M] is also upper block triangular but with block off-
diagonals. We have put in the inhomogeneous right-han
side of Eq.(A5), e.g.,S(l'?)_ .. «/n, terms dominated by a scal-
ing as 1h in (d/dt)(Of"} . ,): first, the(O™ ) quantities
with at least two coinciding indices; second, the correction oc>_ () ()
coming from the departuregfrom unity of the coefficients of (L1® D0T) @ (0011)]
the(Of) 4. g)'s,a=1, ... p [cf. the factor (—1)/n in +(1®L1)[P1AO)®(50(7)P1 5.  (A9)
Eq. (A2) and the factorf—2)/n in Eq. (A4)]. In this way
the coefficients of the matrikM | do not depend om. This equation predicting a d/scaling for(50{%) confirms

To zeroth order in I the inhomogeneous part of Eq. then dependence in Eq40).
(A5) is negligible, and the solution of this equation leads to  The same procedure leads to the corresponding equation

for the bias:

(A8)

%ith the source term given by

(0f3. W=(0f")e(0")®---(0f"),  (AG)

d
(00 =Lal (5001 + Ly (50{7)@ (0L +(OF7)

where(0{”) is the solution of the nonlinear master equa- .
tion, EQs.(18) and(19). This result holds for any polynomial + ()
dependence of () on o. It can be checked easily in the ®(60") +(805)+ n<601'1>} (A10)
affine case Eq(Al), see the explicit equatiori$2) and(A4)
simplified in the limitn— . The term Lo[(80{)] and the first two terms inside the

To obtain the result to first order in i/ we keep the brackets acted upon Hy; come from the linearization of the
inhomogeneous part in EGAS5) and replace eacB{”} ,  nonlinear master equation around the exact solut@{);
term by its asymptotic value for—ce. The deviations of the  they are homogeneous iO{"). The last two terms are
(O ,)'s from the previous asymptotic solution E@6)  inhomogeneous and contribute as a source term scaling as
now solve an equation of motion with a linear part given by1/n. Note that the source terms can be amplified or damped
the matrix[ M ] and with a source term scaling asilSince  during the time evolution, depending on the stability of the
these deviations are vanishing at the starting time of th%olution(Of”) to the nonlinear master equation.
simulation they scale asri/at future times. From this we To test these results we went to the next order in the
conclude that the quantities in Eq@4) and (36) scale as  Hartree prescription:
1/n for largen, which leads according to Eg&32) and(33)
to the announced scaling laws E§9) and Eq.(40).

In the case of an affine dependence &) it is possible (O 5 2=(0M)® (501" 3+ P; Oy (50 HP1
to extract from Eq.(A5) more explicit equations valid to
order 1h. The idea is to use a Hartree-ansatz to break the +P1 {0y ®( 50 J P 5+ (50} @ (O™)
hierarchy in Eq(A4):

+(03)®(0}) +Ca(O3) ®(O})C}

+CLO) (0B Ca—2(0) @ (0"
< (n)3> <O(n)>®<o(n)>+P1,2<O(1n)>®<o(1r2>|31,2 3< 1,2>®< 1,2> 3 ( 1 >®< 1>

+(013)e(0y") —2(0)®(01") & (Of"),

(A7)  where C5 performs a cyclic permutation of the first three

@(0\Mye(0\M), (A11)
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components in a tensorial product, and whés®{"} 5 de-

that in the limit of largen (50"} ) obeys a linear equation

notes the deviation o¢O(1'B,3> from the Hartree approxima- with a source term vanishing faster tham.1This proves the
tion Eq. (A7). After lengthy calculations we have checked consistency of the results E¢A8) and Eq.(A10).
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