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The Monte Carlo wave-function method has recently proved to be an efficient tool in the analysis of linear
dissipative quantum systems, i.e., systems with linear equations of motion for their density matrix. We gen-
eralize this method to systems with nonlinear master equations of a parametrized Lindblad form, which
includes master equations obtained by Hartree-Fock approximations. Convergence properties of the algorithm
are discussed in detail. The method is illustrated by a numerical analysis of the bosonic enhancement of laser
cooling of trapped particles.@S1050-2947~96!08411-9#
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I. INTRODUCTION

In quantum mechanics we are used to dealing with linear
equations of motion for wave functions or density matrices.
In cases with a large number of interacting particles these
equations may be difficult or even impossible to solve, and
one may try to replace them by an approximate few particle
equation. In such an equation the effect of the other particles
is incorporated in a mean field term which is, in turn, derived
from the current few-particle state itself. An example of such
a self-consistent approach is the Hartree or Hartree-Fock
treatment applied in many fields of physics. The resulting
approximate equation of motion is a nonlinear one.

With the low temperatures and high densities available in
laser cooling and trapping, samples of ultracold atoms have
become promising new states of matter for the study of col-
lective behavior. By laser cooling and evaporative cooling it
has been possible@1–3# to produce samples in thermal equi-
librium with a macroscopic number of atoms in a single
quantum state — termed a Bose-Einstein condensate. An-
other interesting possibility is to produce a Bose-Einstein
condensate directly with laser cooling@4–6#. Also, interest-
ing phenomena occur in the propagation of multiply popu-
lated atomic wave packet states in laser fields where both
quantum statistical effects and the actual interaction between
particles come into play@7–9#. All these phenomena can
approximately be described by nonlinear equations of mo-
tion.

In laser cooling, dissipation~by spontaneous emission of
light! is an essential ingredient in the dynamics, making
these problems very difficult to treat numerically. Already,
the integration of the master equation for a single atom
cooled in a laser field presents a formidable task, and in three
dimensions numerical solutions have only been provided by
use of the Monte Carlo wave-function technique@10#. It is
therefore natural to consider the application of this technique
also to the nonlinear master equations considered in the
many-body situation.

It has been proven@11–14# that Monte Carlo wave func-

tions apply to any linear master equation of the so-called
Lindblad form. A brief review of the algorithm is presented
in Sec. II. It has been speculated@7# that such a treatment
cannot be generalized to nonlinear master equations, and,
indeed, modifications are necessary as presented in Sec. III.
The idea is to propagate in parallel a number of state vectors:
at each time step in the calculation the whole ensemble is
needed to determine the coefficients in the equation of mo-
tion of the individual state vectors. The resulting coupling
among the state vectors in the simulation makes it difficult to
assess the accuracy of the method. This is why in Sec. IV we
shall discuss the convergence properties of the method pro-
posed. Our conclusion, supported by an analytical and a nu-
merical analysis, is that the statistical error follows the usual
scaling law 1/An, wheren is the number of state vectors, and
that there exists a bias of the results relative to the exact
density matrix solution, scaling only as 1/n and which is
therefore negligible for largen. Nonlinear master equations
derived from the coupled Maxwell-Bloch equations~Bloch-
Hartree and Bloch-Hartree-Fock equations! are discussed in
Sec. V. A simplified form of these equations, keeping only
the bosonic enhancement of optical pumping in a laser cool-
ing situation, is simulated with Monte Carlo wave functions
in Sec. VI.

II. SIMULATION ALGORITHM FOR LINEAR MASTER
EQUATIONS OF LINDBLAD TYPE

It has been proven@15# that to preserve the required prop-
erties of a density matrix~normalization, positivity! any lin-
ear master equation must be of the so-called Lindblad form:
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The effective HamiltonianHeff is a sum of a Hermitian
HamiltonianH and an anti-Hermitian part leading to a re-
duction of the norm of the density operator. This reduction,
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representing the decay of unstable states induced by a cou-
pling to the environment, is exactly balanced by the last
‘‘sandwich-terms’’ in Eq.~1!.

As discussed by several authors@11–14,16,17#, it is pos-
sible to evolve wave functions in time, so that an average
over a large number of independent realizations leads to the
same predictions as the master equation for the system.

Assume the Monte Carlo wave functionuc(t)& at time
t. To propagate this function in time we first calculate the
wave functionuc0(t1dt)& obtained by evolvinguc(t)& with
the non-Hermitian HamiltonianHeff :

uc0~ t1dt!&5S 11
1

i\
HeffdtD uc~ t !& ~3!

for a ‘‘small’’ time step dt. The square of the norm of
uc0(t1dt)& is 12dp, wheredp reads

dp5(
m

dpm5(
m

dt^c~ t !uCm
†Cmuc~ t !&. ~4!

At this stage we introduce a random element in the evolu-
tion. Either the wave functionuc0(t1dt)& replacesuc(t)&,
or with a probabilitydp we apply a quantum jump, i.e., the
wave function is collapsed on a specific stateCmuc(t)& with
a probability dpm /dp. At time t1dt we have one of the
normalized wave functions:

with probability 12dp, uc~ t1dt!&5
uc0~ t1dt!&

A12dp
;

with probability dpm, uc~ t1dt!&5
Cmuc~ t !&

Adpm /dt
. ~5!

In this description of the Monte Carlo method we have
introduced a ‘‘small’’ time stepdt. In fact, the proper sto-
chastic process for the wave functionuc(t)& is obtained for
an infinitesimally smalldt. In a numerical calculation this
mathematical limitdt→0 may be difficult to achieve in
practice, and a direct implementation of the previously de-
scribed random walk with a finitedt may lead to severe
accuracy problems. The solution is to formulate the Monte
Carlo wave function method in terms of the ‘‘delay func-
tion’’ @18#. The quantum jumps are then not decided from
the expression~4!, linear in the ‘‘small’’ time stepdt, and
the user may apply a more accurate numerical integration
technique, e.g., higher order Runge-Kutta, suitable for the
derivation of the delay function and the wave function in the
problem; this point is particularly relevant for the nonlinear
situations to be described, where an adaptive stepsize control
for the integration scheme may be required.

For any Hermitian operatorB, the expectation value
^c(t)uBuc(t)& is now a stochastic variable, and the corre-
spondence between the Monte Carlo simulation and the so-
lution of the master equation implies that

Š^c~ t !uBuc~ t !&‹5 Tr@r~ t !B#, ~6!

where^•••& denotes the average over an infinite number of
independent realizations, andr(t) is the exact solution of
Eq. ~1!.

In practice one deals with a finite numbern of re-
alizations. The finite sample estimate of the mean value
of B, b(n)5(1/n)( i51

n ^c i(t)uBuc i(t)&, is itself a stochastic
variable. The precision with whichb(n) approximates
Tr@r(t)B# is thus related to the fluctuations in this stochastic
variable. To determine these fluctuations one would in prin-
ciple have to repeat the simulation withn wave functions a
large number of times, and from this calculate the mean and
the variance. This procedure is well known in the present
case of linear master equations, because the various wave
functions are statistically independent. It is useful, however,
to give here a detailed discussion in order to facilitate the
transposition to the case of nonlinear master equations. We
therefore define the averages over repetitions of the simula-
tion with n wave functions:

^b~n!& rep5K1
n(i51

n

^c i~ t !uBuc i(t)&L
rep

, ~7!

varrep~b
~n!![k~b~n!!2lrep2^b~n!& rep

2 . ~8!

Inserting the expression forb(n) in this equation we obtain

varrep~b
~n!!5

1

n2 (
i , j51

n

Š^c i~ t !uBuc i~ t !&^c j~ t !uBuc j~ t !&‹rep

2^b~n!& rep
2 . ~9!

We now make use of the following identities, expressing the
fact that the expectation values^c i(t)uBuc i(t)& are indepen-
dent stochastic variables:

Š^c i~ t !uBuc i~ t !&‹rep5Š^c~ t !uBuc~ t !&‹, ~10!

Š^c i~ t !uBuc i~ t !&^c j~ t !uBuc j~ t !&‹rep5Š^c~ t !uBuc~ t !&2‹

for i5 j ~11!

5Š^c~ t !uBuc~ t !&‹2 for iÞ j . ~12!

This leads to

^b~n!& rep5Š^c~ t !uBuc~ t !&‹, ~13!

varrep~b
~n!!5

1

n
var~^cuBuc&!. ~14!

The variance scales as 1/n, which implies that the error bars
shrink as 1/An as usual for sampling statistics. In explicit
numerical implementations only one realization is made with
n wave functions and the quantity var(^cuBuc&) is esti-
mated by the sample variance

1

n21(i51

n

@^c i~ t !uBuc i~ t !&2b~n!~ t !#2 ~15!

as discussed in more detail in@14#.
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III. SIMULATION ALGORITHM FOR NONLINEAR
MASTER EQUATIONS OF PARAMETRIZED

LINDBLAD TYPE

We assume a physical problem leading to the first order
differential equation in time:

d

dt
r5F@r#NL , ~16!

wherer is a density matrix andF acts nonlinearly onr as
indicated by the subscript ‘‘NL.’’

To make the following discussion less abstract we shall
refer to the example of spontaneous emission ofN two-level
atoms~ground stateg and excited statee) in the case where
all atoms are assigned the same classical center-of-mass po-
sition. In the absence of a mean atomic dipole, the excited
state population of the atoms may be described by the phe-
nomenological equation for superradiance@19#:

d

dt
ree52G@11~N21!~12ree!#ree. ~17!

It is written here without a geometrical reduction factor and
we have replacedN by N21 to recover the usual one-atom
case forN51. The coefficientG denotes the single atom
spontaneous emission rate. This equation will be derived as
an example of the Bloch-Hartree-Fock equations in Sec. V.

In the nonlinear case we do not have an equivalent of
Lindblad’s theorem, giving a necessary form toF ensuring
that the norm and positivity ofr is conserved in Eq.~16!.
We propose a class of equations which we believe will em-
brace most of the relevant nonlinear master equations.

First, we write Eq.~16! in the suggestive parametrized
form:

d

dt
r5L~s!@r#, ~18!

s5r, ~19!

where the Liouvillian operatorL(s) acts linearly on the den-
sity matrix r, without necessarily being a linear function of
its density matrix arguments. It should be expected that the
derivation of the nonlinear master equation would lead to
such a parametric appearance ofF@r#NL . For example, in a
mean field treatment,s represents the density matrix for the
other atoms in the sample, and Eq.~19! represents the self-
consistency in such a treatment. For the superradiance ex-
ample, such a parametrization is clearly possible: Equation
~17! is equivalent to the usual equation for the single atom
decay problem but with an effective rateGeff5G@1
1(N21)(12see)], where as in Eq.~19!, see5ree. We
note that the parametrized form~18! and ~19! does not gen-
erally defineL(s) in a unique way. For example, a product
of two density matrix elementsr i jrkl appearing on the right-
hand side~RHS! of Eq. ~16! may both be represented by
s i jrkl and byr i jskl . Similarly, a HamiltonianH(s) may be
replaced byH(s)1 f (s), wheref (s) is anyc-number func-
tion, without changing the pertaining commutator in the mas-
ter equation Eq.~16!.

Second, we suppose thatL(s)@r# can be put in the Lind-
blad form Eq.~1! where theCm operators and the Hamil-
tonian H may now depend on the density matrixs. The
existence of such aparametrized Lindblad formis crucial for
our ability to simulate the master equation with Monte Carlo
wave functions. Note that this will at the same time ensure
that Eq.~16! preserves all the desired properties of a density
matrix.

It is not evident that a nonlinear master equation will
naturally appear in this form. Using the nonuniqueness of
L(s), however, one may succeed in bringing Eq.~16! into
the desired form. We treat here in detail the case of a non-
linear term of the form

d

dt
r52

1

2
$W~r!,r%[2

1

2
@W~r!r1rW~r!#, ~20!

which will appear in the physical examples of Sec. V. We
assume that in this equation the operatorW(r) is Hermitian
for any Hermitian matrixr so that the density matrixr re-
mains Hermitian. The trace ofr has to be preserved by Eq.
~20!, which implies

Tr@W~r!r#50 ~21!

for any r. We want to bring Eq.~20! into the parametrized
form ~18! and ~19! where the LiouvillianL(s)@r# is of the
Lindblad form. Eq.~20! contains the equivalent of the first
term on the RHS of Eq.~1!, but the ‘‘sandwich-term’’ is
missing. We use Eq.~21! to provide such a term vanishing
for s5r @20#:

L~s!@r#52
1

2
$W~s!,r%1 Tr@W~s!r#s. ~22!

A second step is to ensure that the last term in Eq.~22! is
positive. This is not immediately the case as shown by Eq.
~21!, but it can be made positive whenW(s) is bounded
from below, i.e., when one can find a real numberg(s) such
thatW(s)1g(s) is positive. This is the case in the physical
discussion of Sec. V. ReplacingW(s) by W(s)1g(s) we
finally obtain instead of Eq.~20!:

L~s!@r#52
1

2
$W~s!1g~s!,r%1 Tr@~W~s!1g~s!!r#s.

~23!

One can then check that this expression reduces to the right-
hand side of Eq.~20! for s5r. It can furthermore be put in
the parametrized Lindblad form, with jump operators
Cm1 ,m2

5Apm1
um1&^m2u@W(s)1g(s)#1/2, where $um&% is

the set of eigenstates ofs(t): s5(mpmum&^mu. This dis-
cussion is also relevant whens[r0 is a fixed density matrix
andW(s)[0. Equation~23! in this case reduces to the lin-
ear inhomogeneous master equation often used to describe
open systems where particles enter at a certain rateg with a
given density matrixr0 and leave the sample by some loss
mechanism@21#.

We now turn to the wave-function treatment of nonlinear
master equations of parametrized Lindblad form. Clearly, for
any fixed value ofs(t) one is able to simulate Eq.~18!
which is linear inr with the usual algorithm Eq.~5!. The fact
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thats should be set equal tor at each time step@according
to Eq. ~19!# leads to the following suggestion: A large num-
ber n of wave functions are evolved in parallel, and we as-
sume that at timet these wave functions produce a good
approximation to the density matrixr(t). In the subsequent
time evolution of the wavefunctions, the nonlinearity is ac-
counted for by constructing the currents(t) by the approxi-
mation

s~ t !5r~n![
1

n(i51

n

uc i
~n!~ t !&^c i

~n!~ t !u. ~24!

Thiss(t), treated as a parameter, now yields the linear mas-
ter equation forr(t), Eq. ~18!, which is simulated by the
Monte Carlo wave functions in the usual way. It is important
that the wave functions are propagated in parallel, so that
s(t) can be updated with sufficient precision for the subse-
quent time evolution. This procedure yields the correct result
for n→`. For a finiten, however, one expects a systematic
error ~bias! due to the approximation in Eq.~24!. That is, in
addition to the statistical error, found also in the linear case,
a discrepancy with the exact density matrix is due to the use
of inaccurate terms in the LiouvillianL(s) inferred from Eq.
~24!. Also, then wave functions in a given realization are no
longer statistically independent, so that the statistical error
cannot be estimated from a single realization as in Eq.~15!,
and the scaling law for the statistical error is not obvious.
Section IV is devoted to a discussion of these aspects.

Our simple superradiance example illustrates these fea-
tures. For this problem the simulation algorithm is particu-
larly simple: we start with a numbern of wave functions, all
equal to the excited state vector at timet50. This number of
wave functions should not be confused with the number of
atoms,N. At any time during the evolution, each wave func-
tion may experience a quantum jump, collapsing it to the
ground state with a transition rate given byGeff , the previ-
ously collapsed wave functions remaining forever equal to
the ground state vector. As the simulation proceeds, the
value ofGeff increases according to the current numberng of
wave functions equal to the ground state vector,
Geff5G1G(N21)ng /n. This causes the known deviation
from the exponential decay law.

By taking a small number of wave functions we may
readily explore the bias effects mentioned above. With only
one wave function, the decay rateGeff is seen to have the
constant valueG until the state is collapsed onto the ground
state vector, i.e., irrespective of the value ofN the simulation
proceeds as a simulation of usual single atom decay. Already
with two wave functions a difference appears: initially we
have the single-atom decay rateG, but as soon as one of the
states has been collapsed into the ground state, the decay rate
for the remaining state vector attains the larger value
Geff5(N11)G/2. Averaged over a large number of realiza-
tions, this will produce a nonexponential behavior for the
mean excited state population. With the notation of Sec. II,
(B5ue&^eu), we get

^b~2!~ t !& rep5
N21

N23
exp~22Gt !2

2

N23
exp„2~N11!Gt/2….

~25!

The convergence ofb(n)(t) towards the density matrix result

ree~ t !5
N

N211exp~NGt !
~26!

for increasing values of the number of wave functionsn can
be followed in Fig. 1. For each value ofn the n-step solid
curve corresponds tob(n)(t) for a single realization, the
smooth solid curve corresponds to the average^b(n)(t)& rep of
b(n)(t) over a large number of realizations, and the dashed
line represents the exact solution Eq.~26!. The number of
atoms isN510 in the figures. It will be shown in the next
section that for this particular superradiance problem a num-
ber of wave functionsn@N is required in the simulation in
order to produce accurate results. In the numerical calcula-
tion, as emphasized in the preceding section, we use the
technique of the ‘‘delay function’’@18# to avoid time dis-
cretization errors.

We end this section with a practical consideration on the
simulation of the nonlinear master equation~20!; this will be
useful in Sec. VI. Our presentation of the jump operators
Cm1 ,m2

after Eq.~23! might indicate that a costly diagonal-

ization ofs is required for each time stept where a quantum
jump occurs. Fortunately this is not necessary. According to
Eq. ~24!, s(t) is already obtained in the simulation as a
statistical mixture of statesuc i(t)&. Equation~23! can then
also be represented by jump operatorsCj ,m(t)
5(1/An)uc j (t)&^emu@W„s(t)…1g„s(t)…#1/2, where j ranges
from 1 to n and where$uem&% is any orthonormal basis.
Cj ,muc i(t)& is proportional to uc j (t)& for any m, and if
the wave functionuc i(t)& experiences a quantum jump
at time t1dt, which occurs with a probabilitydp
5^c i(t)uW„s(t)…1g„s(t)…uc i(t)&dt, either nothing hap-
pens (i5 j ) or it is simply replaced by another member
uc j (t)& of the current ensemble of Monte Carlo wave func-

FIG. 1. Excited state population as function of time for a num-
ber ofN510 atoms in the superradiance model. Predictions of the
Monte Carlo method are shown for various numbersn of wave
functions: the curves with jumps correspond to a single realization
with n wave functions, the solid curves are the averages over
64 000 realizations. Numerical errors are reduced by use of the
‘‘delay function’’ technique. The dashed line is the exact density
matrix result.
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tions. The relative probability of a collapse to a specific
uc j (t)& is (muuCj ,muc i(t)&uu2/(dp/dt)51/n, and one simply
has to choosej with uniform weights on the numbers be-
tween 1 andn.

IV. CONVERGENCE PROPERTIES OF THE SIMULATION
IN THE NONLINEAR CASE

The aim of the calculation is to determine the mean value
of some operatorB, b(t)[ Tr@r(t)B#, wherer is the exact
solution of Eq.~16!. When the master equation~16! can be
put in the parametrized Lindblad form, a simulation byn
Monte Carlo wave functions is possible, where the maximal
value of n in the numerical implementation is limited by
both the calculation time and the required memory. The re-
sult of the simulation is a stochastic variableb(n)(t)
5 Tr@r (n)(t)B#, where the density matrixr (n)(t) is given by
Eq. ~24!.

To estimate to which extentb(n)(t) is a good approxima-
tion of b(t), we consider, as in Eqs.~7! and~8!, the average
and the variance ofb(n)(t) over an infinite number of real-
izations of then wave-function simulation. To ease our no-
tation we will omit the subscript ‘‘rep’’ in what follows. We
define a systematic error~a ‘‘bias’’ ! due to the finite size of
the sample and a statistical uncertainty:

Bias[^b~n!~ t !&2b~ t !, ~27!

~Uncertainty!2[ var~b~n!~ t !! ~28!

5^„ Tr~r~n!B!…2&2„ Tr~^r~n!&B!…2

5 Tr@~^r~n!
^ r~n!&2^r~n!& ^ ^r~n!& !~B^B!#. ~29!

We have introduced the tensor productsB^B and
r (n)^ r (n) and used the definition of the trace on the tensor
product space which yields Tr@(r (n)^ r (n))(B^B)#
5( Tr@r (n)B#)2.

From Eq.~24! it appears that the expanded form of the
tensor productr (n)^ r (n) involves two types of terms. The
first type is a product of dyadicsuc i

(n)&^c i
(n)u ^ uc j

(n)&^c j
(n)u

with iÞ j @n (n21) terms#; as discussed below, the mean of
such a product is expected to decorrelate in the limit of
n→`. The second type of term hasi5 j in the tensor prod-
uct (n terms!; the mean of such a product does not decorre-
late even forn→`. It is therefore necessary to consider the
behavior of such individual terms, and we introduce the no-
tation

Oi
~n!~ t ![uc i

~n!~ t !&^c i
~n!~ t !u, ~30!

Oi , j
~n!~ t ![Oi

~n!~ t ! ^Oj
~n!~ t !•••. ~31!

The expressions leading to the bias and the statistical uncer-
tainty in Eqs.~27! and ~29! now read:

^b~n!~ t !&2b~ t !5 Tr~^dO1
~n!&B!, ~32!

var„b~n!~ t !…5
1

n
Tr@~^dO1,1

~n!& !~B^B!#

1
n21

n
Tr@^dO1,2

~n!~ t !&~B^B!#, ~33!

where the additional quantities have been introduced:

^dO1
~n!&[^O1

~n!&2^O1
~`!&, ~34!

^dO1,1
~n!~ t !&[^O1,1

~n!~ t !&2^O1
~n!~ t !& ^ ^O1

~n!~ t !&, ~35!

^dO1,2
~n!~ t !&[^O1,2

~n!~ t !&2^O1
~n!~ t !& ^ ^O1

~n!~ t !&. ~36!

In the derivation of Eqs.~32! and~33! we have taken advan-
tage of the interchangeability of then wave functions which
allows us to replace mean values^Oi , j

(n)& by ^O1,1
(n)& or

^O1,2
(n)& depending on whetheri5 j or iÞ j .

FIG. 2. Superradiance model forN510 atoms;~a! systematic
bias and~b! statistical uncertainty on the excited state population in
the Monte Carlo wave-function results, for increasing numbersn of
wave functions. To display the scaling withn we have multiplied
the bias byn and the statistical uncertainty byn1/2. The line
n5` is the analytical prediction. As in Fig. 1, the averages are
performed over 64 000 realizations.
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The form of Eq.~33! is logically split into two terms. For
a linear master equation problem, the first one scaling as
1/n is identical to the expression Eq.~14!, and the second
one, which explicitly involves the statistical correlation be-
tween the wave functions, exactly vanishes in this case. In
the nonlinear case, the wave functions are coupled and the
second term will in general not vanish for a finiten. We shall
present arguments below showing that this contribution van-
ishes as 1/n for largen, which could not be simply inferred
from the behavior of the (n21)/n prefactor. In this limit
n→` the first term retains the usual interpretation of a
sample variance for wave functionsuc i

(n)(t)& simulating the
parametrized equation~18! with s(t)5^O1

(`)& being the ex-
act solution of the master equation. An interesting feature
due to the same 1/n scaling law of both terms in Eq.~33! is

therefore that the sample variance estimate Eq.~15! does not
give the correct statistical uncertainty for a simulation of a
nonlinear master equation.

The average of the quantities defined in Eqs.~30! and~31!
is required to estimate the convergence of the proposed
simulation scheme towards the exact density matrix result.
We shall now derive equations of motion for these averages.

Consider the Monte Carlo wave functionuc1
(n)(t)& at time

t. Its time evolution fromt to t1dt proceeds as given by Eq.
~5!, but with theCm operators andHeff in Eq. ~1! now de-
pending on then wave-function estimate of the density ma-
trix Eq. ~24! at time t. According to Eq.~5! the average of
O1
(n)(t1dt) over all possible realizations@no jump with

probability 12dp, jump to one of theCmuc1
(n)(t)& with

probability dpm# reads

O1
~n!~ t1dt!5~12dp!

~11~dt/ i\!Heff„r
~n!~ t !…#O1

~n!~ t !@12~dt/ i\!Heff
†
„r~n!~ t !…#

A12dpA12dp

1(
m

dpm
Cm„r

~n!~ t !…O1
~n!~ t !Cm

†
„r~n!~ t !…

Adpm /dtAdpm /dt
. ~37!

After cancellation of 12dp and of thedpm’s one recognizes
the evolution duringdt due to the Liouvillian of param-
etrized Lindblad form. With a further average over all pos-
sible realizations between the initial time of the evolution
and the timet, we get

d

dt
^O1

~n!~ t !&5^L„r~n!~ t !…@O1
~n!~ t !#&. ~38!

In the linear case one directly obtains the agreement between
the master equation and the Monte Carlo wave-function
simulation. Due to ther (n) dependence of the Liouvillian in
the nonlinear case the right-hand side of Eq.~38! may differ
from the a priori required form L(^r (n)&)@^O1

(n)&#. We
should expect, however, that in the limit of largen the sto-
chasticr (n) fluctuates less and less so thatL(r (n)) may be
considered as a constant in the mean value calculation.

Equation~38! is not closed in̂O1
(n)&, and in the Appendix

we shall expand the dependence ofL(r (n)) on r (n) in order
to obtain a hierarchy of equations couplinĝO1

(n)&,
^O1,2

(n)&, . . . . The solution of this hierarchy ascertains the
above expectation, whenL(r) depends polynomially onr:
the proposed procedure converges to the exact density matrix
results in the limit of largen. More precisely, simulations
performed in the way proposed withn wave functions repro-
duce the mean values with a bias, Eq.~27!,

Bias}
1

n
, ~39!

and within a statistical uncertainty, Eq.~29!,

Uncertainty}
1

An
. ~40!

The values of the time dependent coefficients in the propor-
tionality relations~39! and~40! are also relevant in practice:
as mentioned in the Appendix, they can be subject to ampli-
fication when the solution of the nonlinear master equation is
unstable, a situation that is not forbidden by the parametrized
Lindblad form and leads to convergence problems in the
simulation for too long interaction times.

In the Appendix explicit equations are given in the limit
n→` for the statistical uncertainty and for the bias in the
case of an affine dependence Eq.~A1! of L(s) on s @see
Eqs. ~A8!, and ~A10!#. For the simple model of superradi-
ance discussed in Sec. III, we have found an analytical solu-
tion to these equations. The corresponding predictions for the
bias and the statistical uncertainty in the excited state popu-
lation (B5ue&^eu) are shown as function of time in Fig. 2.
To display the scaling of these quantities withn we have
multiplied them byn andAn, respectively.

We have also plotted in Fig. 2 the exact bias~times n)
and the exact statistical uncertainty~timesAn) for the finite
values ofn considered in Fig. 1. Note that this bias is simply
obtained as the difference between the smooth solid curves
~average over a large number of realizations! and the dashed
line ~exact master equation result! in Fig. 1. The convergence
of the numerical results to the asymptotic analytical ones is
observed in Fig. 2, asn increases.

The analytical formulas for the bias and the statistical
uncertainty in the excited state population are involved but
can be simplified in the limit of a large number of atoms
N:
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Bias[^ree
~n!&2ree.reergg

2 N/n, ~41!

~Uncertainty!2[ var~ree
~n!!.ree

2 rgg
2 N/n, ~42!

whereree
(n) is the mean excited state population obtained by a

single simulation withn wave functions, andree is the exact
excited state population Eq.~26!.

V. PHYSICAL EXAMPLES OF NONLINEAR
MASTER EQUATIONS

In this section, we consider a real physical system, a gas
of N atoms coupled by the electric dipole interaction to the
electromagnetic field. A nonlinear master equation for the
one-atom density matrixr1 has been derived by several au-
thors@7,8#. In Ref. @7# the starting point is a master equation
for theN-atom density matrixr1,2, . . . ,N . From this equation
a master equation for the one-atom densityr1 is derived,
involving a coupling to the two-atom density matrixr1,2; it
is turned into an approximate closed equation forr1 through
Hartree or Hartree-Fock approximations tor1,2.

A. General Bloch-Hartree-Fock equations

The nonlinear equation obtained by the Hartree approxi-
mationr1,2[r(1,2).r1(1)^ r1(2) has a simple interpreta-
tion in terms of the coupled Maxwell-Bloch equations used
to described the propagation of a classical field through an
atomic medium@9#. In these equations the atom 1 is consid-
ered as a probe particle; it is driven by the field

EW d5EW 1
1

3«0
PW . ~43!

The first termEW (rW,t) is the sum of the incoming laser field,
EW L(rW,t) and of the mean field created by theN21 other
atoms. The second term containing the density of polariza-
tion PW (rW,t) created by theN21 atoms is a local field cor-
rection @22#. In the case of a monochromatic laser field of
angular frequencyvL we introduce the positive frequency
componentsEWd of the driving field,EWL of the laser field, and
PW of the polarization of the medium. That is, the driving field
is decomposed as

EW d~rW,t !5EWd~rW !e2 ivLt1 c.c. ~44!

and similar relations hold for the laser field and the polariza-
tion. Equation~43! then reduces to

EWd~rW !5EWL~rW !1
1

«0
E d3rW8@ g̃~rW2rW8!#PW ~rW8!, ~45!

with the expression for the 333 matrix @ g̃(rW)#
(a,b5x,y,z) giving the field radiated by a dipole for
rWÞ0:

g̃ab~rW !52E d3kW

~2p!3(«W'kW
ck«a«be

ikW•rW

3
1

2 S 1

vL2ck1 i012
1

vL1ck1 i01D 2
2

3
dabd~rW !

52
kL
3

4p

eikLr

kLr
F S 11

3i

kLr
2

3

kL
2r 2D r ar b

r 2

2S 11
i

kLr
2

1

kL
2r 2D dabG . ~46!

The expression Eq.~45! is inserted into the optical Bloch
equation for the density matrix of atom 1,

d

dt
r1~ t !5L@r1~ t !#1

1

i\
@2DW 1•EW d~RW 1 ,t !,r1~ t !#, ~47!

whereRW 1 is the atomic center-of-mass position operator and
DW 1 is the atomic dipole operator. In Eq.~47! the Liouvillian
L incorporates the atomic kinetic and internal energies and
the effect of spontaneous emission. In a mean field treatment
the same one-atom density matrix is used for all atoms and
the driving electric field in Eq.~45! depends onr1 through
the mean polarization densityPW :

PW ~rW,t !5~N21!Tr„r1~ t !d~rW2RW 1!DW 1… ~48!

~with a trace Tr taken over both internal and external atomic
degrees of freedom!. Finally, one is left with a nonlinear
master equation forr1. This equation is clearly in the param-
etrized Lindblad form Eq.~18! with L(s) having an affine
dependence ons, and it can be simulated by Monte Carlo
wave functions. We shall refer to this equation as the Bloch-
Hartree master equation. A discussion of its validity can be
found in @9#.

A nonlinear equation with a further approximation is ob-
tained if one assumes that theN-particle system is described
by a pure state which factors into a product ofN identical
effective single particle state vectors~Hartree wave func-
tion!. Dissipation of a kind that formally preserves this prop-
erty has been studied by Goldsteinet al., and the application
of Monte Carlo wave functions has been discussed@23#.

When quantum statistical effects caused by the bosonic or
fermionic nature of the atoms come into play, the Hartree
approximation has to be supplemented by an exchange term,
as it is done in the Hartree-Fock approximation for the two-
atom density matrix:

r1,2~1,2!.~11hP1,2!@r1~1! ^ r1~2!#, ~49!

where P1,2 exchanges the states of particles 1 and 2, and
whereh511 for bosons,h521 for fermions. This for-
mula~49! may be applied only to weakly degenerate systems
@Tr(r1

2)!1#, since otherwise the two-particle density matrix
does not have unit trace~we shall come back to this point
and an alternative symmetrization ansatz in Sec. V B!.

The extra term in the master equation due to this ex-
change correction reads
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S ddt r1D
exch

5
1

i\
@Hexchr12r1Hexch

† #, ~50!

We have introduced the exchange Hamiltonian, depending
on s5r1 and acting onr1:

Hexch~s!r15h~N21!Tr2F21

«0
S (

a,b
g̃ab~RW 12RW 2!D1,a

~1 !

3D2,b
~2 !1 H.c.DP1,2@r1~1! ^ s~2!#G . ~51!

The superscripts~1/2! stand for the raising or lowering
parts of the atomic dipole operatorsDW 1 andDW 2 for the atoms
1 and 2. A more transparent form can be obtained, without
the permutation operatorP1,2, by performing explicitly the
trace over atom 2. The result reads in the continuous basis of
localized atomic states,

^rWuHexch~s!urW8&52h~N21!/«0(
a,b

@ g̃ab~rW2rW8!Da
~1 !

3^rWusurW8&Db
~2 !1g̃ab* ~rW2rW8!Da

~2 !

3^rWusurW8&Db
~1 !#, ~52!

where the asterisk stands for the complex conjugate.
It appears thatHexch(s) has no matrix element between

the internal atomic ground state and the internal atomic ex-
cited state, it merely consists of a complex and spatially non-
local modification of the energy of the atomic levels. The
real part ofg̃ab(rW) obviously gives rise to the Hermitian part
of Hexch(s): it leads to a shift of the atomic energy levels,
which will modify, e.g., the polarizability of the gas@24#.

The imaginary part ofg̃ab(rW) gives rise to the anti-
Hermitian part ofHexch(s), which is as in Eq.~20! conve-
niently characterized by the operator

\W~s![ i @Hexch~s!2Hexch
† ~s!# ~53!

so that a positive contribution toW is a departure rate, a
negative one is a feeding rate. Transforming Eq.~52! with
the help of the Fourier decomposition of the imaginary part
of g̃ab leads to the more explicit operatorial form for
W(s):

W~s!5h~N21!
3G

8pE d2nW (
«W'nW

eikLn
W
•rW@~DW ~1 !

•«W !s~DW ~2 !
•«W !

2~DW ~2 !
•«W !s~DW ~1 !

•«W !#e2 ikLn
W
•rW, ~54!

whered2nW stands for the usual invariant integration over the
unit sphere (unW u51). We have introduced in Eq.~54! the
dimensionless operator

DW 5DW /d, ~55!

where the constantd is the electric dipole moment of the
atomic transition; the matrix elements ofDW in the standard
angular momentum basis are simply Clebsch-Gordan coeffi-

cients.G5d2kL
3/3p«0\ is the rate of spontaneous emission.

Equation~54! shows that for bosons (h51),W(s) is nega-
tive in the internal atomic ground state and positive in the
internal atomic excited state; the conclusion is reversed for
fermions (h521).W therefore represents the expected en-
hancement or reduction of transition rates associated to Bose
or Fermi statistics. Note that the effect of the positive and
negative parts ofW on the total population cancel: in the
nonlinear master equation, ther1 dependence ofHexch en-
sures that Eq.~50! preserves the trace ofr1.

The incorporation of Eq.~50! into the Bloch-Hartree Eqs.
~47! leads to an equation of motion forr1 which we refer to
as the Bloch-Hartree-Fock equation. This equation is not of
the parametrized Lindblad form: the Hermitian part of
Hexch is treated in the usual way, but the non-Hermitian part
is not compensated by a ‘‘sandwich’’ term. In order to pro-
vide a simulation scheme for the Bloch-Hartree-Fock equa-
tion we thus need a means to treat a master equation of the
form

d

dt
r52

1

2
$W~r!,r%1LLind~r!@r#, ~56!

where the LiouvillianLLind(r) is of the parametrized Lind-
blad type. We have shown already in Sec. III that the type of
nonlinear term$W(r),r% can be put in a parametrized Lind-
blad form also, with a Liouvillian given by Eq.~23!. As
explained in Sec. III, one has to boundW(s) from below
with some~negative! number2g(s), which is clearly pos-
sible here @see Eq. ~54!, uuW(s)uu is bounded by
3G(N21)#.

Once this form~23! has been obtained it can be straight-
forwardly simulated: As above, see Eq.~24!, the Monte
Carlo wave functions are used to provide the value ofs.
Each wave functionuc i

(n)& in a simulation withn wave func-
tions is now propagated as follows. With a probability
12dp, where dp5 idt^c i

(n)(t)uHeff2Heff
† uc i

(n)(t)&/\,
uc i

(n)(t)& is evolved duringdt according to the effective
Hamiltonian

Heff5Heff
Lind2 i\@W~s!1g~s!#/2, ~57!

where the first term is the regular contribution ofLLind , and
uc i

(n)& is subsequently renormalized. With the probability
dp, uc i

(n)& experiences a quantum jump. This quantum jump
can be of two types. Type 1 is generated by the sandwich
terms of LLind in the usual way; it has the probability
dp15 idt^c i

(n)(t)uHeff
Lind2Heff

Lind†uc i
(n)(t)&/\. Type 2 corre-

sponds to the exchange jumps discussed at the end of Sec.
III: uc i

(n)& is collapsed to one of theuc j
(n)(t)& where j is

chosen with uniform weights on the numbers between 1 and
n.

B. Application to superradiance

The phenomenon of superradiance is often considered in
the limiting case of atoms localized within a region much
smaller than the optical wavelength. In principle this should
lead to strong resonant dipole-dipole interaction between
ground and excited state atoms, diverging as 1/r 3 with the
interatomic distancer . The effect of this interaction is
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present in the real part ofg̃ab(rW). It is generally neglected
~see@25# for a discussion of this approximation! and one is
left with the so-called Dicke model. The atoms are then all
localized inrW50:

r1, . . . ,N~ t !5ur 1W50, . . . ,r NW50&^r 1W50, . . . ,r NW50u

^ s1, . . . ,N~ t !, ~58!

s1, . . . ,N(t) being a purely internal matrix, and the radiated
field ~46! is replaced byi times its imaginary part inrW50:

2
d2

«0
g̃ab~rW !→2

i\G

2
dab . ~59!

We want to emphasize here that the Hartree-Bloch-Fock
equations simplified in the Dicke limit reduce, in the absence
of laser light, to the standard phenomenological equation for
superradiance~17!, provided that Bose statistics (h51) is
considered. At this stage the consideration of quantum sta-
tistical properties of the atoms may seem surprising: super-
radiance can take place even if the atoms are distinguishable
entities with identical resonance frequencies. The use of
bosonic statistics~rather than fermionic or boltzonic statis-
tics! is dictated by the internal symmetry of the initial atomic
state: if all the atoms are prepared initially in the excited
state,s1, . . . ,N(t50) has the bosonic symmetry~completely
symmetric eigenstates! and keeps this symmetry by further
evolution, because the atoms are coupled the same way to
the electromagnetic field. Contrary to the derivation of Eq.
~17! presented in@19#, which intermediately assumes a non-
vanishing mean dipole moment, the collective atomic behav-
ior here appears as an exchange effect — like in the Dicke
model no optical coherences are postulated.

As a side remark we wish to come back to the Hartree-
Fock symmetrization ansatz~49!. This expression has two
problems, which are particularly severe close to pure state
situations: it does not have unit trace

Tr1,2@~11hP12!r1~1! ^ r1~2!#511hTr1„r1
2~1!…Þ1 ,

and it does not yield the single atom density matrixr1(1) by
a partial trace,r1(1)ÞTr 2r1,2(1,2). If we want to deal with
the natural initial state for superradiance, the pure state with
all atoms excited att50, we may therefore worry that the
ansatz~49! does not lead to an appropriate nonlinear master
equation. However, a better Hartree-Fock ansatz can be ob-
tained by diagonalizings1:

s15paua&^au1pbub&^bu ~60!

and by symmetrizing and normalizing the product states in
each dyadic term ins1^ s1 independently:

uaa&→uaa&,

ubb&→ubb&,

uab&,uba&→
1

A2
~ uab&1uba&). ~61!

In the absence of laser light,s1 is diagonal in theue&,ug&
basis (a5e,b5g) and contrary to Eq.~49! the resulting ap-
proximation fors1,2 for h51,

s1,2.pe
2uee&^eeu1pepg~ ueg&1uge&)~^egu1^geu!

1pg
2ugg&^ggu, ~62!

has both Tr2(s1,2)5s1 and it is correctly normalized.
Equation~49! differs from Eq.~62! by double counting of

the first and the last terms in the latter equation, and accord-
ing to Eq.~50! it provides an extra contribution

Tr2@~D1,a
~1 !D2,b

~2 !1 H.c.!~pe
2uee&^eeu1pg

2ugg&^ggu!#50
~63!

to the master equation. The fact that this contribution van-
ishes implies that the questionable approximation~49! leads
to the same master equation fors1 as the more correct ansatz
~62!.

The agreement between the master equations following
from Eqs. ~49! and ~62! holds in the absence of a driving
field only. When a laser is present, the eigenstates ofs1
become time dependent and they no longer coincide with
ue&,ug&. We have here checked numerically that the predic-
tions of the Dicke model are more accurately reproduced by
the application of the symmetrizations~61! in this case.

C. In the low saturation regime

The Bloch-Hartree-Fock master equation can be simpli-
fied when the atomic sample is subject to laser cooling. In-
deed laser cooling routinely leads to a mean atomic kinetic
energy on the order of a few recoil energies\2kL

2/2M or less
(kL5vL /c is the laser wave vector!. In the usual regime of a
broad linewidth (\G@\2kL

2/2M , whereG is the spontaneous
emission rate!, this allows one to neglect the atomic motion
in the internal excited state:

K p2

2M L !\G. ~64!

Furthermore in laser cooling configurations the laser field
is often sufficiently detuned from the atomic resonance that
the fraction of atoms in the internal excited state remains
small. In this low saturation regime the coupling from the
internal ground state to the internal excited state by the driv-
ing field in the medium~45! can be treated perturbatively:

uVadu2!\2~d21G2/4!. ~65!

d5vL2vA is the detuning between the laser frequency and
the resonance frequency of the atom. The symbolVad stands
for the atom-driving field coupling operator:

Vad5Vad
~1 !1Vad

~2 !5Vad
~1 !1 H.c. ~66!

Vad
~1 !52DW ~1 !

•EWd~rW !, ~67!

whereDW (1) is the raising part of the atomic dipole operator.
Note that the time dependence of the atom-driving field cou-
pling at the angular frequencyvL has been suppressed by
use of a ‘‘rotating frame’’ at the same frequency.
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In the absence of collective effects (N51) it is known
that the internal atomic excited state can be eliminated adia-
batically @26# when both conditions~64! and ~65! are satis-
fied. One is left with a master equation on the restriction of
the density matrix to the internal ground state, (r1,gg). It is
possible to generalize this calculation to the Bloch-Hartree-
Fock equations forNÞ1 and we briefly give the main steps
of the derivation.

First, we write explicitly the equations of motion for ma-
trix elements between states from either the same or different
internal energy manifolds:

d

dt
r1,eg5

1

i\
@2\d2 i\G/21~Hexch!ee#r1,eg1

1

i\
Vad

~1 !r1,gg ,

~68!

d

dt
r1,ee52Gr1,ee1

1

i\
@~Hexch!eer1,ee2r1,ee~Hexch!ee

† #

1
1

i\
~Vad

~1 !r1,ge2r1,egVad
~2 !!, ~69!

d

dt
r1,gg5

1

i\ F S p22M
1~Hexch!ggD r1,gg1Vad

~2 !r1,eg

2r1,ggS p22M
1~Hexch!gg

† D2r1,geVad
~1 !G

1
3G

8pE d2nW (
«W'nW

DW ~2 !
•«W exp~ ikLnW •rW !r1,ee

3exp~2 ikLnW •rW !DW ~1 !
•«W . ~70!

DW is given by Eq.~55!. Taking advantage of Eq.~64! we
have kept the contribution of the atomic kinetic energy in the
evolution ofr1,gg only. According to condition~65! we have
neglected in Eq.~68! the coupling tor1,ee by Vad which
would account for saturation effects. In this equation we
have also disregarded the contribution of (Hexch)gg : it is pro-
portional to the excited state population@see Eq.~52!# and it
becomes much smaller than\G in the limit ~65!.

The last term in Eq.~70! involves a sum over the direction
nW (nW 251) and the polarization«W of the spontaneously emit-
ted photon.

From Eq.~69! one first expresses in the adiabatic approxi-
mation the optical coherences ofr1 in the rotating frame as a
function of the ground state elementsr1,gg :

r1,eg5
1

\d1 i\G/22~Hexch!ee
Vad

~1 !r1,gg, ~71!

where (Hexch)ee stands for the restriction of the exchange
Hamiltonian~51! to the internal excited state. In this expres-
sion the effect of the exchange Hamiltonian readily appears
as a modification of the atomic line. This modification indi-
cates that the optical response of the medium to a light field
is sensitive to quantum statistics. For example, Eq.~71! can
be used to derive the polarizability of a homogeneous Bose
gas (h51) for an atomic transition from aj g50 angular
momentum ground state to aj e51 angular momentum ex-
cited state. To second order in the atomic density, the result-

ing expression for the polarizability differs from the Lorentz-
Lorenz formula for a classical gas by the contribution of
(Hexch)ee. A rigorous derivation of the polarizability@24#
confirms the existence of this term; it also gives another qua-
dratic correction in the atomic density sensitive to the Bose
statistics, involving the effect of the resonant dipole-dipole
interaction between the atoms, which is left out in the
Hartree-Fock mean field treatment.

The next step is to obtain the excited state matrix ele-
ments. A slightly less straightforward derivation than the one
of the optical coherences leads to

r1,ee5
1

\d1 i\G/22~Hexch!ee
Vad

~1 !r1,ggVad
~2 !

3
1

\d2 i\G/22~Hexch!ee
† . ~72!

The last step is to use the expressions~71! and ~72! to
eliminate all the excited state matrix elements from the time
derivative of the ground state density matrix in Eq.~70!. The
substitution ofr1,eeby Eq.~72! gives rise to feeding terms of
the sandwich formCmr1,ggCm

† , where the indexm repre-

sents all possible directionsnW and polarizations«W . Departure

terms2 1
2 $Cm

†Cm ,r1,gg% counterbalancing these sandwich-
terms in the Lindblad form~1! appear when we transform the
contributions ofr1,eg andr1,ge to Eq.~70! according to iden-
tities of the typeA215(A†)21A†A21. This leads to the fol-
lowing nonlinear master equation for the ground state one-
atom density matrix:

d

dt
r1,gg5

1

i\
@Hr1,gg2r1,ggH†#

1
3G

8pE d2nW (
«W'nW

@C~nW ,«W !r1,ggC~nW ,«W !†

2 1
2 $C~nW ,«W !†C~nW ,«W !,r1,gg%#. ~73!

All the operatorsH andC(nW ,«W ),C(nW ,«W )† entering as coeffi-
cients in this master equation depend on the density matrix
r1,gg itself. The non-Hermitian HamiltonianH includes the
lightshift of the ground state internal sublevels by the driving
field plus the contribution of the ground state exchange
Hamiltonian (Hexch)gg :

H5
p2

2M
1~Hexch!gg1Vad

~2 !
1

\d2 i\G/22~Hexch!ee
†

3@\d2~Hexch!ee
† #

1

\d1 i\G/22~Hexch!ee
Vad

~1 ! .

~74!

The jump operatorsC(nW ,«W ) contain the quantum statistical
corrections to the atomic line:

C~nW ,«W !5DW ~2 !
•«W exp~2 ikLnW •rW !

3
1

\d1 i\G/22~Hexch!ee
Vad

~1 ! . ~75!
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Equation ~73! has the same structure as the Bloch-
Hartree-Fock master equation without elimination of the ex-
cited state. It can therefore also be simulated by Monte Carlo
wave functions, as illustrated in Sec. VI.

D. Rate equations with quantum statistical effects

It is possible to obtain physically suggestive equations
from the master equation~73!. The idea is to introduce the
time dependent orthonormal atomic basis diagonalizing the
density matrixr1,gg(t) at each timet:

r1,gg~ t !5(
n

Pg,n~ t !ug,n~ t !&^g,n~ t !u, ~76!

^g,n~ t !ug,n8~ t !&5dn,n8. ~77!

In this basis the time evolution of the populationsPg,n(t) is
given by

d

dt
Pg,n~ t !5

d

dt
@^g,n~ t !ur1,ggug,n~ t !&#

5^g,n~ t !uS ddt r1,ggD ug,n~ t !&1Pg,n~ t !F S ddt ^g,n~ t !u D ug,n~ t !&1^g,n~ t !uS ddt ug,n~ t !& D G
5^g,n~ t !uS ddt r1,ggD ug,n~ t !&1Pg,n~ t !

d

dt
@^g,n~ t !ug,n~ t !&#. ~78!

Since the state vectorsug,n(t)& are normalized to unity, the
last term in Eq.~78! vanishes and the time derivative of the
populations reduces to

d

dt
Pg,n~ t !5^g,n~ t !uS ddt r1,ggD ug,n~ t !& ~79!

A first type of contribution to Eq.~79! comes from the
Lindblad part of Eq.~73!, i.e., the part containing theC and
C† operators:

S ddtPg,n~ t ! D
Lind

5(
n8

~gg,n8→g,nPg,n82gg,n→g,n8Pg,n!.

~80!

The transition rates appearing in this system differ from the
transition rates in the single atom case because of the quan-
tum statistical corrections to the atomic line:

gg,n→g,n85
3G

8pE d2nW (
«W'nW

z^g,n8uC~nW ,«W !ug,n& z2. ~81!

A second type of contribution to Eq.~79! comes from the
anti-Hermitian part ofH. The first exchange term in Eq.~74!
is simply (Hexch)gg ; it leads to a modification of the feeding
term ofPg,n due to quantum statistics:

S ddtPg,n~ t ! D
exch,gg

5h~N21!(
n8

Pg,n8gg,n8→g,nPg,n .

~82!

The second exchange term in Eq.~74! involves (Hexch)eeand
leads to a quantum statistical correction of the departure rate
from ug,n&:

S ddtPg,n~ t ! D
exch,ee

52h~N21!(
n8

Pg,n8gg,n→g,n8Pg,n .

~83!

When both quantum statistical corrections to Eq.~79! are
included, one gets transition rates between states depending
on the occupation number of the final state in the intuitively
expected manner:

S ddtPg,n~ t ! D
HF

5(
n8

$gg,n8→g,nPg,n8@11h~N21!Pg,n#

2gg,n→g,n8Pg,n@11h~N21!Pg,n8#%.

~84!

Finally the difference between the Bloch-Hartree-Fock mas-
ter equation and simple rate equations including quantum
statistics lies in the fact that~i! the jump operators contain
quantum statistical corrections to the atomic line, and~ii ! the
eigenbasisug,n(t)& is not knowna priori but is determined
by the time evolution and for the nonlinear problem this has
to be done in a complicated self-consistent manner@27#.

VI. A NUMERICAL EXAMPLE: LASER
COOLING OF BOSONIC ATOMS
IN A WEAK HARMONIC TRAP

We now illustrate the Monte Carlo wave-function tech-
nique with the solution of a nonlinear master equation of the
form ~73! for laser cooling of trapped bosons (h51). The
laser field is detuned on the blue side (d.0) of a
j g51→ j e51 atomic transition. It is obtained as a superpo-
sition of linearly polarized running waves with wave vectors
6kLeW z (eW z is the unit vector alongz axis! and with linear
polarizations making a relative angle ofp/4. Its positive fre-
quency part is therefore given by

54 5285MONTE CARLO WAVE FUNCTIONS AND NONLINEAR . . .



EW5E0$@cos~u/2!eW x1sin~u/2!eW y#e
ikLz

1@cos~u/2!eW x2sin~u/2!eW y#e
2 ikLz%, ~85!

whereu is equal top/4.
It is known that this configuration leads to subrecoil laser

cooling @29# for free atoms. There exists indeed in this case
an atomic~internal1external! stateucD& ~the ‘‘dark’’ state!
which is not coupled to the laser and which is stationary with
respect to the kinetic energy operator@30#. The atoms are
confined in momentum space by a Sisyphus effect@31#,
within an interval of a few\kL , and pile up in long-lived
atomic states close to the dark state. When time proceeds,
two peaks emerge in the momentum distribution around
6\kL .

Extensions of dark state cooling of atoms in a trap have
been proposed in@32#. They rely either on flat bottom poten-
tials or harmonic traps in the Lamb-Dicke regime~energy
level separation\Vosc much larger than the recoil energy
\2kL

2/2M ); in both cases an almost dark state exists. We
consider here a harmonic trap with an oscillation frequency
smaller than the recoil energy. This is more easily achieved
experimentally, but it does not provide as good a dark state.

As we shall discuss later, the Hartree-Fock ansatz does
not give a complete account of the collective effects involved
in laser cooling of atoms. We simply want here to illustrate
the positive effect of the bosonic enhancement factors in Eq.
~84! on the efficiency of the cooling process, which has been
described by simple rate equations in@4–6#. We therefore
simplify Eq. ~73! by the following approximations.

~i! We neglect the renormalization of the jump operators
Cm by the bosonic line shift and broadening. The resulting
master equation is nonlinear only because of the dependence
of the effective HamiltonianH with r1. We neglect the dif-
ference between the mean electric field and the incoming
laser field~the atoms are pumped by the cooling process into
states weakly coupled to the laser light!.

~ii ! We construct a one-dimensional model by assuming
that some additional cooling mechanism~not included in the
master equation! keeps the atoms in the ground stateu0,0& of
a harmonic trap in thex,y plane. Only the atomic motion
along z is left as a dynamical variable. At each timet,
r1,gg is assumed to factorize asu0,0&^0,0u ^ s(t). The corre-
sponding master equation fors(t) is obtained by taking the
trace of Eq.~73! over the transverse motion. The effect of
this trace is to suppress thex,y dependent terms from the
effective HamiltonianH ~transverse kinetic energy and po-
tential!, to contract to unity the translation operators
exp„6 ikL(nxx1nyy)… in the sandwich-terms, and to replace
the functiong̃ab(rW) in H by its transverse averageḡab(z)
over the distribution (MVosc

' /h)exp„2MVosc
' (x21y2)/2\…,

whereVosc
' is the transverse oscillation frequency.

~iii ! We neglect the real part ofḡab(z), i.e., the Hermitian
part ofH depending on the Bose statistics. The transverse
trap is supposed for simplicity to be in the Lamb-Dicke re-
gime (Vosc

' @\kL
2/m), so that the resultingḡab(z) is easy to

calculate. The only nonvanishing components included are
then given by

ḡxx~z!5ḡyy~z!5 i
kL
3

8pE21

1

du
11u2

2
eikLuz, ~86!

ḡzz~z!5 i
kL
3

8pE21

1

du~12u2!eikLuz. ~87!

More explicit expressions can be deduced from the identity

1

2E21

1

du u2eiku5
sink

k
12

cosk

k2 22
sink

k3 . ~88!

Numerically the Monte Carlo wave functions are dis-
cretized in position space. The evolution due to the
s-independent part ofH,

H05
pz
2

2M
1
1

2
MV osc

2 z21VAL
~2 !

\d

\2~d21G2/4!
VAL

~1 ! ,

~89!

is obtained by a splitting between the kinetic energy term
and the potential energy terms. A Fast Fourier transform is
used to calculate the effect of the kinetic energy operator.
The contribution of thes-dependent part ofH is treated by a
first order Euler’s scheme with an adaptive stepsize control;
it is represented by a dense matrix both in position and mo-
mentum representation so that costly matrix multiplications
are required at each time step. The additive termg(s) im-
posed by the simulation scheme is optimally obtained by a
numerical diagonalization of the anti-Hermitian partW de-
fined in Eq.~53!; 2g(s) is then the smallest~negative! ei-
genvalue ofW. The contribution of the last term of Eq.~74!
to g(s) is a small~negative! quantity, since the atoms are
mainly in states noncoupled to the laser, and it suffices to
diagonalize (Hexch)gg only.

As done in@32#, we introduce as a convenient basis the
eigenstatesu l &,l>1 of H0. These states differ from the one
of the bare harmonic oscillator because of the coupling to the
laser field. The energy spectrum as a function ofl has now
an irregular distribution of energy levels around a straight
line reminiscent of the purely harmonic case. The time evo-
lution of the populationsp l[^ l usu l & of the first energy lev-
els u l & for N520 atoms is shown in Fig. 3~a!. The initial
state is a thermal distribution of the harmonic oscillator at a
temperature of 10 times the recoil temperatureTR
5\2kL

2/MkB . It evolves into a steady state after a time on
the order of 100 times the recoil timetR5M /\kL

2 . The av-
erage over time of thep l ’s for 250tR,t,500tR is shown in
Fig. 3~b!. As compared to the one-atom case (N51), the
populations of the first two energy levels are strongly in-
creased by the bosonic effect; the more populated level is
now u l52& instead ofu l51& in the one-atom case. The po-
sition distributionP(z)5^zusuz& @see Fig. 3~c!# and the mo-
mentum distributionP(p)5^pusup& @see Fig. 3~d!# are also
clearly different.

To see the influence of the number of Monte Carlo wave
functions on the results of the simulation we have done a
calculation with a smaller number of wave functions than in
Fig. 3,n5250 rather thann51000. The steady stateP l ’s for
n5250 andn51000 ~averaged over 250tR,t,500tR) are
very close~the difference for the most populated levell52
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is 3% only!. The time averaged position and momentum dis-
tributions are also similar, but are asymmetric forn5250.
We have checked that this asymmetry is decreased by an
average over a longer interaction time, so that it corresponds
to statistical uncertainty, not to a systematic error.

VII. CONCLUSION

In summary we have generalized in this paper the appli-
cation of Monte Carlo wave functions to the solution of non-
linear master equations. We have focused on a special class
of nonlinear equations, termed ‘‘of parametrized Lindblad
form,’’ for which we have discussed in detail the conver-
gence properties of the method. In particular, we identified a
systematic error inversely proportional to the number of ap-
plied wave functions and a statistical uncertainty of the
method having the usual 1/An dependence on the number of
wave functions, but with a numerical factor that cannot sim-
ply be estimated from a single run withn wave functions.

We have shown how to bring certain nonlinear terms in a
master equation into a form such that our simulation scheme
applies.

Monte Carlo wave functions may now be applied in simu-
lations of nonlinear master equations. Such equations may be
purely phenomenological, containing nonlinear terms as ef-
fective physical corrections, or they may be derived in more
systematic ways, e.g., by application of a Hartree or a
Hartree-Fock ansatz to the BBGKY hierarchy of equations
for anN-body system. We focused on examples of the latter
kind, for which we both pointed out how to arrive at equa-
tions of the parametrized Lindblad form and performed
simulations to test the feasibility of the method. Quantum
statistical enhancement of spontaneous emission in velocity-
selective coherent population trapping has recently been
studied by a direct numerical solution of the Fock-Bloch
master equation; the calculation, however, was restricted to
periodic boundary conditions and relatively short interaction
times@28#. We have shown that with the Monte Carlo wave-

FIG. 3. Laser cooling ofN bosons in the lin~p/4!lin laser configuration. The oscillation frequency in the harmonic trap is given by
Vosc50.4\k2/M . The atom-laser detuningd52G and the Rabi frequencyV52dE0/2\5(5/2)171/2(\k2G/M )1/2 lead to a modulation depth
of the lightshift of theg,mzÞ0 coupled state of 25 cos(p/4)\2k2/M . The calculations are performed withn51000 Monte Carlo wave
functions in the caseN520 andn5250 in the caseN51. ~a! Populations of the energy levels ofH0 as function of time forN520 atoms.
~b! Populations averaged over timest.250M /\k2 for N51 andN520. ~c! Time averaged position distribution and~d! time averaged
momentum distribution forN51 ~solid lines! and forN520 ~solid lines with symbols!.
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function technique the effect of a realistic trapping potential
could be included and the long time limit~i.e., the steady
state! of laser cooling could be investigated.

The study of cold and dense samples of atoms is an inter-
esting field in its own right. The nonlinear equations studied
have been put forward as a foundation of nonlinear atom
optics, and they bear on the interesting problems associated
with propagation of light through quantized media. Most re-
cently the role of quantum statistical effects has become
prominent in connection with Bose-Einstein condensation
and the prospects of atom-lasers. Our major example was
exactly one where the effects of quantum statistics on the
center-of-mass motion of atoms in a laser cooling situation
was studied. However, simple models have suggested that
the possibility of obtaining a Bose-Einstein condensate with
laser cooling only is hampered by the reabsorption of fluo-
rescence photons by the atoms@4# and by the exchange of
virtual photons ~resonant dipole-dipole interaction! @33#.
Neither of these phenomena are incorporated by the Hartree-
Fock ansatz~49! and by the resulting master equation~73!.
Phenomenological or more elaborate modifications to Eq.
~73! would have to take these effects into account, if the
method suggested in this paper is applied to the study of
laser cooling of bosons. The dynamics of formation of a
Bose-Einstein condensate with evaporative cooling is also an
important problem, directly connected to the recent experi-
mental achievements of Bose-Einstein condensation. Its
theoretical study leads to nonlinear master equations~with
Hartree-Fock and quantum Boltzmann terms!, and Monte
Carlo wave-function methods could be useful in this case as
well.

An aspect of Monte Carlo wave functions is their ability
to shed more light on the role of different mechanisms in the
density matrix evolution, and we anticipate that the wave-
function approach may be helpful at the present stage, where
we still have much to learn about the structure and the va-
lidity of the nonlinear master equations.
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APPENDIX HIERARCHY OF EQUATIONS
FOR ŠO1

„n…
‹, ŠO1,2

„n…
‹, . . .

As emphasized in Sec. IV, Eq.~38! for the time evolution
of the mean value ofO1

(n) is not a closed equation. To show
this more explicitly let us consider an affine dependence of
L(s) on s:

L~s!@r#5L0@r#1L1@r ^ s#, ~A1!

where theL1 is a linear operator from the two-particle Liou-
ville space into the one-particle Liouville space. After the
substitution of Eq.~24! for r (n), Eq. ~38! now involves mean
values of operators@1/n#Oi ,1

(n)(t), i51, . . . ,n in addition to
O1
(n) After average over realizations, then21 terms withi

Þ1 lead to a contribution@(n21)/n#^O1,2
(n)&, and the single

i51 term leads to@1/n#^O1,1
(n)&:

d

dt
^O1

~n!&5L0@^O1
~n!&#1

n21

n
L1@^O1,2

~n!&#1
1

n
L1@^O1,1

~n!&#.

~A2!

At this point we observe the need for equations of motion for
^O1,1

(n)& and^O1,2
(n)&, and more generally for the mean value of

quantitieŝ O . . .
(n) & with 11p indices whenL(s) has a poly-

nomial dependence of orderp in s.
The equation of motion for the mean value of theO1,1

(n)

operator, obtained with the same reasoning as the one lead-
ing to Eq.~37!, is quite involved. This is due to the fact that
the probabilities of the various evolution branches~5!, e.g.,
12dp, are not canceled by the normalization factors,
1/(12dp)2, of the product state vector. Actually, due to the
factor 1/n in Eq. ~A2!, we just need to know that̂O1,1

(n)&
converges to a finite value in order to derive the asymptotic
behavior of̂ O1

(n)& for largen. Furthermore the factor 1/n in
the first term in Eq.~33! shows that̂ O1,1

(n)& contributes as
1/An to the scaling of the statistical uncertainty of the simu-
lation.

To derive the equation for the mean value of theO1,2
(n)

operator, we consider simultaneously the evolution of the
Monte Carlo wave functionsuc1

(n)& and uc2
(n)&. From timet

to time t1dt, the wave functionuc2
(n)& has a continuous

evolution with a probability 12dq or it jumps under the
action of the operatorCm„r

(n)(t)… with probability dqm . At
each time step the stochastic evolution applied to each wave
function is decided in the numerical simulation with the help
of independent random numbers so that the considered pair
of wave functions experiences~1! no jump at all, with a
probability (12dp)(12dq), ~2! jump of the wave function
uc1

(n)& only, with a probabilitydp(12dq), ~3! jump of the
wave functionuc2

(n)& only, with a probabilitydq(12dp), ~4!
both wave functions jump, with a probabilitydpdq. To first
order indt and after averaging over all realizations from the
initial time of the simulation, we get

d

dt
^O1,2

~n!&5^L~r~n!!@O1
~n!# ^O2

~n!1O1
~n!

^L~r~n!!@O2
~n!#&

5^@L~r~n!! ^111^L~r~n!!#@O1,2
~n!#&. ~A3!

In the affine case~A1! this equation takes the explicit
form

d

dt
^O1,2

~n!&5~L0^111^L0!@^O1,2
~n!&#

1
n22

n
~L1^111^L1!@^O1,2,3

~n! &#

1
1

n
~L1^1!@^O1,1,2

~n! &1^O1,2,2
~n! &#

1
1

n
~1^L1!@^O1,2,1

~n! &1^O1,2,2
~n! &#. ~A4!
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Again terms with two identical indices lead to a contribution
scaling as 1/n, whereas the terms with three different indices
have to be determined by the successive equation in the hi-
erarchy.

We are now able to anticipate the general form of the
hierarchy. The unknownŝO1,2, . . . ,k

(n) & can be grouped as el-
ements in a vector obeying the equation

d

dt 5
^O1

~n!&

^O1,2
~n!&

^O1,2,3
~n! &

A
6 5@M #5

^O1
~n!&

^O1,2
~n!&

^O1,2,3
~n! &

A
6 1

1

n 5
S1

~n!

S1,2
~n!

S1,2,3
~n!

A
6 . ~A5!

In the affine case@M # is a matrix coupling given
^O1,2, . . . ,k

(n) & to itself and to^O1,2, . . . ,k11
(n) & so that@M # is up-

per block triangular with one single block off-diagonal. In a
more general polynomial dependence ofL@s# on s of order
p @M # is also upper block triangular but withp block off-
diagonals. We have put in the inhomogeneous right-hand
side of Eq.~A5!, e.g.,S1, . . . ,k

(n) /n, terms dominated by a scal-
ing as 1/n in (d/dt)^O1,2 . . . ,k

(n) &: first, the ^O . . .
(n) & quantities

with at least two coinciding indices; second, the correction
coming from the departure from unity of the coefficients of
the ^O1,2, . . . ,k1q

(n) & ’s, q51, . . . ,p @cf. the factor (n21)/n in
Eq. ~A2! and the factor (n22)/n in Eq. ~A4!#. In this way
the coefficients of the matrix@M # do not depend onn.

To zeroth order in 1/n the inhomogeneous part of Eq.
~A5! is negligible, and the solution of this equation leads to

^O1,2, . . . ,k
~`! &5^O1

~`!& ^ ^O1
~`!& ^ •••^ ^O1

~`!&, ~A6!

where ^O1
(`)& is the solution of the nonlinear master equa-

tion, Eqs.~18! and~19!. This result holds for any polynomial
dependence ofL(s) on s. It can be checked easily in the
affine case Eq.~A1!, see the explicit equations~A2! and~A4!
simplified in the limitn→`.

To obtain the result to first order in 1/n, we keep the
inhomogeneous part in Eq.~A5! and replace eachS1,2 . . . ,k

(n)

term by its asymptotic value forn→`. The deviations of the
^O1,2,..,k

(n) & ’s from the previous asymptotic solution Eq.~A6!
now solve an equation of motion with a linear part given by
the matrix@M # and with a source term scaling as 1/n. Since
these deviations are vanishing at the starting time of the
simulation they scale as 1/n at future times. From this we
conclude that the quantities in Eqs.~34! and ~36! scale as
1/n for largen, which leads according to Eqs.~32! and~33!
to the announced scaling laws Eq.~39! and Eq.~40!.

In the case of an affine dependence Eq.~A1! it is possible
to extract from Eq.~A5! more explicit equations valid to
order 1/n. The idea is to use a Hartree-ansatz to break the
hierarchy in Eq.~A4!:

^O1,2,3
~n! &.^O1

~n!& ^ ^O1,2
~n!&1P1,2̂ O1

~n!& ^ ^O1,2
~n!&P1,2

1^O1,2
~n!& ^ ^O1

~n!&22^O1
~n!& ^ ^O1

~n!& ^ ^O1
~n!&,

~A7!

whereP1,2 exchanges the first and second components in a
tensorial product. Note that this goes one step further than
the usual decorrelation prescription. We substitute this ex-
pression into Eq.~A4!. We linearize the resulting equation in
terms of the variables Eqs.~34! and~36!, which vanish in the
limit n→`. We keep only the leading terms in the equation,
i.e., a term like ^O1

(n)& ^ ^dO1,2
(n)& is replaced by

^O1
(`)& ^ ^dO1,2

(n)&. We get finally

d

dt
^dO1,2

~n!&.
1

n
dS1,2

~`!1~L0^111^L0!@^dO1,2
~n!&#

1~L1^1!@^O1
~`!& ^ ^dO1,2

~n!&#

1~1^L1!@^dO1,2
~n!& ^ ^O1

~`!&#

1~L1^111^L1!@P1,2̂ O1
~`!& ^ ^dO1,2

~n!&P1,2#

~A8!

with the source term given by

dS1,2
~`!5~L1^1!@^O1

~`!& ^ ^dO1,1
~`!&#

1~1^L1!@P1,2̂ O1
~`!& ^ ^dO1,1

~`!&P1,2#. ~A9!

This equation predicting a 1/n scaling for^dO1,2
(n)& confirms

then dependence in Eq.~40!.
The same procedure leads to the corresponding equation

for the bias:

d

dt
^dO1

~n!&.L0@^dO1
~n!&#1L1F ^dO1

~n!& ^ ^O1
~`!&1^O1

~`!&

^ ^dO1
~n!&1^dO1,2

~n!&1
1

n
^dO1,1

~`!&G . ~A10!

The term L0@^dO1
(n)&# and the first two terms inside the

brackets acted upon byL1 come from the linearization of the
nonlinear master equation around the exact solution^O1

(`)&;
they are homogeneous in̂dO1

(n)&. The last two terms are
inhomogeneous and contribute as a source term scaling as
1/n. Note that the source terms can be amplified or damped
during the time evolution, depending on the stability of the
solution ^O1

(`)& to the nonlinear master equation.
To test these results we went to the next order in the

Hartree prescription:

^O1,2,3,4
~n! &.^O1

~n!& ^ ^dO1,2,3
~n! &1P1,2̂ O1

~n!& ^ ^dO1,2,3
~n! &P1,2

1P1,3̂ O1
~n!& ^ ^dO1,2,3

~n! &P1,31^dO1,2,3
~n! & ^ ^O1

~n!&

1^O1,2
~n!& ^ ^O1,2

~n!&1C3^O1,2
~n!& ^ ^O1,2

~n!&C3
†

1C3
†^O1,2

~n!& ^ ^O1,2
~n!&C322^O1

~n!& ^ ^O1
~n!&

^ ^O1
~n!& ^ ^O1

~n!&, ~A11!

whereC3 performs a cyclic permutation of the first three
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components in a tensorial product, and where^dO1,2,3
(n) & de-

notes the deviation of̂O1,2,3
(n) & from the Hartree approxima-

tion Eq. ~A7!. After lengthy calculations we have checked

that in the limit of largen ^dO1,2,3
(n) & obeys a linear equation

with a source term vanishing faster than 1/n. This proves the
consistency of the results Eq.~A8! and Eq.~A10!.

@1# M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Science269, 198 ~1995!; see also K. Bur-
nett ibid. 269, 182 ~1995!, and G. Taubesibid. 269, 152
~1995!.

@2# C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet,
Phys. Rev. Lett.75, 1687~1995!.

@3# K. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D.
S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett.75,
3969 ~1996!.

@4# M. Olshanii, Y. Castin, and J. Dalibard, inProceedings of the
12th International Conference on Laser Spectroscopy (1995),
edited by M. Inguscio, M. Allegrini, and A. Sasso~World
Scientific, Singapore, 1996!.

@5# R. J. C. Spreeuw, T. Pfau, U. Janicke, and M. Wilkens, Euro-
phys. Lett.32, 469 ~1995!.

@6# H. Wiseman and M. Collett, Phys. Lett. A202, 246 ~1995!.
@7# G. Lenz, P. Meystre, and E. W. Wright, Phys. Rev. Lett.71,

3271 ~1993!; G. Lenz, P. Meystre, and E. W. Wright, Phys.
Rev. A 50, 1681 ~1994!; G. Lenz, K. Schernthanner, and P.
Meystre, ibid. 50, 4170 ~1994!; K. Schernthanner, G. Lenz,
and P. Meystre,ibid. 51, 3121~1995!.

@8# W. Zhang, D. Walls, and B. C. Sanders, Phys. Rev. Lett.72,
60 ~1994!.

@9# Y. Castin and K. Mo” lmer, Phys. Rev. A51, R3426~1995!.
@10# Y. Castin and K. Mo” lmer, Phys. Rev. Lett.74, 3772~1995!.
@11# N. Gisin and I. Percival, Phys. Lett. A167, 315 ~1992!; J.

Phys. A25, 5677~1992!.
@12# H. J. Carmichael,An Open Systems Approach to Quantum

Optics, managing editor W. Beiglbo¨ck ~Springer, Berlin,
1993!.

@13# J. Dalibard, Y. Castin, and K. Mo” lmer, Phys. Rev. Lett.68,
580 ~1992!.

@14# K. Mo” lmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B10,
524 ~1993!.

@15# G. Lindblad, Commun. Math. Phys.48, 119 ~1976!.
@16# R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A45, 4879

~1992!.
@17# G. C. Hegerfeldt and T.S. Wilser, inII International Wigner

Symposium, Goslar, July, 1991, edited by H. D. Do¨bner, W.
Scherer, and F. Schro¨ck ~World Scientific, Singapore, 1992!.

@18# R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A45, 4879
~1992!; F. Bardou, J. P. Bouchaud, O. Emile, A. Aspect, and
C. Cohen-Tannoudji, Phys. Rev. Lett.72, 203 ~1994!.

@19# L. Allen and J. H. Eberly,Optical Resonance and Two-level
Atoms~Dover, New York, 1987!, Chap. 8.

@20# At this stage one could consider the more general expression

L(s)@r#52
1
2 $W(s),r%1 Tr@W(s)r#S, where S is any

density matrix with unit trace. In the next step, however, when
W(s) is replaced byW(s)1g(s), the requirement that the
resulting Liouvillian is equivalent with Eq.~20! when s5r
imposes thatr5 Tr(r)S for any r, i.e.,S5r5s.

@21# K. Mo” lmer and Y. Castin, Quantum Semiclass. Opt.8, 49
~1996!.

@22# C. M. Bowden and J. P. Dowling, Phys. Rev. A47, 1247
~1993!.

@23# E. V. Goldstein, K. Pla¨ttner, and P. Meystre~unpublished!.
@24# O. Morice, Y. Castin, and J. Dalibard, Phys. Rev. A51, 3896

~1995!.
@25# S. Haroche and J.-M. Raimond, Phys. Rep.93, 300~1982!, and

Refs.@19–21, and 23# therein.
@26# Y. Castin, J. Dalibard, and C. Cohen-Tannoudji, inProceed-

ings of Light Induced Kinetic Effects on Atoms, Ions and Mol-
ecules, edited by L. Moi, S. Gozzini, C. Gabbanini, E. Ari-
mondo, and F. Strumia~ETS Editrice, Pisa, 1990!.

@27# It sometimes happens that the eigenbasisug,n(t)& is com-
pletely or partially determined by symmetry reasons. This is
the case, for example, for laser cooling in a square well poten-
tial with periodic boundary conditions compatible with the pe-
riodicity of the laser field: when the initial distribution is also
periodic and when the Hartree term describing the absorption
of the field in the medium~which would break the periodicity!
is furthermoreneglected, the ug,n(t)& are linear combinations
of plane waves. Such a situation already considered in@4,28#
leads to a great simplification of the problem.

@28# M. Naraschewski, H. Wallis, and A. Schenzle, Phys. Rev. A
54, 2185~1996!.

@29# A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C.
Cohen-Tannoudji, Phys. Rev. Lett.61, 826 ~1988!.

@30# M. A. Ol’shanii and V. G. Minogin, inProceedings of Light
Induced Kinetic Effects on Atoms, Ions and Molecules, edited
by L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, and F.
Strumia~ETS Editrice, Pisa, 1990!; M. A. Ol’shanii and V. G.
Minogin, Opt. Commun.89, 393 ~1992!.

@31# M. S. Shahriar, P. R. Hemmer, M. G. Prentiss, P. Marte, J.
Mervis, D. P. Katz, N. P. Bigelow, and T. Cai, Phys. Rev. A
48, R4035~1993!; P. Marte, R. Dum, R. Taı¨eb, P. Zoller, M.
S. Shahriar, and M. Prentiss,ibid. 49, 4826 ~1994!; M.
Weidemüller, T. Esslinger, M. A. Ol’shanii, A. Hemmerich,
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