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We have developed a general technique for obtaining analytical expressions for coherent transient signals
arising from atoms interacting with two or more laser pulses having Gaussian spatial profiles. After deriving
the Maxwell-Bloch equations for short laser pulses incident on an ensemble of three-level atoms, we specialize
to photon echo spectroscopy. As an example, the stimulated photon echo signal is calculated as a function of
the time delay between pulses. Our exact results are compared with both the lowest-order perturbative limit and
a calculation in which transit time is treated phenomenologically. We conclude by commenting on the exten-
sion of our technique to atoms undergoing velocity-changing collisions.@S1050-2947~96!07011-4#

PACS number~s!: 42.50.Md, 42.50.Hz, 42.62.Fi, 42.65.Vh

I. INTRODUCTION

Optical coherent transients have been used extensively for
high-precision atomic and molecular spectroscopy and to
probe the relaxation processes of quantum coherences and
populations due to radiative and collisional broadening@1#.
In one class of photon echo experiments, several traveling-
wave ~TW! and/or standing-wave~SW! pulses are incident
on a thermal vapor, and the radiation from the coherent
atomic response is observed at a later time@1–7#. The basic
photon echo is produced when two laser pulses, separated by
a timeT, interact with a sample@1,2,8#. The first pulse cre-
ates a coherence between the atomic states, which undergoes
Doppler dephasing in a time (ku)21, wherek is the laser
wave vector andu is the most probable atomic speed. At
time T, this dephasing is reversed by the second laser pulse,
and the atomic dipoles rephase and radiate at time 2T. As a
function of T, this echo signal decays exponentially at the
radiative rateg, constraining the duration time of an experi-
ment to time separationsT,(2g)21 and limiting the basic
echo’s usefulness as a probe of weak velocity-changing col-
lisions.

The time constraint can be overcome by using a stimu-
lated photon echo~SE!, involving three copropagating TW
pulses, and by using other echo schemes that probe the
modulated population of long-lived, ground-state magnetic
sublevels. Such experiments can be used to study collisions
between active and perturber atoms in different pressure re-
gimes@5,6#. Due to advances in the stability and tunability of
pulsed laser sources, new echo experiments on longer time
scales are now achievable. Yet, in atomic experiments that
occur over time scales on the order of the average transit
time through the laser beam, the center-of-mass motion
across the transverse intensity profile must be accounted for
theoretically in order to interpret the data@9#. Typically,
some effective, homogeneous rateg tr has been used to
model motion out of the experimental region, where the tran-
sit rateg tr is defined asu divided by the laser beam width.
The correct approach, however, includes the transverse laser
profile directly in the atom-field coupling.

Previously, several authors have broached this subject for
both frequency-domain@10,11# and time-domain@12,13#

spectroscopy. In the time domain, transverse transit effects
have, to our knowledge, been introduced only in perturbation
theory. Since nonperturbative, analytic density matrix calcu-
lations can be performed for photon echoes in the short-pulse
limit for each velocity subclass, and since this is the most
important experimental regime~i.e., echoes induced by short
p and p/2 pulses, etc.!, we present a general theoretical
technique that properly accounts for transit-time effects in
Gaussian laser beams caused by classical center-of-mass mo-
tion. The significant result of this paper is as follows. For
echo experiments where velocity-changing collisions are
negligible, the off-diagonal density matrix elements respon-
sible for a macroscopic polarization can be expressed as a
product of analytic functions of the laser pulse areas multi-
plied by the transverse-field profile. These functions can then
be expanded in power series and integrated analytically in
Cartesian coordinates over the Maxwellian velocity distribu-
tion and over the transverse coordinates. This yields a final
result for the detected signal pulse in terms of a rapidly con-
verging sum over the expansion indices, where each term in
the sum can be linked to a specific order in perturbation
theory.

In Sec. II, we write down the equations of motion for the
density matrix of ‘‘open’’ three-level atoms coupled to a
sequence of laser pulses. The echo signal is then derived
from the Maxwell-Bloch equations in the slowly varying en-
velope ~SVEA! and thin-medium approximations. We con-
sider a measurement of the total echo pulse energy as a func-
tion of the various time delays between laser pulses for
transit times which are long compared to the Doppler
dephasing time. A corresponding expression for heterodyne
detection is given as well. In Sec. III, two calculations of
experimental interest are presented. First, the SE signal is
found for typical laboratory conditions. The decay of the
signal as a function of the time between the second and third
laser pulses is shown to be slower for strong pulses when
compared to weak excitation. Second, the signal for the grat-
ing stimulated echo~GSE! is discussed@5,6#, where two TW
laser pulses, a SW pulse, and a TW pulse are applied to a
vapor, which subsequently radiates a TW pulse. The GSE is
more sensitive to velocity-changing collisions than the SE
and can be used to measure the detailed form of the collision
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kernel. In Sec. IV, we conclude by commenting on the ex-
tension of our approach to the collision regime. In Appendix
A, we show the general form of any photon echo signal that
fits within our model. In Appendix B, a transit-time decay
function for the SE signal is derived in detail by performing
the necessary transverse velocity and coordinate integrations.

II. MAXWELL-BLOCH EQUATIONS
IN PULSED LASER FIELDS
AND THE ECHO SIGNAL

A gas of three-level atoms~Fig. 1, inset! in a vapor cell of
lengthL interacts with a series ofN laser pulses. This is the
same model as that adopted in Refs.@5–7#. Only levels 1 and
3, separated in energy by\v, are driven by the field. Level
1 is a ground-state sublevel, assigned a decay rateg1 for
generality. For our calculations we are interested in the limit
g1→0, since we take into account transverse motion explic-
itly. We can then compare our result with a phenomenologi-
cal model in whichg1Þ0 and the transverse spatial depen-
dence of the laser field is neglected. Level 2 is an all-purpose
level, which simply represents another decay channel for
level 3 and thereby opens the system@6#. Level 3 decays
spontaneously to levels 1 and 2 with ratesg3,1 and g3,2,
respectively. For this system, the ground-state lifetimeg1

21

is the longest time scale and, in particular,g1!g3,1,g3,2.
We consider pulse propagation only along thez axis, so

that the transverse coordinates are defined asx and y. The
laser pulses, each with central frequencyV, can be written as
a radiation field

E~x,y,z,t !5
1

2
e2 iVtê(

j51

N

EjU j~z!

3expF2S x2xj2 1
y2

yj
2D G f j S t2Tj

t j
D 1c.c., ~1!

where ê is the polarization of the field,Ej and kj56k
(k[V/c) are the amplitude and propagation vector of the
j th pulse, and

Uj~z!5H eik jz for TW pulses

coskjz for SW pulses.
~2!

~For geometries where echoes are created by pulses at small
angles with respect to each other,Uj (z) can be generalized
to Uj (k j•R) for k j'kj ẑ1(dk) j x̂, as in Ref.@6#.! The trans-
verse profile in Eq.~1! is taken as a product of real Gaussians
with widthsxj andyj for thex andy directions, respectively.
We can therefore account for elliptical intensity distribu-
tions. The temporal pulse envelopesf j (t), centered at times
Tj , have pulse widthst j . Each pulse has a spatial extent
larger than the vapor cell,ct j.L@l, allowing us to use a
thin-medium approximation. Pulses are applied sequentially
so thatTj,Ti for j, i . The time between pulses is

Ti j5Ti2Tj , ~3!

and the signal is observed att5Ts .
The following general assumptions are made about the

experimental conditions. The atoms are assumed to travel in
straight, classical paths,R(t)5R01vt. Motion along the la-
ser propagation direction leads to a Doppler shift, while mo-
tion in the radial direction modifies the strength of the atom-
field interaction at the differentTj ’s, owing to the transverse-
laser profile. The pulses are considered short compared to all
other dynamical time scales in the problem, so that both
decay and atomic motion can be neglected while each pulse
acts. Furthermore, the pulses are well separated in time
(t i!Ti j for all i. j ). Therefore, calculations are performed
by dividing the problem into two different types of time
regions:~i! regions where the pulsed fields act and~ii ! field-
free regions between pulses where relaxation and atomic mo-
tion occur. In addition, collisions are included only as a ho-
mogeneous dephasing mechanism for the off-diagonal
density matrix; for the diagonal elements, velocity-changing
collisions are neglected in our calculations but discussed in
the Conclusion, Sec. IV. For the only previous calculation of
photon echo transit effects, Thomas and Forber in Ref.@13#
use the same considerations. We modify and extend their
result beyond the perturbative, two-pulse regime. Other spe-
cific conditions depend on the echo process considered and
will be stated in Sec. III for the SE and the GSE separately.

The density-matrix master equations are written in a field-
interaction representation defined by

r315r13* 5 r̃31e
2 iVt. ~4!

The population of level 2,r22, does not participate in the
coherent dynamics and will not be considered further. The

FIG. 1. Doppler phase diagram for the stimulated photon echo
~SE!. The phase of the density-matrix elements that contributes to a
SE signal is shown for one velocity subclass. The ground-state
population r11 evolves without a Doppler~velocity-dependent!
phase for a timeT32. The important transit regime for the SE oc-
curs forT32 on the order of the average atomic travel time through
the Gaussian transverse distribution of the laser pulses. The inset
shows the three-level model used here, where the laser pulses reso-
nantly couple states 1 and 3 only. Spontaneous emission from level
3 to level 2 opens the system, allowing for SE experiments involv-
ing long-lived ground states such as level 1.
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coherences,r21 andr32, are zero initially and therefore re-
main zero for all time. The remaining equations for the ef-
fective two-level atom are

d

dt
r1152g1r111g3,1r331S 2 i(

j51

N

x j f j S t2Tj

t j
DUj* ~z!

3expF2S xTj2
xj
2 1

yTj
2

yj
2 D G r̃311c.c.D , ~5a!

d

dt
r3352~g3,11g3,2!r331S i(

j51

N

x j f j S t2Tj

t j
DUj* ~z!

3expF2S xTj2
xj
2 1

yTj
2

yj
2 D G r̃311c.c.D , ~5b!

d

dt
r̃3152~g1 id!r̃311 i(

j51

N

x j f j S t2Tj

t j
DUj~z!

3expF2S xTj2
xj
2 1

yTj
2

yj
2 D G ~r332r11!, ~5c!

where the atom-field interaction Hamiltonian is2d•E, d is
the atomic-dipole-moment operator, d/dt[(]/]t)
1vz(]/]z) is a convective derivative, andvz is thez com-
ponent of the velocity. Clearly, the density operator depends
on time, position, and atomic velocity, r5
r„t5Ts ,R(t),v…. Atomic recoil and gradient forces on the
atoms have been neglected.

The Rabi frequency for the peak of thej th pulse,

x j52
dEj
2\

, ~6!

is taken as real in Eqs.~5a!–~5c!, whered is the dipole-
matrix element̂ 3ud–êu1&. For an individual atom, the phase
and strength of thej th pulse are determined by the atomic
position atTj relative to the observation position at time
Ts ,

R~Tj !5R~ t5Ts!2vTs j⇔S xTj

yTj

zTj

D 5S x

y

z
D 2S vx

vy
vz
D Ts j.

~7!

This corresponds to calculations done in the fixed-coordinate
system of the laboratory rest frame, where the convective
derivative accounts for motion along thez axis. In Eq.~5c!
the atomic dipole decays at the rateg'@(g3,21g3,1)/2#1G
for the homogeneous collision rateG.

Equations~5a!–~5c! are a generalized form of the optical
Bloch equations. We set the atom-field detuning
d5v2V50 in ~5c!, on the assumption that
t j udu,t j ukj uu!1. When the field acts atTj , the density ma-
trix immediately following the pulser(Tj

1) is expressed in
terms of the matrix preceding the pulser(Tj

2) as @6,14#

r11~Tj
1!5

1

2
$11cos@a j~z!Q j #%r11~Tj

2!

1
1

2
$12cos@a j~z!Q j #%r33~Tj

2!

2H i2sin@a j~z!Q j #b j* ~z!r̃31~Tj
2!1c.c.J ,

~8a!

r33~Tj
1!5

1

2
$12cos@a j~z!Q j #%r11~Tj

2!

1
1

2
$11cos@a j~z!Q j #%r33~Tj

2!

1H i2sin@a j~z!Q j #b j* ~z!r̃31~Tj
2!1c.c.J ,

~8b!

r̃31~Tj
1!52

i

2
sin@a j~z!Q j #b j~z!r11~Tj

2!

1
i

2
sin@a j~z!Q j #b j~z!r33~Tj

2!

1
1

2
$11cos@a j~z!Q j #%r̃31~Tj

2!

1
1

2
$12cos@a j~z!Q j #%r̃13~Tj

2!@b j~z!#2,

~8c!

r̃13~Tj
1!5 r̃31* ~Tj

1!. ~8d!

The effective pulse area is defined as the usual pulse area
multiplied by a transverse position function,

Q j5$u j%3Hj~x,y,vx ,vy!5H 2x jE
2`

1`

f j S tt j D dtJ
3expF2S x2vxTs j

xj
D 22S y2vyTs j

yj
D 2G , ~9!

and the spatial modulation factors are

a j~z!5H 1for TW pulses

coskjz for SW pulses

and

b j~z!5H eik jz for TW pulses

1 for SW pulses.
~10!

In Eq. ~9!, we see immediately that the transverse profile
creates a spatially dependent atom-field interaction strength.

For the time intervals between pulsesj and i5 j11, the
optical Bloch equations~5a!–~5c! give
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r11~Ti
2!5H r11~Tj

1!e2g1Ti j1r33~Tj
1!

g3,1

g3,11g3,22g1

3@e2g1Ti j2e2~g3,11g3,2!Ti j #J
3exp@2 iK j

~11!vzTi j #, ~11a!

r33~Ti
2!5r33~Tj

1!e2~g3,11g3,2!Ti jexp@2 iK j
~33!vzTi j #,

~11b!

r̃31~Ti
2!5 r̃31~Tj

1!e2gTi jexp@2 iK j
~31!vzTi j #, ~11c!

r̃13~Ti
2!5 r̃31* ~Ti

2!. ~11d!

In Eqs. ~11a!–~11d!, the velocity-dependent phases are de-
fined formally using

Kj
~ab!5

]rab~Tj
1!

]z

1

irab~Tj
1!

, ~12!

allowing atomic-state populations to be modulated by coun-
terpropagating fields. When a time interval is long, so that
(g3,11g3,2)

21!Ti j!g1
21, the upper-state population

r33(Ti
2) and coherencer̃31(Ti

2) decay, while forg3,2Þ0 a
modulated ground-state populationr11(Ti

2) remains. For the
Fourier components of the density matrix that contribute to
an echo,r11(Tj

1)52r33(Tj
1), implying from Eq.~11a! that

r11(Tj11
2 )}r11(Tj

1)@(g3,2)/(g3,11g3,2)#. These conditions
show that echo signals on long time scales are only possible
for an open two-level system which includes a decay channel
such as level 2,g3,2@g1>0. Both the SE and the GSE that
we consider in Sec. III exhibit this behavior.

To describe a signal field generated by the atomic dipoles,
the electric field and polarization vectors are decomposed
into Fourier components with slowly varying envelopes,

SEs

Ps
D 5

1

2
êSEs~x,y,t !Ps~x,y,t !

D eiksz2 iVt1c.c. ~13!

Phase matching requires thatks56k. When inserted into the
Maxwell equations, the signal field can be related directly to
the polarization envelope in the SVEA for a thin medium,

Es5
iksL

2e0
Ps. ~14!

The macroscopic polarization is defined as the total dipole
moment density averaged over the inhomogeneous velocity
distribution,

Ps52ndE dvr̃31~ t,x,y,z,v!e2 iksz, ~15!

for the atomic densityn. Momentum conservation deter-
mines which spatial Fourier components ofr̃31(t,x,y,z,v)
can radiate, restrictingks in Eqs.~14! and ~15! to those val-
ues for which the spatial phase ofPs vanishes, where we
assume that the signal is a TW pulse. Standing-wave echo
pulses can be treated in a similar manner@3#. These coupled

Maxwell-Bloch equations~8!–~15! for short pulses can be
used to study optical coherent transients in general.

A general solution for photon echo signals atTs. TN for
T150 is derived in Appendix A for the initial conditions,

r33~ t502!5r31~ t502!50,

r11~ t502!5W0~v!, ~16!

whereW0(v)5(pu2)23/2e2uvu2/u2 is the Maxwellian velocity
distribution. We define the detectable echo signal as the total
energy of the radiated echo field,

S5E dTsE E dx dy
1

2
e0cuEsu2. ~17!

@For heterodyne detection,Es(x,y,t) is combined with a
strong fieldE0(x,y,t) at the same frequency, and the signal,
subtracting out a constant background, is proportional to
*dTs**dx dyRe$E0* (x,y,Ts)Es(x,y,Ts)%.# Combining Eqs.
~14!, ~15!, and~17!, the final signal expression is rewritten as

S5
~ksLnd!2c

2e0

3E dTsE E dx dyU E dvr̃31~Ts ,x,y,z,v!e2 ikszU2.
~18!

III. ECHO CALCULATIONS IN THE TRANSIT REGIME

A. The stimulated-echo signal

Stimulated echo experiments follow the Doppler phase
diagram of Fig. 1. The three excitation pulses are all TW
fields propagating in the1z direction,k15k25k35ks5k.
The first pulse creates a coherencer̃13(T1

1), which dephases
in a time (ku)21. The time to the second pulseT21 is chosen
such that (ku)21,T21. The second pulse ‘‘stops’’ the Dop-
pler dephasing by creating a component of the ground-state
populationr11(T2

1) that varies asei (k22k1)z. This component
evolves over timeT32 with a velocity-independent phase. For
(g3,11g3,2)

21!T32!g1
21, T32 is a long time period, as dis-

cussed after Eq.~12! — any coherence or excited-state popu-
lation has decayed completely by the time the third pulse
acts on the modulated ground state. This third pulse reverses
the Doppler dephasing of the dipoler̃31 that occurred be-
tween the first and second pulses, leading to SE radiation
peaked at the timeTs5T31T21.

Solving Eqs.~8a!–~8d! and ~11a!–~11d! in this scheme
for r̃31(Ts ,x,y,z,v) with the initial conditions of Eq.~16!,
we find

r̃31~Ts ,x,y,z,v!52
i

8
W0~v!

g3,2

g3,11g3,2
e2g1T32

3e2g~Ts2T31T21!e2 ikvz~Ts2T32T21!

3sinQ1sinQ2sinQ3e
ikz, ~19!

whereQ j is given by Eq.~9!. Substituting this expression
into Eq. ~18! and integrating overvz gives the SE signal,
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SSE5
~ksLnd!2c

128e0
S g3,2

g3,11g3,2
D 2E dTse

2 1/2[ku~Ts2T32T21!]
2

3e22g1T32e22g~Ts2T31T21!B~Ts!. ~20!

The echo intensity is sharply peaked at the rephasing time
Ts5T31T21, as it should be. The quantityB(Ts) represents
the transverse polarization effects which are the central result
of this paper,

B~Ts!5E E dxdyU E E dvxdvy
pu2

e2~vx
2
1vy

2
!/u2

3sinQ1sinQ2sinQ3U2. ~21!

It varies slowly in time compared to the Gaussian in Eq.
~20!, which means we can evaluateB(Ts) and e22gTs at
Ts5T31T21 and integrate overTs to obtain

SSE5
~ksLnd!2c

128e0
S g3,2

g3,11g3,2
D 2A2p

ku
e22g1T32e24gT21

3B~Ts5T31T21!. ~22!

Each sine function in Eq.~21! is now expanded in a Taylor
series,

sinQ j5(
l50

`
~21! l~u j !

2l11

~2l11!!
expH 2~2l11!F S x2vxTs j

xj
D 2

1S y2vyTs j
yj

D 2G J . ~23!

Using *2`
1`e2ap212bpdp5Ap/ae(b

2/a), all the integrals in
Eq. ~21! can be performed analytically, term by term, in
Cartesian coordinates. These integrations are done step by
step in Appendix B to findB(Ts) for the general SE case.

To present the essential physics, we specialize to the case
of cylindrically symmetric transverse-field distributions with
equal widths,xj5yj5w for all j . Note that attempting to use
the symmetry of the fields and the velocity distribution by
transforming into cylindrical coordinates only complicates
the basic, separable Gaussian integrals. We also take the
most important experimental regime, where
(ku)21,T21!g21!T32, w/u, assuring that the atomic co-
herence does not degrade homogeneously between the first
two pulses and following the final pulse. SettingT21.0 and
Ts.T325T, after integration we have

B~T!5 (
l ,m,n50

`

(
l 8,m8,n850

`

~21! l1 l 81m1m81n1n8
~u1!

2l12l 812

~2l11!! ~2l 811!!

~u2!
2m12m812

~2m11!! ~2m811!!

~u3!
2n12n812

~2n11!! ~2n811!!

3F11~2l12m12!T2
u2

w2G21F11~2l 812m812!T2
u2

w2G21

3pw2F 2~ l1 l 81m1m81n1n8!162

~2l12m12!2T2
u2

w2

11~2l12m12!T2
u2

w2

2

~2l 812m812!2T2
u2

w2

11~2l 812m812!T2
u2

w2

G 21

. ~24!

For pulse areas of order unity, the sum converges rapidly.
Each term in the sum can be identified as one term in the
perturbative calculation of the echo energy to all orders in
the three laser pulse amplitudes, including the effects of
transverse motion. Each order is represented by a set of in-
dices $ l ,m,n,l 8,m8,n8%. However, the full sum is an exact
result.

The transit effects are seen in the second and third lines of
Eq. ~24!. The second line results from the integration over
velocities in~21! and is related to the intensity of the echo
field. The third line reflects the integration over transverse
coordinates and is therefore a property of the radiated power
of the echo field. Both lines are seen to depend on one di-
mensionless parameter, the effective transit rate through the
Gaussian interaction region multiplied by the atomic travel
time,

t[g trT5
A2u
w

T. ~25!

Clearly, the dependence of the echo energy is a complicated

sum over products of Lorentzians for each order of perturba-
tion theory, which cannot be accurately described by a single
homogeneous decay rate.~In the limit thatt!1, transit-time
effects are no longer important — the lingering transverse-
field dependence is evident from the terms in the third line of
Eq. ~24! that remain. In other words, we have also treated the
Gaussian intensity distribution to all orders, even if transit
effects are negligible.!

For weak pulses (u j!1 for all j ), Eq. ~24! reduces to

B~T!5u1
2u2

2u3
2 pw2

2~11t2!~31t2!
, ~26!

the lowest-order perturbation result. For nonperturbative
p/2 pulses (u15u25u35p/2), as are typical of most SE
experiments, the sums in Eq.~24! that determineB converge
by the fourth term in each index. In Fig. 2, we plot the echo
signal SSE}B(Ts5T) versust with solid lines, for both
@Fig. 2~a!# the weak pulse echo@Eq. ~26!# and@Fig. 2~b!# the
nonperturbative case@Eq. ~24!#. The signals have been arbi-
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trarily scaled to match att50. For the weak-field case, the
half width at half maximum~HWHM! of B in terms oft can
be found analytically from Eq. ~26!, Dtp
5(71/222)1/250.804. From the computer-generated signal
for p/2 pulse excitation, the HWHM isDtnp>0.978. The
radiated energy for the nonperturbative case is seen to decay
more slowly asT increases than for weak-field excitation.
The ‘‘x’’ points in Fig. 2 indicate Lorentzian-squared fits
(11a2t2)22 using the HWHMs above, showing that a
nearly indistinguishable but analytically incorrect fit can be
made for both weak andp/2 pulses. For such a Lorentzian-
squared ansatz, the constant,a25(21/221)/(Dt)2, deter-
mines what might be assumed to be the effective transit rate,
G tr5ag tr . For the weak-pulse echo,a>0.801, while for the
strong pulse case,a50.658, leading to the conclusion that
the transit rate is intensity dependent. However, there are no
free parameters in Eqs.~24! and~26!. For a particular gas of
massM , given accurate measurements ofw and the tempera-

ture, the transit rateg tr is fixed: we can compare our results
directly with experimental data, removing the scaling ambi-
guity with respect to input pulse intensities that Thomas and
Forber encountered@13,15#.

To compare our calculation to another phenomenological
decay model, an exponential fit to our signals using linear
regression is shown in Fig. 2 with dashed lines for both the
strong- and weak-pulse SE. This corresponds to adjusting
g1 in Eq. ~22! and settingB(Ts)51 andg50. Assuming the
SE signal is proportional toe22G trT and using the 1/e times
t1/e

21 of the weak- and strong-pulse fits, respectively, yield
two different results for the effective transit rateG tr

51
2g trt1/e

21 : ~a! G tr>0.96g tr and ~b! G tr>0.81g tr . As a re-
sult, such a model would again lead to the erroneous mea-
surement of a field-dependent transit rate, inconsistent with
the fixed definitiong tr5(A2u)/w that enters into our results.

B. The grating stimulated-echo signal

A GSE Doppler phase diagram is shown in Fig. 3. The
four-pulse sequence consists of two counterpropagating TW
pulses,k152k25k, followed by a SW pulse, and ending
with another TW pulse,k452k @5#. All pulses have the
same transverse-field distribution with 1/e pointw. The first
pulse again creates an atomic coherencer̃13, and the second
pulse modulates the ground-state population, producing an
ei (k22k1)z Fourier component. The time between these pulses
is short,T21!(ku)21,g21, to prevent dephasing. However,
because pulses 1 and 2 counterpropagate,k22k1522k, in
contrast to the SE scheme wherek22k150. As a result,
Doppler dephasing occurs in the populations during the time
interval T32@(2ku)21. The SW pulse atT3 then scatters
population from thee2 i2kz Fourier component into the
ei2kz component, reversing the Doppler dephasing inr11
for T435T32. Since we see from Eq.~8a! that

FIG. 2. ~a! The weak-pulse SE signal of Eq.~26! is shown
versus the dimensionless parametert, wheret5g trT is defined by
Eq. ~25!. ~b! Strong (p/2)-pulse SE signal versust using Eq.~24!.
The exponential and Lorentzian-squared decay models are overlaid
for comparison. The similarity of a Lorentzian-squared fit to the
actual signal is evident from the weak-pulse SE expression, Eq.
~26!. These models, as discussed in the text, do not scale correctly
with input pulse intensity. The exact SE signal, Eq.~24!, does.

FIG. 3. Doppler phase diagram for the grating stimulated-
photon echo~GSE!. The phase of the density-matrix elements that
contribute to a GSE signal is shown. The ground-state population
r11 evolves with a Doppler phase for a timeT42. Rephasing is
initiated by the standing wave pulse atT3. The GSE signal atTs
travels in the1 ẑ direction for a final TW laser pulse atT4 in the
2 ẑ direction. Transit effects are significant forT42*g tr

21 , where
g tr is defined by Eq.~25!.
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r11(T3
1);r11(T3

2)cos(Q3coskz) and cos(Q3coskz)
5(n52`

1` J2n(Q3)e
i2nkz, only then52 term can scatter the

e2 i2kz Fourier component into theei2kz component. The TW
pulse at T4 couples this ground-state population to the
atomic dipoles r̃31, which radiate coherently at
Ts.2T2112T32. Momentum conservation requires that
ks5k.

Because of the above considerations, we setT21.0 and
Ts.T452T3252T. The time intervalsT325T435T are
long. This fact is more significant for the GSE, since the
phase of the ground-state population between the second and
fourth pulses is velocity dependent, implying a greater sen-
sitivity to velocity-changing collisions. This has been dis-
cussed at length in Refs.@5–7#. As developed above, our
formalism ignores the dephasing effects of velocity-changing
collisions on the diagonal density-matrix elements. This
omission is discussed below in the Conclusion, Sec. IV.

The optical Bloch equations are solved for this scheme to
find the coherence atTs ,

r̃31~Ts ,x,y,z,v!52
i

16
W0~v!S g3,2

g3,11g3,2
D 2e2g1~T321T43!

3e2 ikvz~Ts2T422T3212T432T21!

3sinQ1sinQ2J4~Q3!sinQ4e
ikz. ~27!

We see that the Doppler dephasing of the modulated popu-

lation is exactly cancelled by the explicit choice of
T325T43. Substituting Eq.~27! into Eq.~18! and integrating
over vz andTs , we find

SGSE5
~ksLnd!2c

512e0
S g3,2

g3,11g3,2
D 4A2p

ku
e24g1TB~Ts52T!.

~28!

The echo pulse, which is peaked at the time
Ts5T41T21'T4, is separable from the excitation pulse at
T4 since the two counterpropagate with respect to one an-
other. Again, we have carried along a homogeneous ground-
state decay rateg1 for comparison to our results for which
g1→0.

The calculation ofB(Ts) is nearly identical to the SE
case. In fact, the power-series expansion of the Bessel func-
tion,

J4~Q3!5 (
p50

`

~21!p
S u3
2 D 2p14

p! ~p14!!
~H3!

2p14, ~29!

where the GaussianHj was defined in Eq.~9!, allows us to
adapt the SE result@Eq. ~24!#: we replaceT→2T for the
coefficients ofl ,l 8,m,m8 and add in the terms (2p14) and
(2p814) in the appropriate places. The result for
B(Ts52T) is

B~2T!5pw2 (
l ,m,n,p50

`

(
l 8,m8,n8,p850

`

~21! l1 l 81m1m81n1n81p1p8

3
~u1!

2l12l 812

~2l11!! ~2l 811!!

~u2!
2m12m812

~2m11!! ~2m811!!

S u3
2 D 2p12p818

p! ~p14!!p8! ~p814!!

~u4!
2n12n812

~2n11!! ~2n811!!

3F11@4~2l12m12!12p14#
T2u2

w2 G21F11@4~2l 812m812!12p814#
T2u2

w2 G21

3F 2~ l1 l 81m1m81n1n81p1p8!1142

@2~2l12m12!12p14#2
T2u2

w2

11@4~2l12m12!12p14#
T2u2

w2

2

@2~2l 812m812!12p814#2
T2u2

w2

11@4~2l 812m812!12p814#
T2u2

w2

G 21

. ~30!

The structure ofB(Ts) for the GSE signal is similar to
that of the SE. In lowest-order perturbation theory, the result
is

B~2T!5u1
2u2

2u4
2S u3
2 D 8S 14! D

2 pw2

2~116t2!~7110t2!
.

~31!

We use the same definition oft ~25! for consistency, al-
though the time scale of a GSE experiment (2T) need not be
the same as the time scale for a SE experiment (T). In Figs.
4~a! and 4~b!, we plot B(Ts52T) versust for the weak-
pulse GSE@Eq. ~31!# and the nonperturbative GSE@Eq.
~30!#, respectively. For the nonperturbative case@Fig. 4~b!#,
we take the peak pulse areasu15u25u45p/2, as before,
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and we setu3 to maximizeJ4(u3). This maximum occurs at
J4(u3'5.3).0.4. The similarity of the SE@Eq. ~26!# and
GSE @Eq. ~31!# perturbation results is self-evident. For the
calculated nonperturbative case, the measured HWHM is
Dtnp50.469, compared to the analytical, perturbative result
from Eq. ~31!, Dtp5@(2741/2213)/30#1/250.344. For com-
pleteness, in Fig. 4, an exponential fit to each signal is su-
perimposed with dashed lines, and the excellent Lorentzian-
squared fits are marked by ‘‘x.’’ The asymptotic deviation of
the Lorentzian fit to the perturbation result is evident in Fig.
4~a!.

Taking into account the time scale of the GSE experiment
2T, we again conclude that these fits lead to inconsistent
transit times for different excitation pulse strengths. For the
exponential fit, assuming from Eq.~28! that the GSE signal
is proportional toe24G trT, the effective transit ratesG tr5

1
4

g trt1/e
21 for the weak- and strong-pulse cases are~a!

G tr>0.70g tr and ~b! G tr>0.59g tr , respectively. Using
(11a2t2)22 for the Lorentzian-squared fits, the effective
transit ratesG tr5(a/2)g tr are ~a! G tr50.935g tr and ~b!
G tr>0.686g tr , respectively. Despite the excellent fit of the
Lorentzian-squared decay functions for both the SE and GSE
signals, we have shown that the essential physics makes

sense only in the context of the sum over the product of
Lorentzian functions shown in Eqs.~24! and~30!, which are
accurate for arbitrary input pulse areas.

IV. CONCLUSION

In this paper, we have demonstrated a method for includ-
ing transit-time effects in coherent transient calculations for
short laser pulses with Gaussian spatial profiles interacting
with atomic vapors. Using this method, we have derived
nonperturbative expressions for the SE and GSE signals as a
function of the relevant pulse delays. By comparing these
signals to phenomenological decay models in both the strong
~nonperturbative! and weak~perturbative! excitation pulse
cases, we have shown the necessity of our analysis in inter-
preting an experimental measurement of the transit rate.
Strong pulse echoes are seen to decay more slowly as a func-
tion of time delay than weak pulse echoes. And in either
case, the bell-shaped decay as a function of the dimension-
less parametert are poorly fit by any exponential loss rate.
To our knowledge, this paper is the first rigorous derivation
of Gaussian-beam transit effects in photon echo spectros-
copy.

Our analysis has relied on an assumption of classical, bal-
listic transport for the atoms. When atom-perturber collisions
are considered, the master equations become more compli-
cated, especially for the diagonal density matrix elements
@6,16#. If we assume the off-diagonal elements decay homo-
geneously with the collision rateG, as in Eq.~5c!, we must
still alter Eqs.~5a! and ~5b! for the diagonal elements by
adding the terms

F ddt raa~v,R,t !G
coll

52Ga~v!ra~v,R,t !

1E dv8Wa~v8˜v!raa~v8,R,t !

~32!

for a5$1,3%. This expression will affect only the field-free
regions, so Eqs.~11a!–~11d! are no longer valid. The first
term in Eq.~32! represents the total collisional decay of at-
oms out of the statea population with velocityv with rate
Ga(v)5*dv8Wa(v˜v8), while the second is the term for
scattering into levela with velocity v. The collision kernel
Wa(v8˜v), defined as the transition probability density per
unit time for the atom to scatter from velocityv8 to v, can be
calculated quantum mechanically from the atom-perturber
scattering amplitude and is complex enough to make the kind
of analytical solutions we have derived for photon echo sig-
nals nearly impossible.

In general, for a vapor in thermal equilibrium, detailed
balance requires that the kernel lead toward a Maxwellian
velocity distribution for the density matrix in the long-time
limit; as a result,Wa(v8˜v)ÞWa(v2v8) and physical col-
lision kernels do not have nice Fourier transform-
convolution properties in velocity space. This has been dis-
cussed at length for spatially homogeneous systems in Refs.
@6,16#. For our calculations, where the density matrix de-
pends strongly on the transverse coordinate, the propagator
of the diagonal density matrix valid for the field-free regions

FIG. 4. ~a! Weak-pulse GSE signal of Eq.~31! versust. ~b!
Strong-pulse GSE signal of Eq.~30! versust. Again, exponential
and Lorentzian-squared fits are shown for comparison.
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must be a separable exponential or Gaussian function of the
coordinates and velocities to be treated easily in our model,
independent of the kernel that determines its exact analytic
form. Such is the case for the Gaussian propagator of the
Fokker-Planck transport equation in coordinate-velocity
phase space@17#, relevant for Brownian motion in the weak-
collision regime@6#. So, for this limiting case of atomic dif-
fusion, we can again derive analytical results. It is the tran-
sition regime from ballistic to diffusive transport that makes
analytic calculations difficult. And for any inclusion of
velocity-changing collisions, the mathematics of propagating
the density matrix between laser pulses is more complicated
and will not be considered here.

However, we can make some general remarks about tran-
sit effects in probing collision processes using the above
echo techniques. For the SE, any collisions that cause a
change in velocity between pulses 2 and 3 make it difficult to
rephase the atoms and tend to destroy the echo signal. De-
spite this, use of a diffusion model of atomic motion allows
for explicit calculations of the SE intensity as a function of
time. Physically, the first and second laser pulses pick out a
cylinder of atoms that can contribute to the echo. This cyl-
inder then diffuses outward until the final pulse arrives. But,
if the time intervalT32 is long enough to be in the diffusive
regime of atomic motion, the velocity of the atom atT3 is
uncorrelated with its velocity atT2 and cancellation of the
Doppler phase built up in the timeT21 becomes impossible.

For the GSE, collisions have been considered in depth
previously@6#. They can be used to probe collision processes
for the velocity-sensitive populations between pulses 2 and
4. A revival of the GSE signal in the high-pressure regime,
where the mean free path of each atom is less than a wave-
length, has been predicted and is related to collective atomic
coherence effects and Dicke narrowing. In this case, no Dop-
pler phase for the populations can build up in theT32 and
T43 time intervals: the atoms that can contribute to the echo
signal have a time-averaged velocity of zero and tend to be
trapped in the laser beam cylinder. This can be understood
schematically by noting that

v}E
T2

T3
v~ t !dt50⇒expF i2kE

T2

T3
vz~ t !dtG51. ~33!

It would be interesting to correlate the GSE signal in differ-
ent pressure regimes with the transition from ballistic to dif-
fusive atomic motion. As for the SE, GSE theoretical echo
expressions, including center-of-mass motion, can be calcu-
lated using the propagator of the Fokker-Planck equation
with an experimentally determined diffusion constant in the
high-pressure regime.
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APPENDIX A: GENERALIZED ECHO SIGNALS

The form of the atomic coherence from Eqs.~8a!–~8d!
~9!, and~11a!–~11d! is always

r̃31~ t5Ts ,x,y,z,v!

52 i S 12D
N

W1~v!F~T1 , . . . ,TN ,Ts ,k1 , . . . ,kN ,z,vz!

3)
j51

N

Gj~Q j !. ~A1!

The functionF is a product of rates and exponential factors
containing the temporal decay and phase, as well as the
z-dependent spatial phase, ofr̃31. From Eqs.~8a!–~8d! each
functionGj in ~A1! must be one of the following:

Gj5H sinQ j

16cosQ j

Jq~Q j !

, ~A2!

whereJq is theqth order Bessel function of the first kind.
The integerq is determined by the phase-matching condition
on ks : given that ks56k, typically only a singleq can
contribute to the echo signal.

Using the definition of the echo signal in Eq.~18! and
inserting~A1!,

S5S 12D 2N11 ~kLnd!2c

e0
E dTsF E E dxdy

3U E E dvxdvy
~pu2!

e2~vx
2
1vy

2
!/u2)

j
Gj~Q j !U2G

3U E dvz
~pu2!1/2

Fe2 iksze2vz
2/u2U2. ~A3!

SinceF is independent ofx, y, vx , andvy , the integral over
the longitudinal velocityvz has been separated from the in-
tegrals over the transverse coordinates and velocities and ap-
pears at the end of Eq.~A3!. This integral determines the
Doppler rephasing time that maximizes the echo and in gen-
eral can be shown to give

U E dvz
~pu2!1/2

Fe2 iksze2vz
2/u2U2

5expF2
~ku!2

2
@Ts2~TN1DT!#2G

3~decay terms!, ~A4!
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where the Gaussian temporal envelope of the echo intensity
is centered at a timeDT after the final excitation pulse at
TN . The unspecified ‘‘decay terms’’ in Eqs.~A4! depend on
the specific echo scheme and are the homogeneous terms
derived from Eqs.~11a!–~11d!. In the Doppler limit they
always vary slowly compared to the Gaussian temporal en-
velope. The discussion following Eqs.~11a!–~11d! suggests
that their time dependence can often be neglected for long
echo experiments involving the modulated ground state.

The main result of this paper, which is the determination
of transit-time effects, is represented by the square bracket of
Eq. ~A3!,

B~T1 , . . . ,TN ,Ts!

5F E E dxdyU E E dvxdvy
~pu2!

e2~vx
2
1vy

2
!/u2)

j
Gj~Q j !U2G .

~A5!

From Eq.~A3!, we see thatB(T1 , . . . ,TN ,Ts) is essentially
the peak power of the echo field@18#. Given the Gaussian
transverse distributionsHj , we expand eachGj (Q j ) in a
Taylor series; for example,

12cosQ j52sin2
Q j

2

52 (
m,n50

`
~21!m1n~u j /2!2m12n12

~2m11!! ~2n11!!
Hj
2m12n12.

~A6!

All of the integrals in Eq.~A5! can now be performed ana-
lytically, term by term. Substituting Eqs.~A4! and~A5! into
Eq. ~A3!,

S5S 12D
2N11 ~kLnd!2c

e0
E dTsB~T1 , . . . ,TN ,Ts!

3expF2
~ku!2

2
@Ts2~TN1DT!#2G3~decay terms!.

~A7!

In the transit regime of interest, whereku@g tr ,
B(T1 , . . . ,TN ,Ts) varies slowly in time compared to the
Gaussian temporal envelope. We therefore pull the slowly
varying functions out of the integrand, evaluating them at the
peak of the GaussianTs5TN1DT, and integrate over the
Gaussian. This yields our final result for the echo signal,

S5S 12D
2N11 ~kLnd!2c

e0

A2p

ku
B~T1 , . . . ,TN ,Ts5TN1DT!

3~decay terms!Ts5TN1DT. ~A8!

The echo energy is only a function of the times between
pulses. This is a known, general result. To derive more
physical intuition for transit effects, Sec. III examines the
exact form ofB(T1 , . . . ,TN ,Ts) for the SE@Eq. ~24!# and
the GSE@Eq. ~30!#, respectively.

APPENDIX B: TRANSVERSE INTEGRALS
FOR THE SE CALCULATION

The integration of Eq.~21! is straightforward, using the
power series expansion of sinQj ~23!:

B~Ts!5E E dx dyU E E dvxdvy
pu2

e2~vx
2
1vy

2
!/u2

3sinQ1sinQ2sinQ3U2

5E E dx dyU (
l ,m,n50

`

~21! l1m1n
~u1!

2l11

~2l11!!

3
~u2!

2m11

~2m11!!

~u3!
2n11

~2n11!! E E dvxdvy
pu2

3e2~vx
2
1vy

2
!/u2H1

2l11H2
2m11H3

2n11U2, ~B1!

whereHj is given in Eq.~9!. Separating thevx andvy inte-
grals, thevx integration proceeds as

E dvx
Apu2

e2vx
2/u2expF2~2l11!S x2vxTs1

x1
D 2G

3expF2~2m11!S x2vxTs2
x2

D 2G
3expF2~2n11!S x2vxTs3

x3
D 2G

5expF2x2S 2l11

x1
2 1

2m11

x2
2 1

2n11

x3
2 D G E dvx

Apu2

3expF2vx
2S 1u2 1

~2l11!Ts1
2

x1
2 1

~2m11!Ts2
2

x2
2

1
~2n11!Ts3

2

x3
2 D GexpF12vxxS ~2l11!Ts1

x1
2

1
~2m11!Ts2

x2
2 1

~2n11!Ts3
x3
2 D G . ~B2!

Now, we use*2`
1`e2ap2e2bpdp5Ap/a e(b

2/a), to give

54 5271TRANSIT-TIME EFFECTS IN COHERENT TRANSIENT . . .



E dvx
Apu2

•••5expF2x2S 2l11

x1
2 1

2m11

x2
2 1

2n11

x3
2 D GexpF x2

S ~2l11!Ts1
x1
2 1

~2m11!Ts2
x2
2 1

~2n11!Ts3
x3
2 D 2

S 1u2 1
~2l11!Ts1

2

x1
2 1

~2m11!Ts2
2

x2
2 1

~2n11!Ts3
2

x3
2 D G

3F11
~2l11!Ts1

2 u2

x1
2 1

~2m11!Ts2
2 u2

x2
2 1

~2n11!Ts3
2 u2

x3
2 G21/2

. ~B3!

The integration overvy also gives Eq.~B3! with the replacementsx→y andxj→yj .
Putting these expressions into Eq.~B1! and squaring the sums using (( l f l)

25( l( l 8 f l f l 8, we still have to perform the
integrations overx andy,

E E dx dy•••5E dxexpF2x2S 2l12l 812

x1
2 1

2m12m812

x2
2 1

2n12n812

x3
2 D G

3expF x2S S ~2l11!Ts1
x1
2 1

~2m11!Ts2
x2
2 1

~2n11!Ts3
x3
2 D 2

1

u2
1

~2l11!Ts1
2

x1
2 1

~2m11!Ts2
2

x2
2 1

~2n11!Ts3
2

x3
2

1

S ~2l 811!Ts1
x1
2 1

~2m811!Ts2
x2
2 1

~2n811!Ts3
x3
2 D 2

1

u2
1

~2l 811!Ts1
2

x1
2 1

~2m811!Ts2
2

x2
2 1

~2n811!Ts3
2

x3
2

D G
3E dyexpF2y2S 2l12l 812

y1
2 1

2m12m812

y2
2 1

2n12n812

y3
2 D G

3expF y2S S ~2l11!Ts1
y1
2 1

~2m11!Ts2
y2
2 1

~2n11!Ts3
y3
2 D 2

1

u2
1

~2l11!Ts1
2

y1
2 1

~2m11!Ts2
2

y2
2 1

~2n11!Ts3
2

y3
2

1

S ~2l 811!Ts1
y1
2 1

~2m811!Ts2
y2
2 1

~2n811!Ts3
y3
2 D 2

1

u2
1

~2l 811!Ts1
2

y1
2 1

~2m811!Ts2
2

y2
2 1

~2n811!Ts3
2

y3
2

D G . ~B4!

Again, the integrations overx andy separate. Thex integration gives

Ap

F 2l12l 812

x1
2 1

2m12m812

x2
2 1

2n12n812

x3
2 2

S ~2l11!Ts1
x1
2 1

~2m11!Ts2
x2
2 1

~2n11!Ts3
x3
2 D 2

1

u2
1

~2l11!Ts1
2

x1
2 1

~2m11!Ts2
2

x2
2 1

~2n11!Ts3
2

x3
2

2

S ~2l 811!Ts1
x1
2 1

~2m811!Ts2
x2
2 1

~2n811!Ts3
x3
2 D 2

1

u2
1

~2l 811!Ts1
2

x1
2 1

~2m811!Ts2
2

x2
2 1

~2n811!Ts3
2

x3
2

G 1/2 ,

~B5!

and they integration is found by replacingxj→yj . The final result forB(Ts) shows the effect of transverse motion on the SE
signal,
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B5 (
l ,m,n50

`

(
l 8,m8,n850

`

~21! l1 l 81m1m81n1n8
~u1!

2l12l 812

~2l11!! ~2l 811!!

~u2!
2m12m812

~2m11!! ~2m811!!

~u3!
2n12n812

~2n11!! ~2n811!!

3F11S ~2l11!Ts1
2

x1
2 1

~2m11!Ts2
2

x2
2 1

~2n11!Ts3
2

x3
2 D u2G21/2F11S ~2l 811!Ts1

2

x1
2 1

~2m811!Ts2
2

x2
2 1

~2n811!Ts3
2

x3
2 D u2G21/2

3F11S ~2l11!Ts1
2

y1
2 1

~2m11!Ts2
2

y2
2 1

~2n11!Ts3
2

y3
2 D u2G21/2F11S ~2l 811!Ts1

2

y1
2 1

~2m811!Ts2
2

y2
2 1

~2n811!Ts3
2

y3
2 D u2G21/2

3
Ap

F 2l12l 812

x1
2 1

2m12m812

x2
2 1

2n12n812

x3
2 2

S ~2l11!Ts1
x1
2 1

~2m11!Ts2
x2
2 1

~2n11!Ts3
x3
2 D 2

1

u2
1

~2l11!Ts1
2

x1
2 1

~2m11!Ts2
2

x2
2 1

~2n11!Ts3
2

x3
2

2

S ~2l 811!Ts1
x1
2 1

~2m811!Ts2
x2
2 1

~2n811!Ts3
x3
2 D 2

1

u2
1

~2l 811!Ts1
2

x1
2 1

~2m811!Ts2
2

x2
2 1

~2n811!Ts3
2

x3
2

G 1/2

3
Ap

F 2l12l 812

y1
2 1

2m12m812

y2
2 1

2n12n812

y3
2 2

S ~2l11!Ts1
y1
2 1

~2m11!Ts2
y2
2 1

~2n11!Ts3
y3
2 D 2

1

u2
1

~2l11!Ts1
2

y1
2 1

~2m11!Ts2
2

y2
2 1

~2n11!Ts3
2

y3
2

2

S ~2l 811!Ts1
y1
2 1

~2m811!Ts2
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~B6!

Substitution of Eq.~B6! into ~20! or ~22! gives the echo energy for this general SE scheme. The quantityB(Ts) simplifies to
Eq. ~24! for xj5yj5w, Ts350, andTs15Ts25T.
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From this expression the lowest-order perturbation result for
the basic photon echo signal is
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