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We have developed a general technique for obtaining analytical expressions for coherent transient signals
arising from atoms interacting with two or more laser pulses having Gaussian spatial profiles. After deriving
the Maxwell-Bloch equations for short laser pulses incident on an ensemble of three-level atoms, we specialize
to photon echo spectroscopy. As an example, the stimulated photon echo signal is calculated as a function of
the time delay between pulses. Our exact results are compared with both the lowest-order perturbative limit and
a calculation in which transit time is treated phenomenologically. We conclude by commenting on the exten-
sion of our technique to atoms undergoing velocity-changing collisi@®050-294{@6)07011-4

PACS numbes): 42.50.Md, 42.50.Hz, 42.62.Fi, 42.65.Vh

[. INTRODUCTION spectroscopy. In the time domain, transverse transit effects
have, to our knowledge, been introduced only in perturbation

Optical coherent transients have been used extensively faheory. Since nonperturbative, analytic density matrix calcu-
high-precision atomic and molecular spectroscopy and tdations can be performed for photon echoes in the short-pulse
probe the relaxation processes of quantum coherences afighit for each velocity subclass, and since this is the most
populations due to radiative and collisional broaderfihy  important experimental regim@e., echoes induced by short
In one class of photon echo experiments, several travelingr and 7/2 pulses, et¢, we present a general theoretical
wave (TW) and/or standing-wavéSW) pulses are incident technique that properly accounts for transit-time effects in
on a thermal vapor, and the radiation from the coherenGaussian laser beams caused by classical center-of-mass mo-
atomic response is observed at a later t[he7]. The basic tion. The significant result of this paper is as follows. For
photon echo is produced when two laser pulses, separated byho experiments where velocity-changing collisions are
a timeT, interact with a samplgl,2,8]. The first pulse cre- negligible, the off-diagonal density matrix elements respon-
ates a coherence between the atomic states, which undergasisle for a macroscopic polarization can be expressed as a
Doppler dephasing in a timek() "%, wherek is the laser product of analytic functions of the laser pulse areas multi-
wave vector andi is the most probable atomic speed. At plied by the transverse-field profile. These functions can then
time T, this dephasing is reversed by the second laser pulsée expanded in power series and integrated analytically in
and the atomic dipoles rephase and radiate at tieA% a  Cartesian coordinates over the Maxwellian velocity distribu-
function of T, this echo signal decays exponentially at thetion and over the transverse coordinates. This yields a final
radiative ratey, constraining the duration time of an experi- result for the detected signal pulse in terms of a rapidly con-
ment to time separationB<(27) ! and limiting the basic verging sum over the expansion indices, where each term in
echo’s usefulness as a probe of weak velocity-changing cothe sum can be linked to a specific order in perturbation
lisions. theory.

The time constraint can be overcome by using a stimu- In Sec. Il, we write down the equations of motion for the
lated photon echdSE), involving three copropagating TW density matrix of “open” three-level atoms coupled to a
pulses, and by using other echo schemes that probe trsequence of laser pulses. The echo signal is then derived
modulated population of long-lived, ground-state magnetidrom the Maxwell-Bloch equations in the slowly varying en-
sublevels. Such experiments can be used to study collisionslope (SVEA) and thin-medium approximations. We con-
between active and perturber atoms in different pressure resider a measurement of the total echo pulse energy as a func-
gimes[5,6]. Due to advances in the stability and tunability of tion of the various time delays between laser pulses for
pulsed laser sources, new echo experiments on longer tinteansit times which are long compared to the Doppler
scales are now achievable. Yet, in atomic experiments thatephasing time. A corresponding expression for heterodyne
occur over time scales on the order of the average transidetection is given as well. In Sec. Ill, two calculations of
time through the laser beam, the center-of-mass motioexperimental interest are presented. First, the SE signal is
across the transverse intensity profile must be accounted fdound for typical laboratory conditions. The decay of the
theoretically in order to interpret the daff]. Typically, signal as a function of the time between the second and third
some effective, homogeneous rajg has been used to laser pulses is shown to be slower for strong pulses when
model motion out of the experimental region, where the trancompared to weak excitation. Second, the signal for the grat-
sit rate y,, is defined as divided by the laser beam width. ing stimulated echgGSE is discussed5,6], where two TW
The correct approach, however, includes the transverse las&ser pulses, a SW pulse, and a TW pulse are applied to a
profile directly in the atom-field coupling. vapor, which subsequently radiates a TW pulse. The GSE is

Previously, several authors have broached this subject fonore sensitive to velocity-changing collisions than the SE
both frequency-domairf10,11] and time-domain[12,13  and can be used to measure the detailed form of the collision
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T=0 T Ts Ts (For geometries where echoes are created by pulses at small
T — Ta «—Tu— angles with respect to each othér;(z) can be generalized

to U;(k;-R) for kj~k;z+(5k);x, as in Ref[6].) The trans-
FIG. 1. Doppler phase diagram for the stimulated photon echaserse profile in Eq(1) is taken as a product of real Gaussians
(SE). The phase of the density-matrix elements that contributes to gjith Widthsx]- andyi for thex andy directions, respectively.
SE signal is shown for one velocity subclass. The ground-stat§ye can therefore account for elliptical intensity distribu-
population p,, evolves without a Dopplevelocity-dependent  tions, The temporal pulse envelopgst), centered at times
phas;z for a timgBZ' ;—he ifmrﬁ)ortant transit regime folr the ShE OC'hTJ- , have pulse widths;. Each pulse has a spatial extent
curs forTy, on the order of the average atomic travel time throug : S ;
the Gaussian transverse distribution of the laser pulses. The inslagg_er;ég?ﬁr;haepg?g)zﬁn;?ilg;{ >P|l_JIze)\s’ le'lgvgggigj ;c()aczjlf:nfilally
ig(r)]\t/:/s the tllwree-level model used here, where the I_asz_er pulses resﬁod thatTj<Ti for j<i. The time between pulses is
y couple states 1 and 3 only. Spontaneous emission from levé
3 to level 2 opens the system, allowing for SE experiments involv-
ing long-lived ground states such as level 1. Tij=Ti—Tj, ©)

kernel. In Sec. IV, we conclude by commenting on the ex-and the signal is observed &t T

L R . ; . The following general assumptions are made about the
tension of our approach to the collision regime. In Append'xexperimental conditions. The atoms are assumed to travel in
A." we show the general form of any photon e‘.:h(_) signal thaEtraight, classical path&(t) =Ry+ vt. Motion along the la-
fits within our model. In Appendix B, a transit-ime decay gor nronagation direction leads to a Doppler shift, while mo-
function for the SE signal is derived in detail by performing ¢, in the radial direction modifies the strength of the atom-
the necessary transverse velocity and coordinate integrationge|q interaction at the differer;’s, owing to the transverse-

laser profile. The pulses are considered short compared to all
other dynamical time scales in the problem, so that both

Il. MAXWELL-BLOCH EQUATIONS decay and atomic motion can be neglected while each pulse
IN PULSED LASER FIELDS acts. Furthermore, the pulses are well separated in time
AND THE ECHO SIGNAL (7i<T;; for all i>j). Therefore, calculations are performed

. . . by dividing the problem into two different types of time

A gas_of three-leyel aton(_st:lg. 1,insetin a vapor_ce_ll of regions:(i) regions where the pulsed fields act dngl field-
lengthL interacts with a series df laser pulses. This is the free regions between pulses where relaxation and atomic mo-
same model as that adopted in R¢fs-7]. Only levels 1 and  {ion occur. In addition, collisions are included only as a ho-
3, separated in energy Wiyw, are driven by the field. Level mogeneous dephasing mechanism for the off-diagonal
1 is a ground-state sublevel, assigned a decay yatéor  density matrix; for the diagonal elements, velocity-changing
generality. For our calculations we are interested in the limitcollisions are neglected in our calculations but discussed in
v1—0, since we take into account transverse motion explicthe Conclusion, Sec. IV. For the only previous calculation of
itly. We can then compare our result with a phenomenologiphoton echo transit effects, Thomas and Forber in Red]
cal model in whichy;#0 and the transverse spatial depen-use the same considerations. We modify and extend their
dence of the laser field is neglected. Level 2 is an all-purposeesult beyond the perturbative, two-pulse regime. Other spe-
level, which simply represents another decay channel fo€ific conditions depend on the echo process considered and
level 3 and thereby opens the systé@}. Level 3 decays Will be stated in Sec. Ill for the SE and the GSE separately.
spontaneously to levels 1 and 2 with ratgg, and 3, _ The Qensity—matrix master gquations are written in a field-
respectively. For this system, the ground-state lifetpgd ~ Interaction representation defined by
is the longest time scale and, in particulgg,<y3 1,73 2. .~ it

We consider pulse propagation only along thexis, so P31=pila=pa - 4
that the transverse coordinates are defined asdy. The
laser pulses, each with central frequefitycan be written as  The population of level 2p,,, does not participate in the
a radiation field coherent dynamics and will not be considered further. The
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coherencesp,, and p3,, are zero initially and therefore re- o1 -
main zero for all time. The remaining equations for the ef-  p11(Tj)=5{1+c042j(2)0;1}p1(T; )
fective two-level atom are
1 _
+ 5{1-cod a;{(2)0;]}psxT; )
d 2
gt~ Y1P11F ¥31P33 T '2 Xif; Us(2)
2 2 Slr[aJ(Z) ]ﬁ] (Z)p31(T )+C C.
XTj yTJ-
Xexg —| —z+ -z |patC.C./, (59 (8a)
i i
d S [T oA T} )= 3{1—00g,(2)0 Thpui(T) )
. j 3 i/ o - j j AN
giPes= ~(yaat 73,2)P33+('2 xif; —J) U (2) 2 e :
i=1 7
1 _
X2  y3 +§{1+CO§LQJ(Z)®]]}P33(Tj )
X exg — ;Z'+—g' Paitcc., (5b)
b i ~
) ESIr{aj(Z)j]ﬁik(Z)p;ﬂ(Tj )+c.c.,
d_ - t—T;
apslz_(7+'5)P31+'El Xif; e Uj(2) (8b)
= i
Rl Bt TF) = — Ssifay(2)0,18,(2pua(T)
X ex X2 + —2 y (p33_ P11), (5C) 31 ] 2 J J J 1IN0
i j .
I _
where the atom-field interaction Hamiltonian-sd-E, d is +5sia;(2)0,18i(2)psT; )
the  atomic-dipole-moment  operator, d/dt=(d/dt)
+uv,(dldz) is a convective derivative, ang, is thez com- 1 ~
ponent of the velocity. Clearly, the density operator depends + §{1+C°5{ “i(z)®i]}931(TJ )
on time, position, and atomic velocity, p= 1
p(t=Ts,R(1),v). Atomic recoil and gradient forces on the T _ TS (TR (12
atoms have been neglected. * 2{l cog a;(2)0;1}paT A (D],
The Rabi frequency for the peak of thth pulse, 80
dE; - ~
Xj=— Z_ﬁJ' (6) P13(Tj+)=P§1(Tj+)- (8d)

The effective pulse area is defined as the usual pulse area

is taken as real in Eq458—(5c), whered is the dipole-  mytiplied by a transverse position function,

matrix elemen{3|d-€|1). For an individual atom, the phase
and strength of thgth pulse are determined by the atomic
position atT; relative to the observation position at time

4o t
®;={6;}x Hj(Xay'UX*Uy):[ZXj Lc fj(ﬁ)dt}

Ts,
X—vszj 2 y—vyTsj 2
XT" X Ux Xexp{_( X, _< Yi ) } ©
R(TJ'):R(t:TS)—VTSJ-(:} yTJ- =l Y] —| vy TSI . .
and the spatial modulation factors are
sz z [
7 1for TW pulses
aj(z):|
This corresponds to calculations done in the fixed-coordinate cok;z for SW pulses
system of the laboratory rest frame, where the convective
derivative accounts for motion along taeaxis. In Eq.(5¢) ~ and
the atomic dipole decays at the rage=[ (y;,+ v31)/2]+T oikiz
for the homogeneous collision rake B.(2)= [ for TW pulses 10
Equations(5a—(5c¢) are a generalized form of the optical J 1 for SW pulses.
Bloch equations. We set the atom-field detuning
6=w—0=0 in (50, on the assumption that |n Eq.(9), we see immediately that the transverse profile

7| 8], 7j|k;lu<1. When the field acts élt, , the density ma-
trix immediately following the puIsep(T ) is expressed in
terms of the matrix preceding the pul;s(eT ) as[6,14]

creates a spatially dependent atom-field interaction strength.
For the time intervals between pulseandi=j+1, the
optical Bloch equationgsa)—(5c) give
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Maxwell-Bloch equationg8)—(15) for short pulses can be

_ T V3,1 ' . .
p1(Ti ) =1 pau(T )€™ 71T +p33(Tj+)m used to study optical coherent transients in general.
310732 1 A general solution for photon echo signalsTat> Ty, for
T,=0 is derived in Appendix A for the initial conditions,
x[e™ 71T — e~ (7317 732Tij]
pa(t=0")=p3(t=0")=0,
xexd —iK{Mu,T; 1, (119

p11(t=07)=Wpy(V), (16)
(T7)=pay( T e~ (731t 32 iiexd —iK 33y, T, ], . _ .
Pesi Ti T Pas Ty =1k o2, (119  WhereWp(v)= (mu2) =32~ M is the Maxwellian velocity
distribution. We define the detectable echo signal as the total
Pai(T)=pau(T; )e” VTiiexr{—ingl)vZT”], (119  energy of the radiated echo field,

P T =T, (11d 5= j aT, f f dxdy%eoc|Es|2. 17

In Egs. (11a—(11d), th locity-d dent ph de- . . . .
f%edq?oﬁmaﬁ»ly(usiﬁ)g ¢ velocly-depencent phases afe e[For heterodyne detectiorEg(x,y,t) is combined with a

strong fieldEy(x,y,t) at the same frequency, and the signal,
Ipan(TH) 1 subtracting out a constant background, is proportional to
J

1pan(Tj) (14), (15), and(17), the final signal expression is rewritten as
allowing atomic-state populations to be modulated by coun- (k{Lnd)2c
S

terpropagating fields. When a time interval is long, so that s=
(ys1+ 73'2)‘1<T”—<y1_1, the upper-state population

260
p3a(T; ) and coherencesy(T; ) decay, while fory;,#0 a _ " 2
modulated ground-state populatippy(T;”) remains. For the Xf def fdx d)’U dvpay(Ts.X,y,z,v)e s .
Fourier components of the density matrix that contribute to
an echop,y(T;") = —pas(T;"), implying from Eq.(11a that
Pll(Tf+1)°‘P11(Tj+)[(73,2)/(’}’3,1+ v32]. These conditions
show that echo signals on long time scales are only possible!!l. ECHO CALCULATIONS IN THE TRANSIT REGIME
for an open two-level system which includes a decay channel
such as level 2y5 > y,=0. Both the SE and the GSE that ] ]
we consider in Sec. 11l exhibit this behavior. Stimulated echo experiments follow the Doppler phase
To describe a signal field generated by the atomic dipolesdiagram of Fig. 1. The three excitation pulses are all TW
the electric field and polarization vectors are decomposefi€lds propagating in the-z direction, k; =k, =ks=ks=k.
into Fourier components with slowly varying envelopes, ~ The first pulse creates a cohereipgg(T; ), which dephases
in a time (ku) ~1. The time to the second pul3g, is chosen
Es\ 1.[E(xy,t) K0t such that kq)‘1<T21. The second pulse “stops” the Dop-
p.|=2¢p X.y:t) e’s t+c.c. (13 pler dephasing by creating a component of the ground-state
s s populationp,,(T5) that varies ag'(k2~*)Z This component

Phase matching requires thiat= + k. When inserted into the  €VOIVes over timd 5, with a velocity-independent phase. For
Maxwell equations, the signal field can be related directly tol Y311 Y32~ <T32<y; ", T3, is a long time period, as dis-

the polarization envelope in the SVEA for a thin medium, cussed after E12) — any coherence or excited-state popu-
lation has decayed completely by the time the third pulse

iksL acts on the modulated ground state. This third pulse reverses
E=5.Ps (14 the Doppler dephasing of the dipof; that occurred be-
0 tween the first and second pulses, leading to SE radiation

The macroscopic polarization is defined as the total dipol®eaked at the tim& =T+ T5;. o
moment density averaged over the inhomogeneous velocity SOIVing Egs.(88—(8d) and (113—(11d in this scheme

(18)

A. The stimulated-echo signal

distribution, or p31(Ts.X,Y,2z,v) with the initial conditions of Eq(16),
we find
Pe=2nd | dvpsy(t,x,y,z,v)e ks, 15 ~ i
=2nd] Aty e B9 aTaxyzv=— gWow) 22 e e
8 Y31t V3.2
for the atomic densityn. Momentum conservation deter- w @~ NTs=TatTop g ikvTs=Tz=Tpy
mines which spatial Fourier components @f;(t,x,y,z,v) _
can radiate, restrictings in Egs.(14) and(15) to those val- X sin® ;sin® ,sin® ze'k?, (19

ues for which the spatial phase Bf vanishes, where we
assume that the signal is a TW pulse. Standing-wave echeohere ®; is given by Eq.(9). Substituting this expression
pulses can be treated in a similar manf&dr These coupled into Eq.(18) and integrating over, gives the SE signal,
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(ksLnd)%c Va2 ZJ AT 2Ty~ Ta-Tagl? Each sine function in Eq21) is now expanded in a Taylor
E- € s series
128¢y | y31t 732 ’
*© | 2l+1 2
W @ 271T32e~21Ts~ T3+ T B(T.). 20 o (1)) 3 X—vyTg;
(Ts) (20 S|n®j—|20—(2|+1)! ex (21+1) —j

The echo intensity is sharply peaked at the rephasing time 5

T,=T3+T,, as it should be. The quantiB(T,) represents +(y—vyTsj) H 23)
the transverse polarization effects which are the central result Yi ‘

of this paper,

Using [ *Ze~®P**26Pdp=\[mlae¥"®), all the integrals in
dvydvy, 24D Eq. (21) can be performed analytically, term by term, in
B(Ts):J ded f JWe Y Cartesian coordinates. These integrations are done step by
) step in Appendix B to findB(T) for the general SE case.

To present the essential physics, we specialize to the case
(21) of cylindrically symmetric transverse-field distributions with
equal widthsx; =y;=w for all j. Note that attempting to use
It varies slowly in time compared to the Gaussian in Eq.the symmetry of the fields and the velocity distribution by

(20), which means we can evaluaB(T,) and e ?"Ts at  transforming into cylindrical coordinates only complicates
T.=T3+ T, and integrate ovef to obtain the basic, separable Gaussian integrals. We also take the

X sin®,Sin®,sin® 5

most important experimental regime, where
(kknd)?c(  ysp \2N2m . o, - (ku) 1< T, <y 1<Tg,, W/u, assuring that the atomic co-
SE= 128, | 73:t 72 Ku e Mg v herence does not degrade homogeneously between the first
' ' two pulses and following the final pulse. Settifigy=~0 and
XB(Tg=T3+Ty). (220  T=T4,=T, after integration we have
|
(01)2|+2|'+2 (92)2m+2m’+2 (03)2n+2n’+2

_ I+ +m+m’ +n+n’
B(T)=, 2 X (7D e Q2I+D1(2'+1)! 2m+1)!1(2m +1)! (2n+1)!(2n' +1)!

MN=0 1" m" n'=0
271-1
1+(2I’+2m’+2)T2V7

u2 -1
X|1+(21+2m+2)T?—
W

u2 u2 -1
(214+2m+2)°T? 5 (2 +2m'+2)°T? 5
Xaw?| 2(1+1"+m+m’+n+n’')+6— - . (24)
2 u2

u
1+(21+2m+ 2)T2V7 1+ (21" +2m’ +2)T2W

For pulse areas of order unity, the sum converges rapidlysum over products of Lorentzians for each order of perturba-

Each term in the sum can be identified as one term in th&ion theory, which cannot be accurately described by a single

perturbative calculation of the echo energy to all orders irhomogeneous decay ratén the limit that7<1, transit-time

the three laser pulse amplitudes, including the effects oéffects are no longer important — the lingering transverse-

transverse motion. Each order is represented by a set of irfield dependence is evident from the terms in the third line of

dices{l,m,n,I’,m’,n’}. However, the full sum is an exact Eq.(24) that remain. In other words, we have also treated the

result. Gaussian intensity distribution to all orders, even if transit
The transit effects are seen in the second and third lines affects are negligible.

Eqg. (24). The second line results from the integration over For weak pulsesd;<1 for all j), Eq. (24) reduces to

velocities in(21) and is related to the intensity of the echo

field. The third line reflects the integration over transverse W2

coordinates and is therefore a property of the radiated power B(T)= eieéeém, (26)

of the echo field. Both lines are seen to depend on one di-

mensionless parameter, the effective transit rate through thﬁ | . | .
Gaussian interaction region multiplied by the atomic travelt® lowest-order perturbation result. For nonperturbative
712 pulses @,=60,=6;=/2), as are typical of most SE

time, . . .
experiments, the sums in E@4) that determind8 converge
J2u by the fourth term in each index. In Fig. 2, we plot the echo
= l= T (25 signal SgpxB(Ts=T) versusr with solid lines, for both

[Fig. 2(@)] the weak pulse echideq. (26)] and[Fig. 2(b)] the
Clearly, the dependence of the echo energy is a complicatenbnperturbative cagdeq. (24)]. The signals have been arbi-
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7)) ] Ry 2
w S <
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. . Ii 1 1
0.00 4 + + t t t E1|IQ"% 11 E E, Eal | <3 2
000 032 064 096 128 160 192 I ™ Jd - ™
T=T T=0 T, T, T, T,
« Ty Ta Tas T >
125 = FIG. 3. Doppler phase diagram for the grating stimulated-
’ "\ ®) photon echd GSE). The phase of the density-matrix elements that
— contribute to a GSE signal is shown. The ground-state population
g 1.00 strong pulse SE p11 evolves with a Doppler phase for a tinTg,. Rephasing is
= signal initiated by the standing wave pulse B. The GSE signal al
= R exponential fit travels in the+Z direction for a final TW laser pulse & in the
e 0754 T . . . o -1
G x  Lorentzian squared fit Z.dll’eCt.IOI’]. Transit effects are significant foéy,= vy, ~, where
w v 1S defined by Eq(25).
%]
o 050 T
2 ture, the transit rate,, is fixed: we can compare our results
?\'. 025 d directly with experimental data, removing the scaling ambi-
= guity with respect to input pulse intensities that Thomas and
Forber encounterefd 3,15.
0.00 4 t t + 4 t To compare our calculation to another phenomenological
000 032 064 096 128 160 192 decay model, an exponential fit to our signals using linear

T=T regression is shown in Fig. 2 with dashed lines for both the
strong- and weak-pulse SE. This corresponds to adjusting
FIG. 2. (@ The weak-pulse SE signal of E¢26) is shown  , in Eq.(22) and setting3(T,) =1 andy=0. Assuming the
versus the dimensionless parametev_zvherer= Y T i_s defined by  SE signal is proportional te 2I'vT and using the ¥ times
Eq. (25). (b) Strong (m/2)-pulse SE signal versususing Eq.24). .1 of the weak- and strong-pulse fits, respectively, yield
The exponential and Lorentzian-squared decay models are overla{ o different results for the effective transit ratg,
for comparison. The similarity of a Lorentzian-squared fit to the _ -1. - - r_
actual signal is evident from the weak-pulse SE expression, qu.}ﬂtytrs{]léeh- ;ag‘ngg; (\)/V(g)iTg :g:igb?egg_too.t?l:(Lay;rat:rc')Ansegurse mea-
urement of a field-dependent transit rate, inconsistent with

the fixed definitiony,, = (\/2u)/w that enters into our results.

(26). These models, as discussed in the text, do not scale correct|
with input pulse intensity. The exact SE signal, E2¢), does.

trarily scaled to match at=0. For the weak-field case, the
half width at half maximum{HWHM) of B in terms ofr can
be found analytically from Eq. (26, A7, A GSE Doppler phase diagram is shown in Fig. 3. The
=(7Y2-2)¥2=0.804. From the computer-generated signalfour-pulse sequence consists of two counterpropagating TW
for /2 pulse excitation, the HWHM ia\7,,=0.978. The pulses,k;=—k,=k, followed by a SW pulse, and ending
radiated energy for the nonperturbative case is seen to decayth another TW pulsek,= —k [5]. All pulses have the
more slowly asT increases than for weak-field excitation. same transverse-field distribution witrelgointw. The first
The “x” points in Fig. 2 indicate Lorentzian-squared fits pulse again creates an atomic coherénge and the second
(1+a%7%)~2 using the HWHMs above, showing that a pulse modulates the ground-state population, producing an
nearly indistinguishable but analytically incorrect fit can bee'2~kZ Fourier component. The time between these pulses
made for both weak and/2 pulses. For such a Lorentzian- is short, T,;<<(ku) 1,51, to prevent dephasing. However,
squared ansatz, the constaaf=(2Y?—1)/(A7)? deter- because pulses 1 and 2 counterpropadate k,= — 2k, in
mines what might be assumed to be the effective transit rateontrast to the SE scheme whetg—k,;=0. As a result,
I'i,=avy,, . For the weak-pulse echa=0.801, while for the Doppler dephasing occurs in the populations during the time
strong pulse case=0.658, leading to the conclusion that interval Tg> (2ku) 2. The SW pulse afl; then scatters
the transit rate is intensity dependent. However, there are npopulation from thee™'2¥* Fourier component into the
free parameters in Eq&24) and(26). For a particular gas of €2k component, reversing the Doppler dephasingpin
massM, given accurate measurementsioéind the tempera- for T,3=Tj3,. Since we see from Eg.(88 that

B. The grating stimulated-echo signal
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p11(T3) ~ p11(T3 ) cos@sco%k2) and c0s@c0%2) lation is exactlly _cancelled _ by the explici'g choige of
=37"  Jon(03)e'?™? only then=2 term can scatter the T3o="Tys. Subsututln_g Eq(27) into Eq.(18) and integrating
e~ 12Kz Fourier component into thel2<? component. The TW  OVerv; andTs, we find
pulse atT, couples this ground-state population to the
atomic dipoles p3;, which radiate coherently at :(kSLnd)zc( 3.2 )4 \/ﬁefhfﬂB(T =2T)
T¢=2T,;+2T3,. Momentum conservation requires that SE 5125 |\ysitys ku ° '
k=K. (28)
Because of the above considerations, weTsgt=0 and
T=T,=2T3=2T. The time intervalsTz=T,=T are
long. This fact is more significant for the GSE, since the . .
phase of the ground-state population between the second a;{ﬁ]smce the two counterp'ropagate with respect to one an-
fourth pulses is velocity dependent, implying a greater sen?Ner. Again, we have Carrled.along a homogeneous grpund-
sitivity to velocity-changing collisions. This has been dis- state decay rate, for comparison to our results for which
cussed at length in Ref§5—7]. As developed above, our Y1_°- . . I
formalism ignores the dephasing effects of velocity-changing The calculation ofB(Ts) IS nearly |Qent|cal to the SE
collisions on the diagonal density-matrix elements. Thist3S€- In fact, the power-series expansion of the Bessel func-
omission is discussed below in the Conclusion, Sec. IvV. O™
The optical Bloch equations are solved for this scheme to ( PREY

The echo pulse, which is peaked at the time
T,=T,+Ty~T,, is separable from the excitation pulse at

find the coherence atg, " -
yap |2 Jf(0y)= > (~1)P——(Hg)?*™, (29
_ 732 e 71Tt Ta3) p=0 p: (p+4)-

Y31t V32

xXe~ kv (Tg—T4—2T3p+2Ty3—Toy)

~ i
p31(TS ,X,y,Z,V) == 1_6W0(V)

where the GaussiaH; was defined in Eq(9), allows us to
adapt the SE resultEq. (24)]: we replaceT—2T for the
X Sin®,sin®,J,(@4)sin@ ek (27)  coefficients ofl,I",m,m" and add in the terms (2+4) and
(2p’+4) in the appropriate places. The result for
We see that the Doppler dephasing of the modulated popB(Ts=2T) is

©

’ ’ ! !
B(ZT)=7TW2 z 2 (_1)|+| +m+m’+n+n’+p+p
|,m,n,p:0 I’,m’,n’,p’:O

!
93) 2p+2p'+8

(01)2|+2|’+2 (92)2m+2m’+2 2 (04)2n+2n’+2
l+ni2'+0)! Cm+01E2m' +0)! pl(p+4)!p'l(p’+4)! (2n+1)!(2n'+1)!
T242]-1 T2421-1

1+[4(21" +2m' +2)+2p' + 4]

X|1+[4(21+2m+2)+2p+4]- 7

r T2U2
[2(21+2m+2)+2p+4]? v
X| 2(l+1"+m+m’'+n+n'+p+p’)+ 14— >
1+[4(21+2m+2)+2p+4] w:
2,2 -1
[2(2]"+2m' +2)+2p’ +4]? e
— 22| (30
1+[4(21"+2m’'+2)+2p’' +4] e

The structure oB(T,) for the GSE signal is similar to We use the same definition aof (25) for consistency, al-
that of the SE. In lowest-order perturbation theory, the resulthough the time scale of a GSE experiment | 2ieed not be

is the same as the time scale for a SE experimé&t [n Figs.
8 5 5 4(a) and 4b), we plot B(T;=2T) versusr for the weak-

B(2T)=020202(ﬁ) (i) W pulse GSE[Eg. (31)] and the nonperturbative GSHEQ.
172741 21 \41] 2(1+672)(7+1072) (30)], respectively. For the nonperturbative céBey. 4(b)],

(31)  we take the peak pulse areés= 6,= 0,= /2, as before,
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1.25 = sense only in the context of the sum over the product of
(a) Lorentzian functions shown in Eq&4) and(30), which are
. accurate for arbitrary input pulse areas.
1.00 weak pulse GSE
R signal
------ exponential fit IV. CONCLUSION

0.75 ¢+

x  Lorentzian In this paper, we have demonstrated a method for includ-

squared fit ing transit-time effects in coherent transient calculations for

short laser pulses with Gaussian spatial profiles interacting
with atomic vapors. Using this method, we have derived
nonperturbative expressions for the SE and GSE signals as a
function of the relevant pulse delays. By comparing these
. . X signals to phenomenological decay models in both the strong
0.00 { t i . . e
0.00 0.32 0.64 0.96 (nonperturbative and weak (perturbative excitation pulse
cases, we have shown the necessity of our analysis in inter-
preting an experimental measurement of the transit rate.
Strong pulse echoes are seen to decay more slowly as a func-
tion of time delay than weak pulse echoes. And in either
1.25 ¢, case, the bell-shaped decay as a function of the dimension-
k (b) less parameter are poorly fit by any exponential loss rate.
strong pulse GSE To our kn_owledge, this paper is thg first rigorous derivation
signal of Gaussian-beam transit effects in photon echo spectros-
~~~~~~ exponential fit copy.
Our analysis has relied on an assumption of classical, bal-
x  Lorentzian listic transport for the atoms. When atom-perturber collisions
squared fit . . .
are considered, the master equations become more compli-
cated, especially for the diagonal density matrix elements
[6,16]. If we assume the off-diagonal elements decay homo-
geneously with the collision ratg, as in Eq.(5c), we must
still alter Egs.(5a and (5b) for the diagonal elements by

0.00 t t i adding the terms
0.00 0.32 0.64 0.96

T=mwT

0.50 +

0.25 4

Weak Pulse GSE Energy (a.u.)

1.00

0.75 +

0.50 +

025 ¢

Strong Pulse GSE Energy (a.u.)

d
{apaa(V:Rit)} =—Ta(V)pa(V,R;t)

coll

FIG. 4. (a) Weak-pulse GSE signal of Eq31) versusr. (b)
Strong-pulse GSE signal of E¢B0) versus7. Again, exponential . , ,
and Lorentzian-squared fits are shown for comparison. T | dV'W,(V' V) paa(V' R 1)

32
and we se®; to maximizeJ,(63). This maximum occurs at (

J4(03~5.3)=0.4. The similarity of the SHEQq. (26)] and  for a={1,3}. This expression will affect only the field-free
GSE[Eq. (31)] perturbation results is self-evident. For the regions, so Eqs(11a—(11d) are no longer valid. The first
calculated nonperturbative case, the measured HWHM igerm in Eq.(32) represents the total collisional decay of at-
A7,,=0.469, compared to the analytical, perturbative resuloms out of the statea population with velocityv with rate
from Eq. (31), Ar,=[(274"2-13)/30]"2=0.344. For com-  T',(v)=[dv'W,(v—V’), while the second is the term for
pleteness, in Fig. 4, an exponential fit to each signal is suscattering into leveh with velocity v. The collision kernel
perimposed with dashed lines, and the excellent Lorentziany/,(v’' —v), defined as the transition probability density per
squared fits are marked by “x.” The asymptotic deviation of unit time for the atom to scatter from velocity to v, can be
the Lorentzian fit to the perturbation result is evident in Fig.calculated quantum mechanically from the atom-perturber
4(a). scattering amplitude and is complex enough to make the kind
Taking into account the time scale of the GSE experimenbf analytical solutions we have derived for photon echo sig-
2T, we again conclude that these fits lead to inconsistenbals nearly impossible.

transit times for different excitation pulse strengths. For the In general, for a vapor in thermal equilibrium, detailed
exponential fit, assuming from E(8) that the GSE signal balance requires that the kernel lead toward a Maxwellian
is proportional toe”*'«T, the effective transit rateE,, =3  velocity distribution for the density matrix in the long-time
yuTie for the weak- and strong-pulse cases d@ limit; as a resultW,(v' —v)#W,(v—v’) and physical col-
I',=0.70y,, and (b) I';;=0.59y,,, respectively. Using lision kernels do not have nice Fourier transform-
(1+a?7%) "2 for the Lorentzian-squared fits, the effective convolution properties in velocity space. This has been dis-
transit ratesl';,=(a/2)y,, are () I';;=0.935y,, and (b)  cussed at length for spatially homogeneous systems in Refs.
I',,=0.686y,,, respectively. Despite the excellent fit of the [6,16]. For our calculations, where the density matrix de-
Lorentzian-squared decay functions for both the SE and GSRgends strongly on the transverse coordinate, the propagator
signals, we have shown that the essential physics maked the diagonal density matrix valid for the field-free regions
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must be a separable exponential or Gaussian function of the =~ APPENDIX A: GENERALIZED ECHO SIGNALS
coordinates and velocities to be treated easily in our model, .
independent of the kernel that determines its exact analytigg)Tgﬁ df(olrﬂ)jltlhqi izt(;m; c;oherence from Eq8a—(8d)
form. Such is the case for the Gaussian propagator of the™” y

Fokker-Planck transport equation in coordinate-velocity

phase spackl7], relevant for Brownian motion in the weak-

collision regime[6]. So, for this limiting case of atomic dif-  P3t=Ts,X,y,Z,V)

fusion, we can again derive analytical results. It is the tran- 1\N

sition regime from ballistic to diffusive transport that makes = —i(—) Wi (VF(Tq, ... T T ke, oo Ky WZooy)
analytic calculations difficult. And for any inclusion of 2

velocity-changing collisions, the mathematics of propagating N

the density matrix between laser pulses is more complicated x 1 Gi(0)). (A1)
and will not be considered here. =1

However, we can make some general remarks about tran-
sit effects in probing collision processes using the above
echo techniques. For the SE, any collisions that cause @he functionF is a product of rates and exponential factors
change in velocity between pulses 2 and 3 make it difficult tocontaining the temporal decay and phase, as well as the
rephase the atoms and tend to destroy the echo signal. Dg-dependent spatial phase, @f;. From Eqgs(8a—(8d) each
spite this, use of a diffusion model of atomic motion allows function G; in (A1) must be one of the following:
for explicit calculations of the SE intensity as a function of
time. Physically, the first and second laser pulses pick out a

cylinder of atoms that can contribute to the echo. This cyl- Sin®

inder then diffuses outward until the final pulse arrives. But, )

if the time intervalTs, is long enough to be in the diffusive Gj=y l*co®, (A2)
regime of atomic motion, the velocity of the atom & is J4(0)

uncorrelated with its velocity at, and cancellation of the
Doppler phase built up in the timg,, becomes impossible.

For the GSE, collisions have been considered in deptli)vhere\lq is the gqth order Bessel function of the first kind.

previously[6]. They can be used to probe collision processesre integer is determined by the phase-matching condition
for the velocity-sensitive populations between pulses 2 ang, ke: given thatk.= =k, typically only a singleq can

4. A revival of the GSE signal in the high-pressure regime,. ntribute to the echo signal.

where the mean free path of each atom is less than a wave- Using the definition of the echo signal in E€L8) and
length, has been predicted and is related to collective atomiﬁ'lserting(Al),

coherence effects and Dicke narrowing. In this case, no Dop
pler phase for the populations can build up in thg and
T,3 time intervals: the atoms that can contribute to the echo 1241 (kL nd)%c
signal have a time-averaged velocity of zero and tend to be S= _> f de[f f dxdy
trapped in the laser beam cylinder. This can be understood 2 €0
schematically by noting that do-d
Uxtuy —(vi-%—vz)/uz . .
J f—r(wu e y H G;(0))

X

2}
— T3 T3
vocf v(t)dt=0:«ex+2kf vz(t)dt}=1. (33 )

T2 T2 *viluz

(A3)

x f do, Fe-iks
It would be interesting to correlate the GSE signal in differ-

ent pressure regimes with the transition from ballistic to dif-

fusive atomic motion. As for the SE, GSE theoretical echoSinceF is independent of, y, vy, andv,, the integral over
expressions, including center-of-mass motion, can be calcuhe longitudinal velocity, has been separated from the in-
lated using the propagator of the Fokker-Planck equatiofiegrals over the transverse coordinates and velocities and ap-
with an experimentally determined diffusion constant in thepears at the end of EqA3). This integral determines the
high-pressure regime. Doppler rephasing time that maximizes the echo and in gen-
eral can be shown to give

ACKNOWLEDGMENTS
The authors would like to thank B. Dubetsky and J. E. dv, k22
Thomas for their time and effort adding insight to this work. f (Wu—z)m':e st vzt

J.L.C. would also like to thank Professor Max Cohen for his
steadfast support. This work was supported by the National (ku)? )

Science Foundation through Grant No. PHY-94114020 and =ex;{— 5 [Ts=(Tn+AT)] }

by the U. S. Army Research Office under Grant No.

DAAHO4-93-G-0503. X (decay termg (A4)



54 TRANSIT-TIME EFFECTS IN COHERENT TRANSIENT ... 5271

where the Gaussian temporal envelope of the echo intensifffhe echo energy is only a function of the times between
is centered at a timAT after the final excitation pulse at pulses. This is a known, general result. To derive more
Tn. The unspecified “decay terms” in Eq6A4) depend on  physical intuition for transit effects, Sec. lll examines the
the specific echo scheme and are the homogeneous terresact form ofB(T,, ... Ty, Ts) for the SE[Eq. (24)] and
derived from Eqs.(1139—(11d). In the Doppler limit they the GSEEq. (30)], respectively.
always vary slowly compared to the Gaussian temporal en-
velope. The discussion following Eqg&l1a—(11d) suggests
that their time dependence can often be neglected for long APPENDIX B: TRANSVERSE INTEGRALS
echo experiments involving the modulated ground state. FOR THE SE CALCULATION

The main result of this paper, which is the determination
of transit-time effects, is represented by the square bracket ?JO
Eqg. (A3),

The integration of Eq(21) is straightforward, using the
wer series expansion of € (23):

B(Tq,...,Tn, T
(Ty Ny Ts) B(TS)=f fdxd f fdvxdvye_(”i”i)/”z
dv,dv, 2,12 mu
[ Jono ot oo
i
(A5) X sin® 1Sin® ,sinB 5
*® (0 )2|+1

From Eq.(A3), we see thaB(Ty, ... Ty,To is essentially =f JdX dv{ > (—1)'+m+n—(2|1+ 1
the peak power of the echo fie[d8]. Given the Gaussian mn=0 '
transverse distributionsi;, we expand eacl;(®;) in a (6,)2™1 (g, 2n+1J~ J do dvy
Taylor series; for example, X(2m+1 I (2n+1)!

— (2 20+12m+1142 1
X @ ity am L (B1)

Q)
1—cos®j=23in2?'

_y i (_1)m+n( 9j/2)2m+2n+2 2m+2n+2.
mn=o (2Zm+1)!(2n+1)! Y whereH; is given in Eq.(9). Separating the, andv, inte-
(A6) grals, thev, integration proceeds as

All of the integrals in Eq.(A5) can now be performed ana-

2
lytically, term by term. Substituting Eq$A4) and(A5) into j do Bt SPCLTG r{—(ZI +1) X_vszl) }
Eqg. (A3), Jmu? X1

X_UXTSZ 2
2N+l(kLnd)2 Xexpg —(2m+1) IR
S: E J' d B(Tl, e YTN!TS) 2

X=vyTgs3 2
X3

xex;{—(2n+1)

(kU)2 )
Xexg — 5 [Ts—(Ty+AT)]| X (decay termpg

(A7) =exp[—x2 2|XJ;1+ 2n)1(:1 2n+1 de2
R Ne=Te
In the transit regime of interest, wher&kus 1y, , 1 2+1)TE  Cm+1)TS,
B(Ty, ..., Ty, Ts) varies slowly in time compared to the XeXp ozt X2 + X2
Gaussian temporal envelope. We therefore pull the slowly
varying functions out of the integrand, evaluating them at the (2n+1)TZ 21+1)Tgy
peak of the Gaussiafig=Ty+AT, and integrate over the + T exp +2v,X T
Gaussian. This yields our final result for the echo signal,
, (2m+ 21)Tsz . QM?TSSH' 62
X3 X3

S= B(Tl, PR !TN ,TS:TN+AT)

2 €p ku

_>2N+1(k|—nd)2 \/_

X (decay termg_—r, +at- (AB)  Now, we usef * e~ “P’e2APdp= Jala 79, to give
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2I+DTyg Cm+DTy,  (2n+1)Tg)\2
X1 X5 X3
I+1)TZ 2m+1)T3, (2n+1)Ta,
+ +
X1 X5 X3

22I+1 2m+1 2n+1
X3 X5 X3

2

ex

21+ 1)T3,u2  (2m+1)T3u?  (2n+1)T2,u?
X[l-}—( ) sl +( ) s2 +( ) s3

L
u?

—-1/2

B3
x5 X5 X3 B3)

The integration ovev, also gives Eq(B3) with the replacements—y andx; —>y
Putting these expressmns into E@®1) and squaring the sums usm@m) —E = f,, we still have to perform the
integrations ovex andy,

J fdxdy.-:deexp[—

2

) 21+21"+2 2m+2m’'+2 2n+2n'+2
7 + v + 7
X1 X3 X3

(21+1)Ty . 2m+1)Te, N (2n+ 1)T53) 2

2
X1 X3 X3

1 (2I+1)T (2m+1)Ts, (2n+1)T%
— + +
T x5 X5 X3

xXexp| X

21'+1)Tg  Cm'+1)Tg, . (2n'+ 1)T53) 2

X5 X5 X3
+
1 U+DTL 2m'+1D)T3, (2n'+1)T4
2 X2 + X2 * x2
1 2 3
L(21+21"+2  2m+2m’'+2  2n+2n'+2
X | dyexg —y 5 + 2 + 2
Y1 Y2 Y3
2I+D)Ty Cm+D)Tg (2n+1)T33)2
xexp| y? Vi V> E
I 1T @yt eminTs entTh
=+ 7+ 7 2
u yl y2 y3
(2+1D)Tg  (2m'+ 1T, (20" +1)Tg)?
2 + 2 + 2
N Y1 Y2 Y3 (B4)
1 (U+DTE @em'+1)T5, @n'+1)T% | |
=t 2 + 2 + 2
u Y1 B Y3

Again, the integrations over andy separate. Th& integration gives

Jr
Q+DTy 2m+1D)T,, (2n+1)T53 (21" +1)TSl 2m+1)T, (2n'+1)Tg\2 17
21421'+2 2m+2m'+2 2n+2n'+2 x5 * X5 * ) ( % * x2
x5 X5 x5 1 @+DTE 2m+nTS (2n+1)T 1 (2| +1)TZ 2m'+1)T3,  (2n'+1)T%
wr x5 * X5 X3 v x5 " x5 * X3

(B5)

and they integration is found by replacing —y; . The final result foB(Ts) shows the effect of transverse motion on the SE
signal,
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(63)2n+2n’+2

I+D)12I+1)! (2m+1)1(2m +1)! (2n+1)1(2n'+1)!

Lmn=0 " m' n'=0
(2+D)T3  Cm+DTL  2n+1)T5| |7 @U+1)TZ Cem+1T%3,  @n'+1)T3) 7%
x| 1+ ~ ~ ~ u 1+ ~ + > + ~ u?
X1 X5 X3 X1 X5 X3
2+1)TH  2m+1)TE,  (2n+1)T5%) |43 204D)TE 2m'+1)TL @' +1)TE) ]
<14 ( 2) s ( 2> 2 ( 2) ss)uz 1+(( 2> 51+( 2) sz+( 2) SS)UZ
Y1 Y2 Y3 Y1 Y2 Y3
5 V7
[ ((2|+1)TSl 2m+1)T, (2n+ 1)T53) (2|'+1)TSl 2m +1)T +(2n +1)Tg\2 122
21+21'+2  2m+2m’+2 2n+2n +2 X3 X3 x5
x2 X3 1 2I+1)T 2m+1)TZ, (2n+1)T% 1 (2| +1)TZ 2m+1)T3, (2n'+1)TZ
TR X2 x2 v X2 X2 * X2
L 1 2 3 1 2 3 -
" Jr
[ 2+DTy 2m+D)Te, (2n+1)T53 (2I’+1)T51 2m'+1)Te, (2n’+1)TS3)2 12
21+21'+2 2m+2m'+2 2n+2n'+2 y2 ya ~ y2 y2
y? y3 y3 1 (2+DTE 2m+1)T3, (2n+1)T53 1 (2| 1T 2m+1TE, @n’+1)TS
+ —+ + +
i [T % % u? % % y;

(B6)

Substitution of Eq(B6) into (20) or (22) gives the echo energy for this general SE scheme. The qu&{flty simplifies to

Eq. (24) for xj=y;=w, Ta=0, andT4=T,=T.
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ence from(24). Using (23) and (A6),
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From this expression the lowest-order perturbation result for

the basic photon echo signal is
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This signal is seen to differ from the perturbative expression
derived by Thomas and Forber in RéfL3]. These results
should allow for a theoretical fit to their data without free
parameters, where theif, andy, are ouryt_rl and 2y, respec-
tively. From (25), for a laser beam 1/e intensity diameter
V2w=1 mm andu=2.5X10°mm/s, 7, =y, *=w/\2u=2

us. This corresponds to a typical rubidium experiment at room
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pages 22-29. It is shown to satisfy the Fokker-Planck equation
on pages 33—40. The explicit form of the propagator appears
on pages 28 and 29, Eq4.78) and(181)—(183).

temperature. Finallyr= T/ 7, and their signal for weak pulse [18] For plane waves, which lack a transverse-field distribution, the

excitation may be expressed as
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integral over transverse coordinates in E@s3) and (A5) is
unphysical;B(T,) is then the peak intensity and reduces to
[HJ-GJ-(GI-)]Z, whered; has been defined in E¢(P) as the usual
pulse area. In this case the signal is measured as the echo
intensity or fluence, and the standard echo result is reproduced
without transit effects.



