
Spontaneous emission near an absorbing dielectric surface

M. S. Yeung* and T. K. Gustafson
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720

~Received 14 November 1995; revised manuscript received 1 July 1996!

The lifetime of an excited atom near an absorbing dielectric surface is calculated from an exact solution of
a microscopic Hamiltonian model, which includes the effects of dispersion, local-field correction, and near-
field Coulomb interaction. Results for the total decay rate are shown to be in excellent agreement with those
based on classical electromagnetic theory and to yield the well-known result for the rate of nonradiative energy
transfer in the limit of very small distance from the surface.@S1050-2947~96!01811-2#

PACS number~s!: 42.50.Ct, 42.50.Hz, 32.50.1d, 78.90.1t

I. INTRODUCTION

The lifetime of an excited molecule has been known for a
long time to be significantly affected by a partially reflecting
mirror in its vicinity @1#. Early attempts to explain the ex-
perimental results using classical electromagnetic theory
@2,3# have been quite successful. Nevertheless, the validity of
these theoretical results has so far not been verified by cal-
culation based on a fully canonical quantum theory. Re-
cently, spontaneous emission by an excited atom near a loss-
less dielectric surface was analyzed from the viewpoint of
quantization of macroscopic spatial modes@4#. However,
such an approach cannot easily be extended to include the
effects of losses in the dielectric. Thus, up to now, an analy-
sis of the lifetime of an excited atom near an absorbing di-
electric surface based on a fully canonical quantum theory
has been lacking. In this paper, we present one such analysis
based on an exact solution of a microscopic Hamiltonian
model.

After discussing the Hamiltonian formulation in Sec. II,
we diagonalize the matter part of the Hamiltonian density to
obtain the dressed matter field in Sec. III. In Sec. IV, the
self-energy of an excited atom near the dielectric surface is
obtained to second order of perturbation theory by consider-
ing the Green function of the excited atom to this order. The
decay rate of the excited atom, which is proportional to the
imaginary part of the atom self-energy, is then expressed in
terms of the instantaneous Coulomb interaction, the Green
function for the transverse photons, and the Green function
for the harmonic-oscillator field@Eq. ~70!#. In Sec. V, the
latter two Green functions are obtained by solving the corre-
sponding Dyson equationsexactly. This involves a three-step
procedure. First, the Green function for the harmonic-
oscillator field is solved exactly by ignoring the coupling to
the transverse photons@Eq. ~90!#. Then, the Green function
for the transverse photons is solved exactly by including both
the bulk and the surface contributions to the photon self-
energy ~Appendix!. Finally, the Green function for the
harmonic-oscillator field is corrected by including the cou-
pling to the transverse photons@Eq. ~122!#. Numerical results
for the decay rate of the excited atom obtained from the

above theory are compared with those obtained from the
classical theory in Sec. VI.

II. THE MICROSCOPIC HAMILTONIAN MODEL

Our microscopic model of the absorbing dielectric is the
Hopfield model with losses introduced by Huttner and Bar-
nett @5#. This model has been used in the study of spontane-
ous emission in aninfinite absorbing dielectric medium@6#.
Here we apply it instead to an absorbing dielectric occupying
the half spacez,0.

In the absence of the excited atom, the Hamiltonian den-
sity of the system consisting of the lossy dielectric half space
and the radiation field is

H5Hem
A 1Hmat1Hres1Hint

res1Hint
A 1Hint

U . ~1!

The various parts of this Hamiltonian density are the follow-
ing.

~i! Hem
A is the Hamiltonian density of the free radiation

field

Hem
A 5

e0
2

~Ȧ!21
1

2m0
~“3A!2, ~2!

whereA is the vector potential.
~ii ! Hmat is the Hamiltonian density of the bare dielectric

occupying the half spacez,0, modeled by a harmonic-
oscillator field

Hmat5u~2z!S 1

2r
PX
21

rṽ0
2

2
X2D , ~3!

whereX is the bare matter field operator andPX is the mo-
mentum conjugate toX.

~iii ! Hres is the Hamiltonian density of the reservoir asso-
ciated with the dielectric, modeled by a continuum of har-
monic oscillators

Hres5u~2z!E
0

`

dvS 1

2r
Pv
21

rv2

2
Yv
2 D , ~4!

whereYv is the reservoir field operator andPv is the mo-
mentum conjugate toYv .
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~iv! Hint
res is the coupling between the bare dielectric and

the reservoir leading to losses in the dielectric

Hint
res5u~2z!E

0

`

dv
v~v!

r
X•Pv , ~5!

wherev(v) is a square-integrable function with the proper-
ties that the analytic continuation ofv(v)2 to negative fre-
quencies is an even function andv(v)Þ0 for all nonzero
frequencies.

~v! Hint
A is the interaction between the bare dielectric and

the vector potential

Hint
A 5u~2z!S 2

e

r
A•PX1

e2

2r
A2D . ~6!

~vi! Hint
U is the interaction between the bare dielectric and

the scalar potentialU

Hint
U 52eU“•@Xu~2z!#2

e0
2

~“U !22
e2

6e0
X2u~2z!, ~7!

where the third term on the right-hand side~RHS! of Eq. ~7!
is introduced to model the effects of local-field correction.

For simplicity, we have omitted the dependence of the
quantitiesA, U, X, PX , Yv , andPv in the above expres-
sions on (r ,t). Also, the Heaviside unit functionu(2z) in
the above expressions is used to indicate that the dielectric is
confined to the half spacez,0.

In our quantization scheme,U is not treated as an inde-
pendent field. Instead,U is eliminated from the Hamiltonian
density by means of its Euler-Lagrange equation of motion.
In the Coulomb gauge“•A50, which we shall use in this
paper, the solution forU is the instantaneous Coulomb po-
tential for the charge density2e“•@Xu(2z)#:

U~r ,t !5 È d3r 8
2e“8•@X~r 8,t !u~2z8!#

4pe0ur2r 8u
, ~8!

in which the same value of timet appears on both sides of
the equation.

The HamiltonianH of the system is obtained by integrat-
ing the Hamiltonian densityH over all space. For the Cou-
lomb interactionHint

U we can eliminateU using Eq.~8!. Af-
ter integration by parts, we obtain the contribution toH due
to the Hamiltonian densityHint

U ,

H int
U ~ t !5

1

2Ez,0
E
z8,0

d3r d3r 8Xi~r ,t !Xj~r 8,t !Fi j ~r2r 8!,

~9!

where

Fi j ~r2r 8!5
def e2

e0
F 1

4p

]2

]xi]xj8

1

ur2r 8u

2
1

3
d i jd~r2r 8!G . ~10!

The fields are quantized in the usual way by imposing
equal-time commutation relations between the field operators
A, X, andYv and their conjugate momenta

@Ai~r ,t !,Ȧj~r 8,t !#5
i\

e0
d i jd~r2r 8!, ~11!

@Xi~r ,t !,PX, j~r 8,t !#5 i\d i jd~r2r 8!, ~12!

@Yv,i~r ,t !,Pv8, j~r 8,t !#5 i\d i jd~v2v8!d~r2r 8!.
~13!

III. DIAGONALIZATION OF THE MATTER PART

Ideally, one would like to diagonalize the Hamiltonian
H by means of a canonical transformation from the field
operatorsA, X, andYv to some other set of operators. This
proved to be too ambitious a task. Instead, we seek an exact
solution of our Hamiltonian model using diagrammatic per-
turbation theory.

We first diagonalize the Hamiltonian density of the sub-
system consisting of the bare matter field, the reservoir, and
the coupling between the two,

Hmat
~0! 5Hmat1Hres1Hint

res. ~14!

Our approach follows closely that of Huttner and Barnett@5#.
Whereas these authors performed the diagonalization in re-
ciprocal space, as is appropriate for aninfinite dielectric me-
dium, we perform the diagonalization in real space, since we
are dealing with a dielectrichalf space. The annihilation op-
eratorsb(r ,t) andbv(r ,t) for the bare matter and reservoir
fields are defined in terms ofX,Yv , and their conjugate mo-
menta by

b5Arṽ0

2\ S X1 i
PX

rṽ0
D , ~15!

bv5Arv

2\ S 2 iYv1
Pv

rv D , ~16!

where, for simplicity, we have omitted the dependence of the
operators on (r ,t). Equations~15! and~16! may be inverted,
using the fact thatX,Yv , and their conjugate momenta are
Hermitian,

X5A \

2rṽ0

~b†1b!, ~17!

PX5 iA\rṽ0

2
~b†2b!, ~18!

Yv52 iA \

2rv
~bv

†2bv!, ~19!

Pv5A\rv

2
~bv

†1bv!. ~20!

Using Eqs.~15!, ~16!, ~12!, and~13! we readily obtain
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@bi~r ,t !,bj
†~r 8,t !#5d i jd~r2r 8!, ~21!

@bv,i~r ,t !,bv8, j
†

~r 8,t !#5d i jd~v2v8!d~r2r 8!, ~22!

while all other commutators betweenb,bv and their Hermit-
ian adjoints vanish. Substituting Eqs.~17!–~20! into Eq.~14!
and using Eqs.~3!–~5!, we obtain

Hmat
~0!5u~2z!F \ṽ0b

†
•b1E

0

`

dv \vbv
†
•bv

1
\

2E0
`

dv V~v!~b†1b!•~bv
†1bv!G , ~23!

whereV(v)5@v(v)/r#Av/ṽ0 and we have omitted an in-
finite zero-point energy term.

Next, we diagonalize the Hamiltonian density Eq.~23! by
defining the annihilation operatorBv(r ,t) for the dressed
matter field

Bv5a0~v!b1b0~v!b†

1E
0

`

dv8@a1~v,v8!bv81b1~v,v8!bv8
†

#, ~24!

the dependence of the operators on (r ,t) being understood.
The coefficientsa0(v), b0(v), a1(v,v8), andb1(v,v8)
are to be chosen so thatHmat

(0) is diagonalized,

Hmat
~0! ~r ,t !5u~2z!E

0

`

dv \vBv
† ~r ,t !•Bv~r ,t !, ~25!

and furthermore that the transformation Eq.~24! is canoni-
cal,

@Bv,i~r ,t !,Bv8, j
†

~r 8,t !#5d i jd~v2v8!d~r2r 8!. ~26!

As shown by Huttner and Barnett@5#, the conditions~25!
and ~26! determine the coefficients up to a phase to be

a0~v!5S v1ṽ0

2 D V~v!

v22ṽ0
2z~v!

, ~27!

b0~v!5S v2ṽ0

2 D V~v!

v22ṽ0
2z~v!

, ~28!

b1~v,v8!5
ṽ0

2 FV~v8!

v1v8G V~v!

v22ṽ0
2z~v!

, ~29!

a1~v,v8!5d~v2v8!1
ṽ0

2 F V~v8!

v2v82 i eG V~v!

v22ṽ0
2z~v!

,

~30!

wherez(v) is defined by

z~v!512
1

2ṽ0
E

2`

`

dv8
V2~v8!

v82v1 i e
. ~31!

Furthermore, if the set of dressed operatorsBv and
Bv
† , 0,v,`, is assumed to be complete, Eq.~24! can be

inverted to giveb andbv as functions of the dressed opera-
tors

b5E
0

`

dv8@a0* ~v!Bv2b0~v!Bv
† #, ~32!

bv5E
0

`

dv8@a1* ~v8,v!Bv82b1~v8,v!Bv8
†

#. ~33!

Substituting Eq.~32! into Eqs.~17! and~18!, we can express
the bare matter field operator and its conjugate momentum in
terms of the dressed operators

X5A \

2rṽ0
E
0

`

dv@h~v!Bv
†1H.c.#, ~34!

PX5A\rṽ0

2 E
0

`

dv@g~v!Bv
†1H.c.#, ~35!

where

h~v!5a0~v!2b0~v!, ~36!

g~v!5 i @a0~v!1b0~v!#, ~37!

and H.c. denotes the Hermitian conjugate of the immediately
preceding term.

IV. SPONTANEOUS DECAY RATE

Up to now, we have only considered the system consist-
ing of the lossy dielectric half space and the radiation field
with which it interacts, as described by the Hamiltonian den-
sity H defined by Eqs.~1!–~7!. When an excited atom is
introduced into the system, there is an additional interaction
Hamiltonian of the form

Ha5 È d3r ~2 ja•A1raU !, ~38!

where ja andra are the current and charge densities of the
atom. For simplicity, we assume the atom to be made up of
a single electron of massm and chargee in orbit around a
fixed nucleus of charge2e at a pointra on theair side of
the dielectric surfaceza.0. Then the current and charge
densities of the atom are given by

ja~r ,t !52
i\e

2m
$c†~r ,t !“c~r ,t !2@“c†~r ,t !#c~r ,t !%

2
e2

2m
A~r ,t !c†~r ,t !c~r ,t !, ~39!

ra~r ,t !5ec†~r ,t !c~r ,t !2ed~r2ra!, ~40!

wherec(r ,t) is the field operator of the electron. For a two-
level atom,c(r ,t) may be expanded in annihilation opera-
torsc0(t) andc1(t) for the ground and excited states, respec-
tively,
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c~r ,t !5c0~ t !u0~r !1c1~ t !u1~r !, ~41!

where u0(r ) and u1(r ) are the ground- and excited-state
wave functions of the atom, respectively, which are assumed
to have opposite parities. The annihilation operatorsc0(t)
andc1(t) obey the equal-timeanticommutationrelation

$ci~ t !,cj
†~ t !%5d i j . ~42!

The integral overr in Eq. ~38! can be performed if we
make the dipole approximation for the atom. This means that
the atomic wave functionsu0(r ) andu1(r ) are assumed to
be localized to within a small neighborhood of the nucleus at
ra . In that case, the vector potential appearing in Eqs.~38!
and~39! may be replaced by its value atra . Using Eqs.~39!
and~41!, the first term in Eq.~38!, responsible for the radia-
tive decay of the excited atom, can be evaluated:

Ha
r ~ t !5

def
2 È d3r ja•A

52
e
m @c0

†~ t !c1~ t !A~ra ,t !•p01

1c1
†~ t !c0~ t !A~ra ,t !•p10#1

e2

2mA2~ra ,t !

3@c0
†~ t !c0~ t !1c1

†~ t !c1~ t !#, ~43!

where p015p10* is the matrix element of the operator
(2 i\“) between the ground- and excited-state wave func-
tions.

For the second term in Eq.~38!, we first expand the in-
stantaneous Coulomb potentialU(r ,t) given by Eq. ~8!
aboutra ,

U~r ,t !5 È d3r 8
2e“8•@X~r 8,t !u~2z8!#

4pe0

3F 1

ura2r 8u
1~xj2xa j!

]

]xa j

1

ura2r 8uG . ~44!

Using Eqs.~44!, ~40!, and~41!, the second term in Eq.~38!,
responsible for the nonradiative decay of the excited atom,
can be evaluated,

Ha
nr~ t !5

defÈ d3r raU

5
ie2@c0

†~ t !c1~ t !p01,j2c1
†~ t !c0~ t !p10,j #

4pe0mva

3E
z8,0

d3r 8Xi~r 8,t !
]2

]xa j]xi8

1

ura2r 8u
, ~45!

where we have performed an integration by parts andva is
the atomic transition frequency.

The radiative and nonradiative perturbation Hamiltonians,
Eqs. ~43! and ~45!, may now be used to compute the total
decay rate of the excited atom in first-order perturbation
theory. This may be accomplished by applying Fermi’s
golden rule and then expressing the resulting decay rate in
terms of Green functions by means of the fluctuation-

dissipation theorem. This was the approach taken by Barnett
et al. @6# in their treatment of the radiative decay rate of an
excited atom in aninfinite homogeneous dielectric medium.
Instead, we shall obtain the total decay rate of the excited
atom directly in terms of Green functions by considering the
self-energy of the excited atom due the perturbations Eqs.
~43! and ~45!.

The self-energy of the excited atom enters into the com-
putation of the Green function of the atom by diagrammatic
perturbation technique. Since we are interested in the self-
energy of the excited state, we consider the Green function
for the excited-state operators

g~ t12t2!52
i

\
^T@c1

~a!~ t1!c1
~a!†~ t2!#&

~a!, ~46!

where the superscript (a) denotesexact quantities in the
combined system of the half space dielectric and the excited
atom. Also, the angular brackets denote averaging over the
exact ground state of this combined system andT denotes
time ordering. Sincec1

(a)(t1) in Eq. ~46! is an exact operator
for the combined system in the Heisenberg picture, its time
dependence is in general unknown. Hence Eq.~46! must be
evaluated by diagrammatic perturbation technique. The gen-
eral result of the diagrammatic technique@7,8# is

g~ t12t2!52
i

\
^T@c1~ t1!S~`,2`!c1

†~ t2!#&conn, ~47!

where quantities without the superscript (a) are unperturbed
quantities, that is, those associated with the Hamiltonian den-
sity H of Eq. ~1! without the perturbationHa . Also,
S(`,2`) is an infinite series of operators

S~`,2`!511 (
n51

`
1

n! S 2 i

\ D nE
2`

`

•••E
2`

`

dt1•••dtn

3T@Ha~ t1!•••Ha~ tn!# ~48!

and the symbol ‘‘conn’’ in Eq.~47! indicates that onlycon-
necteddiagrams are to be included in the calculation.

Sincec0(t) andc1(t) in Eq. ~47! are unperturbed opera-
tors, their time dependence is simple harmonic,

c0~ t !5c0e
2 iv0t, ~49!

c1~ t !5c1e
2 iv1t, ~50!

wherev0 andv1 are the energies of the ground and excited
states of the atom, respectively, divided by\. Thus the
zeroth-order Green function obtained by setting
S(`,2`)51 in Eq. ~47! is

g~0!~v!5
1

\v2\v11 i e
, ~51!

where we have taken the Fourier transform with respect to
(t12t2).

Next, we compute the first-order correction to the Green
function
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g~1!~ t12t2!5S 2
i

\ D 2E
2`

`

dt3^T@c1~ t1!Ha~ t3!c1
†~ t2!#&conn

~52!

by substituting then51 term in Eq.~48! into Eq. ~47!. In
order to have a nonvanishing expectation value, there must
be the same number of annihilation and creation operators
for the ground or excited state in the time-ordered product in
Eq. ~52!. Upon examination of Eqs.~43! and ~45!, we find
that the only term inHa(t3) that contributes to the expecta-
tion value in Eq.~52! is the term proportional toA2 in Eq.
~43!. Substituting this term in Eq.~43! into Eq.~52!, expand-
ing the time-ordered product using Wick’s theorem and tak-
ing the Fourier transform with respect to (t12t2), we obtain

g~1!~v!5
1

\v2\v11 i e
S~1!

1

\v2\v11 i e
, ~53!

where

S~1!5
i\e2

2m
Di i ~ra ,ra ;0! ~54!

is the self-energy of the excited atom in first-order perturba-
tion theory and

Di j ~r1 ,r2 ;t12t2!5
def

2
i

\
^T@Ai~r1 ,t1!Aj~r2 ,t2!#& ~55!

is the transverse photon Green function for the dielectric half
space. It should be noted thatS (1) given by Eq. ~54! is
purely real. Substituting Eq.~55! into Eq. ~54!, we obtain

S~1!5
e2

2m
^A2~ra ,t3!&, ~56!

which is purely real sinceA is Hermitian. ThusS (1) contrib-
utes only to a level-shift of the excited state, but not to its
lifetime. Hence, for the purpose of computing the lifetime of
the excited atom, we may neglectS (1).

Next, we consider the second-order contribution to the
atom Green function obtained by substituting then52 term
in Eq. ~48! into Eq. ~47!,

g~2!~ t12t2!5
1

2! S 2
i

\ D 3E
2`

`

dt3E
2`

`

dt4

3^T@c1~ t1!Ha~ t3!Ha~ t4!c1
†~ t2!#&conn.

~57!

When Eqs.~38!, ~43!, and~45! are substituted into Eq.~57!
and the product of the two Hamiltonians expanded, we find
that there are terms proportional toe2, e3, ande4. It will be
seen below that one of the factors ofe in Ha

nr given by Eq.
~45! is absorbed in the definition of the dielectric function
@cf. Eq. ~83!#, which is of order unity. HenceHa

nr should be
counted as a term of ordere rather thane2. Now, since we
are only interested in the decay rate of the excited atom to
the same approximation as in Fermi’s golden rule, we retain
only the terms proportional toe2 in Eq. ~57!. This amounts
to omitting theA2 term in Eq.~43!. Thus we are left with

four terms contributing to the self-energy of the excited atom
to ordere2: one due toHa

r acting twice, one toHa
nr acting

twice, and the two cross terms. We consider each of these
cases separately.

Consider first the effect ofHa
r acting twice. Substituting

the first term in Eq.~43! into Eq. ~57!, expanding the time-
ordered product using Wick’s theorem and taking the Fourier
transform with respect to (t12t2), we obtain

gAA
~2!~v!5

1

\v2\v11 i e
SAA

~2!~v!
1

\v2\v11 i e
, ~58!

where

SAA
~2!~v!5S emD 2p10,i p01,jE

0

`

dt Di j ~ra ,ra ;t!ei ~v2v0!t

~59!

is the contribution to the self-energy of the excited atom to
ordere2 due toHa

r acting twice.
Next, we consider the contribution to the self-energy of

the excited atom due toHa
nr acting twice. Substituting Eq.

~45! into Eq.~57!, expanding the time-ordered product using
Wick’s theorem and taking the Fourier transform with re-
spect to (t12t2), we obtain

gUU
~2! ~v!5

1

\v2\v11 i e
SUU

~2! ~v!
1

\v2\v11 i e
, ~60!

where

SUU
~2! ~v!5S 1

mva
D 2p10,j p01,nE

z8,0
d3r 8E

z9,0
d3r 9

3E
0

`

dt ei ~v2v0!tF ji ~ra2r 8!Gi l ~r 8,r 9;t!

3Fln~r 92ra! ~61!

and

Gi j ~r1 ,r2 ;t12t2!5
def

2
i

\
^T@Xi~r1 ,t1!Xj~r2 ,t2!#& ~62!

is the Green function for the matter fieldX. In deriving Eq.
~61!, we have used the fact thatd(ra2r 8) and d(r 92ra)
occurring in F ji (ra2r 8) and Fln(r 92ra), respectively, in
this equation are zero forza.0 andz8,z9,0.

Finally, we consider the contribution to the self-energy of
the excited atom due toHa

r and Ha
nr each acting once.

Whether we takeHa(t3) in Eq. ~57! to beHa
r andHa(t4) to

beHa
nr or vice versa, we get the same result. Hence we need

to consider only one of these two cases and multiply the
result by 2. The final result is

gAU
~2! ~v!5

1

\v2\v11 i e
SAU

~2! ~v!
1

\v2\v11 i e
, ~63!
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where

SAU
~2! ~v!52

e

m2\va
E
0

`

dt ei ~v2v0!tE
z8,0

d3r 8E
z9,0

d3r 9

3F jl ~ra2r 8!$p10,i p01,j^T@Ai~ra ,t!Xl~r 8,0!#&

2p01,i p10,j^T@Ai~ra,0!Xl~r 8,t!#&%. ~64!

The spontaneous decay rate of the excited atom is propor-
tional to the imaginary part of its self-energy in the excited
state

Wspont522 Im
S~v!

\ U
v5v1

, ~65!

where the self-energyS(v) of the atom in the excited state
is given to ordere2 by

S~v!5S~1!~v!1SAA
~2!~v!1SUU

~2! ~v!1SAU
~2! ~v!. ~66!

We now assume that the transition dipole moment of the
atom is parallel to one of the coordinate axes, say, thej axis.
Its decay rate in free space is given by

Wspont
~0! 5

va

3p\e0c
3 S emD 2p10,[j ]p01,[j ] , ~67!

where the square brackets around the indexj mean that this
index isnot summed. Then, normalizing the decay rate Eq.
~65! to this free-space value and using Eqs.~59!, ~61!, and
~64!, we obtain

Wspont,j

Wspont
~0! 52

6pc3e0
va

ImE
0

`

dt eivtFD[ j ][ j ]~ra ,ra ;t!1
1

e2va
2E

z,0
E
z8,0

d3r d3r 8F [ j ]m~ra2r ! Gmn~r ,r 8;t!Fn[ j ]~r 82ra!

1
1

eva
E
z8,0

d3r 8F [ j ]m~ra2r 8!Cm[ j ]~r 8,ra ;t!GU
v5va

, ~68!

where

Ci j ~r1 ,r2 ;t!5
def 1

\
^T@Xi~r1 ,t!Aj~r2,0!2Xi~r1,0!Aj~r2 ,t!#&. ~69!

The integration overt in Eq. ~68! can be performed explicitly by making use of the analytic properties of the Green functions
@7#. The result is

Wspont,j

Wspont
~0! 52

6pc3e0
va

ImFD[ j ][ j ]
v ~ra ,ra!1

1

e2va
2E

z,0
E
z8,0

d3r d3r 8F [ j ]m~ra2r ! Gmn
v ~r ,r 8!Fn[ j ]~r 82ra!

1
1

eva
E
z8,0

d3r 8F [ j ]m~ra2r 8!Cm[ j ]v ~r 8,ra!GU
v5va

, ~70!

where the superscriptv denotes Fourier transform with re-
spect tot.

Equation~70! shows that the spontaneous decay rate of
the excited atom near the dielectric surface is, to the same
order of approximation as in Fermi’s golden rule, given in
terms of the Fourier transforms with respect to (t12t2) of
the photon Green function Eq.~55!, the matter Green func-
tion Eq. ~62!, and the functionCi j (r1 ,r2 ;t12t2) defined by
Eq. ~69!. The latter three functions are defined with respect
to the Hamiltonian densityH for the dielectric half space
defined by Eqs.~1!–~7!, without the perturbationHa due to
the excited atom. In contrast to the atom Green function Eq.
~46!, the functionsDi j

v , Gi jv, andCi jv cannotbe approximated
by the first few terms of their perturbation expansions, since
the cumulative effect of the electrons in the dielectric can be
large. Instead, these functions are obtained as exact solutions
of the Dyson equations that they satisfy. This is discussed in
the next section.

V. GREEN FUNCTIONS FOR THE HALF SPACE

The Hamiltonian densityH for the dielectric half space
can be rewritten according to Eqs.~1! and ~14! as

H5Hem
A 1Hmat

~0!1Hint
U 1Hint

A . ~71!

To obtain the exact Green functions for this Hamiltonian
density, we first separate the latter into an unperturbed part

H05Hem
A 1Hmat

~0!1Hint
U ~72!

and a perturbationHint
A . First, we consider the photon Green

function in the subsystem described by the Hamiltonian den-
sity of Eq. ~72!,
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Di j
~0!~r1 ,r2 ;t12t2!52

i

\
^T@Ai

~0!~r1 ,t1!Aj
~0!~r2 ,t2!#&

~0!,

~73!

where the superscript (0) denotes quantities associated with
the Hamiltonian densityH0. From Eqs.~2!, ~23!, ~7!, and~8!
we see that, in the subsystem described byH0, the transverse
radiation fieldA is completely decoupled from the matter
field X and the instantaneous Coulomb potentialU. Hence,
in this subsystem,A(0) is just the free-space radiation field,
which can be expanded in a complete set of transverse plane
waves,

A~0!~r ,t !5E d3k

~2p!3/2
A \

2e0vk

3 (
l51,2

@al~k!el~k!ei ~k•r2vkt !1H.c.#, ~74!

wherevk5ukuc and el(k), l51,2, are unit vectors such
that @e1(k),e2(k),k/uku# form an orthonormal right-handed
triad. The commutation relation Eq.~11! implies that

@al~k!,al8
†

~k8!#5dl,l8d~k2k8!, ~75!

while the commutator betweenal(k) and al8(k8), or be-
tweenal

†(k) andal8
† (k8), vanishes. Equation~75! shows that

al
†(k) andal(k) are the creation and annihilation operators
of a transverse photon of wave vectork and polarizationl.

The free-space photon Green function can be calculated
by substituting Eq.~74! into Eq. ~73!. After taking the Fou-
rier transform with respect to (t12t2), we obtain

Di j
~0!v~r1 ,r2!5

1

e0
E d3k

~2p!3

S d i j2
kikj
k2 D

v22k2c21 i e
eik•~r12r2!. ~76!

Next, we consider the Green function for the matter field
X for the unperturbed Hamiltonian density of Eq.~72!. To do
so, it is necessary to partitionH0 further into a part without
the Coulomb interaction

H005Hem
A 1Hmat

~0! ~77!

and the Coulomb interaction termHint
U . We first obtain the

Green function forX in the subsystem described byH00,

Gi j~00!~r1 ,r2 ;t12t2!52
i

\
^T@Xi

~00!~r1 ,t1!Xj
~00!~r2 ,t2!#&

~00!,

~78!

where the superscript (00) denotes quantities associated with
the Hamiltonian density of Eq.~77!. For this purpose, the
first term in Eq.~77! has no effect, since there is no coupling
between the radiation field and matter in this subsystem.
Next, since the termHmat

(0) given by Eq.~25! is diagonal in the
dressed matter operatorsBv , the time dependence of the
latter operators in this subsystem is simple harmonic. Substi-

tuting Eq.~34! into Eq. ~78!, using the commutation relation
Eq. ~26! and taking the Fourier transform with respect to
(t12t2), we obtain

Gi j~00!v~r1 ,r2!52
i

2rṽ0

d i jd~r12r2!E
0

`

dv8uh~v8!u2

3F i

v2v81 i e
2

i

v1v82 i eG . ~79!

Using Eqs.~36!, ~27!, and~28!, we obtain

uh~v8!u25
ṽ0

v8
j~v8!, ~80!

where

j~v8!5
def ṽ0v8V2~v8!

uv822ṽ0
2z~v8!u2

. ~81!

Equation ~81! shows thatj(v) is an even function ofv,
since V2(v) is odd and z(2v)5z* (v). Furthermore,
j(v) is analytic on the realv axis @5#.

The integral overv8 in Eq. ~79! can be rewritten as

J~v!5
def E

0

`

dv8uh~v8!u2F 1

v2v81 i e
2

1

v1v82 i eG
5E

0

`

dv8
ṽ0

v8
j~v8!

2v8

v22~v82 i e!2

5
ṽ0

v E
0

`

dv8j~v8!F 1

v2v81 i e
1

1

v1v82 i e G .
~82!

Following Huttner and Barnett@5#, we define the dielectric
function of the dielectric as

e~v!512
e2

2re0v
E

2`

`

dv8
j~v8!

v2v81 i e
. ~83!

This function satisfies the Kramers-Kro¨nig relations, since
Eq. ~83! shows thate(v) is analytic in the upper half of the
complex plane. Comparing the RHS of Eqs.~82! and ~83!
and using the fact thatj(v) is an even function ofv, we find
that

J~v!52
2re0ṽ0

e2
@e~ uvu!21#. ~84!

Substituting Eq.~84! into Eq. ~79!, we obtain

Gi j~00!v~r1 ,r2!52
e0@e~ uvu!21#

e2
d i jd~r12r2!. ~85!

When the Coulomb interaction Eq.~9! is added, the mat-
ter Green functionGi j(0) can be expressed in terms of quanti-
ties without the Coulomb interaction using the general result
of the diagrammatic technique,
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Gi j~0!~r1 ,r2 ;t12t2!52
i

\
^T@Xi

~00!~r1 ,t1!S
U~`,2`!

3Xj
~00!~r2 ,t2!#&conn

~00! , ~86!

where

SU~`,2`! 5 11 (
n51

`
1

n! S 2 i

\ D nE
2`

`

•••E
2`

`

dt1•••dtn

3T@H int
~00!U~ t1!•••H int

~00!U~ tn!#. ~87!

Substituting Eq.~87! into Eq. ~86!, expanding the time-
ordered products using Wick’s theorem and taking the Fou-
rier transform with respect to (t12t2), we obtain an infinite
series that can be summed in closed form

Gi j~0!v~r1 ,r2!

5Gi j~00!v~r1 ,r2!1E
z8,0

d3r 8E
z9,0

d3r 9

3Gi l~00!v~r1 ,r 8!Flm~r 82r 9!Gmj
~00!v~r 9,r2!1•••,

5Gi j~00!v~r1 ,r2!1E
z8,0

d3r 8E
z9,0

d3r 9

3Gi l~00!v~r1 ,r 8!Flm~r 82r 9!Gmj
~0!v~r 9,r2!. ~88!

Then, substituting Eq.~85! into Eq. ~88!, we obtain

Gi j~0!v~r1 ,r2!52
e0@e~ uvu!21#

e2 Fd i jd~r12r2!

1E
z3,0

d3r 3Fim~r12r3! Gmj
~0!v~r3 ,r2!G .

~89!

Equation ~89! is the Dyson equation for the matter Green
function Gi j(0)v for the system described by the Hamiltonian
densityH0 of Eq. ~72!. This equation can be solved exactly
for Gi j(0)v using an extension of the Wiener-Hopf technique.
The solution is@9#

Gi j~0!v~r1 ,r2!52
e0@eL~ uvu!21#

e2
d i jd~r12r2!

1
e0@eL~ uvu!21#2

4peL~ uvu!e2 F ]2

]x1i]x2 j
S 1

ur12r2u D
1

eL~ uvu!21

eL~ uvu!11

]2

]x1i]x2 j
S 1

ur12 r̃2u
D G , ~90!

where r̃2 is the image ofr2 in the planez50 and

eL~ uvu!511
e~ uvu!21

12 1
3 @e~ uvu!21#

~91!

is the dielectric function including local-field effects.
So far, we have obtained the Green functions for photons

and matter, Eqs.~76! and ~90!, for the system described by
the Hamiltonian densityH0 of Eq. ~72!. Next, we calculate
the Green functions for the complete Hamiltonian density

H given by Eq.~71!. First, we consider the photon Green
function Eq.~55!, which, by the diagrammatic technique, can
be written as

Di j ~r1 ,r2 ;t12t2!52
i

\
^T@Ai

~0!~r1 ,t1!S
A~`,2`!

3Aj
~0!~r2 ,t2!#&conn

~0! , ~92!

where

SA~`,2`!511 (
n51

`
1

n! S 2 i

\ D nE
2`

`

•••E
2`

`

dt1•••dtn

3T@H int
~0!A~ t1!•••H int

~0!A~ tn!#. ~93!

Here H int
(0)A(t) is the Hamiltonian corresponding to the

Hamiltonian densityHint
A (r ,t) of Eq. ~6!,

H int
~0!A~ t !5E

z,0
d3r F2

e

r
A~0!~r ,t !•PX

~0!~r ,t !

1
e2

2r
A~0!~r ,t !•A~0!~r ,t !G . ~94!

As we have mentioned,Di j cannot be approximated by the
first few terms of its perturbation expansion. Instead, the en-
tire infinite series in Eq.~93! must be substituted into Eq.
~92!. However, we shall see shortly that the resulting infinite
series can be summed exactly to give a closed-form Dyson
equation for the photon Green function.

The zeroth-order term in Eq.~93! gives just the free-space
photon Green functionDi j

(0) of Eq. ~73!, whose Fourier trans-
form is given by Eq.~76!. Then51 term in Eq.~93! gives a
first-order correction to the free-space photon Green func-
tion. Since there must be an even number ofA operators in
the time-ordered product to give a nonvanishing expectation
value, we see that only the second term in Eq.~94! contrib-
utes in this order. Thus we obtain

Di j
~1!v~r1 ,r2!5

e2

r Ez3,0
d3r 3Dim

~0!v~r1 ,r3!Dmj
~0!v~r3 ,r2!,

~95!

where we have taken the Fourier transform with respect to
(t12t2).

Next, we consider the contribution from then52 term in
Eq. ~93!,

Di j
~2!~r1 ,r2 ;t12t2!5

1

2!S 2 i

\ D 3E
2`

`

dt3E
2`

`

dt4

3^T@Ai
~0!~r1 ,t1!

3H int
~0!A~ t3!H int

~0!A~ t4!Aj
~0!~r2 ,t2!#&conn

~0! .

~96!

When Eq.~94! is substituted into Eq.~96! and the product of
the two Hamiltonians expanded, there is a total of four terms:
one due to the first term in Eq.~94! acting twice, one to the
second term in Eq.~94! acting twice, and the two cross
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terms. The latter cross terms contribute nothing, since they
each contain an odd number ofA operators.

Consider first the contribution due to the first term in Eq.
~94! acting twice. Substituting the first term in Eq.~94! into
Eq. ~96!, expanding the time-ordered products using Wick’s
theorem and taking the Fourier transform with respect to
(t12t2), we obtain

Di j
~2!v~r1 ,r2!5S 2e

r D 2E
z3,0

d3r 3E
z4,0

d3r 4

3Di l
~0!v~r1 ,r3!Qlm

~0!v~r3 ,r4!Dmj
~0!v~r4 ,r2!,

~97!

whereQlm
(0)v is the Fourier transform of the quantityQi j

(0)

defined by

Qi j
~0!~r1 ,r2 ;t12t2!5

def

2
i

\
^T@PX,i

~0!~r1 ,t1!PX, j
~0!~r2 ,t2!#&

~0!.

~98!

The quantityQi j
(0) is the Green function for the operator

PX in the subsystem described byH0 of Eq. ~72!. To com-
pute this quantity, we follow the same procedure as used in
computingGi j(0) by partitioningH0 into a sum ofH00 and
Hint

U whereH00 is given by Eq.~77!. The Green function for
PX in the system described byH00 is given by an expression
similar to Eq.~78!, but with X replaced byPX . Comparing
Eqs. ~34! and ~35!, we see thatPX is obtained fromX by
replacing h(v) by rṽ0g(v). Hence, following the steps
leading from Eq.~78! to Eq. ~79!, we obtain forQi j

(00)v a
result similar to Eq. ~79! but with h(v) replaced by
rṽ0g(v),

Qi j
~00!v~r1 ,r2!52

irṽ0

2
d i jd~r12r2!E

0

`

dv8ug~v8!u2

3F i

v2v81 i e
2

i

v1v82 i eG . ~99!

Using Eqs.~37!, ~27!, and~28!, we obtain

ug~v8!u25
v8

ṽ0

j~v8!, ~100!

wherej(v8) is given by Eq.~81!. Following the steps lead-
ing from Eq.~79! to Eq. ~85!, we obtain

Qi j
~00!v~r1 ,r2!52rd i jd~r12r2!H 11

re0v
2

e2
@e~ uvu!21#J ,

~101!

where we have used the fact that@5#

E
0

`

dv8j~v8!51. ~102!

When the Coulomb interaction Eq.~9! is added, the Green
function for PX is given by an infinite series similar to Eq.
~86!,

Qi j
~0!~r1 ,r2 ;t12t2!52

i

\
^T@PX,i

~00!~r1 ,t1!S
U~`,2`!

3PX, j
~00!~r2 ,t2!#&conn

~00! , ~103!

where SU(`,2`) is given by Eq.~87!. When the latter
equation is substituted into Eq.~103! and the resulting time-
ordered products expanded using Wick’s theorem, we obtain
an infinite series

Qi j
~0!~r1 ,r2 ;t12t2!5Qi j

~00!~r1 ,r2 ;t12t2!1S 2 i

\ D 2E
2`

`

dt3

3E
z8,0

d3r 8E
z9,0

d3r 9^T@PX,i
~00!~r1 ,t1!

3Xl
~00!~r 8,t3!#&

~00!Flm~r 82r 9!

3^T@Xm
~00!~r 9,t3!PX, j

~00!~r2 ,t2!#&
~00!

1•••. ~104!

We now have to compute the quantities
^T@PX,i

(00)Xj
(00)#& (00) and ^T@Xi

(00)PX, j
(00)#& (00). Using Eqs.~34!

and~35! and following the steps leading from Eq.~78! to Eq.
~79!, we obtain

2
i

\
^T@PX,i

~00!~r1 ,t1!Xj
~00!~r2 ,t2!#&

~00!uv

5
1

2
d i jd~r12r2!E

0

`

dv8Fg* ~v8!h~v8!

v2v81 i e

2
g~v8!h* ~v8!

v1v82 i e G , ~105!

where the vertical bar with the superscriptv indicates Fou-
rier transform with respect to (t12t2). Using Eqs.~36! and
~37!, we calculate

g* ~v8!h~v8!52 i $ua0~v8!u22ub0~v8!u2

12i Im@a0~v8!b0* ~v8!#%. ~106!

From Eqs.~27! and ~28!, we see that@a0(v8)b0* (v8)# is
purely real. Hence using Eqs.~27!, ~28!, and~81!, we obtain

g* ~v8!h~v8!52 i j~v8!. ~107!

Substituting Eq.~107! into Eq. ~105!, we obtain

2
i

\
^T@PX,i

~00!~r1 ,t1!Xj
~00!~r2 ,t2!#&

~00!uv

52 irvGi j~00!v~r1 ,r2!, ~108!

where we have used Eqs.~82!, ~84!, and~85!.
For ^T@Xi

(00)PX, j
(00)#& (00), we obtain an expression similar to

Eq. ~105! but with g(v8) andh(v8) interchanged. Accord-
ing to Eq.~107!, this amounts to an extra minus sign. Hence

2
i

\
^T@Xi

~00!~r1 ,t1!PX, j
~00!~r2 ,t2!#&

~00!uv5 irvGi j~00!v~r1 ,r2!.

~109!

54 5235SPONTANEOUS EMISSION NEAR AN ABSORBING . . .



We now take the Fourier transform of Eq.~104! with
respect to (t12t2) and then use Eqs.~108! and ~109!,

Qi j
~0!v~r1 ,r2!5Qi j

~00!v~r1 ,r2!1r2v2E
z8,0

d3r 8E
z9,0

d3r 9

3Gi l~00!v~r1 ,r 8!Flm~r 82r 9!Gmj
~00!v~r 9,r2!

1•••. ~110!

Comparing Eqs.~88! and~110!, we see that the infinite series
in these two equations, from the second term on the RHS of
each of the two equations onward, are identical except for a
factor r2v2. Hence we conclude that

Qi j
~0!v~r1 ,r2!2Qi j

~00!v~r1 ,r2!

5r2v2@Gi j~0!v~r1 ,r2!2Gi j~00!v~r1 ,r2!#. ~111!

Substituting Eqs.~85! and ~101! into Eq. ~111!, we obtain

Qi j
~0!v~r1 ,r2!52rd i jd~r12r2!1r2v2Gi j~0!v~r1 ,r2!,

~112!

whereGi j(0)v is given by Eq.~90!. Equation~112! can now be
used in Eq.~97! to calculateDi j

(2)v.
We still have to consider the contribution from the second

term in Eq.~94! acting twice, as well as the contributions of
the higher-order terms in Eq.~93!. These contributions can
be taken into account by using diagrammatic analysis.

The perturbation series Eq.~92! can be represented by an
infinite series of diagrams as shown in Fig. 1. Here the com-
plete photon Green function is represented by a heavy
dashed line and the free-space photon Green function by a
light dashed line. The contribution Eq.~95! due to the second
term in Eq. ~94! acting once is represented by the second
diagram on the RHS of Fig. 1~a!, the contribution Eq.~97!
due the the first term in Eq.~94! acting twice by the third
diagram, the contribution due to the second term in Eq.~94!
acting twice by the fourth diagram, etc. It can be seen that
any one of the higher-order diagrams in Fig. 1~a! is con-
structed from just two types of building blocks, or self-
energy parts, represented by a cross and a vertical dumbell,
which correspond to the second term in Eq.~94! acting once
and the first term in Eq.~94! acting twice, respectively. We
can separate the higher-order diagrams into two groups:
those containing a self-energy part of the first type at the
bottom and those containing a self-energy part of the second
type at the bottom, as shown in Fig. 1~b!. The infinite series
connected to either one of these factors consists of all pos-
sible diagrams constructed from an arbitrary number of self-
energy parts of either type strung together in any order by
free-space photon Green functions. Such a series is just the
complete photon Green function. Hence we obtain the
equivalent representation shown in Fig. 1~c!. This means that
the higher-order diagrams are all included in just two dia-
grams obtained from the second and third diagrams on the
RHS of Fig. 1~a! by replacing the light dashed lines at the
top of the latter diagrams by heavy dashed lines. Mathemati-
cally, the complete photon Green function is given by the
sum of the free-space photon Green function and the two
terms derived from Eqs.~95! and~97! by replacing the factor
Dmj
(0)v in these equations byDmj

v ,

Di j
v~r1 ,r2!5Di j

~0!v~r12r2!1
e2

r Ez3,0
d3r 3

3Dim
~0!v~r12r3!Dmj

v ~r3 ,r2!

1S 2e

r D 2E
z3,0

d3r 3E
z4,0

d3r 4

3Di l
~0!v~r12r3!Qlm

~0!v~r3 ,r4!Dmj
v ~r4 ,r2!.

~113!

Substituting Eq.~112! into Eq. ~113!, we obtain

Di j
v~r1 ,r2!5Di j

~0!v~r12r2!1e2v2E
z3,0

d3r 3E
z4,0

d3r 4

3Di l
~0!v~r12r3!Glm~0!v~r3 ,r4!Dmj

v ~r4 ,r2!.

~114!

We may now substitute Eq.~90! into Eq. ~114!. For the
second term in Eq.~90!, we perform integration by parts
twice and make use of the transversality of the photon Green
function,

]

]xi
Di j

v~r ,r 8!5
]

]xj8
Di j

v~r ,r 8!50. ~115!

The result is

FIG. 1. Perturbation series for the photon Green function. A
heavy dashed line represents the complete photon Green function.
A light dashed line represents the free-space photon Green function.
A cross represents an interaction vertex due to theA•A term in Eq.
~94! acting once. A vertical dumbell consists of two interaction
vertices due to theA•PX term in Eq.~94! acting twice.
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Di j
v~r1 ,r2!5Di j

~0!v~r12r2!2v2e0@eL~ uvu!21#

3E
z3,0

d3r 3Dim
~0!v~r12r3!Dmj

v ~r3 ,r2!

1
v2e0@eL~ uvu!21#2

2p@eL~ uvu!11#
E E d2s3d

2s4

3Di3
~0!v~r12s3!

1

us32s4u
D3 j

v ~s4 ,r2! , ~116!

wheres3 ands4 are integration points on the planez50.
Equation~116! is the Dyson equation for the transverse

photon Green function for the complete Hamiltonian density
H of Eq. ~1!. This equation can be solved exactly forDi j

v

using an extension of the Wiener-Hopf technique, as dis-
cussed in the Appendix.

Next, we calculate the matter Green functionGi jv for the
complete Hamiltonian densityH. This is given according to
the diagrammatic technique by

Gi j ~r1 ,r2 ;t12t2!52
i

\
^T@Xi

~0!~r1 ,t1!S
A~`,2`!

3Xj
~0!~r2 ,t2!#&conn

~0! , ~117!

whereSA(`,2`) is given by Eq.~93!. Substituting the latter
equation into Eq.~117!, expanding the time-ordered products
using Wick’s theorem, and taking the Fourier transform with
respect to (t12t2), we obtain

Gi jv~r1 ,r2!5Gi j~0!v~r1 ,r2!1S 2
i

\ D 2S 2e

r D 2E
z3,0

d3r 3

3E
z4,0

d3r 4^T@Xi
~0!~r1 ,t1!

3PX,l
~0!~r3 ,t3!#&

~0!uvDlm
v ~r3 ,r4!

3^T@PX,m
~0! ~r4 ,t4!Xj

~0!~r2 ,t2!#&
~0!uv. ~118!

We now have to compute the quantities^T@PX,i
(0)Xj

(0)#& (0) and
^T@Xi

(0)PX, j
(0)#& (0). These are obtained in terms of the quanti-

ties ^T@PX,i
(00)Xj

(00)#& (00) and ^T@Xi
(00)PX, j

(00)#& (00) by the dia-
grammatic technique with the Coulomb interactionH int

(00)U as
perturbation,

2
i

\
^T@PX,i

~0!~r1 ,t1!Xj
~0!~r2 ,t2!#&

~0!

52
i

\
^T@PX,i

~00!~r1 ,t1!S
U~`,2`!Xj

~00!~r2 ,t2!#&conn
~00! ,

~119!

where SU(`,2`) is given by Eq. ~87!. Comparing the
two infinite series Eqs.~86! and ~119!, we see that each
term of the latter series differs from the corresponding
term of the former series only in replacing, in the
former series, a factor (2 i /\)^T@Xi

(00)Xl
(00)#& (00)5Gi l(00) by

(2 i /\)^T@PX,i
(00)Xl

(00)#& (00). By Eq. ~108!, this amounts to
multiplying each term of the series in Eq.~88! by 2 irv.
Thus we conclude

2
i

\
^T@PX,i

~0!~r1 ,t1!Xj
~0!~r2 ,t2!#&

~0!uv52 irvGi j~0!v~r1 ,r2!.

~120!

Similarly, using Eq.~109!,

2
i

\
^T@Xi

~0!~r1 ,t1!PX, j
~0!~r2 ,t2!#&

~0!uv5 irvGi j~0!v~r1 ,r2!.

~121!

Substituting Eqs.~120! and ~121! into Eq. ~118!, we obtain

Gi jv~r1 ,r2!5Gi j~0!v~r1 ,r2!

1e2v2E
z3,0

d3r 3E
z4,0

d3r 4Gi l~0!v~r1 ,r3!

3Dlm
v ~r3 ,r4!Gmj

~0!v~r3 ,r2!. ~122!

Equation ~122! is an explicit expression for the complete
matter Green functionGi jv since Gi j(0)v is known from Eq.
~90! and the complete photon Green functionDi j

v is known
from the Appendix.

Finally, we calculate the functionCi j given by Eq.~69!.
We consider each of the two terms in the latter equation
separately. By the diagrammatic technique, we have

1

\
^T@Xi~r1 ,t!Aj~r2,0!#&5

1

\
^T@Xi

~0!~r1 ,t!SA~`,2`!

3Aj
~0!~r2,0!#&~0!, ~123!

whereSA(`,2`) is given by Eq.~93!. Following the steps
leading from Eq.~117! to Eq. ~122!, we obtain

1

\
^T@Xi~r1 ,t!Aj~r2,0!#&uv

5evE
z3,0

d3r 3Gi l~0!v~r1 ,r3!Dl j
v~r3 ,r2!.

~124!

Similarly, we obtain

1

\
^T@Xi~r1,0!Aj~r2 ,t!#&uv

5
1

\
^T@Xi~r1 ,t!Aj~r2,0!#&u2v

52evE
z3,0

d3r 3Gi l~0!2v~r1 ,r3!Dl j
2v~r3 ,r2!. ~125!

It can be seen from Eq.~90! and the Appendix that the Green
functionsGi j(0)v andDi j

v are even functions ofv, sincev
enters into these Green functions only in the formuvu or
v2. Hence the RHS of Eq.~125! is equal and opposite to the
RHS of Eq.~124!. Taking the Fourier transform of Eq.~69!
with respect tot and using Eqs.~124! and ~125!, we obtain
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Ci jv~r1 ,r2!52evE
z3,0

d3r 3Gi l~0!v~r1 ,r3!Dl j
v~r3 ,r2!. ~126!

We now have all the quantities we need, namely,Di j
v , Gi jv,

andCi jv to compute the spontaneous decay rate of the excited
atom using Eq.~70!.

VI. COMPARISON WITH THE CLASSICAL THEORY

Results for the total decay rate calculated from Eq.~70!
using the exact functionsDi j

v , Gi jv , andCi jv are in excellent
agreement with those of classical electromagnetic theory@2#.
These are shown in Fig. 2 for a gold mirror with refractive
indexn50.50513.66i . The total decay rate contains a non-
radiative component due to energy transfer from the excited
atom to the absorbing mirror via the near-field Coulomb in-
teraction. The contribution due to the Coulomb potentialU
alone may be obtained from Eq.~70! by settingDi j

v equal to
zero,

Wspont,j
U

Wspont
~0! 52

6pc3e0
va

Im
1

e2va
2E

z,0
E
z8,0

d3r d3r 8

3F [ j ]m~ra2r !Gmn
~0!va~r ,r 8!Fn[ j ]~r 82ra!.

~127!

Using Eqs.~10! and ~90!, the integrals overr and r 8 can be
evaluated to give

Wspont,j
U

Wspont
~0! 5

3 u j

8va
3za

3 ImF 21

eL~va!11G , ~128!

where u j52 for j5z and u j51 for j5x or y. Equation
~128! agrees with the classical result@2# for the rate of non-
radiative energy transfer in the limitza→0.

Nonradiative decay is absent for a perfect dielectric. In
this case, our results for the decay rateWj are in excellent
agreement with the results of classical electromagnetic
theory and with those based on quantization of macroscopic

spatial modes@4#. These are shown in Fig. 3 for a dielectric
half space with refractive indexn53.

VII. CONCLUSION

In this paper, we have presented an exact solution of a
microscopic Hamiltonian model of an absorbing dielectric
half space and used it to calculate the spontaneous emission
rate to ordere2 of an excited atom near the surface. Because
our calculation is based on a fully canonical quantization
scheme, it provides a fundamental demonstration of the va-
lidity of the classical electromagnetic theory of the rate of
spontaneous emission near an absorbing dielectric surface.
This serves to increase our confidence in the results of recent
work on spontaneous lifetime based on classical electromag-
netic theory@10#. Also, the exact photon Green function for
the half space given in the Appendix can be used to treat
other quantum-mechanical interaction phenomena between
charged particles and the electromagnetic field near an ab-
sorbing plane surface, such as the level shift of an electron
undergoing cyclotron motion near such a surface@11#. In the
above discussion, we have only considered the case for
which the excited atom is on the air side of the surface.
However, our approach can be extended to treat the other
case also.

APPENDIX: GREEN FUNCTION
FOR THE TRANSVERSE PHOTONS

In this appendix, the steps involved in solving the Dyson
equation Eq.~116! exactly for the photon Green function
Di j

v(r1 ,r2) are outlined and the complete solution is given.
The details of the calculations can be found in@9#.

Following the standard Wiener-Hopf technique@12#, we
decompose the unknown functionDi j

v(r1 ,r2) into a sum of
two quantitiesDi j

(1) v(r1 ,r2) andDi j
(2) v(r1 ,r2), the first of

which vanishes forz1.0 and the second of which vanishes
for z1,0. Then, the Fourier transform of Eq.~116! with
respect to (x12x2), (y12y2), andz1 is taken. After rear-
rangement of terms, we obtain

FIG. 2. Lifetime of an excited atom near a gold mirror. Solid
lines are the results of classical electromagnetic theory. Dots are the
results of our quantum theory.k0 is the wave vector in air.za is the
distance of the atom above the mirror.

FIG. 3. Lifetime of an excited atom near a lossless dielectric
surface. Solid lines are the results of the spatial-mode quantization
theory. Dots are the results of our quantum theory.
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H @v22P~v!2k2c21 i«# d im1P~v!
kikm
k2 J

3
Dmj

~1 !~kz!

v22k2c21 i«
1Di j

~2 !~kz!

5Di j
~0!~kz!1S~v,K !

S d i32
kikz
k2 D

v22k2c21 i«
D̃3 j

v ~0!, ~A1!

whereP(v) andS(v,K) are the bulk and surface photon
self-energies divided bye0,

P~v!52v2@eL~ uvu!21#, ~A2!

S~v,K !5
v2@eL~ uvu!21#2

K@eL~ uvu!11#
, ~A3!

andK5Akx21ky
2. In Eq. ~A1!, we have suppressed the de-

pendence of the Fourier transformsDi j
(6)(kz) andDi j

(0)(kz)
on z2 ,v, and the transverse momentum (kx ,ky). Also,
D̃ i j

v(0) is defined to be the Fourier transform ofDi j
v(r1 ,r2)

with respect to (x12x2) and (y12y2) only and evaluated at
z150, while Di j

(0)(kz) is the Fourier transform of
Di j
(0)v(r1 ,r2) with respect to (x12x2), (y12y2), andz1,

Di j
~0!~kz!5

1

e0

S d i j2
kikj
k2 D

v22k2c21 i e
e2 ikzz2. ~A4!

The 333 matrix in curly brackets on the LHS of Eq.~A1!
can be factorized into a productMi l

(2)Mlm
(1) where

Mi j
~6 !5@ iL ~K !6kzc#d i j1 i @S~K !2L~K !#

kikj
k2

~A5!

and

L~K !5AK2c21P~v!2v22 i«, ~A6!

S~K !5AK2c22v22 i«. ~A7!

The branches of the square roots in Eqs.~A6! and ~A7! are
chosen so that the real parts ofL(K) andS(K) are always
positive. Notice thatMi j

(6) have singularities atkz56 iK
due to the factor 1/k2. As a result, the standard Wiener-Hopf
technique must be extended to deal with these singularities.
This consists of subtracting appropriate poles from both
sides of Eq.~A1!. After multiplying this equation throughout
by (iS2kzc) times the inverse ofM(2) and rearranging
terms, we obtain

Mim
~1 !FDmj

~1 !~kz!

iS1kzc
2Amj

~1 !G1Mim
~2 !21@Dmj

~2 !~kz!~ iS2kzc!2Amj
~2 !#

5 Mim
~2 !21FDmj

~0!~kz!1S~v,K !

S dm32
kmkz
k2 D

v22k2c21 i«
D̃3 j

v ~0!G ~ iS2kzc!2Mim
~1 !Amj

~1 !2Mim
~2 !21Amj

~2 ! , ~A8!

where we have subtracted quantitiesMim
(1)Amj

(1) and
Mim

(2)21Amj
(2) from both sides of the equation so as to make

the residues of the poles atkz5 iK and kz52 iK due to
Mim

(1) andMim
(2)21 in the first and second terms, respec-

tively, on the left-handside~LHS! of Eq. ~A8! vanish. As a
result, the first and second terms on the LHS of this equation
are analytic inS (1) andS (2), respectively, whereS (1) con-
tains the upper half of thekz plane,S

(2) contains the lower
half, andS (1) andS (2) overlap in an open region.

The RHS of Eq.~A8! can be decomposed@9# into a sum
of two termsPi j

(1)(kz) and Pi j
(2)(kz) analytic in S (1) and

S (2), respectively. By equating the first and second terms on
the LHS of Eq.~A8! to Pi j

(1)(kz) andPi j
(2)(kz), respectively,

we obtain the formal solutions

Di j
~1 !~kz!5@ iS~K !1kzc#@Ai j

~1 !1Mim
~1 !21Pmj

~1 !~kz!#, ~A9!

Di j
~2 !~kz!5

1

iS~K !2kzc
@Ai j

~2 !1Mim
~2 !Pmj

~2 !~kz!# . ~A10!

The solutions Eqs.~A9! and ~A10! still contain the un-
known quantitiesD̃3 j

v (0), Ai j
(1) , andAi j

(2) the latter two of

which occur only in the combinationsrmAmj
(1) and rm8Amj

(2) ,

wherer and r 8 are vectors with components

r i5~kx ,ky ,iK !, ~A11!

r i85~kx ,ky ,2 iK !. ~A12!

To solve for these quantities, we first use the fact that
Di j
(1)(kz) andDi j

(2)(kz) must be analytic inS (1) andS (2),
respectively. Thus the residues of the poles atkz5 iK and
kz52 iK due toMim

(1)21 andMim
(2) in Eqs.~A9! and~A10!,

respectively, must vanish. This gives two simultaneous alge-
braic equations

lim
kz→ iK

kmPmj
~1 !~kz!50, ~A13!

lim
kz→2 iK

kmPmj
~2 !~kz!50, ~A14!

which can be solved for the unknownsrmAmj
(1) and

rm8Amj
(2) . The results forz2>0 are
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rmAmj
~1 !52

2i

D0
H 1

~S2L !~S2Kc!
r i82

L1S12Kc

~S2L !2~S1Kc!
r i J S d im2

qiqm
q2 D

L1S F 1e0e2Sz2 /cdmj1S~v,K !dm3D̃3 j
v ~0!G

2
2i

D0~S2L !2~S2Kc!
rm8 F 1e0e2Kz2dmj1S~v,K !dm3D̃3 j

v ~0!G , ~A15!

rm8Amj
~2 !5

2i

D0
H L1Kc

S2L
r i1

~S1Kc!~L1Kc!~L1S12Kc!

~S2L !2~S2Kc!
r i8J S d im2

qiqm
q2 D

L1S F 1e0e2Sz2 /cdmj1S~v,K !dm3D̃3 j
v ~0!G

2
2i ~S1Kc!2

D0~S2L !2~S2Kc!
rm8 F 1e0e2Kz2dmj1S~v,K !dm3D̃3 j

v ~0!G , ~A16!

where

qi5S kx ,ky ,2 iS

c D , ~A17!

qi85S kx ,ky , iSc D , ~A18!

D0511FL1S12Kc

S2L G2. ~A19!

Next, the inverse Fourier transform ofDzj
(2)(kz) with respect tokz for z1>0 is calculated from Eq.~A10! by contour

integration. The result forz2>0 is

D̃ i j
v~z1!5E

2`

` dkz
2p

eikzz1Di j
~2 !~kz!

5D̃ i j
~0!v~z1!2F 1

2ScS d i32
qi8q38

q2 De2Sz1 /c1
r i r 3
2Kv2e

2Kz1GS~v,K !D̃3 j
v ~0!

2
S2L

2~L1S!
F 1ScS d i l2

qi8ql8

q2 De2Sz1 /c1
r i r l
Kv2e

2Kz1G S d lm2
qlqm
q2 D F 1e0e2Sz2 /cdmj1S~v,K !dm3D̃3 j

v ~0!G
2

S2L

2K~L1Kc!
F 1v2 S d i l2

qi8ql8

q2 D r l8e2Sz11
r i

2~S2Kc!2
e2Kz1G rm8 F 1e0e2Kz2dmj1S~v,K !dm3D̃3 j

v ~0!G
1

i ~S2L !2

2K~L1Kc!~S1Kc!2
H S1Kc

2~S2Kc!
e2Kz1r i2

F r i82

qi8KSK1
S

cD
q2

Ge2Sz1 /cJ rm8Amj
~2 !

2
i ~S2L !2

2K~S2Kc!
H S1L22Kc

2~S2L !
e2Kz1r i1

F r i2 qi8KSK2
S

cD
q2

Ge2Sz1 /cJ rmAmj
~1 ! , ~A20!

where
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D̃ i j
~0!v~z1!5

1

e0 5 2

S d i j2
qi8qj8

q2 D
2Sc

e2S~z12z2!/c2
r i r j

2K~v21 i e!
e2K~z12z2!, z1.z2

2

S d i j2
qiqj
q2 D

2Sc
eS~z12z2!/c2

r i8r j8

2K~v21 i e!
eK~z12z2!, z1,z2 .

~A21!

Since the RHS of Eq.~A20! contains the unknown quantityD̃3 j
v (0), weobtain an algebraic equation for this unknown quantity

by settingi53 andz150 on both sides of Eq.~A20!. The resulting solution forD̃3 j
v (0) can be written in the form

D̃3 j
v ~0!5g1d3 j1g2r j81g3r j1g4qj , ~A22!

where

g15
1

D1
F2

1

2Sc
2

S2L

2Sc~L1S!S 11
2S2

q2c2D G 1

e0
e2Sz2 /c, ~A23!

g25
1

D1

S H i

2v21
i ~S2L !

2~L1Kc! v2
F 11

SSK1
S

cD
q2c

G2
i ~S2L !

4~L1Kc!~S2Kc!2
J 1

e0
e2Kz22s1~a11a3!2s2~b21b3!

D ,
~A24!

g35
1

D1
F2

i ~S2L !

2~L1S! v2

1

e0
e2Sz2 /c2s1a22s2b1G , ~A25!

g45
1

D1

H F2
i

2q2c2
2

i ~S2L !SK21
S2

c2D
2~L1S!q4c2

1

i ~S2L !KSK1
S

cD
2~L1S! v2q2

G 1

e0
e2Sz2 /c1s1

K

q2Fa1SK2
S

cD1a2SK1
S

cD G

1s2

K

q2 Fb1SK1
S

cD1b2SK2
S

cD GJ , ~A26!

andD15(11s1W11s2V12U1).
Equations~A23! to ~A26! contain the quantitiesa i , b i , ands i , as well as the quantitiesU1 , V1, andW1 throughD1.

These quantities are given forz2>0 by

a152
2i

D0~S2L !~S2Kc!~L1S!

1

e0
e2Sz2 /c, ~A27!

a25
2i ~L1S12Kc!

D0~S2L !2~S1Kc!~L1S!

1

e0
e2Sz2 /c, ~A28!

a352
2i

D0~S2L !2~S2Kc!

1

e0
e2Kz2, ~A29!

b15
2i ~L1Kc!

D0~S2L !~L1S!

1

e0
e2Sz2 /c, ~A30!

b25
2i ~S1Kc!~L1Kc!~L1S12Kc!

D0~S2L !2~S2Kc!~L1S!

1

e0
e2Sz2 /c, ~A31!

b352
2i ~S1Kc!2

D0~S2L !2~S2Kc!

1

e0
e2Kz2, ~A32!

and
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s152
~S2L !2

2~S2Kc!
H S1L22Kc

2~S2L !
1F 12

SSK2
S

cD
q2c

G J , ~A33!

s25
~S2L !2

2~L1Kc!~S1Kc!2
H S1Kc

2~S2Kc!
1F 11

SSK1
S

cD
q2c

G J , ~A34!

U152
1

2ScS 11
S2

q2c2D1
K

2v22
S2L

2Sc~L1S!
F 11

2S2

q2c2
1

S2SK21
S2

c2D
q4c2

G1
~S2L !K

2~L1Kc! v2
F 11

SSK1
S

cD
q2c

G
1

~S2L !K

2~L1S! v2
F 11

SSK1
S

cD
q2c

G2
~S2L !K

4~L1Kc!~S2Kc!2
, ~A35!

V15
2i

D0
H L1Kc

S2L
r i1

~S1Kc!~L1Kc!~L1S12Kc!

~S2L !2~S2Kc!
r i8J S d i32

qiq3
q2 D

L1S
S~v,K !2

2K~S1Kc!2

D0~S2L !2~S2Kc!
S~v,K !, ~A36!

W152
2i

D0
H 1

~S2L !~S2Kc!
r i82

L1S12Kc

~S2L !2~S1Kc!
r i J S d i32

qiq3
q2 D

L1S
S~v,K !2

2K

D0~S2L !2~S2Kc!
S~v,K !. ~A37!

This completes our determination of all the unknown quantities on the RHS of Eq.~A20!. To compute the spontaneous
decay rate by Eq.~70!, the photon Green functionDi j

v(r1 ,r2) appearing in the first term on the RHS of this equation is first
computed by evaluating the inverse Fourier transform ofD̃ i j

v(z1) given by Eq.~A20! with respect tokx andky numerically,

Di j
v~r1 ,r2!5E E dkxdky

~2p!2
eikx~x12x2!1 iky~y12y2!D̃ i j

v~z1!. ~A38!

Next, by using Eqs.~10!, ~122!, and~126!, the integrals overr and r 8 in the second and third terms on the RHS of Eq.~70!
can be reduced to integrals over the transverse momentum (kx ,ky) in which the photon Green function occurs only through the
quantity D̃3 j

v (0) given by Eq.~A22!.
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