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Spontaneous emission near an absorbing dielectric surface
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The lifetime of an excited atom near an absorbing dielectric surface is calculated from an exact solution of
a microscopic Hamiltonian model, which includes the effects of dispersion, local-field correction, and near-
field Coulomb interaction. Results for the total decay rate are shown to be in excellent agreement with those
based on classical electromagnetic theory and to yield the well-known result for the rate of nonradiative energy
transfer in the limit of very small distance from the surfaf&1050-294{®6)01811-2

PACS numbg(s): 42.50.Ct, 42.50.Hz, 32.56d, 78.90+t

I. INTRODUCTION above theory are compared with those obtained from the
classical theory in Sec. VI.
The lifetime of an excited molecule has been known for a

long time to be significantly affected by a partially reflecting Il. THE MICROSCOPIC HAMILTONIAN MODEL
mirror in its vicinity [1]. Early attempts to explain the ex- ) . . ) o
perimental results using classical electromagnetic theory Our microscopic model of the absorbing dielectric is the
[2,3] have been quite successful. Nevertheless, the validity diioPfield model with losses introduced by Huttner and Bar-
these theoretical results has so far not been verified by caftett[5]. This model has been used in the study of spontane-
culation based on a fully canonical quantum theory. ReOUS e€mission in amfinite absorbing dielectric mediuri6].
cently, spontaneous emission by an excited atom near a losklere we apply it instead to an absorbing dielectric occupying
less dielectric surface was analyzed from the viewpoint ofh€ half space<0. _ o
quantization of macroscopic spatial modes. However, n the absence of th_e _excned atom, th(=T Ham_lltonlan den-
such an approach cannot easily be extended to include tifty of the system consisting of the lossy dielectric half space
effects of losses in the dielectric. Thus, up to now, an analy@nd the radiation field is
sis of the lifetime of an excited atom near an absorbing di- A ros. A U
electric surface based on a fully canonical quantum theory H=Hemt Hmart Hrest Hing + Hinet Hine - 1)
has been lacking. In this paper, we present one such analysis
based on an exact solution of a microscopic HamiltonianT he various parts of this Hamiltonian density are the follow-

model. ing.

After discussing the Hamiltonian formulation in Sec. Il, (i) Hem is the Hamiltonian density of the free radiation
we diagonalize the matter part of the Hamiltonian density tdield
obtain the dressed matter field in Sec. lll. In Sec. IV, the

self-energy of an excited atom near the dielectric surface is
obtained to second order of perturbation theory by consider-
ing the Green function of the excited atom to this order. The
decay rate of the excited atom, which is proportional to theyhereA is the vector potential.
imaginary part of the atom self-energy, is then expressed in (i) H,,, is the Hamiltonian density of the bare dielectric
terms of the instantaneous Coulomb interaction, the Greegccupying the half space<0, modeled by a harmonic-
function for the transverse photons, and the Green functiogscillator field
for the harmonic-oscillator fieldEq. (70)]. In Sec. V, the
latter two Green functions are obtained by solving the corre- 1, p@3
sponding Dyson equatiorexactly This involves a three-step Hma= 0(— z)(z— PX+TX2) , 3
procedure. First, the Green function for the harmonic- p
oscillator field is solved exactly by ignoring the coupling to
the transverse photori&qg. (90)]. Then, the Green function .
for the transverse photons is solved exactly by including botﬁnenfum co_njugate m('. . . .
the bulk and the surface contributions to the photon self- . (i) H.res is the .Hamll_tonlan density of the reservoir asso-
energy (Appendiy. Finally, the Green function for the uatgd W|th the dielectric, modeled by a continuum of har-
harmonic-oscillator field is corrected by including the cou-monic oscillators
pling to the transverse photofsq. (122)]. Numerical results . 1 2
for the decay rate of the excited atom obtained from the Hiyom 9(_Z)f dw(z_piJr %Yi), (4)

0 p

€ - 1
H§m=—°<A>2+2—M<VXA>2, ®)

whereX is the bare matter field operator aRg is the mo-

“Present address: Boston University, 15 St. Mary’s Street, BostonyhereY , is the reservoir field operator arfe}, is the mo-
MA 02215. mentum conjugate &, .
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(iv) Hit is the coupling between the bare dielectric and The fields are quantized in the usual way by imposing

the reservoir leading to losses in the dielectric equal-time commutation relations between the field operators
A, X, andY, and their conjugate momenta

=02 [ 00" Dxcp,, ® . "
[Ai(r,t),Aj(r,,t)]z6_06ij5(|'_r,), (11)
wherev (w) is a square-integrable function with the proper- , i ,
ties that the analytic continuation of »)? to negative fre- [Xi(r,t),Pxj(r",0]=ifé;é(r—r’), (12)
quencies is an even function amdw)+#0 for all nonzero , , , ,
frequenCieS. [Yw’i(r,t),Pwr‘j(r ,t)]zlﬁgij S(w—w")o(r—r"). (13)

(v) Hiy, is the interaction between the bare dielectric and

the vector potential
I1l. DIAGONALIZATION OF THE MATTER PART

—0(—2) ——A Py + —A2 (6) Ideally, one would like to diagonalize the Hamiltonian
2p H by means of a canonical transformation from the field
operatorsA, X, andY , to some other set of operators. This
(vi) Hpp, is the interaction between the bare dielectric andproved to be too ambitious a task. Instead, we seek an exact
the scalar potential solution of our Hamiltonian model using diagrammatic per-
turbation theory.
We first diagonalize the Hamiltonian density of the sub-
system consisting of the bare matter field, the reservoir, and
the coupling between the two,

|nt

€p 2 82 2
Hin= —eUV-[Xd#(-2)]-—5(VU) _G_GOX 6(—2), (7)

where the third term on the right-hand sid@HS) of Eq. (7) ) e
is introduced to model the effects of local-field correction. Hmat= Hmatt Hrest Hint - (14

For simplicity, we have omitted the dependence of the
guantitiesA, U, X, Py, Y,, andP, in the above expres- \(/)Vl;]r approt?]ch fOHO\ng cIoseI)f/ that gftl;:utgw_er andI_Ba{_lﬁﬁﬁ_
sions on (,1). Also, the Heaviside unit functio(—z) in ereas these authors performed the diagonalization In re-

the above expressions is used to indicate that the dielectric procal space, as is appropriate fpnaﬁmte dielectric me-
confined to the half space<0. lum, we perform the diagonalization in real space, since we

In our quantization schemé] is not treated as an inde- are dealing with a dielectribalf space The annihilation op-
pendent field. Instead) is eliminated from the Hamiltonian ]Ear?torsb(r t)f andb,(r,1) for the bare n:}atter and reservoir
density by means of its Euler-Lagrange equation of motlon lelds are defined in terms o, ,,, and their conjugate mo-
In the Coulomb gaug® - A=0, which we shall use in this enta by

paper, the solution foU is the instantaneous Coulomb po- =
tential for the charge density eV -[X0(—2)]: b= /ﬂ X4+i i) (15)
2h p@o)
U(r,t):f d3r/ ev 4[X(r i)e,( z )]7 (8) Py
” meolr—r'| bo=\/5r| —iYot+—2], (16)
2h pw

in which the same value of timeappears on both sides of o .
the equation. where, for simplicity, we have omitted the dependence of the

The HamiltoniarH of the system is obtained by integrat- operators oni(t). Equations(15) and(16) may be inverted,
ing the Hamiltonian densit§{ over all space. For the Cou- Using the fact thaX,Y,,, and their conjugate momenta are
lomb interaction}, we can eliminatd) using Eq.(8). Af- ~ Hermitian,

ter integration by parts, we obtain the contributiorHalue
to the Hamiltonian densit§;,. X / '_(bT+b),
2pwg

17
1
Hﬁlt(t):‘f f d®r d3r ' Xi(r,OX(r" OF(r=r’), _
2)<0l7 <0 - ﬁpwo
9 Px=i\—5— b"—D), (18)
where .
i T
Y,= =i\ 5-—(b,—b,), (19)
defe2l 1 2 1 2pw
Fij(r=r)=— ol4m oxiax] [r=r'] o
1 Pu=\ — (b, *by,). (20)
B )} (10 Using Egs.(15), (16), (12), and(13) we readily obtain
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[bi(r,t),bl(r',t)]=&;8(r—r"), (21)

[bi(r.),b], ,(r' .0]=8;8(w—w')d(r—r1"), (22
while all other commutators betweénb,, and their Hermit-

ian adjoints vanish. Substituting Eq4.7)—(20) into Eq.(14)
and using Eqgs(3)—(5), we obtain

Hima= 0(—2)| 7@ob-b+ Jo‘dw hwb b,

+ ngdw V(w)(bT+b)- (bl +b,)|, (23
0

whereV(w)=[v(w)/p]Jw/®y and we have omitted an in-

finite zero-point energy term.

Next, we diagonalize the Hamiltonian density E23) by
defining the annihilation operatds,(r,t) for the dressed
matter field

B, = ao(®)b+ Bo(w)b’
+fmdw'[alw,w')bw,+Bl<w,w'>b1,1, (24)
0

the dependence of the operators ort) being understood.
The coefficientseg(w), Bo(w), a1(w,0'), and Bi(w,w’)
are to be chosen so that%), is diagonalized,

HO(r )= 0(—z)foodw hwBl(r,t)-B,(r,t), (25
0

and furthermore that the transformation E84) is canoni-
cal,

[B.i(r.1),BL, ,(r'.0]=8;8(w—w")d(r—r1"). (26

As shown by Huttner and Barnd8], the conditiong25)
and (26) determine the coefficients up to a phase to be

N (w):(w-i—'(r)o) V(w) @7
0 2 wz—?[)(z)z(a))’
w—wg V(w)
= , 28
Bolw) ( 2 )wz—?[)(z)z(a)) @
. g V(w') V(w)
ﬁl((l),(,!) )_? o+’ wz_aéz(w)l (29)
@o| V(o) V(w)
al(w,w’)=5(w—w’)+% w—wa’)—ie wz—'(f:gz(w)’
(30)
wherez(w) is defined by
2w)=1— — | dor @) 31)
Bod = o' —wtie

5229

Furthermore, if the set of dressed operatdg and
BI), 0<w<, is assumed to be complete, Eg4) can be

inverted to giveb andb,, as functions of the dressed opera-
tors

b= f:dw'[asw)sw—ﬁo(w)BL], (32

bffwdw'[a’{(w',w)Ba,f—ﬂl(w’MBL]- (33
0

Substituting Eq(32) into Egs.(17) and(18), we can express
the bare matter field operator and its conjugate momentum in
terms of the dressed operators

ﬁ (e
X=\/— f dw[h(w)B! +H.c],
pro 0

(34)
ﬁpEo o t
Pyx= 1/ 5 JO dw[g(w)B,+H.c], (35
where
h(w)=ag(w)— Bo(w), (36)
g(w)=i[ap(w)+ Bo(w)], (37)

and H.c. denotes the Hermitian conjugate of the immediately
preceding term.

IV. SPONTANEOUS DECAY RATE

Up to now, we have only considered the system consist-
ing of the lossy dielectric half space and the radiation field
with which it interacts, as described by the Hamiltonian den-
sity H defined by Eqs(1)—(7). When an excited atom is
introduced into the system, there is an additional interaction
Hamiltonian of the form

Ha:f dsr(_ja'A+PaU)v (38

wherej, and p, are the current and charge densities of the
atom. For simplicity, we assume the atom to be made up of
a single electron of mass and chargee in orbit around a
fixed nucleus of charge-e at a pointr, on theair side of

the dielectric surface,>0. Then the current and charge
densities of the atom are given by

] ihe . +
Ja(r,t):_ m{lﬂ (rat)Vlﬁ(r:t)_[Vlﬂ (r,t)]lﬂ'(r,t)}

e2
~ om AP DY), (39

pa(r ) =ey'(r,)y(r,t)—es(r—ry), (40)
wherey(r,t) is the field operator of the electron. For a two-
level atom,(r,t) may be expanded in annihilation opera-
torscy(t) andc,(t) for the ground and excited states, respec-
tively,
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P(r,t)=co(t)ug(r)+cy(t)u(r), (41) dissipation theorem. This was the approach taken by Barnett
et al. [6] in their treatment of the radiative decay rate of an
where ug(r) and u,(r) are the ground- and excited-state excited atom in arinfinite homogeneous dielectric medium.
wave functions of the atom, respectively, which are assumethstead, we shall obtain the total decay rate of the excited
to have opposite parities. The annihilation operaty&) atom directly in terms of Green functions by considering the

andc,(t) obey the equal-timanticommutatiorrelation self-energy of the excited atom due the perturbations Egs.
+ (43) and (45).
{ei(t),cj(t)}= 6 - (42 The self-energy of the excited atom enters into the com-

) . ) putation of the Green function of the atom by diagrammatic
The integral over in Eq. (38) can be performed if we nertyrbation technique. Since we are interested in the self-

make the dipole approximation for the atom. This means thagnergy of the excited state, we consider the Green function
the atomic wave functiongo(r) anduy(r) are assumed t0 for the excited-state operators

be localized to within a small neighborhood of the nucleus at

r,. In that case, the vector potential appearing in Eg8) i

and(39) may be replaced by its value gt. Using Eqs(39) g(ty—ty)=— g(T[C(la)(tl)c(la”(tz)])(a), (46)
and(41), the first term in Eq(38), responsible for the radia-

tive decay of the excited atom, can be evaluated: where the superscriptaj denotesexact quantities in the

. def - combined system of the half space dielectric and the excited
Ha(t)=— Ld rja-A atom. Also, the angular brackets denote averaging over the
exact ground state of this combined system dandenotes

e A time ordering. Since{®(t,) in Eq. (46) is an exact operator
- m[co(t)cl(t) (ra,t)-Poy for the combined system in the Heisenberg picture, its time
o2 dependence is in general unknown. Hence @) must be
+c{(t)c0(t)A(ra,t) Pyl + mAz(fa,t) evaluated by diagrammatic perturbation technique. The gen-

eral result of the diagrammatic techniqug8] is
X[eg(t)eo(t) +ei(t)es(t)], (43) i
ti—ty)=— —(T[cy(t ,—®)cl(t , (4
where pp;=p3, is the matrix element of the operator 9t~ t2) ﬁ< [Ca(ty)S(, =) C2(t2) Deomn: (47)
(—iAV) between the ground- and excited-state wave func-
tions. where quantities without the superscripf) (are unperturbed
For the second term in E¢38), we first expand the in- quantities, that is, those associated with the Hamiltonian den-
stantaneous Coulomb potentidl(r,t) given by Eq.(8)  sity H of Eq. (1) without the perturbationH,. Also,

aboutr, S(e0, —0) is an infinite series of operators
—eV’ - [X(r',t)o(—=2')] Co1 =i\ (= °
— 37 .
U(r,t) Ldr dmeg s(oo,—oo)_1+;lm(7) f,xmf,wdtlmdt”
g 1 XT[Ha(ty) - - -Ha(tn)] (48)
X |ra_r,|+(xl'_xaj)(97aj|ra_rr| . (44)

_ _ and the symbol “conn” in Eq(47) indicates that onlycon-
Using Eqgs.(44), (40), and(41), the second term in E§38),  necteddiagrams are to be included in the calculation.
responsible for the nonradiative decay of the excited atom, Sincecy(t) andc,(t) in Eq. (47) are unperturbed opera-
can be evaluated, tors, their time dependence is simple harmonic,

def i
Hg’(t)=e J d®r p,U Co(t)=coe ™', (49

_ ie?[e§(t)ea(t)Poy; — C1(1)Co(t)Paoy] Ca(t)=cqee, (50

4dmegMuwy,

wherewy andw, are the energies of the ground and excited
92 1 states of the atom, respectively, divided By Thus the
(45  zeroth-order Green function obtained by setting

xf, a3’ Xi(r',t)
z'<0 S(,—)=1 in Eq.(47) is

IXajdx; [ra—r'|’
where we have performed an integration by parts apds
the atomic transition frequency. 99 (w)= 1 (51)

The radiative and nonradiative perturbation Hamiltonians, hwo—hw i€
Egs. (43) and (45), may now be used to compute the total
decay rate of the excited atom in first-order perturbationwhere we have taken the Fourier transform with respect to
theory. This may be accomplished by applying Fermi's(t;—t,).
golden rule and then expressing the resulting decay rate in Next, we compute the first-order correction to the Green
terms of Green functions by means of the fluctuation-function
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i\2 o four terms contributing to the self-energy of the excited atom
g(l)(tl_tz):(_ g) j dts(T[ca(t)Ha(ts)Cl(t)eon o ordere? one due toH’, acting twice, one tH" acting
o (52) twice, and the two cross terms. We consider each of these
cases separately.

by substituting then=1 term in Eq.(48) into Eq. (47). In Consider first the effect ofi}, acting twice. Substituting
order to have a nonvanishing expectation value, there mushe first term in Eq(43) into Eq. (57), expanding the time-

be the same number of annihilation and creation operatorgrdered product using Wick’s theorem and taking the Fourier
for the ground or excited state in the time-ordered product irtransform with respect tot{—t,), we obtain

Eqg. (52). Upon examination of Eqg43) and (45), we find
that the only terr? ir)Ha(t3) that contributes to th% expecta- @) $@(0) 1 59
tion value in Eq.(52) is the term proportional té\“ in Eq. Oaalw) =————————— 2 Al @)=,

(43). Substitutir?g this term in Ec(A%) irF:to Eq.(52), expan%l- ho=faoytie ho=fhaytie
ing the time-ordered product using Wick’s theorem and tak-
ing the Fourier transform with respect to, ¢ t,), we obtain where

1 1 e\? » .
(1) — (1) (2) N ) . » . i(w—wg)T
9" (w) fiw—ﬁcol-HEE ho—hw i€ (53 Zaal@) (m> P10iPou, fo d7 Dj(ra.raim)e ’
(59)
where
i7e2 is the contribution to the self-energy of the excited atom to
2(l>:_2m Dii(ra,r4;0) (54  ordere? due toH], acting twice.

Next, we consider the contribution to the self-energy of
is the self-energy of the excited atom in first-order perturbathe excited atom due tbiZ" acting twice. Substituting Eq.
tion theory and (45) into Eq.(57), expanding the time-ordered product using

Wick’s theorem and taking the Fourier transform with re-

def j spect to {;—t,), we obtain
Dyj(rq,raiti—ty)=— %<T[Ai(r1at1)Aj(r21t2)]> (59
1

. . i . 9(2)((0):—2(2)(60)
is the transverse photon Green function for the dielectric half uu ho—fho,+ie YV
space. It should be noted that") given by Eq.(54) is
purely real. Substituting Eq55) into Eq. (54), we obtain where

ho—how,+i€ (60

1

2
m_wa> plo'j Pozn J;z’<0d3r , fz”<0d3r"
which is purely real sincd is Hermitian. Thus *) contrib- .
utes only to a level-shift of the excited state, but not to its Xj dr e‘(“’*“’0>TFji(ra—r’)g”(r’,r”;r)
lifetime. Hence, for the purpose of computing the lifetime of 0
the excited atom, we may neglegt?).

PSS e—2<A2(r ), (56)
2m a 2{)2&((1,):

Next, we consider the second-order contribution to the XFin(r’=ra) (61)
atom Green function obtained by substituting the2 term
in Eq. (48) into Eq. (47),
(Z)t_t)_i _i_3 OCdt Dodt def |
OT )= 5| T7) )96 0 Gi (11,23t —to) = = - (TIXi(r1,t)Xi(12,t) 1) (62)

X (T[cq(ty)Ha(tz)Ha(ty)cl(t :
(TLea(ty)Ha(te) Halta)Cr(t2) Deom is the Green function for the matter fiel In deriving Eq.
(57)  (61), we have used the fact th@(r,—r’) and 8(r"—r,)

When Eqs.(398), (43), and(45) are substituted into Eq57) ohc_currmg inFji(ra—r’) and Fya(r _,rf;‘,)’ respectively, in
Lo . this equation are zero fa,>0 andz’,z"<0.

and the product of the two Hamiltonians expanded, we f'n& Finally, we consider the contribution to the self-energy of

that there are terms proportionaleéd, e, ande*. It will be Y 9y

H r nr H
seen below that one of the factorsefn H}' given by Eq. 3\1/?1 ?r):mted ?tlger: dtue.t(b;a agd :'ab es?h zzc|t_l|ngt or:ce.
(45) is absorbed in the definition of the dielectric function ether we také,(ts) in Eq. (57) to beH; andH,(ty) to

[cf. Eq. (83)], which is of order unity. Hencél™ should be beH}' or vice versa, we get the same result. Hence we need
counted as a term of orderrather thare®. Now. since we [© consider only one of these two cases and multiply the

are only interested in the decay rate of the excited atom t5eSUIt by 2. The final result is

the same approximation as in Fermi’s golden rule, we retain

only the terms proportional te? in Eq. (57). This amounts S (w)
AU

(2) (=
to omitting theA? term in Eq.(43). Thus we are left with gau(@) ho—fho+ie (63)

ho—fho,+ie



5232 M. S. YEUNG AND T. K. GUSTAFSON 54

where where the self-energ¥ (w) of the atom in the excited state
is given to ordere? by
T I B I 3 (@)= (0) + E0) + 3 F (o) + 3E(0). (60
e o _ ' We now assume that the transition dipole moment of the
XFji(ra=r){P10;Povi(TTAI(ra, DX(r",0)1) atom is parallel to one of the coordinate axes, sayj theis.
— pOlJp10J<T[Ai(raaO)xl(r’17)]>}- (64) Its decay rate in free space is given by
2
The spontaneous decay rate of the excited atom is propor- WO € P1oP 67)
tional to the imaginary part of its self-energy in the excited spont- 377ﬁe ¢\ m/ FiO01F0LD
state
where the square brackets around the indaxean that this
S(w) index isnot summed. Then, normalizing the decay rate Eq.
Wspon= —2 Im —— : (65  (65) to this free-space value and using E(89), (61), and
o=w; (64), we obtain
Woapont, 6mciey , , ,
V\Z(Egn: = Imf dr €| Dpypi(rafa;m)+ = 2L<0L<0d3r d3r " Frijm(fa=r) Gn(r. 17 Fop(r' —ra)
1 3,7 ' ’
+ewajz’<od r F[j]m(ra_r )Cm[”(r ,ra;T) s (68)
where
def 1
Cij(ry,ry;7)= %(T[Xi(rlvT)Aj(rZaO)_Xi(rlaO)Aj(rZaT)D- (69

The integration over in Eq. (68) can be performed explicitly by making use of the analytic properties of the Green functions
[7]. The result is

Wapont 67C3eg f
=— Im| Dy (ra,fa)+ d3r A3 Fpm(ra—r) G2 r )Foig(r' —r
VV(S?J)Ont (OF) al J]( a a) 2 2 z<0Jz'<0 [J]m( a ) mn( ) n[J]( a)
1 3.7 1\ o '
+ew ’<0d M Frim(fa=r")Coypjy(r'sra) ) (70
aJz w=0,
|
where the superscripb denotes Fourier transform with re- V. GREEN FUNCTIONS FOR THE HALF SPACE

spect tor.

Equation(70) shows that the spontaneous decay rate Ot:a
the excited atom near the dielectric surface is, to the same
order of approximation as in Fermi’s golden rule, given in
terms of the Fourier transforms with respect tg—<t,) of
the photon Green function E¢55), the matter Green func-
tion Eq. (62), and the functiorC;;(ry,r,;t;—t,) defined by
Eq. (69). The latter three functions are defined with respectTo obtain the exact Green functions for this Hamiltonian

to the Hamiltonian density{ for the dielectric half space density, we first separate the latter into an unperturbed part
defined by Eqgs(1)—(7), without the perturbationd, due to

the excited atom. In contrast to the atom Green function Eq.

(46), the functionsDj}, Gif, andCj; cann_otbe approgimateq Ho=HA+HO +HY, (72)

by the first few terms of their perturbatlon expansions, since

the cumulative effect of the electrons in the dielectric can be

large. Instead, these functions are obtained as exact solutioasd a perturbatiofit;, . First, we consider the photon Green
of the Dyson equations that they satisfy. This is discussed ifunction in the subsystem described by the Hamiltonian den-
the next section. sity of Eq.(72),

The Hamiltonian density{ for the dielectric half space
n be rewritten according to Eq4) and(14) as

H=Howt Hiar™ Hin+ Hine- (71



54 SPONTANEOUS EMISSION NEAR AN ABSORBING ... 5233

o i o o o tuting Eq.(34) into Eq.(78), using the commutation relation
2 >(r1,r2;t1—t2)=—g<T[Af (i t)A (1, ) DO, Eq. (26) and taking the Fourier transform with respect to
(73) (t;—ty), we obtain

where the superscript (0) denotes quantities associated with (OO)w : ‘ _ fw / INE
the Hamiltonian densit§{,. From Eqs(2), (23), (7), and(8) (f1.r2)= IR 0 do’|h(w")]
we see that, in the subsystem described#gythe transverse
radiation fieldA is completely decoupled from the matter
field X and the instantaneous Coulomb potentialHence,
in this subsystemA(©) s just the free-space radiation field,
which can be expanded in a complete set of transverse planésing Egs.(36), (27), and(28), we obtain
waves,

i i
. } (79

w—w'+tie wtow' —ie

d3k % Ih(w’)lz=%§(w’), (80)
A(O)(r’t):j 2m™ N 2650
0%k where
i(k-r—wt) -, ,
x)\;lyz[ax(k)ex(k)e WiHcel, (79 o )def Bow V(') o

|’ —wOZ(w')|2
where w,=|k|c and g, (k), A=1,2, are unit vectors such
that [e;(k),e,(k),k/|k|] form an orthonormal right-handed Equation(81) shows that{(w) is an even function ofw,

triad. The commutation relation E¢L1) implies that since V3(w) is odd and z(—w)=2z*(w). Furthermore,
£(w) is analytic on the reab axis[5].
[ak(k),a’;,(k')]z Sy 8(k—k"), (75) The integral ovew’ in Eq. (79) can be rewritten as

def

1
J(w)= J do’ |h(a)’)|2

w—w'+tie wto —ie

while the commutator betweea, (k) and a,.(k’), or be-

tweena;[(k) andal,(k’), vanishes. Equatiofy5) shows that

a{(k) anda, (k) are the creation and annihilation operators

of a transverse photon of wave vectoand polarizatiorh. J' dw
The free-space photon Green function can be calculated

by substituting Eq(74) into Eq. (73). After taking the Fou-

2w’

(@) (o —Ter

rier transform with respect tat{—t,), we obtain :ﬂfwdwrg(wr) 1 + 1
1) w—w' +ie oto' —iel
kik:
1 d% (5” - #) . (82
O)w(rl,fz) 2m)° 2_kzcz+i6(9"<'(rl 2. (76) Following Huttner and Barnefs], we define the dielectric
function of the dielectric as

Next, we consider the Green function for the matter field 2 - o)
X for the unperturbed Hamiltonian density of Eg2). To do e(w)=1— 5 f do’ Pt (83)
S0, it is necessary to partitiol, further into a part without pPE®) - @@ TIE

the Coulomb interaction , i . i ) )
This function satisfies the Kramers-Krig relations, since

Eq. (83) shows thate(w) is analytic in the upper half of the
complex plane. Comparing the RHS of Eq82) and (83)

) . and using the fact tha{ ») is an even function ob, we find
and the Coulomb interaction terfi}’,. We first obtain the that

Green function forX in the subsystem described by,

Hoo=Hom™ Hi (77)

J(w)=—

P €gto
i [e(|o])—1]. (84
G111t )= = (Tt X1 ), ¢

(78) Substituting Eq(84) into Eq.(79), we obtain

where the superscript (00) denotes quantities associated with (00)w fo[f(|w|

the Hamiltonian density of Eq.77). For this purpose, the Gy “(rir2)= e2 5,15(r1 r2). (89
first term in Eq.(77) has no effect, since there is no coupling

between the radiation field and matter in this subsystem. When the Coulomb interaction E() is added, the mat-
Next, since the terrf({%) given by Eq.(25) is diagonal in the  ter Green functiorg{”) can be expressed in terms of quanti-
dressed matter operatoB;,, the time dependence of the ties without the Coulomb interaction using the general result
latter operators in this subsystem is simple harmonic. Substf the diagrammatic technique,
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) ' i (00) U H given by Eq.(71). First, we consider the photon Green
Gip (r1,r2ty—ta) = — o (TIX(ry, 1) S7 (%0, =) function Eq.(55), which, by the diagrammatic technique, can
be written as

XX{%(1r2,t2)]) oo (86)
where Djj(rq,rosty—ty)=— _<T[A(0)(r ty)SH(e, =)
@ —. n o) e
n=1 I’l' h —© — 0 n
where
XTIHIRV (1) - - HIRPV (t)]. 87
Substituting Eq.(87) into Eqg. (86), expanding the time- SA(0,— )= 1+2 ( ) f j dt;- -
ordered products using Wick’s theorem and taking the Fou-
rier transform with respect tat{—t,), we obtain an infinite (At V.. H4OA
series that can be summed in closed form X T[Hin(t) - - Hing " (to) ] (93
(0w Here H(®A(t) is the Hamiltonian corresponding to the
;i (rg,ro) int A
Hamiltonian densityH;;(r,t) of Eq. (6),
G0 (rl,r2)+f/ d? f d3” e
7' <0 7'<0 Hl(r?t)A(t):J' d3r[——A(O)(r,t)-Pg(O)(r,t)
z<0 P

Xgi(|00)“’(r1,r’)F|m(r’—r”)gﬁ,?jo)“’(r",rz)+ .

:gi(jOO)w(rl’r2)+f d3rrJ’ d3rrr
7' <0 <0

g(oo> (ry,r ) Fym(r’ =G m“‘(r”,rz). (88) As we have mentioned;; cannot be approximated by the
first few terms of its perturbation expansion. Instead, the en-

Then, substituting Eq85) into Eq. (88), we obtain tire infinite series in Eq(93) must be substituted into Eq.
(92). However, we shall see shortly that the resulting infinite

ez
+ Z—A(O)(r,t)~A(°)(r,t)}. (94)
p

(O)w(r ry)=— eol e(|w])— 8 8(ry—15) series can be summed exactly to give a closed-form Dyson
- 2z ; :
b e e equation for the photon Green function.

The zeroth-order term in E@93) gives just the free-space
+f A3 3Fim(r1—r3) g( )"’(fg,rz) _ photon Green functionDi(jO) of Eq.(73), whose Fourier trans-
23<0 form is given by Eq(76). Then=1 term in Eq.(93) gives a
(89) first-order correction to the free-space photon Green func-
tion. Since there must be an even numbeAobperators in
Equation(89) is the Dyson equation for the matter Greenthe time-ordered product to give a nonvanishing expectation
function g(°)‘° for the system described by the Hamiltonian value, we see that only the second term in B4) contrib-
denS|tyH0 of Eq. (72). This equation can be solved exactly utes in this order. Thus we obtain
for gi(jo)‘" using an extension of the Wiener-Hopf technique.

A 5 2
The solution i99] 1)w(rl Fy)=— € J d3rsDOC(r, 1) DO(rg 1),
edle(lw)—1] placo T N
u, oL €L -
G (rro) = o 9501y ©9
, ) where we have taken the Fourier transform with respect to
eoleL(|w])—1] J 1 (t1—t2)
4W€L(|w|)32 Xy IXa; [ri—ry] Next, we consider the contribution from the=2 term in

Eqg. (93),

., (90) 1/—i\% (= °
’Di(jZ)(rler;tl_tZ)ZE 5 f_mdtsf_mdh
wherer, is the image of, in the planez=0 and
’ 9e T e X (TIAO(ry,ty)
e(lo|)—1

alloh=1+ (91) XHRA ) HIR A A (r2,t2) 1) o
(96)

e (| o] & )
eL(|o))+1 9x1i0%a) | [r,—T)

is the dielectric function including local-field effects.

So far, we have obtained the Green functions for photon¥Vhen Eq.(94) is substituted into Eq96) and the product of
and matter, Eqs(76) and (90), for the system described by the two Hamiltonians expanded, there is a total of four terms:
the Hamiltonian density{, of Eq. (72). Next, we calculate one due to the first term in E¢94) acting twice, one to the
the Green functions for the complete Hamiltonian densitysecond term in Eq(94) acting twice, and the two cross
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terms. The latter cross terms contribute nothing, since they
each contain an odd number Afoperators.

Consider first the contribution due to the first term in Eq.
(94) acting twice. Substituting the first term in E@4) into (00 j(ra,t t2)1) tonn
Eq. (96), expanding the time-ordered products using Wick’s
theorem and taking the Fourier transform with respect tovhere SY(%,—) is given by Eq.(87). When the latter

i
QP (ry a5t —tp) =~ g<T[P(OO)(r1a 1)8 (00, =)

(103

(t;—ty), we obtain

2
—e
—) f d3r3f d’r,
P 23<0 74<0

X DY (ry,13) Q) (Fs F ) D) (4T ),
(97)

where Q) is the Fourier transform of the quanti@{
defined by

z)w(rlyrz)

def
QP13 it —te) = — - (TIPLN(ry )P (r2. 1) 0.
(99

The quantityQi(jO) is the Green function for the operator

Py in the subsystem described By, of Eq. (72). To com-

pute this quantity, we follow the same procedure as used i

computlngg(o) by partitioning H, into a sum ofHy and
H, whereHOO is given by Eq.(77). The Green function for
Py in the system described 3y, is given by an expression
similar to Eq.(78), but with X replaced byPy. Comparing
Egs. (34) and (35), we see thaPy is obtained fromX by
replacing h(w) by p®yg(w). Hence, following the steps
leading from Eq.(78) to Eq. (79), we obtain forQ{’”* a
result similar to Eq.(79 but with h(w) replaced by

p@od(w),

ip@o " e
(00 “(ry,rp)=-— - 5ij5(rl_r2)f0 do’|g(e’)]?

(99

w—ow' +ie

w+w’—ie}

Using Eqgs.(37), (27), and(28), we obtain
Ig(w’)|2=f—§(w’), (100
o

whereé(w') is given by Eq.(81). Following the steps lead-
ing from Eq.(79) to Eq. (85), we obtain

Q<Oo)w(r1-r2):_P5ij5( —ry) 1+ 7 [e(|w|) 1]]
(101
where we have used the fact th&i
dew’g(w')=l (102
0

When the Coulomb interaction E() is added, the Green

function for Py is given by an infinite series similar to Eq.

(86),

equation is substituted into EGLO3 and the resulting time-
ordered products expanded using Wick's theorem, we obtain

an infinite series
_| 2 o)
7) f_w‘“s

xf d3r’J d3r(T[P2(ry,ty)
72/ <0 7'<0 '

XX{P(r,t3) 1) OOF (' —1")

Q1 it =)= QPO (ry a5t —ty) +

X(TIXIO(r" t3) PR (15, 15) )00
S (104

We now have to compute the quantities
(T[PLIX(ON) 00 and (T[X®IPLI) (). Using Eqgs.(34)
and(35) and following the steps leading from E8) to Eq.
@79), we obtain

ﬁ<T[P<°°(r1, DX, 15) 1)

1 = [g*(0")h(w")
—55115(r1—r2)f0 do’| = — e
9(w)h* (o)
T era—ie | (109

where the vertical bar with the superscriptindicates Fou-
rier transform with respect tat{—t,). Using Eqs.(36) and
(37), we calculate

g* (0" )h(w")=—i{lag(w")|*~|Bo(w")|?
+2i Imfag(w’) By (@)1}

From Egs.(27) and (28), we see thaf ap(w')Bs(w')] is
purely real. Hence using Eq&7), (28), and(81), we obtain

(106)

g* (0 )h(w")=—ié(w’). (107
Substituting Eq(107) into Eq. (105), we obtain
(T[P(Oo(rl, DX{(r,,1) 7)1
=—ipwG?U(ry.ra), (108

where we have used Eg®82), (84), and(85).

For (T[X{°”P{%1)(®, we obtain an expression similar to
Eq. (105 but withg(w') andh(w’) interchanged. Accord-
ing to Eq.(107), this amounts to an extra minus sign. Hence

—,',L—<T[X$°°><r1,tl>P<°°<r2, 21 °=ipwg? (ry.r2).
(109
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We now take the Fourier transform of E(L04) with

1 ! H H H ! H
respect to {; —t,) and then use Eq$108 and(109), : ; PSR X
: = 0+ Xy I + 0+ I + I+ L+
: A T '
Q§j‘)>“‘(rl,r2)=Qi(joo)‘”(rl,rz)+p2w2f d3r’f d3r” ' S T
z'<0 7'<0 @
X GO, 1 ) F (1 =1 G (11 ) o Lo
S (110 5+"<+I+ 5-*’:‘*1*

Comparing Eqs(88) and(110), we see that the infinite series

in these two equations, from the second term on the RHS of
each of the two equations onward, are identical except for a
factor p?w?. Hence we conclude that (b)

|
+
+

————— x -
e -]

Qi(jo)w(rl,rz)_ Qi(joo)w(l’l,rz) E E E
=p207GO(r1,1)—G2(ry,r,)]. (111 s + * + I
Substituting Eqgs(85) and (102) into Eq. (111), we obtain b © | §
Qi(jo)w(rl’rz) =—pdjo(ry—ry+ pzwzgi(jo)“’(rl,r2),
(112

FIG. 1. Perturbation series for the photon Green function. A
Wheregi(-o)‘“ is given by Eq(90). Equation(112) can now be he_avy dashed I_|ne represents the complete photon Green funct_lon.
di J lcul ) A light dashed line represents the free-space photon Green function.
usedin Eq.(97) to ca cul ateD;i . o A cross represents an interaction vertex due toAhA term in Eq.
We still have to consider the contribution from the second(gs) acting once. A vertical dumbell consists of two interaction
term in Eq.(94) acting twice, as well as the contributions of \ertices due to the - P, term in Eq.(94) acting twice.
the higher-order terms in Eq93). These contributions can

be taken into account by using diagrammatic analysis. )

The perturbation series E(P2) can be represented by an DE(r1,1,)=DO(r;—1,)+ € d3r
infinite series of diagrams as shown in Fig. 1. Here the com- UV 17277 VL 7200 5 f, 703
plete photon Green function is represented by a heavy
dashed line and the free-space photon Green function by a XD (11 =13)Dypi(r3.1)
light dashed line. The contribution E(@5) due to the second 2
term in Eq.(94) acting once is represented by the second + —_e) f dargf d3r,
diagram on the RHS of Fig.(4), the contribution Eq(97) p 23<0 24<0
due the the first term in Eq94) acting twice by the third 0w (0w "
diagram, the contribution due to the second term in (84) XD (1= r3) Qi “(r3,4) DT, T2)-
acting twice by the fourth diagram, etc. It can be seen that (113

any one of the higher-order diagrams in Figa)lis con-

structed from just two types of building blocks, or self-

energy parts, represented by a cross and a vertical dumbefubstituting Eq(112) into Eq.(113), we obtain

which correspond to the second term in Eeg) acting once

and the first term in Eq(94) acting twice, respectively. We

can separate the higher-order diagrams into two groups: e — 0w, _ 2 2 3 3
those containing a self-energy part of the first type at the Dijrur2) =D (r=ro) + € Jz3<0d r3f24<0d f4
bottom and those containing a self-energy part of the second O O)o .

type at the bottom, as shown in Figlbl The infinite series XDy (r1=r3)Gim (r3,r4) Dini(ra.r2).
connected to either one of these factors consists of all pos- (114
sible diagrams constructed from an arbitrary number of self-

energy parts of either type strung together in any order by

free-space photon Green functions. Such a series is just thWe may now substitute Eq90) into Eg. (114). For the
complete photon Green function. Hence we obtain thesecond term in Eq(90), we perform integration by parts
equivalent representation shown in Figc)l This means that twice and make use of the transversality of the photon Green
the higher-order diagrams are all included in just two dia-function,
grams obtained from the second and third diagrams on the

RHS of Fig. 1a) by replacing the light dashed lines at the

top of the latter diagrams by heavy dashed lines. Mathemati-

cally, the complete photon Green function is given by the

sum of the free-space photon Green function and the two

terms derived from Eq$95) and(97) by replacing the factor

DY) in these equations b, The result is

J J
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D(r1,1)=DP(r1— 1) — wegl e (|w]) — 1] (—i/A)(TIPLOX(7)0, By Eq. (108, this amounts to
multiplying each term of the series in E(8) by —ipw.
Xf dsrBDi(%)w(rl_rs)ng(r&rz) Thus we conclude
z3<0 |
wzeo[el_(|a)|)—1]2j J’dz & —%<T[P(O)(r1 1)X(O (r2,t) )]0 = |ng(0) (ri,ro).
2mle (|o])+1] 530S (120

1 Similarly, using Eq.(109),
XD (1~ S grDéi(sar2) , (116

i
, o = (TIXO (1 ) P2, t) DO =1 pwgl P (11 1)

wheres; ands, are integration points on the plaze-0. (121)

Equation(116) is the Dyson equation for the transverse
photon Green function for the complete Hamiltonian densitysypstituting Eqs(120) and (121) into Eq. (118), we obtain
H of Eq. (1). This equation can be solved exactly fDf;
using an extension of the Wiener-Hopf technique, as dis- Qf]’(rl,rz):ijo)‘”(rl,rz)
cussed in the Appendix.

Next, we calculate the matter Green functigfi for the +e2w2f dsrsf d3r,G0(r,r3)
complete Hamiltonian densit}{. This is given according to 3<0 74<
the diagrammatic technique by

X Dipn(T3, r4)g(0)‘“(r3,r2). (122
i . . - .
Py Tt —t) = — —(T[XO(r, t;)SA(%0, — o Equation (122) is an explicit expression for the complete
Gij(rer2it=te) = = g (TIXT(r, t) S ) matter Green functiorgj; since G is known from Eq.
90) and the complete photon Green functibyf is known
XX(O(1 2,4 1) an 19 plete p >

from the Appendix.

Finally, we calculate the functiod; given by Eq.(69).
We consider each of the two terms in the latter equation
separately. By the diagrammatic technique, we have

whereS* (e, — =) is given by Eq(93). Substituting the latter
equation into Eq(117), expanding the time-ordered products
using Wick’s theorem, and taking the Fourier transform with
respect to {; —t,), we obtain 1 1 0) A
%(T[Xi(rliT)Aj(ero)D: %(T[Xi (ry,7)S%(, =)

i 2 —e 2
(0)w I I 3
sirsra=a e+ -5 5 [, o XANRODT. (129
whereS*(, —») is given by Eq.(93). Following the steps
xf d3r (TIXO(r,tq) leading from Eq(117) to Eq.(122), we obtain
z4<0
1
P&?.)(rs,ts)]>(°)|“’Df‘r’n(r3,r4) %(T[Xi(rlyT)Aj(rZuo)]Mw

X(TIPn(ra,t) X V(12,12 ) V0. (118
:ewf d3r3g(°)"’(rl,rg)D,‘J?(rg,,rz).
We now have to compute the quantiti@g P{)X{*1)(® and Z3=
(T[X(O)P(O)])(O) These are obtained in terms of the quanti- (124
ties <T[P(°°)X(°°)])(°°) and (T[X{®PLV1)(®) py the dia-
grammatic technique with the Coulomb mteract}df;?o’u
perturbation,

Similarly, we obtain

1
~(TIX(rL0A (2, ) D]

i
— (TIPQO (14, t)XO (1, tp) O 1
ﬁ< [Pxi(r1,t) X7 (r2,t2) 1) =g<T[Xi(F1,T)Aj(rz,o)]>|_w

(00) U %, — (00) (00)
<T[P (rlv )S ( )X] (r21t2)]>c0nn’ :_ewf d3r3g§|0)7w(rl’rB)DGw(ra'rz). (125)
(119) z3<0

It can be seen from E¢90) and the Appendix that the Green
where SY(,—x) is given by Eq.(87). Comparing the functions g(o)“’ and Djj are even functions ob, since
two infinite series Eqs(86) and (119, we see that each enters into these Green functions only in the fojaj or
term of the latter series differs from the correspondingw?. Hence the RHS of Eq125) is equal and opposite to the
term of the former series only in replacing, in the RHS of Eq.(124). Taking the Fourier transform of E¢69)
former series, a factor—{i/A)(T[X(99X(097)(00)=g(0 py  with respect tor and using Eqs(124) and (125, we obtain
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FIG. 2. Lifetime of an excited atom near a gold mirror. Solid  FIG. 3. Lifetime of an excited atom near a lossless dielectric

lines are the results of classical electromagnetic theory. Dots are trig/rface. Solid lines are the results of the spatial-mode quantization
results of our quantum theorl, is the wave vector in aiiz, is the ~ theory. Dots are the results of our quantum theory.
distance of the atom above the mirror.

spatial mode$4]. These are shown in Fig. 3 for a dielectric

half space with refractive index= 3.
ij(rl,rz):ZewJ

z3

_ drsG(rura) Pii(rs.ra). (126

g Y VII. CONCLUSION
We now have all the quantities we need, naméh,, i
andC;; to compute the spontaneous decay rate of the excited In this paper, we have presented an exact solution of a

atom using Eq(70). microscopic Hamiltonian model of an absorbing dielectric
half space and used it to calculate the spontaneous emission
VI. COMPARISON WITH THE CLASSICAL THEORY rate to ordee? of an excited atom near the surface. Because

our calculation is based on a fully canonical quantization
Results for the total decay rate calculated from &)  scheme, it provides a fundamental demonstration of the va-
using the exact function®;;, G, andCj are in excellent lidity of the classical electromagnetic theory of the rate of
agreement with those of classical electromagnetic thE®ry spontaneous emission near an absorbing dielectric surface.
These are shown in Fig. 2 for a gold mirror with refractive This serves to increase our confidence in the results of recent
indexn=0.505+3.66. The total decay rate contains a non- work on spontaneous lifetime based on classical electromag-
radiative component due to energy transfer from the excitedietic theory[10]. Also, the exact photon Green function for
atom to the absorbing mirror via the near-field Coulomb in-the half space given in the Appendix can be used to treat
teraction. The contribution due to the Coulomb potentlal other quantum-mechanical interaction phenomena between

alone may be obtained from E(70) by settingD}; equal to  charged particles and the electromagnetic field near an ab-

zero, sorbing plane surface, such as the level shift of an electron
" undergoing cyclotron motion near such a surfgtH. In the
Wopont _ 6mce, 1 3 3., above discussion, we have only considered the case for
WO T T Ima e ,drdr which the excited atom is on the air side of the surface.
spont a aJz<0Jz'<0
However, our approach can be extended to treat the other
XF(jm(Ta= D) G (1,1 ) Fogy (1 =), case also.

(127
APPENDIX: GREEN FUNCTION
Using Egs.(10) and(90), the integrals over andr’ can be FOR THE TRANSVERSE PHOTONS
evaluated to give
In this appendix, the steps involved in solving the Dyson

W‘stom i 30 -1 equation Eq.(116) exactly for the photon Green function
== Im , (128 o li h [ [ution is i
WO 803 e (wy)+1 Djj(rq,r2) are outlined and the complete solution is given.
spont aa The details of the calculations can be found .
where 6;=2 for j=z and §;=1 for j=x or y. Equation Following the standard Wieqer-Hopf teqhniqL[EQ], we
(128 agrees with the classical res{#] for the rate of non- decompose the unknown functid;(r,,r,) into a sum of
radiative energy transfer in the limi,— 0. two quantitiesD{") *(ry,r,) and D “(ry,r), the first of

Nonradiative decay is absent for a perfect dielectric. Inwhich vanishes foz;>0 and the second of which vanishes
this case, our results for the decay ra% are in excellent for z;<<0. Then, the Fourier transform of E116) with
agreement with the results of classical electromagneticespect to X;—X,), (Y1—Y2). andz; is taken. After rear-
theory and with those based on quantization of macroscopitangement of terms, we obtain
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kik Kiki;
[0?—TI(w)—k?c®+is] 6im+H(w)%J 1 (@-—%)
Oy =\ K ik
D (ky) Dtk = i (A4)
mj z (-)
w?— k2% +ie +Dij (k) The 3% 3 matrix in curly brackets on the LHS of E¢AL)
K can be factorized into a produdt| M) where
iz~ —ITZ)
k

=D{”(k,) +3(w,K) D¥(0), (A1) Mi(jt)z[iL(K)ikzc]éij+i[S(K)—L(K)]% (A5)

w’—k°c’+ie

whereIl(w) and X (w,K) are the bulk and surface photon gng
self-energies divided by,

_ [x2:2 —

(@)= o o)) -1, (n2) LK) =P+ (W) —w?Te,  (A0)

0 e(|w))—1]? S(K)=VKc*~w*~ie. (A7)
3(w,K)= (A3) .

Klew(Jw])+1] The branches of the square roots in E¢fs6) and (A7) are

chosen so that the real parts lofK) and S(K) are always
and K= Jk;+kj. In Eq. (A1), we havia) suppresseg)the de- positive. Notice thatM"”) have singularities ak,= =iK
pendence of the Fourier transforrg;”(k,) and D{(k;))  Gue to the factor k. As a result, the standard Wiener-Hopf
on 7;,», and the transverse momentunk, (ky). AlSO,  technique must be extended to deal with these singularities.
D{i(0) is defined to be the Fourier transformDf;(r1,r2)  This consists of subtracting appropriate poles from both
with respect to X;—X,) and {y,—y-) only and evaluated at = sides of Eq(A1). After multiplying this equation throughout
z;=0, while Di(jo)(kz) is the Fourier transform of by (iS—k,c) times the inverse ofM(™) and rearranging

D{Y(ry,r,) with respect to X;—x,), (y1—Y2), andzy, terms, we obtain
|
Dy (k) e .
| Torie Am| T Min' Dy (k) (1S—kee) ~Ap ]

KK
[

= Min'™| Dinj(ko) +2(0,K) Sy

D(0) |(1S—kye)~ M AL — Miy) AL (A8)

mj

where we have subtracted quantitie/s/li(nﬁ)Aﬁ:“j) and  which occur only in the combinatiorrsnAEJj) and rr’nAﬁn_j),

M)A, from both sides of the equation so as to makewherer andr’ are vectors with components
the residues of the poles &,=iK and k,=—iK due to

M) and M)~ in the first and second terms, respec- ri=(ky,ky,iK), (A11)
tively, on the left-handsid¢LHS) of Eq. (A8) vanish. As a
result, the first and second terms on the LHS of this equation ri =(ky,ky,—iK). (A12)

are analytic in% (") and3 ("), respectively, wher& (") con-
tains the upper half of the, plane,S (™) contains the lower TO solve for these quantities, we first use the fact that
half, and2 (") and (") overlap in an open region. Di(j+)(kz) and Di(j_)(kz) must be analytic ir%(*) and3(7),
The RHS of Eq(A8) can be decomposd®] into a sum  respectively. Thus the residues of the polekatiK and
of two termsP{")(k,) and P{(k,) analytic in=(*) and k,=—iK due toM(y)~* and M in Egs.(A9) and(A10),
> (7, respectively. By equating the first and second terms oriéspectively, must vanish. This gives two simultaneous alge-
the LHS of Eq.(A8) to P{)(k,) andP{ )(k,), respectively, ~braic equations
we obtain the formal solutions

lim kP4 (k) =0, (A13)
D" (k,) =[iS(K) + kLI A[ )+ M P k)1, (A9) kK
_ _ e lim kP (k,)=0, (A14)
D (k)= 15 el Al Min Py (kD] - (AL0) o fomEmi (e

The solutions Eqs(A9) and (A10) still contain the un-  which can be solved for the unknowns,Al;) and

known quantitiesD%,(0), A", andA{”) the latter two of ~ r; AL} . The results foz,>0 are
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S5 _qiqm
ACH— 2i 1 . L+S+2Kc mog® S35 43 (0 K) 552 (0
fmim =T R (S-0(5—Ko) ' T (S-DASTKe) T LS et mj T2 (©,K) m3D3;(0)
2 = "‘225 +3(0,K) 8,3D%(0) |, (A15)
 Ao(S—L)%(S—Kc) m mi m3™3j
S5 _qiqm
,A(_)_Zi L+Ke  (STKO(L+KeL+S+2Ke) |17 g J[1 o, 3 (0,K) 83D (0
A TR S LT T (S-DAS Ko (I Tas e omt2(@K)6msD3(0)
2i(S+Kc)? _K225 S (oK) 5B (0 e
AO(S L)Z(S Kc) m mj+ (0,K)dms 3]() ( )
where
is
qi= kx,ky,—z , (A17)
, is
9 =| ke ky ) (A18)
Aot L+S+2Kc]? ALo
i Iy (A19)

Next, the inverse Fourier transform @fg )(kz) with respect tok, for z;=0 is calculated from Eq(A10) by contour
integration. The result for,=0 is

~ = dk, - B
Di‘]-'(zl)=fiw2—;e'kzle§j )(ky)

~ 00 9i9s| _ rrs =~
=D}"“(z2)— ZSC( R )e " Re?® 2 (@ K)DF(0)

S-L [1 aiar| _ rir aiq _ =~

C_STL P WG say T ko] L ekas 1S (0.K) 6452 (0)
PK(LTKo) | w2\ o1~ g7 " 2(S—Kc)? " € miT S Oma

i(S—L)2 StKe aKkik+S .

n e Kap | pr—— 1 ia-Salc| 1 aAl)
2K(L+Kc)(S+Kc)?2 | 2(S—Ke) L q° mm
i(S—L)? { S+L—2Kc Ky 4 qu(K_E) ~sale(p AH A20
2K(S—Ko) | 2(5-L) ¢ "ifn e |° fmm (20

where
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( 5 qq;
ijT T2 r.
L A T smene. N ke 2>z,
4 1 2Sc 2K(w’+ie€) ’
Dif(22)= a (A21)
5” - I_2J> r.!
- (—qes(zl—22)/c_ _rizLeK(zl—ZZ) 72,<2,.
2Sc 2K(w“+ie) '

Since the RHS of Eq/A20) contains the unknown quant@?“jj(O), weobtain an algebraic equation for this unknown quantity
by settingi =3 andz,=0 on both sides of EqA20). The resulting solution foD3;(0) can be written in the form

D1(0)= y1.85;+ ¥l + ¥l + 740l (A22)
where
_1p 1 S-L [, 28] 1 . o
71_A1 2Sc 2SaL+9S)\ 7 g%c? e—oe , (A23)
oK+
1 sy | c i(S—L) N
A 207 2K o e | ALFKo(S-Ko?) &° - rletas)moa(Bet ) [
(A24)
:i _&i —Szlc_ _ B (A25)
VTR, | T 20019 @2 & o105= 751,
i(S—L K2+S2 i(S LKK+S
1 ;15— gf+l( ) c sarey g K (S S
74T, 2g°c? 2(L+9S)g*c? 2(L+9) w?g? E_oe o1 el K¢ g Kt 2
S S
toagz| P KB K= (A26)

andA1=(1+01W1+ 0'2V1_U1).
Equations(A23) to (A26) contain the quantities;, B;, anda;, as well as the quantitiedd,, V;, andW; throughA;.
These quantities are given fag=0 by

o 2i L surc (A27)
Y A(S-L)(S—Ke)(L+9) ’
__ A(LASH2Ke) 1 g (A28)
#27 Ao(S—L)2(S+Ke)(L+9) & '
@g=— 2 Lok (A29)
Ao(S—L)X(S—Kc) g’
_ Zi(L+KC) 1 —-Sz/c
PERs DL+ & a2
_ 2i(S+Ke)(L+Ke)(L+S+2Ke) ie—swc (A31)
27T ANSLAS—KO)(L+S) e ’
2i(S+Ke)? 1
( ) oK (A32)

Bs= T R(sm )25 Ko) &°

and
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k-2
__(s7L? gstl-2Ke | c 33
1T T35 Ko) | 25-1) q%c ! (A33)
d+d

~ (S—L)2 S+Kc ) c A34
T2 S (LTKe)(STKeZ | 2(5-Ko) | -7 T g ’ (A34)

2 S

2 2 —

b L[ ®) K s | 28 NFe| suk . SK+c)

1= 2sc +q202+2w2 2SqL+S) +q2c2+ q*c? +2(L+Kc) i q°c
ol ks>
(S—L)K 1 +E (S-L)K A35
2(L+9) w?| g°c 4(L+Kc)(S—Kce)? (A35)
N dids
V_2i L+Ke  (S+Ke)(L+Ke)(L+S+2Ko) | B 9? S (0 K 2K(S+Kc)? S (oK), (AZE
157, | s=L " (S—L)2(S—Kc) Lrs (@K~ 3 s 025 Ke) > ), (A39)
_ _Qias

W 2i 1 L+S+2Kc BT g7 Stk (oK), (A37
1T (DKo (s-DAske | Lrs T s DEsKe Tk (A3

This completes our determination of all the unknown quantities on the RHS ofA2€)). To compute the spontaneous
decay rate by Eq(70), the photon Green functio®j;(ry, ,I'2) appearing in the first term on the RHS of this equation is first
computed by evaluating the inverse Fourier transfoer@(zl) given by Eq.(A20) with respect tk, andk, numerically,

- %%

ikx(Xg=X) +iky(yg— y2>D °(21).

(A38)

Next, by using Eqs(10), (122), and(126), the integrals over andr’ in the second and third terms on the RHS of EH)
can be reduced to integrals over the transverse momerkyikj in which the photon Green function occurs only through the

quant|tyD3J(O) given by Eq.(A22).
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