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The theory of the laser amplifier is developed for conditions in which the strength of the input signal is
increased from small values, where the amplification is linear, to larger values, where the amplification be-
comes nonlinear. The below-threshold laser amplifier oscillates at a single frequency equal to that of the input
signal, and its properties are found by solution of the nonlinear equation of motion for the single excitation
amplitude. For the above-threshold laser amplifier, the effects of the nonlinear behavior are to shift the laser
frequency from its free-running value and to transfer intensity from the laser line to the signal frequency and
to a range of satellite lines, whose frequency detunings are integer multiples of the signal detuning. The
intensities of the various emission lines of the laser are calculated by power-series expansions of the field
amplitudes up to terms of fourth order in the input signal strength. The onset of injection locking is determined
by the conditions for which the intensity at the shifted free-running laser frequency falls to zero. The injection-
locked state is characterized by a single excitation frequency equal to that of the input signal, and its properties
are found by solution of the same nonlinear equation of motion as for the below-threshold amplifier. The
ranges of input signal strength and detuning are determined for which the injection-locked state is stable. The
energy conservation properties of the laser amplifier are considered for each of its operating states.
@S1050-2947~96!01211-5#

PACS number~s!: 42.60.Lh

I. INTRODUCTION

The properties of the single-mode laser amplifier in its
regime of linear operation have been studied recently both
experimentally and theoretically@1#. The amplification char-
acteristics of an above-threshold argon-ion laser were mea-
sured as functions of the laser pumping rate and the detuning
v of the input signal frequencyvS from the frequencyvL0
of the free-running laser emission

v5vS2vL0 . ~1.1!

The results are well accounted for by a theory correct to first
order in the amplitude of the weak input signal, consistent
with the linear regime of operation of the amplifier. The
principal finding of the work is the importance of the exci-
tation of the field in the laser cavity at the image frequency
v I , detuned from the free-running laser frequency by2v,

v I5vL02v. ~1.2!

The image excitation is produced by a four-wave-mixing
process driven by the strongly excited laser mode via pulsa-
tions in the population inversion of the laser. It is found that
the image field has a magnitude comparable to the signal
field but with opposite sign, so that the linear amplification
measured by self-heterodyne detection of the laser output
suffers from significant cancellation between the beats of the
strong laser line with the much weaker image and signal
output fields. Thus it is necessary to include the signal and
image satellites of the laser line in the theoretical model even
for treatments of linear amplification. Substantial image
components are also observed in the direct detection of the
emission from semiconductor laser amplifiers@2#.

If the amplitude of the input signal is now steadily in-
creased, several effects appear. Thus the laser frequencyvL

itself shifts from its free-running valuevL0 towards the input
signal frequencyvS , by an amount proportional to the sec-
ond and higher even powers of the signal amplitude. The
amplification of the signal field by the laser begins to depart
from linear behavior as the signal and image output ampli-
tudes acquire significant terms in the third and higher odd
powers of the input signal amplitude. Furthermore, the exci-
tation spectrum of the cavity acquires additional satellites at
frequencies separated from the laser line by higher integer
multiples of the signal detuningv̄ from the shifted laser
frequency. These nonlinear contributions and additional sat-
ellite lines progressively remove intensity from the laser line
as the input signal amplitude increases. The laser intensity is
eventually all transferred to the signal, image, and higher-
order satellites, the emission at frequencyvL is extinguished,
and the phenomenon of injection locking occurs. With the
collapse of the laser excitation, only the signal excitation at
frequencyvS remains and the multiple satellite spectrum dis-
appears. The sequence of spectra, beginning with the image-
laser-signal triplet, continuing to larger numbers of satellite
lines, and ending with the single spectral component of the
injection-locked state, has been clearly observed for the CO2
laser@3#. The multiple-satellite spectra that occur on the ap-
proach to injection locking are discussed and illustrated by
Siegman@4#.

The theory of injection locking can be approached in two
distinct ways, and the main purpose of the present paper is to
develop and compare the two approaches. The first approach
is to extend our previous calculations@1# by including terms
of higher order than the first in the input signal amplitude, so
that the nonlinear behavior of the laser amplifier can be de-
scribed. The aim is to understand the phenomena that occur
above threshold as the amplitude of the input is increased
from very small values up to the value for which injection
locking occurs, and we refer to this regime as thenormal
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state of the amplifier. The simplest extension of our previous
work is the inclusion of second-order terms, and these al-
ready provide a model of the injection-locking phenomenon,
in which a steady increase in the amplitude of the input sig-
nal, or a decrease in its detuning, produces a quenching of
emission at the laser frequency. A theory of this kind was
used by Pantell@5# in his pioneering treatment of injection
locking, and some of our results are in qualitative agreement
with his. However, the proper inclusion of the image excita-
tion produces quantitative differences even for weak input
signals. More complete results are obtained by inclusion of
third- and fourth-order terms, and the higher-order theory of
the normal state of the laser amplifier provides a more accu-
rate description of the satellites, which remains valid closer
to the injection-locking point. This theory must be approxi-
mate as it is not practicable to take full account of the in-
creasingly nonlinear behavior in the vicinity of the injection-
locking point, manifested by the growing number of different
frequencies at which satellites are excited.

The second approach begins with a description of the
injection-locked state, which is basically simpler, as the field
excitation in the laser cavity has only a single-frequency
component determined by the input signal. The theory can be
carried through exactly in this case and the laser equations of
motion reduce to a cubic equation for the field amplitude@4#,
which can be solved either approximately or numerically.
The theory of the injection-locked state was initially consid-
ered by Spencer and Lamb@6#, and subsequently there have
been many calculations of the properties of the laser with an
injected signal@7–10#. Much of this work has been con-
cerned with ranges of the laser parameters for which the
output displays varieties of dynamic behavior such as self-
pulsing and chaos@11,12#. By contrast, our interest here is in
modestly pumped lasers belonging to classesA or B @13#,
whose dipole-moment decay rates greatly exceed those of
both the cavity field and the atomic population inversion,
where these more exotic effects do not occur. This regime of
operation has previously been discussed by Arecchi and co-
workers@13,14#, and our results are extensions of theirs. We
obtain the variations in the laser field and atomic inversion
with the strength and frequency of the input signal, and we
determine the ranges of signal parameters for which the
injection-locked state is stable.

Section II summarizes the laser model, with details of the
equations of motion and their solutions for the free-running
laser, the single-frequency solutions that occur below thresh-
old and in the injection-locked state, and the multiple-
frequency solutions that occur in the normal state of the
above-threshold laser amplifier. Section III deals with the
nonlinear behavior of the below-threshold amplifier when
intense signals are incident, by appropriate solution of the
same cubic equation as occurs for the injection-locked laser
amplifier. Sections IV and V present the theory of the normal
state of the amplifier correct to the second, third, and fourth
orders in the input signal amplitude respectively. The
injection-locked state of the above-threshold laser amplifier
is treated in Sec. VI, and the conditions for its stability are
determined. The predictions from the two forms of injection-
locking theory for the transition between normal and locked
states are evaluated in Secs. IV–VI. The calculations cover
the properties of the laser with an injected signal in its three

distinct states, namely, below threshold, the normal state
above threshold, and the injection-locked state above thresh-
old. Particular attention is paid to the conditions of energy
balance in these three states, and we identify the ways in
which the energy consumed by the amplification process is
sourced by reductions in the other forms of output from the
laser cavity. The results are discussed in Sec. VII, where the
two approaches to the theory of injection locking are com-
pared and experimental tests of the theory are proposed.

II. EQUATIONS OF MOTION

A. Laser model

The basic model is essentially the same as that used in the
previous treatment of the regime of linear amplification@1#,
and only its main features are summarized here. The struc-
ture of the laser amplifier cavity is shown in Fig. 1, together
with the notation for the laser fieldaL , the input signal am-
plitudebin , and the amplitudes of the other frequency com-
ponents of the fields that are generated by the interactions in
the cavity. The dimensions of these amplitudes are chosen so
that inside the cavity quantities such asuaLu

2 give the mean
number of photons excited at the relevant frequency, while
outside the cavity quantities such asubinu

2 give the mean
photon-number flux, with dimensions of inverse time.

The intensity damping rates from each end of the cavity
are related to the intensity transmission coefficientsT1 and
T2 of the mirrors by

g15cT1/2L, g25cT2/2L, ~2.1!

so that the total damping rate of the internalfield in the
cavity is given by

gc5~g11g2!/2. ~2.2!

FIG. 1. Representation of the laser cavity showing the notations
for mirror transmission coefficients, the input and output photon-
flux amplitudes, and the photon-number amplitudes of the various
internal frequency components. The laser pump rateg iDp and the
rate of loss of energy by spontaneous emission in all spatial direc-
tionsg iD are also indicated.
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The relations between the internal electric field of the cavity
a, the input signalbin , and the output fields from each end of
the cavity, which is assumed to have a highQ, have the
usual forms@15#

aout5g1
1/2a ~2.3!

on the right and

bout5g2
1/2a2bin ~2.4!

on the left, where the field emitted from the cavity is super-
posed on the reflected input field. These relations are impor-
tant for demonstrations of the energy conservation law of the
laser amplifier.

The interactions between the optical and atomic compo-
nents of the laser in the presence of an input signal determine
the forms of the three important laser parameters: the cavity
field a, the atomic population inversionD, and the atomic
dipole momentd. The behaviors of these parameters are ob-
tained by solution of the Maxwell-Bloch equations in the
forms @4,16,17#

ȧ1~gc1 ivL0!a5gd1g2
1/2b in , ~2.5!

Ḋ1g iD5g iDp2g~a* d1ad* !, ~2.6!

and

ḋ1~g'1 ivL0!d5gaD, ~2.7!

whereg is the coupling constant between the dipole moment
of the atoms and the cavity electric field;gi , g' , andgc are,
respectively, the population-inversion decay rate, the dipole-
moment decay rate, and the total damping rate of the internal
field in the cavity defined in~2.2!; vL0 is the frequency of
the free-running laser;Dp measures the laser pumping rate in
terms of the mean population inversion that would be
achieved in the absence of any optical field in the cavity; and
bin is the input signal amplitude coupled into the laser cavity
as shown schematically in Fig. 1. The equation of motion for
the population inversion takes the simple form~2.6! only for
laser transitions in which the lower-level population is neg-
ligible. Figure 1 also includes representations of the rate
g iDp at which the pump supplies energy to the inverted
population and the rateg iD at which energy radiates out of
the cavity in all directions by the process of spontaneous
emission.

For class-A and class-B lasers, the dipole moment decay
rate is very much larger than the population inversion and
cavity decay rates (g'@g i ,gc) and the effects of homoge-
neous collision broadening overcome those of the inhomoge-
neous Doppler broadening. Thus spectral hole-burning ef-
fects are negligible and Eq.~2.7! can be approximated by

g'd5gaD. ~2.8!

This expression can be substituted ford in ~2.5! and ~2.6!,
which then provide the pair of equations

ȧ1~gc1 ivL0!a5~g2/g'!aD1g2
1/2b in ~2.9!

and

Ḋ1g iD5g iDp2~2g2/g'!uau2D ~2.10!

to be solved for the motion of the laser system. The lasing
atoms are assumed to be sufficiently mobile that spatial hole-
burning effects are also negligible.

B. Energy conservation

It is simply shown from~2.9! and its complex conjugate
that

duau2/dt522gcuau21~2g2/g'!uau2D

1g2
1/2~ab in*1a*bin!, ~2.11!

and addition of this equation to~2.10! gives

d~ uau21D !/dt522gcuau21g i~Dp2D !

1g2
1/2~ab in*1a*bin!. ~2.12!

The quantity differentiated on the left is proportional to the
total excitation energy in the laser cavity, including the con-
tributions from the electromagnetic field and the inverted
atoms. The laser steady-state condition can therefore be writ-
ten

2gcuau22g2
1/2~ab in*1a*bin!1g iD5g iDp , ~2.13!

and this is transformed with the use of~2.2!–~2.4! into

uaoutu21uboutu21g iD̄5g iDp1ub inu2, ~2.14!

where the overbars denote cycle-averaged mean values that
are appropriate when the fields and population inversion con-
tain several frequency components.

These equations express energy conservation in the laser
system. Thus upon multiplication of~2.14! by \vL and with
neglect of the small frequency differences between the vari-
ous field components, the terms on the left are, respectively,
the mean energy fluxes leaving the cavity through its two
mirrors and the rate of spontaneous emission of radiative
energy in all directions by the inverted atoms, while the
terms on the right are the rates at which the pump and the
input signal supply energy to the system. It is shown in sub-
sequent sections that the energy conservation condition is
indeed satisfied for the various states of the laser.

C. Free-running laser

In the absence of any input signal, the cavity field has the
single-frequency form

a5aLexp~2 ivL0t ! ~2.15!

and the population inversionD is independent of the time.
The solutions of~2.9! and ~2.10! for these quantities are ei-
ther

a5aL50, D5Dp , ~2.16!

corresponding to the laser below threshold, or

uau25uaLu25SDp

D0
21D g'g i

2g2
5~C21!ns ~2.17!
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and

D5gcg' /g2[D0 , ~2.18!

corresponding to the laser above threshold. Here

C5Dp /D05g2Dp /gcg' ~2.19!

is the cooperation parameter, or normalized pumping rate,
equal to unity at threshold, and

ns5g'g i/2g2 ~2.20!

is the saturation photon number, equal to the mean number
of photons in the laser cavity at twice the threshold pumping
rateC52. It is seen from~2.19! that for this degree of laser
excitation, the constant above-threshold population inversion
D0 has one-half of its valueDp in the absence of any optical
field andns thus characterizes the cavity photon number for
which significant saturation of the active atomic excited
states begins to occur. The phase of the cavity fieldaL is not
determined by the equations of motion.

The stability of the solutions of the laser equations of
motion is determined in the usual way@11#, by assuming that
small displacementsda anddD of the cavity field and popu-
lation inversion from their equilibrium values evolve with a
time dependence exp(lt). The equilibrium values are then
stable if the damping constantsl obtained from the equa-
tions of motion are all negative. With two dynamical vari-
ables, there are two values ofl determined by a quadratic
equation. It is found in this way that the solution~2.16! has
damping constants

l52g i ,2gc~12C!, ~2.21!

and it is therefore stable below thresholdC,1. The solution
~2.17! has damping constants@13,14#

l52
g iC

2
6H g i

2C2

4
22g igc~C21!J 1/2, ~2.22!

and it is therefore stable above thresholdC.1.
With no input signal, the energy conservation condition

~2.13! reduces to

2gcuaLu25g i~Dp2D !, ~2.23!

and it is seen that this is satisfied both by the solution~2.16!
below threshold and the solutions~2.17! and ~2.18! above
threshold. The energy balance between the laser input and
output is illustrated as a function of cooperation parameter in
Fig. 2. Thus the rate at which the pump supplies energy to
the inverted population is equal tog iDp at all values ofC.
Above thresholdC.1, the inverted atoms emit light into the
laser mode at a rate given by~2.23!. This total rate can be
divided into contributions from stimulated and spontaneous
emission, whose ratio is given as usual by the mean number
of photonsuaLu

2 in the mode@18#, so that

g i~Dp2D0!52gcuaLu25
2gcuaLu2

uaLu211
1
2gcuaLu4

uaLu211

'2gc~spontaneous!12gcuaLu2~stimulated!,

~2.24!

since normallyuaLu
2@1. The spontaneous component of the

emission into the lasing mode is therefore negligible. The
remaining emission by the inverted atoms, at a rateg iD,
occurs spontaneously into all other spatial modes; this ac-
counts for all of the emission from the cavity below thresh-
old, while above threshold the spontaneous component re-
mains fixed at its threshold value and the balance of the
energy supplied by the pump appears in the lasing mode.

D. Single-frequency solutions

The presence of a nonzero input signal normally excites a
multiple-frequency field in the laser cavity and the popula-
tion inversion generally contains components that oscillate at
the differences of these field frequencies. However, the am-
plifier dynamics retain simple forms for the two cases of the
laser amplifier below threshold and the injection-locked laser
amplifier above threshold. These states share the feature that
the field inside the laser cavity has a single-frequency com-
ponent determined by the frequency of the input signal. Thus
with the input signal field taken in the form

b in5bSexp~2 ivSt !5bSexp@2 i ~vL01v!t#, ~2.25!

the mean internal field in the laser cavity can be written

a5aSexp@2 i ~vL01v!t# ~2.26!

and the population inversionD is again a static quantity. The
equations of motion~2.9! and ~2.10! thus provide a pair of
simultaneous equations that can be solved for the two un-
knownsaS andD.

Consider first the field equation~2.9!, which gives

FIG. 2. Energy balance in the free-running laser showing the
rates of energy input from the pump, spontaneous emission in all
directions, and emission into the laser mode as functions of the
cooperation parameterC.

54 5213THEORY OF LASER-AMPLIFIER INJECTION LOCKING



@gc2~g2/g'!D2 iv#aS5g2
1/2bS . ~2.27!

The complex fields are conveniently expressed in terms of
amplitudes and phase angles according to

aS5uaSueifS, bS5ubSueif in. ~2.28!

The imaginary part of~2.27! then gives

vuaSu5g2
1/2ubSusin~fS2f in!, ~2.29!

while its square modulus is

$@gc2~g2/g'!D#21v2%uaSu25g2ubSu2. ~2.30!

The two terms in the curly brackets on the left-hand side of
this equation are both positive, and it follows that the mag-
nitude of the cavity field produced by an input signal of
given amplitude and detuning satisfies the inequality

uaSu<g2
1/2ubSu/uvu. ~2.31!

The value ofuaSu thus reduces with increase in the detuning
uvu so that the magnitude of the sine in~2.29! is properly less
than or equal to unity for all input signal parameters.

The corresponding solution of the population inversion
equation of motion~2.10! is

D5
CD0

11~ uaSu2/ns!
, ~2.32!

whereD0 , C, andns are defined in~2.18!, ~2.19!, and~2.20!
respectively. Insertion of this solution into~2.30! gives

H gc
2S uaSu21~12C!ns

uaSu21ns
D 21v2J uaSu25g2ubSu2.

~2.33!

This cubic equation determines the cavity field strengthsuaSu
for the below-threshold (C,1) and injection-locked (C.1)
laser amplifiers as functions of the input signal parameters
@4#. Note that the population inversion decay rategi appears
only implicitly in the saturation photon number in~2.32! and
~2.33! so that, for a given value ofns , the same forms of
variation of uaSu andD with the input signal amplitudeubSu
occur for class-A and class-B lasers.

The system mimics a free-running laser when~2.31! is
satisfied as an equality, and the values of the amplifier vari-
ables obtained from~2.29!, ~2.30!, and~2.33! are then

fS2f in56p/2, D5D0 , uaSu25~C21!ns ,
~2.34!

for uaSu5g 2
1/2ubSu/uvu, where these solutions are valid only

above threshold (C.1). The 90° phase difference between
the input and cavity fields ensures that there is no interfer-
ence between the two contributions in the output field given
by ~2.4!. The output fluxes are thus the same as those for the
free-running laser, ignoring the small difference between the
frequenciesvS andvL , plus an additional output equal to
the input signal flux on the left of the cavity shown in Fig. 1.

The stability of the single-frequency solutions is deter-
mined by the method outlined in Sec. II C. However, both
the phase and the amplitude of the cavity field need to be

evaluated in the presence of an input signal and, together
with the population inversion, there is now a total of three
dynamical variables. The damping constantsl are thus de-
termined by solution of a cubic equation

a01a1l1a2l
21l350, ~2.35!

where the coefficients are found, consistent with previous
work @14#, to be

a05g igc
2S 12

D

D0
D 2S 11

uaSu2

ns
D12g igc

2

3S 12
D

D0
D D

D0

uaSu2

ns
1v2g iS 11

uaSu2

ns
D ,

~2.36!

a152g igcS 12
D

D0
D S 11

uaSu2

ns
D1gc

2S 12
D

D0
D 2

12g igc

D

D0

uaSu2

ns
1v2, ~2.37!

and

a25g iS 11
uaSu2

ns
D12gcS 12

D

D0
D . ~2.38!

The mean intracavity photon numberuaSu
2 and atomic popu-

lation inversionD are related by~2.32!, and these coeffi-
cients can thus be expressed in terms of a single equilibrium
variable.

The conditions for stability are now obtained from Hur-
witz’s theorem@19#, which states that the roots of~2.35! all
have negative real parts if

a0.0, a1.0, a2a1.a0 . ~2.39!

The cubic equation~2.35! depends implicitly on the input
signal amplitudebS via uaSu

2 andD. It continues to hold in
the absence of any input, and the damping constants for the
free-running laser given in~2.21! and~2.22! can be rederived
for v50 by insertion of the equilibrium values ofaS5a and
D, given by ~2.16! below threshold and~2.17! and ~2.18!
above threshold. The solutions of~2.33! and their stability
conditions ~2.39! for below-threshold and injection-locked
laser amplifiers are treated in Secs. III and VI, respectively.

E. Multiple-frequency solutions

The solutions of the equations of motion are much more
complicated when laser and input signal oscillations of dif-
ferent frequencies are excited simultaneously in the cavity.
One consequence, caused by the synchronism effects of the
signal and laser oscillators@4,20#, is a frequency shift of the
laser emission of magnitude denotedvL9 , correct to second
order in the input signal amplitude, so that the shifted fre-
quency is

vL5vL01vL9 . ~2.40!

For a class-A laser, whereg i@gc , the frequency is shown in
Sec. IV to be always pulled towards the input signal fre-
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quency, i.e., the shift is positive when the frequency detuning
is positive and negative when the detuning is negative. How-
ever, negative frequency shifts, or frequency pushing, can
occur for class-B lasers at higher positive detunings. Figure 3
schematically shows the laser frequency shift due to synchro-
nization effects, the image and signal satellite lines produced
by four-wave-mixing~FWM! processes, and the injection-
locking phenomena. Thus, in second order, the frequency
relation~1.1! continues to define the signal detuningv from
theunshiftedemission line of the free-running laser, and this
is the primary parameter that characterizes a measurement on
the laser amplifier with a fixed signal frequency. However, in
identifying the frequency components in the cavity field and
the population inversion, it is more convenient to work with
the detuningv̄ from theshiftedlaser line,

v̄5v2vL95vS2vL5vL2v I , ~2.41!

where v̄ varies with the signal strength. The input signal
field can be written in the equivalent forms

b in5bSexp@2 i ~vL01v!t#5bSexp@2 i ~vL1v̄ !t#.
~2.42!

The expression~1.2! for the image frequency is valid only
for weak input signals, wherevL9 is negligible.

In the first-order approximation, the FWM interaction be-
tween the internal strong field of the laser at frequencyvL
and the amplified input signal field~the signal satellite line!

at frequencyvL1v̄ always requires the production of a new
optical field component~the image satellite line! at fre-
quencyvL2v̄ @1#. The second-order approximation is con-
sidered in Sec. IV, where the input signal is assumed suffi-
ciently strong for the first image and signal satellite fields,
with modified frequencies given by~2.41!, to contribute in
other FWM interactions with the strong field of the laser to
produce observable signal and image satellite lines at fre-
quenciesvL12v̄ andvL22v̄. Thus, correct to second or-
der in the amplitude of the input signal, the mean internal
field of the laser amplifier cavity includes five frequency
components to give a total field

a5~aL1aL9 !exp@2 ivLt#1aSexp@2 i ~vL1v̄ !t#

1a Iexp@2 i ~vL2v̄ !t#1a2Sexp@2 i ~vL12v̄ !t#

1a2Iexp@2 i ~vL22v̄ !t#, ~2.43!

whereaL9 , of the second order inbS , is the change in the
laser field corresponding to energy transferred to the first

image and signal (aLaL9
*1aL*aL9) and the second image and

signal (uaL9 u2) satellite lines. The second and third parts of
Fig. 3 show the series of excitation frequencies, with equal
separationsv̄, centered on the shifted laser line atvL , and a
similar spectrum is also illustrated in@4#.

The mean population inversion of the atoms also contains
five frequency components in the form

D5D01D091D1exp~2 i v̄t !1D1* exp~ i v̄t !

1D2exp~22i v̄t !1D2* exp~2i v̄t !, ~2.44!

whereD0 is the static population inversion of the laser in the
absence of any input signal,D1 andD2 describe the popula-
tion pulsations to first and second orders in the input signal
amplitude, andD09 is the second-order change in the static
population inversion. The expressions~2.43! and ~2.44! can
be written in various equivalent forms in terms of the un-
shifted laser frequencyvL0, the frequency shiftvL9 , and the
fixed experimental detuningv, with the use of~2.40! and
~2.41!.

III. BELOW-THRESHOLD LASER AMPLIFIER

When the laser is operated below threshold, there is no
internal strong coherent fieldaL at the resonance frequency
vL0. The cavity field therefore oscillates at the single fre-
quencyvS of the input signal and the population inversionD
is independent of the time. The theory outlined in Sec. II D
applies, withC taken to be smaller than unity.

Consider first the magnitude of the cavity field, deter-
mined by solution of the cubic equation~2.33!. Figure 4
shows some numerical solutions for the cavity photon num-
ber uaSu

2 as a function of the input fluxubSu
2 for various

values of the signal detuning, where the optical strengths are
normalized by the saturation photon number defined in
~2.20!. The solution of~2.33! is easily expanded in a power
series for small values ofubSu

2/gcns and the first two terms
are

FIG. 3. Schematic representations of the frequency components
excited in the laser amplifier:~a! uncoupled free-running laser and
input signal; ~b! coupled laser and signal showing formation of
image and signal satellites;~c! same as~b!, but with reduced signal
detuning, showing the approach to injection locking; and~d! the
injection-locking point.

54 5215THEORY OF LASER-AMPLIFIER INJECTION LOCKING



uaSu25
g2ubSu2

v21gc
2~12C!2

2
2g2

2gc
2C~12C!ubSu4

ns@v21gc
2~12C!2#3

~ ubSu2!gcns!, ~3.1!

where the first term agrees with the result of first-order
theory@1# and the second term shows the beginning of non-
linear behavior as the strength of the input signal increases.
The cubic equation also has a simple approximate solution in
the opposite limit of very high input intensity, where@6#

uaSu2'
g2ubSu2

v21gc
2 ~ ubSu2@gcns!, ~3.2!

and the amplifier again shows linear behavior, as is also evi-
dent from Fig. 4.

The corresponding gains in transmission and reflection
are defined by

GT~v!5Uaout

bin
U25g1uaSu2

ubSu2
~3.3!

and

GR~v!5Ubout

bin
U25Ug2

1/2aS

bS
21U2, ~3.4!

respectively. The linear transmission gain at low input inten-
sity is obtained from~3.1! as

GT~v!5
g1g2

v21gc
2~12C!2

~ ubSu2!gcns!, ~3.5!

in agreement with@1#, and the linear gain at high intensity is
obtained from~3.2! as

GT~v!5
g1g2

v21gc
2 ~ ubSu2@gcns!. ~3.6!

The population inversion is obtained from~2.32!, and
some numerical results are shown in Fig. 5, whereD is nor-
malized by the laser population inversionD0 . The first two
terms in the power series expansion of~2.32! for low input
intensities give

D5CD0H 12
g2ubSu2

ns@v21gc
2~12C!2# J ~ ubSu2!gcns!,

~3.7!

while the limit of high input intensities gives a population
inversion

D'CD0

ns~v21gc
2!

g2ubSu2
~ ubSu2@gcns!. ~3.8!

It is evident that the atomic transition is significantly satu-
rated at small detunings and high input signal intensities, and
this is the cause of the falloff in transmission gain from the
low-intensity form~3.5! to the high-intensity form~3.6!. The
saturation of the population inversion also causes a reduction
in the rateg iD of spontaneous emission by the inverted at-
oms into all spatial directions from its zero-signal value of
g iDp .

The energy conservation condition~2.14! can be written
in the form

GT~v!ubSu21GR~v!ubSu21g i~D2Dp!5ubSu2 ~3.9!

for the below-threshold amplifier, where the gains are de-
fined in ~3.3! and ~3.4!. The reduction in spontaneous emis-
sion is thus exactly balanced by the energy needed to provide
amplification of the input signal. Figure 6 shows the varia-
tions of the output signal fluxes and the changeg i(D2Dp)
in the spontaneous emission rate with signal detuning for
C5 1

2 , where the laser cavity is assumed to be symmetrical
with g15g25gc and the input flux is given the value
ubinu

25ubSu
25gcns . Note that the sum of the three contribu-

tions, corresponding to the left-hand side of~3.9!, has the
detuning-independent value of the right-hand side of~3.9!.

The stability of the below-threshold state in the presence
of an input signal is determined by the conditions given in

FIG. 4. Normalized cavity mean photon number as a function of
the normalized input flux at the signal detuningsv/gc indicated, for
a below-threshold amplifier (C5

1
2 ) and a symmetrical cavity

(g15g25gc).

FIG. 5. Normalized population inversion for the same param-
eters as in Fig. 4.
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~2.39!. It is evident from ~2.32! that D,D0 for the laser
below threshold withC,1, and it is seen by inspection of
~2.36! and ~2.37! that the first two stability conditions are
satisfied. A simple calculation with the forms of all three
coefficients given in~2.36! to ~2.38! shows that the third
condition in ~2.39! is also satisfied, and the state considered
in this subsection is indeed stable.

IV. ABOVE-THRESHOLD LASER AMPLIFIER
„SECOND-ORDER THEORY…

A. Equations of motion

In the normal state of the laser amplifier above threshold,
where the strength of the input signal is insufficient to cause
injection locking, the cavity fielda and the population inver-
sion D contain all of the terms given in~2.43! and ~2.44!
correct to second order in the input signal amplitudebS . The
equations of motion~2.9! and ~2.10! can be separated into
sets of equations in the zeroth, first, and second orders inbS
after substitution of the forms of solution~2.42!–~2.44!. The
components of the equations of motion that oscillate at dif-
ferent frequencies can also be separated out. The zeroth-
order equations reproduce the results for the free-running
laser given in Sec. II C.

Solution of the first-order equations produces the results

aS5 i $v21 ivg iC2g igc~C21!%g2
1/2bS /vd ~v!,

~4.1!

a I52 i
2g2gcg2

1/2aL
2bS*

vg'd * ~v!

52 i
g igc~C21!g2

1/2bS* exp~2ifL!

vd * ~v!
, ~4.2!

and

D152gcg2
1/2aL*bS /d ~v!, ~4.3!

where the denominator is

d ~v!5v21 ivg iC22g igc~C21! ~4.4!

andfL is the unknown phase of the field at the laser fre-
quency

aL5uaLuexp~ ifL!. ~4.5!

The frequencyv in these expressions is the signal detuning
from the unshifted laser frequency defined in~1.1!, as the
shift vL9 affects the satellite amplitudes and population inver-
sion only in higher orders of the signal strength. The first
form of a I in ~4.2! reflects the four-wave-mixing origin of
this excitation at frequency 2vL2vS in the combination of
two photons at the laser frequency and one at the signal
frequency. The above first-order results have been derived
previously@1#.

The second-order part of the equation of motion~2.9!
separates into three different frequency components

2 ivL9aL5~g2/g'!~aLD091aSD1*1a ID1!, ~4.6!

~gc22iv!a2S5~g2/g'!~aLD21aSD11a2SD0!,
~4.7!

and

~gc12iv!a2I5~g2/g'!~aLD2*1a ID1*1a2ID0!,
~4.8!

while the equation of motion~2.10! separates into two com-
ponents

g iCD0952~2g2/g'!$~aLaL9
*1aL*aL91uaSu21ua I u2!D0

1aL~aS*D11a I*D1* !1aL* ~aSD1*1a ID1!%

~4.9!

and

~g i22iv!D252~2g2/g'!$~aLa2I* 1aL*a2S1aSa I* !D0

1~aLa I*1aL*aS!D11uaLu2D2%. ~4.10!

These five complex equations provide solutions for the two
real quantitiesvL9 andD09 and the four complex quantities
aL9 , a2S, a2I , andD2 , and they can be obtained by straight-
forward but somewhat tedious algebra.

B. Injection locking

Consider first the second-order corrections to the param-
eters of the emission into the basic laser line. The solution
for the shift in the frequency of this line can be written in the
form

vL9

gc
5

g ig2
2@2v212g igc~C21!#~C21!

vD~v!

ubSu2

g2uaLu2
,

~4.11!

where

FIG. 6. Energy conservation in a below-threshold laser amplifier
(C5

1
2 ) with a symmetrical cavity, showing the variations of output

fluxes and the change in spontaneous emission rate with signal de-
tuning. The rates are normalized by the value of the input signal
flux, chosen to beubSu

25gcns , so that the output fluxes are ex-
pressed as gains. The sum of the three rates, shown by the horizon-
tal line at ordinate 1, verifies the conservation of energy.
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D~v!5ud ~v!u25v2g i
2C21@v222g igc~C21!#2.

~4.12!

It is seen that the frequency shift is negative, that is, away
from the input signal frequency, for detunings greater than
the frequency [2g igc(C21)]1/2 associated with relaxation
oscillations@4#. However, the shift is otherwise positive, and
this is the case for the parameter values assumed in the re-
mainder of the paper. The positive shift obtained from~4.11!
for detunings very much smaller than the relaxation oscilla-
tion frequency agrees with previous work@4#.

The mean number of photons excited in the cavity at the
shifted laser frequency is given by

uaL1aL9 u2'uaLu21aLaL9
*1aL*aL9 , ~4.13!

correct to second order in the input signal amplitude, where
the solution for the second-order change in the laser field
gives

aLaL9
*1aL*aL952$v412v2g i@g iC2gc~C21!#

12@g igc~C21!#2%g2ubSu2/v2D~v!.

~4.14!

It is easily shown by rearrangement of terms that the expres-
sion in the curly brackets is positive for all values of the
parameters. The mean photon number in the shifted laser line
determined by~4.13! and~4.14! is thus reduced and the laser
line is extinguished for a sufficiently large input signal flux
ubSu

2 or a sufficiently small detuningv. The extinction of the
laser line corresponds to the onset of the injection-locked
state of the laser amplifier, and for a given input signal flux,
the detuning at which the transition occurs according to the
second-order theory is denotedv IL9 .

These expressions for the second-order frequency shift
and change in laser intensity simplify considerably for a
class-A laser, whereg i@gc andv, and the approximate re-
sults in this case are

vL9

gc
5

2g2
2gc~C21!2/vC2

v21@2gc~C21!/C#2
ubSu2

g2uaLu2
, ~4.15!

which is always positive, and

aLaL9
*1aL*aL952

2@v2C1gc
2~C21!2#g2ubSu2/v2C2

v21@2gc~C21!/C#2
.

~4.16!

The variation of the mean output photon flux at the shifted
laser frequency with the input signal detuning, given by
~4.13! and ~4.16!, is illustrated by the curves labeledL in
Fig. 7 for two values of the input flux. As the flux is normal-
ized by the output flux 2gcuaLu

2 of the free-running laser,
these curves all tend to the value unity for input detunings so
large that the laser emission is unaffected by the input signal.

The detuningv IL9 , for which injection locking occurs,
determined by the condition for extinction of the laser line, is
obtained from~4.13! and ~4.16! in the form of a quadratic
equation for v IL9

2. Figure 8 shows the variation of this
second-order injection-locking detuning with input flux, to-

gether with the laser frequency shiftvL9 at the injection-
locking point, obtained from~4.15!. These figures again as-
sume a symmetrical cavity and a normalized pumping rate
C52. It is seen that the injection-locking detuning frequency
v IL9 and the laser frequency shiftvL9 tend to the same value
when the input signal flux is much smaller than the output
flux of the free-running laser and the detunings are much
smaller than the cavity decay rategc . Approximate expres-
sions in this case are

vL9

gc
5

g2
2

2gcv

ubSu2

g2uaLu2
~4.17!

from ~4.15! and

v IL9

gc
5

g2

A2gc
S ubSu2

g2uaLu2
D 1/2 ~4.18!

FIG. 7. Energy conservation in an above-threshold class-A laser
amplifier (C52) with a symmetrical cavity correct to second order
in bS , showing the variations with signal detuning of total output
fluxes at the laser (L), signal (S), and image (I ) frequencies and
the change in spontaneous emission rate~spon!, normalized by the
output flux 2gcuaLu2 of the free-running laser. Results are shown
for input signal strengthsubSu

2/gcuaLu2 equal to ~a! 0.5 and~b!
0.05. The right-hand side of each part refers to the normal state of
the laser amplifier and the left-hand side to the injection-locked
state. The sums of the rates, shown by the lines~total! at ordinates
11(ubSu

2/2gcuaLu2), verify the conservation of energy.
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from ~4.13! and ~4.16!. Substitution ofv IL9 for v in ~4.17!
then produces the resultvL95v IL9 .

A theory of injection locking similar to that outlined
above was presented by Pantell@5# many years ago. As has
been previously discussed@1#, his neglect of the excitation of
the cavity at the image frequency leads to results that are
qualitatively valid, but they differ in detail from the above
expressions. Thus, for example, his result for the output sig-
nal strength in the linear regime differs from that obtained
from ~4.1! by the absence of the factor of 2 in the denomi-
nator defined in~4.4! or ~4.12! and his expression for the
laser frequency shift is always negative. Similarly, his result
for the detuning and input signal flux needed to produce
injection locking differs from~4.18! by removal of the factor
of &. However, it should be emphasized that these second-
order theories for the extinction of the laser line are in any
case very approximate. As the injection-locking point is ap-
proached, satellite lines of progressively higher and higher
order acquire significant strength from the laser line and the
second-order theory tends to underestimate the detuning and
overestimate the input signal flux needed to cause injection
locking. A better account of the conditions at the injection-
locking point is provided by a theory for the injection-locked
state itself, and this forms the topic of Sec. VI.

C. Gain

The expressions~4.1! and~4.2! for the field amplitudes at
the signal and image frequencies are unchanged when the
theory is extended to second order in the input signal ampli-
tude; the first modification of these linear forms occurs in the
third-order theory presented in Sec. V. The linear gain of the
above-threshold laser amplifier has been considered in detail
in Ref. @1#, and we summarize here the results for the trans-
mission gain, so that they can be compared with the corre-

sponding expressions in the injection-locked state. Thus,
with the same definition as in~3.3!, the transmission gains at
the signal and image frequencies obtained from~4.1! and
~4.2! are

GTS~v!5
g1g2

v2

v2g i
2C21@v22g igc~C21!#2

v2g i
2C21@v222g igc~C21!#2

~4.19!

and

GTI~v!5
g1g2

v2

g i
2gc

2~C21!2

v2g i
2C21@v222g igc~C21!#2

,

~4.20!

where the form of the denominator is taken from~4.12!.
These are the gains that would be measured by direct detec-
tion of the laser output spectrum, and they should be distin-
guished from the self-heterodyne gain derived and measured
in @1#, where the detected intensity is determined by the
square of a linear superposition of the signal and image am-
plitudes.

The linear gains for a class-A laser simplify to

GTS~v!5
g1g2

v2

v21@gc~C21!/C#2

v21@2gc~C21!/C#2
~4.21!

and

GTI~v!5
g1g2

v2

@gc~C21!/C#2

v21@2gc~C21!/C#2
. ~4.22!

The horizontal lines on the left-hand sides in Fig. 9 show
some examples of the signal gain in transmission for two
values of the input signal detuning.

D. Energy conservation

The solution of~4.6!–~4.10! for the second-order correc-
tion to the static population inversion is

D0952g ig2gcCubSu2/D~v!. ~4.23!

The presence of the input signal thus produces an increase in
the population inversion, in contrast to the reduction that
occurs below threshold. Of course the conditions below
threshold ensure that the energy needed for any amplification
of the input signal must be found at the expense of the spon-
taneous emission, there being no other source of energy. For
the laser above threshold, the laser photons provide the main
source of energy, and a reduction in the partDp2D0 of the
population inversion associated with the laser emission cor-
responds to an increase in the partD0 associated with the
spontaneous emission in all directions. For the class-A laser,
the change in spontaneous emission rate obtained from
~4.23! can be written

g iD095
2g2gcubSu2/C

v21@2gc~C21!/C#2
, ~4.24!

and the variation of this quantity with detuning is shown by
the curves labeled ‘‘spon’’ on the right-hand sides of Fig. 7.

FIG. 8. Variations with input signal flux of the detuning for
which injection locking occurs~upper three curves! and the laser
frequency shift at injection locking~lower two curves!, for a
class-A laser withC52 and a symmetrical cavity. The detunings
v IL9 andv IL99 are obtained from the second- and fourth-order theo-
ries of the normal state of the laser amplifier, respectively, while
v IL is obtained from the theory of the injection-locked state. The
laser frequency shiftsvL9 andvL99 are the contributions of second
and fourth order in the input signal amplitude.
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The second-order quantities derived above are consistent
with the energy conservation conditions expressed by~2.13!
and ~2.14!. With an excitation of the laser cavity that now
contains several frequency components, the cycle-averaged
output fluxes are given by

uaoutu25g1$uaLu21aLaL9
*1aL*aL91uaSu21ua I u2%

~4.25!

and

uboutu25g2$uaLu21aLaL9
*1aL*aL91uaSu21ua I u2%

2g2
1/2~aSbS*1aS*bS!1ubSu2, ~4.26!

correct to second order inbS . It is straightforward to show
with the use of~2.2!, ~4.1!, ~4.2!, ~4.14!, and~4.23! that

uaoutu21uboutu21g iD0952gcuaLu21ubSu2, ~4.27!

and this is seen to agree with the energy conservation re-
quirement~2.14! when the expression~2.23! with D5D0 for
the free-running laser output flux is used. The right-hand
sides of Fig. 7 show the variations with detuning of the
change in the spontaneous emission rate and the output
fluxes in the laser, signal, and image lines, for the normal
state of a class-A laser. It is seen that the sum of these quan-
tities is always equal to the right-hand side of~4.27!, inde-
pendent ofv.

The remaining second-order quantities obtained by solu-
tion of ~4.6!–~4.10! are the satellite amplitudes

a2S5g2g2gc$24v322iv2g i~2C11!

1vg i@2g iC13gc~C21!#1 ig i
2gcC~C21!%

3aL*bS
2/2vg'd 8~v!d ~v!2, ~4.28!

a2I52 ig4g2gc$2v32 iv2~2g iC17gc!25vg igcC

14ig igc
2~C21!%aL

3bS*
2/v2g'

2d 8* ~v!d * ~v!2

~4.29!

and the amplitude of the population pulsation of frequency
2v̄

D252g2g2gc$2v31 iv2~2g iC13gc!23vg igcC

22ig igc
2~C21!%aL*

2bS
2/vg'd 8~v!d ~v!2,

~4.30!

where

d 8~v!52v21 ivg iC2g igc~C21!. ~4.31!

The structure of the expression~4.28! for a2S is similar to
that of ~4.2! for a I and it reflects the origin of the satellite at
frequency 2vS2vL in a four-wave-mixing process that in-
volves two signal photons and one laser photon. By contrast,
the expression~4.29! for a2I has a different structure that
reflects the origin of the satellite at frequency 3vL22vS in a
six-wave-mixing process that involves two signal photons
and three laser photons. The square moduli of the amplitudes
given by ~4.28! and ~4.29! determine the intensities of the
second signal and image satellite lines, but these are of
fourth order inbS and they do not contribute to the second-
order output flux expressions~4.25! and ~4.26!.

V. THIRD- AND FOURTH-ORDER THEORY

The second-order theory of the above-threshold laser am-
plifier outlined in Sec. IV is readily extended to higher orders
in the input signal amplitude. We give here some results for
the third- and fourth-order terms in the characteristics of the
laser line and its satellites. These indicate how the descrip-
tion of the laser amplifier develops as progressively higher-
order terms are included in the theory. Although yet higher-
order terms could be evaluated, at least in principle, the
calculations become very complicated, and they are not jus-
tified by the additional benefits to physical understanding.

Consider first the extension to third order, where the mean
internal field in the laser cavity, given in second order by
~2.43!, expands to

FIG. 9. Variation of differential transmission gain at the signal
frequency with input signal flux for a class-A laser amplifier at
detuningsv/gc equal to~a! 1.02 and~b! 0.23, the injection-locking
frequenciesv IL /gc for values of the normalized input flux
ubSu

2/gcuaLu2 equal to 0.5 and 0.05, respectively. The lines to the
left of the injection-locking points show the gains in the normal
state, correct to zeroth and second orders inubSu, while the curves
to the right show the gains in the injection-locked state.
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a5~aL1aL9 !exp@2 ivLt#1~aS1aS-!exp@2 i ~vL1v̄ !t#

1~a I1a1-!exp@2 i ~vL2v̄ !t#

1a2Sexp@2 i ~vL12v̄ !t#

1a2Iexp@2 i ~vL22v̄ !t#1a3Sexp@2 i ~vL13v̄ !t#

1a3Iexp@2 i ~vL23v̄ !t# ~5.1!

and the mean population inversion, given in second order by
~2.44!, expands to

D5D01D091~D11D1-!exp~2 i v̄t !

1~D1*1D1-
* !exp~ i v̄t !

1D2exp~22i v̄t !1D2* exp~2i v̄t !

1D3exp~23i v̄t !1D3* exp~3i v̄t !, ~5.2!

where the new terms are those with 3 subscripts or three
primes. It is seen that the terms of first order in the input
signal amplitude acquire additional third-order corrections
and that new terms associated with the satellites at detunings
63v̄ from the shifted laser frequencyvL appear.

The procedure is now the same as in Sec. IV, in that the
above expressions for the cavity field and the population
inversion are substituted into the equations of motion~2.9!
and ~2.10!, which can then be separated into sets of equa-
tions corresponding to the different orders inbS . The equa-
tions of the zeroth, first, and second orders inbS are the
same as before, but there are new third-order equations in
sufficient quantity to determine all of the third-order ampli-
tudes that occur in~5.1! and ~5.2!. The solutions are quite
complicated in general, and we give here partial results only
for class-A lasers, whereg i@gc andv, the signal detuning.

The third-order correction to the amplitude of the first
signal satellite line is

aS-52g2g2
3/2gc$2v4C2~2C11!12iv3gcC~C21!

3~C212C13!25v2gc
2C2~C21!2

12ivgc
3C~C21!3

24gc
4~C21!4%bSubSu2/v3g'g iC5f ~v! ~5.3!

and the change in the amplitude of the first image line is

a I-5
4g2gcg2

1/2aLbS* $g'g i@vC2 igc~C21!#aL912ig2gcaL
2aL9

* %

vg'
2g i

2@vC2 i2gc~C21!#2

1
4g4gcg2

3/2$v3C23iv2gc~C
221!2vgc

2~C21!~5C24!1 igc
3~C21!2%aL

2bS* ubSu2

v2g'
2g i

2C4f * ~v!
, ~5.4!

where

f ~v!5$v21@2gc~C21!/C#2%$v1 i @2gc~C21!/C#%2

3$v1 i @gc~C21!/C#% ~5.5!

andaL9 is determined by~4.14!. The changeD1- in the first-
order population pulsation, the amplitudesa3S anda3I of the
two new satellites that occur in the third order of the injected
signal amplitude, and the amplitudeD3 of the third-order
modulation of the population pulsation have all been deter-
mined @21#, but their detailed forms are not needed for the
present discussions.

The change~5.3! in the signal amplitude modifies the lin-
ear transmission gain~4.21! by the addition of a nonlinear
contribution. The nonlinear gain is best expressed in differ-
ential form as

GTS~v,ubSu2!5
]uaoutu2

]ubinu2

5g1

]

]ubSu2
$uaSu21aSaS-

*1aS*aS-%,

~5.6!

correct to orderubSu
2, and this reduces to the definition of the

linear gain in~3.3! if the fourth-order terms on the right-hand
side of ~5.6! are neglected. The inclined lines on the left-
hand sides in Fig. 9 show the differential gains obtained from
~5.6! with the use of~4.1! and ~5.3!.

The extension to fourth order in the amplitude of the input
signal is performed in a similar fashion. Thus the mean in-
ternal fielda of the laser acquires terms additional to those in
~5.1! that oscillate at frequenciesvL64v̄ and there are
fourth-order corrections to the laser field~denotedaL99! and
to the satellite fieldsa2S anda2I . The population inversion
D acquires terms additional to those in~5.2! that pulsate at
frequencies64v̄ and there are fourth-order corrections to
the static term and to the terms that pulsate at frequencies
62v̄. The laser frequency itself acquires a fourth-order cor-
rection, so that~2.40! is replaced by

vL5vL01vL91vL99 ~5.7!

and the definition~2.41! of the signal detuning from the
shifted laser line is replaced by

v̄5v2vL92vL995vS2vL5vL2v I . ~5.8!

The detuning for which injection looking occurs also ac-
quires a fourth-order correction, denotedv IL99 , and this is
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determined by the condition for extinction of the laser line,
obtained by generalization of the expression~4.13! for the
mean number of photons in the cavity at the shifted laser
frequency

uaL1aL91aL99u
2'uaLu21aLaL9

*

1aL*aL91aLaL99
*1aL*aL991uaL9 u2

50. ~5.9!

The detailed expressions for the various fourth-order
quantities have been calculated@21#, but they are quite com-
plicated and instead of giving their explicit forms, we show
their effects by means of some numerical examples. Thus
Fig. 8 shows the effects of addition of the fourth-order cor-
rections to both the laser frequency shift and the injection-
locking frequency. It is seen that the correction to the laser
frequency shift is small for the signal input fluxes towards
the left-hand end of the axis, but that the correction is rela-
tively large for the larger input fluxes and truncation of the
theory at the fourth-order terms does not provide reliable
values for the shift in this region. The fourth-order correction
to the injection-locking frequency is seen to lie between
about one-fifth and one-third of its second-order value over
most of the illustrated range of input signal fluxes, again
indicating that the expansion of the laser equations of motion
in power series of the input flux requires additional terms in
order to obtain accurate results close to the injection-locking
point.

The effects of the third- and fourth-order terms in the
laser and satellite amplitudes and in the population pulsation
are illustrated by Fig. 10, which shows the variations with
signal detuning of the contributions to the total output flux
from the laser amplifier, again forC52 and for a symmetri-
cal cavity. The curves can be compared with the second-
order results shown on the right-hand sides of Fig. 7. The
total emitted fluxes are unchanged, in conformity with the
requirements of energy conservation, but they are redistrib-
uted between the different components. For a given value of
v/gc , the output flux at the laser frequency is always re-
duced, in accordance with the larger values of the detuning
for which the transition to the injection-locked state occurs in
the fourth-order theory. The outputs at the second image, and
particularly the second signal, frequencies are small in fourth
order.

VI. INJECTION-LOCKED LASER AMPLIFIER

The injection-locked state of the laser amplifier is simpler
than its normal, or unlocked, state because the extinction of
the laser line removes the multiple satellite spectrum. The
field in the laser cavity thus has only the single component of
frequencyvS , illustrated in the final part of Fig. 3, and the
population inversionD loses its pulsating components. The
theory outlined in Sec. II D therefore applies, withC now
taken to be larger than unity. The injection-locked state thus
resembles the laser amplifier below threshold, treated in Sec.
III, but important differences occur on account of the high
level of excitation of the signal mode in the laser cavity. The
theory of injection-locking in the limit of small input signals
is described by Siegman@4#, and Tredicceet al. @14# have

considered some aspects of the stability of the state. Here we
determine the main features of the injection-locked state in
greater detail, including its stability, for comparison with the
other regimes of operation of the laser amplifier.

The single-component cavity field, whose form is given
by ~2.26!, has an amplitudeuaSu determined by solution of
~2.33!; the same cubic equation also occurs in the theory of
Pantell@5#, which is valid in the injection-locked state since
there is no excitation at the image frequency. The static
population inversion is given by~2.32!. The continuous
curves in Figs. 11 and 12 show the results of some numerical
calculations of the mean-square intracavity field and the
population inversion as functions of the input signal flux, for
several values of detuning from the unshifted laser fre-
quency. It is seen that both of these quantities have three
different solutions for the smaller values of signal detuning
@6#, but only single solutions occur for the larger detunings.
The solutions forv50 and their stability have been consid-
ered previously@7#. All of the solutions satisfy the inequality

FIG. 10. Energy conservation in an above-threshold class-A la-
ser amplifier withC52 and a symmetrical cavity, showing the
variations with signal detuning of the output fluxes at the laser (L),
signal (S), and image (I ) frequencies and the change in spontane-
ous emission rate~spon!, correct to fourth order inbS . The rates are
normalized by the output flux 2gcuaLu2 of the free-running laser
and results are shown for input signal strengthsubSu

2/gcuaLu2 equal
to ~a! 0.5 and~b! 0.05. The sums of the rates, shown by the lines at
ordinates 11(ubSu

2/2gcuaLu2), verify the conservation of energy.
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~2.31! and the mean-square cavity field and population inver-
sion take the simple values given in~2.34! when this is sat-
isfied as an equality. The continuous curves in Figs. 11 and
12 are valid for both class-A and class-B lasers, irrespective
of the value ofg i/gc .

The shaded regions in Figs. 11 and 12, bounded by the
broken curves, indicate the parameter ranges for which the
injection-locked state is stable. These stability regions are
determined by Hurwitz’s theorem and their boundaries are
determined by the conditions~2.39! expressed as equalities.
Consider first the boundary determined by the condition
a050, which is represented by the broken curves on the left
of the figures. It is apparent from~2.36! that this condition is
also independent of the ratiog i/gc , and the same boundary
applies for all class-A and class-B lasers. The condition
a050 has no simple analytic form in general~although an

approximation for small input signal fluxes is discussed later
in the section! and the corresponding broken curves in Figs.
11 and 12 are obtained numerically. They are seen to inter-
sect the continuous curves at points where these have vertical
tangents, and indeed the conditiona050 can be rederived by
differentiation of~2.33! or, symbolically,

a050⇔ ]uaSu2

]ubSu2
5`. ~6.1!

By contrast, the boundaries determined by the conditions
a150 anda2a15a0 obtained from~2.39! do depend on the
ratio g i/gc and they are different for the different classes of
laser.

Consider first the class-A laser, whereg i@gc , and the
conditiona150 from ~2.37! takes the limiting form

12
D

D0
1

uaSu2

ns
50. ~6.2!

The a150 stability boundaries obtained with the use of
~2.32! are thus

uaSu2

ns
5AC21,

D

D0
5AC. ~6.3!

These straight-line boundaries are shown in Figs. 11 and 12.
The remaining stability boundary conditiona2a15a0 is seen
from ~2.36!–~2.38! to be identical toa150 to leading order
in g i/gc and the second and third conditions in~2.39! are
degenerate for the class-A laser.

The straight-line boundaries do not occur for the class-B
laser, where all of the bounding curves of the stability re-
gions must be obtained numerically. The continuous curves
in Figs. 13 and 14 show the same variations of mean-square
intracavity field and population inversion with input signal
flux as Figs. 11 and 12, but with shaded stability regions and
their broken boundary curves drawn for a ratiog i/gc appro-
priate to a CO2 laser. It is seen that the stability conditions
~2.39! now give rise to three different boundary curves in
principle, although the conditiona150 has no real solutions

FIG. 11. Variation of the normalized intracavity mean photon
number with normalized input signal flux in the injection-locked
state of a class-A laser amplifier withC52 for the values of detun-
ing v/gc indicated. The broken curves are the boundaries of the
stability region shown by the shaded area.

FIG. 12. Variation of the normalized population inversion with
normalized input signal flux in the injection-locked state of a
class-A laser amplifier withC52 for the values of detuningv/gc

indicated. The broken curves are the boundaries of the stability
region shown by the shaded area.

FIG. 13. Same as Fig. 11, but for a class-B laser amplifier with
g i/gc50.2, as appropriate for CO2.
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for the chosen parameter values. The broken curves for
a050 are unchanged from those in Figs. 11 and 12.

The maximum detuning frequency for which the
injection-locked state persists, denotedv IL , is a function of
the input signal flux that can be obtained from the equations
for the boundaries of the stability region, with the mean-
square intracavity field and population inversion eliminated
by the use of~2.32! and ~2.33!. The calculation must be
performed numerically for the curvea050, but for a class-A
laser the limiting forms in~6.3! can be used for the curve
a150 and the resulting relation obtained from~2.33! is

v IL
2

gc
2 5

ubSu2

gcns

1

AC21
2~AC21!2, ~6.4!

where the laser cavity is assumed symmetrical
(g15g25gc). The right-hand side of~6.4! becomes nega-
tive for a sufficiently small input signal, and it appears that
an imaginary injection-locking frequency could be obtained.
However, it is straightforwardly shown from~2.36! and~6.3!
that the stability boundariesa050 anda150 intersect at the
input signal strength and frequency given by

ubSu2

gcns
52~AC21!3,

v IL

gc
5AC21, ~6.5!

and thea150 boundary becomes redundant before the right-
hand side of~6.4! becomes negative. The frequencyv IL puts
limits on the maximum value of detuning and minimum
value of input signal field for which the injection-locked
state is stable. It thus provides a value of the detuning for
injection locking that can be compared with the values ob-
tained from the theory of the normal state.

The results for a class-A laser are shown in Fig. 8, where
the composite curve labeledv IL is constructed numerically
from the boundary conditiona050 for smaller values of the
input signal flux and analytically from the boundary condi-
tion a150 given by~6.4! for the larger values of input signal
flux. It is seen that the injection-locking frequencyv IL ob-
tained from the condition for the existence of a stable
injection-locked state is larger than the valuev IL9 1v IL99 ob-

tained in the fourth-order theory from the condition~5.9! for
the vanishing of the field excitation at the laser frequency in
the normal state of the laser amplifier. However, it is clear
from Fig. 8 that the fourth-order terms in the theory of the
normal state make significant corrections to the second-order
frequencies, and it is expected that the sixth- and higher-
order terms will produce further increases in the injection-
locking frequency as the emission at the laser frequency suf-
fers further reductions by transfer into the growing number
of satellite lines. More accurate treatments of the normal
state should thus bring the two curves of injection-locking
frequency closer together.

The identical left-hand sides of Figs. 7 and 10 show some
typical results for the variations with signal detuning of the
output flux at the signal frequency and the change
g i(D2D0) in the spontaneous emission rate from the free-
running laser value, obtained by numerical solution of the
cubic equation~2.33! for uaSu

2. A comparison of the differ-
ent right-hand sides of these figures shows how the apparent
regions of coexistence of the injection-locked and normal
states of the laser amplifier shrink as higher-order terms are
included in the theory of the normal state. The change in
spontaneous emission rate in the injection-locked state from
the free-running laser value can be either positive or negative
in accordance with the solutions of~2.30! for D2D0 , and
the occurrence of positive values at the larger detunings ac-
cords with the increase in spontaneous emission predicted by
the theory for the normal state.

The signal gain in transmission is nonlinear in the
injection-locked state, and it is again appropriate to work
with the differential gain defined in~5.6!, where the output
flux g1uaSu

2 is now obtained by solution of the cubic equa-
tion ~2.33!. Some typical numerical results are shown in the
sections of the curves of Fig. 9 for input signal fluxes greater
than the value for which injection locking occurs. It is seen
by comparison with Fig. 11 that the gain remains finite at the
a150 injection-locking boundary, as in Fig. 9~a!, but that
infinite differential gain occurs on thea050 boundary, as in
Fig. 9~b!, in accordance with the infinite slope condition
~6.1! on this boundary. The onset of injection locking gener-
ally leads initially to an increase in the gain, compared to the
gain in the normal state shown on the left-hand sides in Fig.
9, but higher-order terms in the normal-state theory could
again lead to closer agreement between the values on either
side of the injection-locking transition. For the injection-
locked state with very high input fluxes, whereubSu

2@gcns ,
the approximate solution of~2.33! given in ~3.2! remains
valid and the gain approaches the limiting value given by
~3.6!.

The condition for energy conservation in the injection-
locked state resembles that in the below-threshold laser am-
plifier, given by~3.9!, as signal amplification or attenuation
can only be compensated by reduction or increase in the
spontaneous emission. The condition can be written in the
form

uaoutu21uboutu21g i~D2D0!52gcuaLu21ub inu2, ~6.6!

where the first two terms on the left-hand side represent the
total output flux at the signal frequency. The energy conser-
vation is illustrated by the numerical results in Figs. 7 or 10,

FIG. 14. Same as Fig. 12, but for a class-B laser amplifier with
g i/gc50.2, as appropriate for CO2.
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where each frame shows a sum total of the contributions to
the rate of emission of energy that remains equal to the same
constant value throughout the normal and injection-locked
states of the laser amplifier, in accordance with~4.27! and
~6.6!.

The properties of the injection-locked state derived here
can be compared with those found in the limit of a weak
input signal@4#, whereg2ubSu

2!uaLu
2. The injection locking

in this case occurs at small signal detunings withv!gc , and
it is seen from Figs. 11–14 that only the stability boundary
conditiona050 need be considered. With the use of~2.32!
and ~2.36!, this condition can be approximated to obtain

uaSu2

uaLu2
'12

C2

2~C21!2
v2

gc
2 ~6.7!

and

D

D0
'11

C

2~C21!

v2

gc
2 , ~6.8!

correct to second order inv/gc . These forms can now be
substituted into~2.30! to obtain an approximation to the
injection-locking frequency

v IL
2

gc
2 '

ubSu2

gcuaLu2
1

C2

4~C21!2 S ubSu2

gcuaLu2
D 2, ~6.9!

with the cavity again assumed symmetrical. This expression
provides a good approximation to the curve forv IL in Fig. 8
for small input signals, and in combination with~6.7! and
~6.8! it reproduces thea050 boundaries in Figs. 11–14 in
the same regime. Previous derivations for small input signal
fluxes have included only the first terms on the right-hand
sides of the above three results@4,14#. Figures 7~b! and 10~b!
correspond to small input signals and provide a more de-
tailed description, compared to Fig. 29.4 of Ref.@4#, of the
behavior close to the injection-locking point.

VII. CONCLUSIONS

The calculations reported in this paper have two main
aims in the development of the understanding of the proper-
ties of a class-A or class-B laser with an injected signal. The
first aim is the extension of previous calculations of the ef-
fects of the input signal on the output fields of the laser
beyond the regime of linear amplification. In the normal, or
unlocked, state of the laser amplifier this is accomplished by
the expansion of the dynamical variables of the laser in
power series in the amplitude of the input signal. The laser
equations of motion can then be solved progressively to in-
creasing orders in the signal amplitude, and we have given
results up to fourth order. It has been shown that increasing
orders correspond to the excitation of an output spectrum
that contains increasing numbers of pairs of signal-image
satellites centered symmetrically on the laser line and sepa-
rated by integer multiples of the detuning of the input signal
from the laser frequency. The pulsations in the population
inversion likewise acquire higher harmonics of the frequency
detuning. These contributions are produced by higher-order
nonlinearities in the coupling of the optical waves and the

population pulsations in the laser cavity, and thenth image
satellite and the (n11)th signal satellite are generated by
2(n11)-wave-mixing processes. The emission of output
flux in the satellite lines occurs at the expense of the output
flux in the laser line, which is reduced from its free-running
value. The satellites grow in intensity and the laser line
weakens as the input signal flux is increased and as the signal
detuning from the laser line is reduced. We have also evalu-
ated the shifts in the frequency of the laser line that occur
when terms of the second and fourth orders in the amplitude
of the input signal are included.

The second aim is the comparison of the conditions for
injection locking obtained by an increase in input signal
strength, or a reduction in the signal detuning, in the normal
state of the laser amplifier and from the stability of the
injection-locked state itself. The former approach was devel-
oped by Pantell@5#, who identifies the injection-locking
point from the condition that the emission at the laser fre-
quency is extinguished. We have improved on this earlier
work by inclusion of the first image satellite in the linear
theory and by inclusion of the second signal and image sat-
ellites in the nonlinear theory. The inclusion in the theory of
more satellites produces enhanced transfer of energy away
from the laser line and thus causes the transition to the
injection-locked state to occur for smaller input signal
strength and larger detuning. This approach to the theory of
injection locking can only be approximate, as it becomes
algebraically impractical to include all of the significant sat-
ellites in the immediate vicinity of the injection-locking
point.

The injection-locked state itself is amenable to a more
exact treatment, as the cavity field is excited at the single
frequency of the input signal and its mean-square amplitude
satisfies a cubic equation. We have determined the ranges of
signal strength and detuning for which the state is stable by
solutions of the cubic equation and evaluation of the Hurwitz
conditions for the stability of its roots. These calculations are
mainly numerical, given the basic cubic form of the ampli-
tude equation, but some of the stability boundary conditions
can be written as analytic expressions, particularly for the
class-A laser or for small input signal fluxes. Thus the rela-
tion between the input signal detuning and strength at the
injection-locking point of a class-A laser is largely express-
ible in analytic form. The detuning for a given signal
strength obtained from this latter theory is consistently larger
than that obtained from the former approach, which is to be
expected, given the approximations inherent in the power-
series expansion, but we have shown that the two results for
the detuning become closer as higher-order terms are in-
cluded in this expansion. The properties of the injection-
locked state and its transition to or from the normal state
derived here agree with previous work in the limit of small
input signal strength@4#.

We have evaluated the transmission gains, or losses, at
the frequency of the input signal that are achieved in the
various states of the laser amplifier, namely, below threshold,
the normal state above threshold, and the injection-locked
state, and for each state we have determined the natures of
the energy redistributions that are needed to source the am-
plification or attenuation. For the below-threshold and
injection-locked states, the energy balance for amplification

54 5225THEORY OF LASER-AMPLIFIER INJECTION LOCKING



or attenuation is taken from or given to the spontaneous
emission in all directions and indeed there is no other source
or sink of energy for these states. The situation is more com-
plex for the normal state of the laser amplifier, where the
presence of an amplified input signal produces an increase in
the spontaneous emission in all directions, together with
axial emission into other satellites of the laser line, all of
which are sourced by reductions in the emission at the
shifted laser frequency.

It has not been possible to compare the detailed predic-
tions of the injection-locking theory presented here with ex-
perimental results, as the measurements currently available
do not provide sufficient numerical data for evaluation of the
various expressions. However, the general scheme shown in
Fig. 3 for the development of the laser spectrum with reduc-
tion in the detuning of the input signal is in good agreement
with measurements on the CO2 laser@3#. Thus the growth of
the satellite spectrum and falloff in laser intensity were ob-
served as the detuning was reduced, leading to the extinction
of all except the signal contribution at the injection-locking
point. Such measurements, made, for example, with a signal
of fixed intensity, can tune the signal through the frequency

vL0 of the free-running laser, from positive to negative de-
tunings, so that the states of the system pass from normal to
injection locked and back to normal. The natures of the tran-
sitions between states, as the equilibrium of the initial state
becomes unstable, could thus be observed and compared
with the predictions of theory for such quantities as the sat-
ellite intensities, transition signal strengths and detunings,
and laser frequency shifts. It would also be interesting to
observe the predicted change in the sign of this frequency
shift as the detuning of the injected signal passes through the
relaxation oscillation frequency of a class-B laser. It is hoped
that the calculations reported here will stimulate more de-
tailed experimental work, leading to a better understanding
of the injection-locked state and the transitions between it
and the normal state of the laser amplifier.
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