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Theory of laser-amplifier injection locking
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The theory of the laser amplifier is developed for conditions in which the strength of the input signal is
increased from small values, where the amplification is linear, to larger values, where the amplification be-
comes nonlinear. The below-threshold laser amplifier oscillates at a single frequency equal to that of the input
signal, and its properties are found by solution of the nonlinear equation of motion for the single excitation
amplitude. For the above-threshold laser amplifier, the effects of the nonlinear behavior are to shift the laser
frequency from its free-running value and to transfer intensity from the laser line to the signal frequency and
to a range of satellite lines, whose frequency detunings are integer multiples of the signal detuning. The
intensities of the various emission lines of the laser are calculated by power-series expansions of the field
amplitudes up to terms of fourth order in the input signal strength. The onset of injection locking is determined
by the conditions for which the intensity at the shifted free-running laser frequency falls to zero. The injection-
locked state is characterized by a single excitation frequency equal to that of the input signal, and its properties
are found by solution of the same nonlinear equation of motion as for the below-threshold amplifier. The
ranges of input signal strength and detuning are determined for which the injection-locked state is stable. The
energy conservation properties of the laser amplifier are considered for each of its operating states.
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I. INTRODUCTION itself shifts from its free-running value, o towards the input
signal frequencywg, by an amount proportional to the sec-
The properties of the single-mode laser amplifier in itsond and higher even powers of the signal amplitude. The
regime of linear operation have been studied recently botlmplification of the signal field by the laser begins to depart
experimentally and theoreticaljl]. The amplification char-  from linear behavior as the signal and image output ampli-
acteristics of an above-threshold argon-ion laser were meaudes acquire significant terms in the third and higher odd
sured as functions of the laser pumping rate and the detuningowers of the input signal amplitude. Furthermore, the exci-
o of the input signal frequencyg from the frequencyw, ,  tation spectrum of the cavity acquires additional satellites at
of the free-running laser emission frequencies separated from the laser line by higher integer
multiples of the signal detuning from the shifted laser
frequency. These nonlinear contributions and additional sat-

The results are well accounted for by a theory correct to firsfallite Iir_1es prqgressively_ remove Intensity from the .Iaser I.ine.
order in the amplitude of the weak input signal, consistenfS the input signal amplitude Increases. The laser Intensity is
with the linear regime of operation of the amplifier. The eventually f"‘” transferr.ed.to the signal, Image, anq higher-
principal finding of the work is the importance of the exci- order satellites, the emission at_frequera_qy|s extlngwsh_ed,
tation of the field in the laser cavity at the image frequenc nd the phenomenon of injection locking occurs. With the

W= ws— (. (1.7

o, , detuned from the free-running laser frequency-by, collapse of the Ias_er excitation, only the S|gnal excitation at
frequencywg remains and the multiple satellite spectrum dis-
0= w0 . (1.2)  appears. The sequence of spectra, beginning with the image-

laser-signal triplet, continuing to larger numbers of satellite
The image excitation is produced by a four-wave-mixinglines, and ending with the single spectral component of the
process driven by the strongly excited laser mode via pulsanjection-locked state, has been clearly observed for the CO
tions in the population inversion of the laser. It is found thatlaser[3]. The multiple-satellite spectra that occur on the ap-
the image field has a magnitude comparable to the signgiroach to injection locking are discussed and illustrated by
field but with opposite sign, so that the linear amplification Siegman4].
measured by self-heterodyne detection of the laser output The theory of injection locking can be approached in two
suffers from significant cancellation between the beats of thelistinct ways, and the main purpose of the present paper is to
strong laser line with the much weaker image and signatlevelop and compare the two approaches. The first approach
output fields. Thus it is necessary to include the signal ands to extend our previous calculatiofis| by including terms
image satellites of the laser line in the theoretical model evewnf higher order than the first in the input signal amplitude, so
for treatments of linear amplification. Substantial imagethat the nonlinear behavior of the laser amplifier can be de-
components are also observed in the direct detection of thecribed. The aim is to understand the phenomena that occur
emission from semiconductor laser amplifig2$. above threshold as the amplitude of the input is increased

If the amplitude of the input signal is now steadily in- from very small values up to the value for which injection

creased, several effects appear. Thus the laser frequgncy locking occurs, and we refer to this regime as tr@mal
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state of the amplifier. The simplest extension of our previous D

work is the inclusion of second-order terms, and these al- i

ready provide a model of the injection-locking phenomenon,

in which a steady increase in the amplitude of the input sig- LSK V;(/

nal, or a decrease in its detuning, produces a quenching of Bin Ta T
emission at the laser frequency. A theory of this kind was — 1Y _ Olag 2 =
used by Pantel[5] in his pioneering treatment of injection Og

locking, and some of our results are in qualitative agreement o > >
with his. However, the proper inclusion of the image excita- Bou < % Sout
tion produces quantitative differences even for weak input < 5

signals. More complete results are obtained by inclusion of < 2 > U | >
third- and fourth-order terms, and the higher-order theory of - C 2=

the normal state of the laser amplifier provides a more accu- ’3);

rate description of the satellites, which remains valid closer T T 1 T

to the injection-locking point. This theory must be approxi-

mate as it is not practicable to take full account of the in- YDy

creasingly nonlinear behavior in the vicinity of the injection-

locking point, manifested by the growing number of different  FiG. 1. Representation of the laser cavity showing the notations

frequencies at which satellites are excited. for mirror transmission coefficients, the input and output photon-
The second approach begins with a description of thélux amplitudes, and the photon-number amplitudes of the various

injection-locked state, which is basically simpler, as the fieldinternal frequency components. The laser pump a2, and the

excitation in the laser cavity has only a single-frequencyrate of loss of energy by spontaneous emission in all spatial direc-

component determined by the input signal. The theory can btons y,D are also indicated.

carried through exactly in this case and the laser equations of

motion reduce to a cubic equation for the field amplitidle  distinct states, namely, below threshold, the normal state
which can be solved either approximately or numerically.apove threshold, and the injection-locked state above thresh-
The theory of the injection-locked state was initially consid-o|d. Particular attention is paid to the conditions of energy
ered by Spencer and Lani], and subsequently there have pajance in these three states, and we identify the ways in
been many calculations of the properties of the laser with agyhich the energy consumed by the amplification process is
injected signal[7-10]. Much of this work has been con- sourced by reductions in the other forms of output from the
cerned with ranges of the laser parameters for which theaser cavity. The results are discussed in Sec. VII, where the
output displays varieties of dynamic behavior such as selfyyg approaches to the theory of injection locking are com-

pulsing and chaofl1,12. By contrast, our interest here is in pared and experimental tests of the theory are proposed.
modestly pumped lasers belonging to clas8esr B [13],

whose dipole-moment decay rates greatly exceed those of

both the cavity field and the atomic population inversion, Il. EQUATIONS OF MOTION

where these more exotic effects do not occur. This regime of

operation has previously been discussed by Arecchi and co-

workers[13,14], and our results are extensions of theirs. We The basic model is essentially the same as that used in the

obtain the variations in the laser field and atomic inversiorprevious treatment of the regime of linear amplificatjah,

with the strength and frequency of the input signal, and weand only its main features are summarized here. The struc-

determine the ranges of signal parameters for which théure of the laser amplifier cavity is shown in Fig. 1, together

injection-locked state is stable. with the notation for the laser field, , the input signal am-
Section Il summarizes the laser model, with details of theplitude B;,, and the amplitudes of the other frequency com-

equations of motion and their solutions for the free-runningponents of the fields that are generated by the interactions in

laser, the single-frequency solutions that occur below threstthe cavity. The dimensions of these amplitudes are chosen so

old and in the injection-locked state, and the multiple-thatinsidethe cavity quantities such 4&, | give the mean

frequency solutions that occur in the normal state of thenumber of photons excited at the relevant frequency, while

above-threshold laser amplifier. Section Il deals with theoutsidethe cavity quantities such d@,|° give the mean

nonlinear behavior of the below-threshold amplifier whenphoton-number flux, with dimensions of inverse time.

intense signals are incident, by appropriate solution of the The intensity damping rates from each end of the cavity

same cubic equation as occurs for the injection-locked laseare related to the intensity transmission coefficiehtsand

amplifier. Sections IV and V present the theory of the normalT, of the mirrors by

state of the amplifier correct to the second, third, and fourth

orders in the input signal amplitude respectively. The y1=CT1/2L, y,=cT,/2L, (2.2

injection-locked state of the above-threshold laser amplifier

is treated in Sec. VI, _an_d the conditions for its sta_lb_ility_ares0 that the total damping rate of the interrigld in the

determined. The predictions from the two forms of '”JeCt'On'cavity is given by

locking theory for the transition between normal and locked

states are evaluated in Secs. IV=VI. The calculations cover

the properties of the laser with an injected signal in its three ve=(y1t+ y2)/2. (2.2

A. Laser model
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The relations between the internal electric field of the cavity D+ y,D=y,D,—(29%y,)|a|?D (2.10
a, the input signaB3;,, and the output fields from each end of
the cavity, which is assumed to have a hi@h have the to be solved for the motion of the laser system. The lasing

usual formg15] atoms are assumed to be sufficiently mobile that spatial hole-
burning effects are also negligible.

o= 71 @ 2.3
on the right and B. Energy conservation
B It is simply shown from(2.9) and its complex conjugate
ﬁout:'}é a—Bin (2.9 that
on the left, where the field emitted from the cavity is super- d|a|?/dt= -2y a|?+(29%/y,)|a|?D
posed on the reflected input field. These relations are impor- Y2 okt
tant for demonstrations of the energy conservation law of the Ty (aBinta*Bn), (2.1

laser amplifier. " . : .
The interactions between the optical and atomic compo?md addition of this equation 1@.10 gives

nents of the laser in the presence of an input signal determine d(|e|>+D)/dt=—2ya|?+ y,(D,—D)
the forms of the three important laser parameters: the cavity
field «, the atomic population inversioD, and the atomic + YA aBE+a* B). (2.12

dipole momentd. The behaviors of these parameters are ob- o ) ) )
tained by solution of the Maxwell-Bloch equations in the The quantity differentiated on the left is proportional to the

forms[4,16,17 total excitation energy in the laser cavity, including the con-
tributions from the electromagnetic field and the inverted
a+(yetim o) a=gd+ y52Bi, (2.5  atoms. The laser steady-state condition can therefore be writ-
ten

2ylal?~ v aBh+a* )+ yD=yD,, (213

d
an and this is transformed with the use @.2—(2.4) into

d+(y, +iw)d=gaD, (2.7)

|aout|2+|:80utjz+7\\D:7\\Dp+|:8in|21 (2.14
whereg is the coupling constant between the dipole moment
of the atoms and the cavity electric fielg;, v, , andy,. are, Wwhere the qverbars denot_e cycle-averageq mean V?'”es that
respectively, the population-inversion decay rate, the dipole&"® @PPropriate when the fields and population inversion con-
moment decay rate, and the total damping rate of the interndf!" several frequency components. L
These equations express energy conservation in the laser

field in the cavity defined if2.2); o, is the frequency of system. Thus upon multiplication 62.14 by £, and with

the free-running laseD , measures the laser pumping rate in . .
terms of the mean population inversion that would beneglect of the small frequency differences between the vari-

achieved in the absence of any optical field in the cavity; anc%’hus field compone?lts, thel terms c;?] the Ie{t atrhe, resrf)gtctl\t/ely,
Bin is the input signal amplitude coupled into the laser cavity € mean energy Tiuxes leaving the cavily through Is two
irrors and the rate of spontaneous emission of radiative

as shown schematically in Fig. 1. The equation of motion for" . L . ;
the population inversion takes the simple fof2n6) only for ~ €N€ray I all qllrectlons by the mvertgd atoms, while the
laser transitions in which the lower-level population is neg—terms on the right are the rates at which the pump and the

ligible. Figure 1 also includes representations of the raténIOUt signal supply energy to the system. It is shown in sub-

7D, at which the pump supplies energy to the invertegS€duent sections that the energy conservation condition is

population and the ratg,D at which energy radiates out of indeed satisfied for the various states of the laser.

the cavity in all directions by the process of spontaneous )
emission. C. Free-running laser

For classA and classB lasers, the dipole moment decay |n the absence of any input signal, the cavity field has the
rate is very much larger than the population inversion andingle-frequency form
cavity decay rates+y, >v,,v.) and the effects of homoge-
neous collision broadening overcome those of the inhomoge- a=a exp—iogot) (2.19
neous Doppler broadening. Thus spectral hole-burning ef- o L )
fects are negligible and E¢2.7) can be approximated by ~ and the population inversiob is independent of the time.
The solutions 0f2.9) and (2.10 for these quantities are ei-

y,d=gaD. (2.8  ther

This expression can be substituted tbin (2.5 and (2.6), a=a =0, D=D,, (2.16

which then provide the pair of equations
P P a corresponding to the laser below threshold, or

a+(yetioga=(g%y)aD+v3%B, (2.9
YL N

laf2=|ay 2= 221 20 _(c_1yn, (217
and - Do 29 ) -
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and 4 1 /
D=1cy./9°=Do, (2.18 R
>
- o =) oY
corresponding to the laser above threshold. Here C %
/\0\% o
& Y
C= Dp/D0: gsz/')’c')’L (2.19 (;C%Z) 5| '@eﬁ%\o \0“\\\@\ ]
>
X ) . . \\‘5“\0‘\ A%é,\o +
is the cooperation parameter, or normalized pumping rate, OQQQ‘ &
equal to unity at threshold, and QQ\%\ N
1 O
Q@‘% spontaneous emission rate 'y Dy
Ng=17y, 7\\/292 (2_2@ ® ( all directions )
is the saturation photon number, equal to the mean number °, ; - s p
of photons in the laser cavity at twice the threshold pumping c

rateC=2. It is seen from(2.19 that for this degree of laser ) ) _
excitation, the constant above-threshold population inversion FIG. 2. Energy balance in the free-running laser showing the
D, has one-half of its valu@p in the absence of any optical ra_ltes _of energy mp_ut _from the pump, spontaneous emission in all
field andn thus characterizes the cavity photon number fordlrectlong, and emission into the laser mode as functions of the
which significant saturation of the active atomic excitegCooperation paramete.

states begins to occur. The phase of the cavity figlds not
determined by the equations of motion.

The stability of the solutions of the laser equations of Y
motion is determined in the usual wgl1], by assuming that S
small displacementsa and 5D of the cavity field and popu- ~27c(spontaneoys 2| e |“(stimulated,
lation inversion from their equilibrium values evolve with a (2.24
time dependence expf). The equilibrium values are then
stable if the damping constanksobtained from the equa- since normally e, |>>1. The spontaneous component of the
tions of motion are all negative. With two dynamical vari- emission into the lasing mode is therefore negligible. The
ables, there are two values kfdetermined by a quadratic remaining emission by the inverted atoms, at a rato ,
equation. It is found in this way that the solutiéa16) has  occurs spontaneously into all other spatial modes; this ac-

2'}’c|aL|2 2')’<:|C“L|4
|C¥L|2+1 |a|_|2+l

(Dp—Do) =27y a |*=

damping constants counts for all of the emission from the cavity below thresh-
old, while above threshold the spontaneous component re-
A=—7,—v(1-C), (2.2  mains fixed at its threshold value and the balance of the

energy supplied by the pump appears in the lasing mode.
and it is therefore stable below thresh@d<1. The solution

(2.17 has damping constanf$3,14 D. Single-frequency solutions
5 I The presence of a nonzero input signal normally excites a
€ R c? multiple-frequency field in the laser cavity and the popula-
T | T4 T 2y 7(C=D) 1 (222 fioninversion generally contains components that oscillate at

the differences of these field frequencies. However, the am-
plifier dynamics retain simple forms for the two cases of the
laser amplifier below threshold and the injection-locked laser
amplifier above threshold. These states share the feature that
the field inside the laser cavity has a single-frequency com-
) ponent determined by the frequency of the input signal. Thus
2ycle|*=»(D,—D), (2.23  with the input signal field taken in the form

and it is therefore stable above thresh@id-1.
With no input signal, the energy conservation condition
(2.13 reduces to

and it is seen that this is satisfied both by the solut®a® Bin=Bsexp —iwgt)=Bsexf —i(wot w)t], (2.29
below threshold and the solutiori.17) and (2.18 above . o ] .
threshold. The energy balance between the laser input arffe mean internal field in the laser cavity can be written
output is illustrated as a function of cooperation parameter in

Fig. 2. Thus the rate at which the pump supplies energy to a=aseXf —i(w ot o)t] (2.26
the inverted population is equal tgD, at all values ofC.

Above thresholdC> 1, the inverted atoms emit light into the and the population inversidb is again a static quantity. The
laser mode at a rate given tg.23. This total rate can be equations of motion2.9) and(2.10 thus provide a pair of
divided into contributions from stimulated and spontaneousimultaneous equations that can be solved for the two un-
emission, whose ratio is given as usual by the mean numbdmnownsag andD.

of photons|« |? in the mode[18], so that Consider first the field equatioi2.9), which gives
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(2.27 evaluated in the presence of an input signal and, together

with the population inversion, there is now a total of three
The complex fields are conveniently expressed in terms oflynamical variables. The damping constantare thus de-
amplitudes and phase angles according to termined by solution of a cubic equation

[ye— (g% y,)D—iw]as=v3Bs.

(l’S:|(1’5|ei¢S, ﬁS: |,35|ei¢i". (22& ao+ al)\+a2)\2+ )\320, (235}

The imaginary part of2.27) then gives where the coefficients are found, consistent with previous
2 _ work [14], to be
w|ag =2 Bg[siNds— din), (2.29 , ad?
ag
while its square modulus is ap= 7|7§( 1- Dy I+ —— |27
S
{[ve=(g%7.)DP+ 0} ag®=y2| B (2.30 ( D ) D lag? |as|2)
X1—=—]| =— %y 1+ ,
The two terms in the curly brackets on the left-hand side of Do/ Do ns ' Ns
this equation are both positive, and it follows that the mag- (2.36
nitude of the cavity field produced by an input signal of
given amplitude and detuning satisfies the inequality |ag)? D\2
i a1=2yy| 1-5-|| 1+ —— |+l 1- 5
|lag|<v21Bsl/|w|. (2.3 s 0
. . . D 2
The value oflag| thus reduces with increase in the detuning +29Ye = |ad w?, (2.37
|w| so that the magnitude of the sine(i129 is properly less Do ns
than or equal to unity for all input signal parameters.
The corresponding solution of the population inversion
equation of motion2.10 is lag|? D
a=y| 1+ +2vy, 1——). (2.38
N DO

CD,

D:—l
1+ (Jag|®/ny)

(2.32

The mean intracavity photon numbers|? and atomic popu-
lation inversionD are related by(2.32), and these coeffi-

whereD,, C, andng are defined inf2.18), (2.19, and(2.20
respectively. Insertion of this solution int@.30 gives
2
—2—) + wz] lag?=y2l B4

2
[ Ye |a'5| +ng (233

This cubic equation determines the cavity field strengthg
for the below-threshold@< 1) and injection-locked@>1)

|a’S|2+(1_C)ns

cients can thus be expressed in terms of a single equilibrium
variable.

The conditions for stability are now obtained from Hur-
witz's theorem[19], which states that the roots (.35 all
have negative real parts if

ap,>0, a;>0,

(2.39
The cubic equatior{2.35 depends implicitly on the input

a,a;>a,.

laser amplifiers as functions of the input signal parametersignal amplitudeBs via |ag/? andD. It continues to hold in

[4]. Note that the population inversion decay rateppears
only implicitly in the saturation photon number {2.32 and
(2.33 so that, for a given value dfiy, the same forms of
variation of|ag andD with the input signal amplitudgsg
occur for classA and classB lasers.

The system mimics a free-running laser wh@i3l) is

the absence of any input, and the damping constants for the
free-running laser given if2.21) and(2.22 can be rederived

for =0 by insertion of the equilibrium values efs= « and

D, given by (2.16 below threshold and2.17 and (2.18
above threshold. The solutions (#.33 and their stability
conditions (2.39 for below-threshold and injection-locked

satisfied as an equality, and the values of the amplifier varitaser amplifiers are treated in Secs. Ill and VI, respectively.

ables obtained fron2.29, (2.30, and(2.33 are then

hs— din=*7l2, lag?=(C—1)ng,

(2.39

D:Do,

E. Multiple-frequency solutions

The solutions of the equations of motion are much more
complicated when laser and input signal oscillations of dif-

for |ag| =3 Bgl/|w|, where these solutions are valid only ferent frequencies are excited simultaneously in the cavity.
above threshold@>1). The 90° phase difference between one consequence, caused by the synchronism effects of the
the input and Ca.Vity fields ensures that there is no interfersigna| and laser OSCi“a.tOiQ-,ZO], is a frequency shift of the
ence between the two contributions in the output field givengger emission of magnitude denotedl, correct to second

by (2.4). The output fluxes are thus the same as those for thgrger in the input signal amplitude, so that the shifted fre-
free-running laser, ignoring the small difference between th‘“quency is

frequencieswg and w, , plus an additional output equal to

the input signal flux on the left of the cavity shown in Fig. 1. (2.40
The stability of the single-frequency solutions is deter-

mined by the method outlined in Sec. Il C. However, bothFor a classA laser, wherey,;> vy., the frequency is shown in

the phase and the amplitude of the cavity field need to b&ec. IV to be always pulled towards the input signal fre-

wL=w|_0+ wﬁ .
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at frequencyw, + o always requires the production of a new

(04
F optical field componentthe image satellite lineat fre-
\ quencyw, — w [1]. The second-order approximation is con-
fin sidered in Sec. IV, where the input signal is assumed suffi-
® A ciently strong for the first image and signal satellite fields,
(a) o ° - with modified frequencies given b§2.41), to contribute in
w0 ° other FWM interactions with the strong field of the laser to
o produce observable signal and image satellite lines at fre-
: ag quenciesw, +2w and w, —2w. Thus, correct to second or-
o & N A s der in the amplitude of the input signal, the mean internal
(b)f T *’»m—>’ 'I« field of the laser amplifier cavity includes five frequency
o o o, o o components to give a total field
o s a=(a +a))exd —iw t]+aexgd —i(w +w)t]
Q. (o7
T’Z' T; & Lm 025 +aex —i (o, — o)t]+ arexf —i (o, +20)t]
|
(c) . - il —
@ @, O @5 G + a2|exﬂ: |((1)|_ th], (243)
I Os wherea| , of the second order iBg, is the change in the
I laser field corresponding to energy transferred to the first
{ * .
L image and signald, @] + «] «|') and the second image and
— Bin signal («/|?) satellite lines. The second and third parts of
(d) n . Fig. 3 show the series of excitation frequencies, with equal
Do g separations, centered on the shifted laser lineaat, and a

similar spectrum is also illustrated [d].
FIG. 3. Schematic representations of the frequency components The mean population inversion of the atoms also contains
excited in the laser amplifiefa) uncoupled free-running laser and five frequency components in the form
input signal; (b) coupled laser and signal showing formation of

image and signal satellite&) same agb), but with reduced signal D =D+ D+ D,exp —iwt)+ D exp(i o)
detuning, showing the approach to injection locking; dddthe 0 0 . 1
injection-locking point. +D,exp — 2iwt) + D} exp(2iwl), (2.49

guency, i.e., the shift is positive when the frequency detunin%v _ ) . ) _
is positive and negative when the detuning is negative. HowVNereDo is the static population inversion of the laser in the
ever, negative frequency shifts, or frequency pushing, cafPSence of any input signd, andD, describe the popula-
occur for classB lasers at higher positive detunings. Figure 310N pulsations tc,>, first and second orders in the input signal
schematically shows the laser frequency shift due to synchr@@mplitude, andD, is the second-order change in the static
nization effects, the image and signal satellite lines produce80Pulation inversion. The expressiof&s43 and(2.44 can

by four-wave-mixing(FWM) processes, and the injection- be written in various equivalent forms in terms of the un-
locking phenomena. Thus, in second order, the frequencghifted laser frequency,,, the frequency shifto, and the
relation (1.1) continues to define the signal detuniagfrom  fixed experimental detuning, with the use of(2.40 and
the unshiftedemission line of the free-running laser, and this (2.41.

is the primary parameter that characterizes a measurement on
the laser amplifier with a fixed signal frequency. However, in
identifying the frequency components in the cavity field and
the population inversion, it is more convenient to work with  When the laser is operated below threshold, there is no

Ill. BELOW-THRESHOLD LASER AMPLIFIER

the detuningw from the shiftedlaser line, internal strong coherent field, at the resonance frequency
_ , w o- The cavity field therefore oscillates at the single fre-
WTOTO TOsT OLT O T O, (2.41 guencyws of the input signal and the population inversibn

is independent of the time. The theory outlined in Sec. 1l D
applies, withC taken to be smaller than unity.
Consider first the magnitude of the cavity field, deter-
Bin=Bexi —i(w o+ o)t]= Beexf —i(w +o)t]. mined by solution of the cubic equatiof2.33. Figure 4
(2.42  shows some numerical solutions for the cavity photon num-
ber |ag/? as a function of the input fluxBg? for various
The expressior{1.2) for the image frequency is valid only values of the signal detuning, where the optical strengths are
for weak input signals, where| is negligible. normalized by the saturation photon number defined in
In the first-order approximation, the FWM interaction be- (2.20. The solution of(2.33 is easily expanded in a power
tween the internal strong field of the laser at frequemgy  series for small values df3g/?/ y.ns and the first two terms
and the amplified input signal fieldhe signal satellite line are

where w varies with the signal strength. The input signal
field can be written in the equivalent forms
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Bl v ens Bs[ fy ons

FIG. 4. Normalized cavity mean photon number as a function of £, 5. Normalized population inversion for the same param-
the normalized input flux at the signal detuningsy. indicated, for  eters as in Fig. 4.

a below-threshold amplifier G= %) and a symmetrical cavity

(r1=72=7o)- The population inversion is obtained fro@.32, and
» o some numerical results are shown in Fig. 5, wheris nor-

. valBd? 29537:C(1-C)|Bg* malized by the laser population inversi@y. The first two

|argl "= w2+ yg(l_c)2 nd w?+ 73(1_(;)2]3 terms in the power series expansion(8f32 for low input

intensities give
(|ﬁ$|2<70ns)i 3.9 2
D=CD.l 1— 72|ﬁ5| (|B |2<yn)
where the first term agrees with the result of first-order ° nd w’+¥5(1-C)?] STk
theory[1] and the second term shows the beginning of non- (3.7

linear behavior as the strength of the input signal increases. . . L . . ) .
The cubic equation also has a simple approximate solution ifhile the limit of high input intensities gives a population

the opposite limit of very high input intensity, whelré] inversion
2+ 2)
Y2l Bd? ~ ns(w—yc 23
|argl 2~ Py, (| Bg%> yeny), (3.2) D~CDq 7ol B (| Bg|“> yens). (3.9

o . . . : It is evident that the atomic transition is significantly satu-
and the amplifier again shows linear behavior, as is also evi-

dent from Fia. 4 rated at small detunings and high input signal intensities, and
The corre% o.ndin ains in transmission and reflectiorghis is the cause of the falloff in transmission gain from the
are defined byp 99 low-intensity form(3.5) to the high-intensity forn{3.6). The

saturation of the population inversion also causes a reduction

2 2 in the ratey,D of spontaneous emission by the inverted at-
aoul”_ vilas| : o1 it oo - i
Grw)=|—1 =5 (3.3 oms into all spatial directions from its zero-signal value of
Bin |:85| 7\|Dp'
The energy conservation conditid@.14 can be written
and in the form
Boof*_|v27as_|* Gr(0)| B2+ Gr(w)| B+ %(D~Dp)=|B<? (3.9
Gr(w)= 5| | B -1, (3.9
in S

for the below-threshold amplifier, where the gains are de-
respectively. The linear transmission gain at low input intenfined in (3.3) and(3.4). The reduction in spontaneous emis-

sity is obtained from(3.1) as sion is thus exactly balanced by the energy needed to provide
amplification of the input signal. Figure 6 shows the varia-
Y1Y2 tions of the output signal fluxes and the changéD —D )
Gr(w)= (IBd?<7ycns), (3.5  in the spontaneous emission rate with signal detuning for

2 209 2
@™+ 7:(1-C) C=13, where the laser cavity is assumed to be symmetrical

with y,=1v,=1v. and the input flux is given the value
|Bin>=|Bs|°= 7. Note that the sum of the three contribu-
tions, corresponding to the left-hand side (8f9), has the
detuning-independent value of the right-hand sid€30%).
N2 (1B4% yeny) (3.6 The stability of the below-threshold state in the presence
2 2 Bs Ychls)- . . . . . .\ . .
Ol S of an input signal is determined by the conditions given in

in agreement withi1], and the linear gain at high intensity is
obtained from(3.2) as

Gr(w)=
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2 x 1 x . D1=2yy5"a} Bsl/(w), 4.3

where the denominator is
Gr(w)

1 (otal /(@)= w?+ioyC—2y7(C-1) 4.9
(rates) and ¢, is the unknown phase of the field at the laser fre-
BsF 05T 1 quency
Gr(®) .
of 4 a =|a [expipy). (4.9

/’/ The frequencyw in these expressions is the signal detuning
A il from the unshifted laser frequency defined(inl), as the

Yi(D=Dy) ‘Bsf
/ shift | affects the satellite amplitudes and population inver-
s ] " 5 4 5 sion only in higher orders of the signal strength. The first
o/, form of «, in (4.2 reflects the four-wave-mixing origin of
this excitation at frequencya? — wg in the combination of
FIG. 6. Energy conservation in a below-threshold laser amplifiefW0 photons at the laser frequency and one at the signal
(C= %) with a symmetrical cavity, showing the variations of output frequency. The above first-order results have been derived
fluxes and the change in spontaneous emission rate with signal dgreviously[1].
tuning. The rates are normalized by the value of the input signal The second-order part of the equation of moti@n9)
flux, chosen to bdBg/?>=y.Nns, so that the output fluxes are ex- separates into three different frequency components
pressed as gains. The sum of the three rates, shown by the horizon-

tal line at ordinate 1, verifies the conservation of energy. —iwla =(9%y,)(a Dj+asD} +a,D;), (4.6
(2.39. It is evident from(2.32 that D<D, for the laser (ve—2iw)ays=(9%y, ) (e Do+ asD1+ aysDy),
below threshold withC<1, and it is seen by inspection of (4.7)

(2.36 and (2.37 that the first two stability conditions are d
satisfied. A simple calculation with the forms of all three
coefficients given in(2.36 to (2.38 shows that the third +2iw) o =(a2/v. ) (a D* + a.D* + s D
condition in(2.39 is also satisfied, and the state considered (e Jaz1=(g7y1) (e D3 1 2! 0),(4.8)
in this subsection is indeed stable.

while the equation of motiof2.10 separates into two com-

IV. ABOVE-THRESHOLD LASER AMPLIFIER ponents

(SECOND-ORDER THEORY) *
yCDg=—(20%7y ){(e a +af of +|ag/*+|a;|*)Dy
A. Equations of motion . . . N

- +a(acDi+a; D7)+ a; (asD7 +a,D

In the normal state of the laser amplifier above threshold, L(asDytai D) +ai (D + Dy}

where the strength of the input signal is insufficient to cause (4.9
injection locking, the cavity fieldx and the population inver-
sion D contain all of the terms given i2.43 and (2.44
correct to second order in the input signal amplitygde The
equations of motion(2.9 and (2.10 can be separated into
sets of eqqatipns in the zeroth, first, gnd second ordegs in +(aLal +af ag)D 1+ |?D,y}. (4.10
after substitution of the forms of solutid2.42—(2.44). The

components of the equations of motion that oscillate at dif-These five complex equations provide solutions for the two
ferent frequencies can also be separated out. The zerotkeal quantitiesw; and D and the four complex quantities
order equations reproduce the results for the free-running[[, a,s, @y, andD,, and they can be obtained by straight-

laser given in Sec. Il C. . forward but somewhat tedious algebra.
Solution of the first-order equations produces the results

and

(71— 2iw)Dy=—(29% vy, {(a a3+ af axst asef )Dg

: . B. Injection lockin
as=i{w*+i0y C~ ¥ y(C~1)}yy Bs/ o (w), ject g

4.2 Consider first the second-order corrections to the param-
eters of the emission into the basic laser line. The solution
. 292707%/20[5’8; for the shift in the frequency of this line can be written in the
a=—i —— form
oy /" ()
" 2 2 2
. 1) —w+2 C-1J(C-1
. 7\|7c(c_1) y%/zﬁg eX[XZI(ﬁL) _L: 7”’)/2[ yl\’)/C( )]( ) |ﬁS| ,,
=—1 /* ’ (42) Ye wD(w) 7/2|aL|
w” (o) 4.19)

and where
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D(w)=|/(w)]*= 0?¥{C?+[0?~2y7(C~ 1) 2
(412 s O, O,
It is seen that the frequency shift is negative, that is, away 5 \
from the input signal frequency, for detunings greater than total

2

the frequency [3,7.(C—1)]Y? associated with relaxation
oscillations[4]. However, the shift is otherwise positive, and
this is the case for the parameter values assumed in the re-
mainder of the paper. The positive shift obtained fr@hil)

05 E

{output flux)/2y |oi |

for detunings very much smaller than the relaxation oscilla- Spo;
tion frequency agrees with previous wdr. 0 e —
The mean number of photons excited in the cavity at the
shifted laser frequency is given by y
05 R R E S
* 0 02 04 06 08 1 12 14 16 1.8 2
lay+ o] |>~|a >+ aLa] +af o), (4.13 (@) o
correct to second order in the input signal amplitude, where 1.4 - ;
the solution for the second-order change in the laser field g U “n
. 1.2 | .
gives
at total il
U+ afal=—{o*+20%y[yC—y(C—1 "5 -
aia] tafa=—{o"+20%y[7C-y(C-1)] s o8t
+2[ ¥7:(C—1)1%} y2l B 0*D(w). & oerp s
>
(4.19 = o4 ! 1
g
It is easily shown by rearrangement of terms that the expres- 2 02T k
sion in the curly brackets is positive for all values of the D
parameters. The mean photon number in the shifted laser line 02—
determined by4.13 and(4.14) is thus reduced and the laser o) oseen
line is extinguished for a sufficiently large input signal flux 04 - - ” v - 1
| Bg|“ or a sufficiently small detuning. The extinction of the b o/t

laser line corresponds to the onset of the injection-locked

state of the laser amplifier, and for a given input signal fluX, FIG. 7. Energy conservation in an above-threshold chataser
the detuning at which the transition occurs according to theymplifier (C=2) with a symmetrical cavity correct to second order
second-order theory is denoteq, . in Bs, showing the variations with signal detuning of total output
These expressions for the second-order frequency shiftuxes at the laserl(), signal (S), and image k) frequencies and
and change in laser intensity simplify considerably for athe change in spontaneous emission (af®r), normalized by the
classA laser, wherey,> vy, and w, and the approximate re- output flux 2)/C|a|_|2 of the free-running laser. Results are shown

sults in this case are for input signal strength$Bs|*/ v |, |* equal to(a) 0.5 and (b)
0.05. The right-hand side of each part refers to the normal state of
o) 27%%((3_1)2/&’(32 |,33|2 the laser amplifier and the left-hand side to the injection-locked

—= , (4.15 state. The sums of the rates, shown by the liftel) at ordinates
Yo 0°+[27(C—1)IC]* yyla\|? 1+ (| Bg/%2y¢| L |?), verify the conservgtion o“:engrgy.
which is always positive, and gether with the laser frequency shiff{ at the injection-
2[w?C+ yg(C—l)Z] v,| Bg¥ 0?C? locking point, obtgined frpnﬁ4.15). These figures again as-
5 5 sume a symmetrical cavity and a normalized pumping rate
o +[2y(C—1)/C] C=2. Itis seen that the injection-locking detuning frequency
(4.18 o). and the laser frequency shift/ tend to the same value

The variation of the mean output photon flux at the shiftedVNen the input signal flux is much smaller than the output
laser frequency with the input signal detuning, given byflux of the free-runn_lng laser and the detqmngs are much
(4.13 and (4.16), is illustrated by the curves labeldd in  Smaller than the cavity decay raje . Approximate expres-
Fig. 7 for two values of the input flux. As the flux is normal- SIONs in this case are
ized by the output flux 2« |? of the free-running laser, " 2 2
these curves all tend to the value unity for input detunings so eL__" L‘Lb (4.17)
large that the laser emission is unaffected by the input signal. Yo 2%c0 yole]

The detuningw;, , for which injection locking occurs,
determined by the condition for extinction of the laser line, isfrom (4.19 and
obtained from(4.13 and (4.16 in the form of a quadratic ol v, ( B4 )1/2

*
aLaE + af aﬁ= —

equation for w/{>. Figure 8 shows the variation of this

second-order injection-locking detuning with input flux, to- Ye \/E')’c

(4.18

72|CYL|
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16 ‘ ‘ ] , sponding expressions in the injection-locked state. Thus,
with the same definition as if8.3), the transmission gains at
141 T the signal and image frequencies obtained frghi) and
(4.2) are

Gy 2112 YO iy C- DT
T 0® w?yiC?+[w?—2y,7.(C—1)]?
(4.19

(frequency)/y .

and

o ()= 1222 nreC-1)?
| | | | T 0" ohyiCH e -2y v C- DT
0 0.2 0.4 0.6 0.8 1 (4'20)

[Bsl® /v clor o where the form of the denominator is taken fragh12).
These are the gains that would be measured by direct detec-
tion of the laser output spectrum, and they should be distin-

) e ’ guished from the self-heterodyne gain derived and measured
frequency shift at injection lockinglower two curveg for a

SRS 3 ) X in [1], where the detected intensity is determined by the
Cl,e,‘SSA Ias,ﬁr W'thc_.z and a symmetrical cavity. The detunings square of a linear superposition of the signal and image am-
. andw," are obtained from the second- and fourth-order theo-plitudes
ries of the normal state of the laser amplifier, respectively, while The Iinear gains for a class-laser simplify to
w_ is obtained from the theory of the injection-locked state. The

nn

laser frequency shifte; and are the contributions of second
quency Shiter and oL y172 ©’+[7(C—1)IC]?

and fourth order in the input signal amplitude. Grdw)= PR [27(C— 1)/C]2 (4.22
Cc

FIG. 8. Variations with input signal flux of the detuning for
which injection locking occurgupper three curvesand the laser

from (4.13 and (4.16). Substitution ofw;, for w in (4.17)

A and
then produces the resultf = w| .
A theory of injection locking similar to that outlined y1va  [7.(C—1)/C]?
above was presented by Pan{&l] many years ago. As has Gr(w)= -~ @’ [27,C—1)IC]%" (4.22
Cc

been previously discusséti], his neglect of the excitation of

the cavity at the image frequency leads to results that argpe porizontal lines on the left-hand sides in Fig. 9 show

qualitatiyely valid, but they differ i_n detail from the above_ some examples of the signal gain in transmission for two
expressions. Thus, for example, his result for the output sigy,j,es of the input signal detuning.

nal strength in the linear regime differs from that obtained
from (4.1) by the absence of the factor of 2 in the denomi-
nator defined in(4.4) or (4.12 and his expression for the
laser frequency shift is always negative. Similarly, his result The solution 0f(4.6)—(4.10 for the second-order correc-
for the detuning and input signal flux needed to producdion to the static population inversion is

injection locking differs from(4.18 by removal of the factor

of v2. However, it should be emphasized that these second- D5=27727C| B4’/ D(w). (4.23
order theories for the extinction of the laser line are in any ) ) . )
case very approximate. As the injection-locking point is ap-1 "€ Presence of the input signal thus produces an increase in
proached, satellite lines of progressively higher and highefhe population inversion, in contrast to the re'd.uctlon that
order acquire significant strength from the laser line and th@ccurs below threshold. Of course the conditions below
second-order theory tends to underestimate the detuning atigréshold ensure that the energy needed for any amplification
overestimate the input signal flux needed to cause injectiofR the input signal must be found at the expense of the spon-
locking. A better account of the conditions at the injection-{2n€ous emission, there being no other source of energy. For
locking point is provided by a theory for the injection-locked the laser above threshold, the laser photons provide the main

state itself, and this forms the topic of Sec. VI. source of energy, and a reduction in the dagt-D,, of the
population inversion associated with the laser emission cor-

_ responds to an increase in the pBx§ associated with the

C. Gain spontaneous emission in all directions. For the clasaser,

The expression&.1) and(4.2) for the field amplitudes at the change in spontaneous emission rate obtained from

the signal and image frequencies are unchanged when thé.23 can be written
theory is extended to second order in the input signal ampli-
tude; the first modification of these linear forms occurs in the n_ 272vcl Bsl*IC 4.2
third-order theory presented in Sec. V. The linear gain of the YIEP0o™ 24 [2y.(C—1)IC]?" (4.24
above-threshold laser amplifier has been considered in detail
in Ref.[1], and we summarize here the results for the transand the variation of this quantity with detuning is shown by
mission gain, so that they can be compared with the correthe curves labeled “spon” on the right-hand sides of Fig. 7.

D. Energy conservation
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1.2 e and this is seen to agree with the energy conservation re-
quirement(2.14) when the expressiof2.23 with D=D, for
11 the free-running laser output flux is used. The right-hand
sides of Fig. 7 show the variations with detuning of the
— 1F change in the spontaneous emission rate and the output
S . fluxes in the laser, signal, and image lines, for the normal
= ool vi0lesl” /2 Bs| state of a clasg laser. It is seen that the sum of these quan-
£ tities is always equal to the right-hand side (df27), inde-
& . pendent ofw.
' ylos +ot PSS The remaining second-order quantities obtained by solu-
tion of (4.6)—(4.10 are the satellite amplitudes
07 4
vl sl @25= 0 Y2Yc{ — 40> = 2i 0’y (2C+1)
06 : : : ‘ : : : : :
0 02 04 06 08 1 12 14 16 18 2 +w7u[27’uc+37’c(c_l)]+iYfYCC(C_l)}
2 2
(@) Bl /v lous X af BARwy, /" (w)/(w)?, (4.28
r 1 az=—i9%y27{20°~10*(2y,C+ 7y~ 5wy ¥.C
2 - T4y 7 (C- D} alBs 0yl (0)7* (0)?
10 F m\a\QZ\ 1 (4.29
— BlesP 2B . . :
‘E 8| MXM\ vkl /o1 and the amplitude of the population pulsation of frequency
e ”\\B\ N 2 2(1)_
; 6 sl 18]
A D2=29?y,7c{20°+iw*(2y,C+3y:) —3wy,7.C
N | =2iy72(C- D}t ?BY oy, " (0)/(0)?,
(4.30
° 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 where
(b) Bl /v clor.

/' (0)=20*+i0yC—y7(C—1). (4.31
FIG. 9. Variation of differential transmission gain at the signal . L
frequency with input signal flux for a clasts-lasger amplifier gt The structure of the e.XpreSSICM'ZS) fo_r.azs IS Slm"ar.to
detuningsw/ y, equal to(a) 1.02 andb) 0.23, the injection-locking that of (4.2) for and it reflects the origin of the satellltg at
frequencies w, /y, for values of the normalized input flux [T€AUENCYy 2s—w in a four-wave-mixing process that in-
|Bd vl |? equal to 0.5 and 0.05, respectively. The lines to theVOlVes two signal photons and one laser photon. By contrast,
left of the injection-locking points show the gains in the normal the expression(4.29 for «, has a different structure that
state, correct to zeroth and second orderksig, while the curves ~ reflects the origin of the satellite at frequenay;3-2wsin a
to the right show the gains in the injection-locked state. six-wave-mixing process that involves two signal photons
and three laser photons. The square moduli of the amplitudes
The second-order quantities derived above are consistegitven by (4.28 and (4.29 determine the intensities of the
with the energy conservation conditions expressed2$3 second signal and image satellite lines, but these are of
and (2.14). With an excitation of the laser cavity that now fourth order ings and they do not contribute to the second-
contains several frequency components, the cycle-averag&dder output flux expressior(d.25 and(4.26).
output fluxes are given by
V. THIRD- AND FOURTH-ORDER THEORY

T 12_ 2 n* x 2 2
|@ouf*=yafleL|*+aral” +af a +|ag*+|a] }( The second-order theory of the above-threshold laser am-

plifier outlined in Sec. IV is readily extended to higher orders
in the input signal amplitude. We give here some results for
the third- and fourth-order terms in the characteristics of the
N " laser line and its satellites. These indicate how the descrip-
|Boul®=vollal?+ aral” +af af +]ag®+ | |?} tion of the laser amplifier develops as progressively higher-
12 x  x order terms are included in the theory. Although yet higher-
— 72 (asBi+as B+ By (428 order terms could be evaluated, at least in principle, the
calculations become very complicated, and they are not jus-
tified by the additional benefits to physical understanding.
Consider first the extension to third order, where the mean
[ internal field in the laser cavity, given in second order by
|aoud®+|Boud®+ 7iDo=2vc|ar|?+1Bg? (42D (2.43, expands to

and

correct to second order ifg. It is straightforward to show
with the use 0f(2.2), (4.1, (4.2, (4.14), and(4.23 that
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a=(a +a))exd —io t]+ (ast ad)exd —i(w +o)t] The procedu_re is now the same as in Sec. IV, in that _the
above expressions for the cavity field and the population
+(a+af)exgd —i(w —w)t] inversion are substituted into the equations of moidr)
. and (2.10, which can then be separated into sets of equa-
+azsexd —i(wLt 20)t] tions corresponding to the different orders@g. The equa-
+ agex —i(w, —2w)t]+ assexf] — i (o, + 30)t] tions of the zeroth, first, and second ordersdg are the
same as before, but there are new third-order equations in
+ agexd —i(o,—3w)t] (5.2)  sufficient quantity to determine all of the third-order ampli-

o ] ] ) tudes that occur if5.1) and (5.2). The solutions are quite
and the mean population inversion, given in second order byompiicated in general, and we give here partial results only
(2.44, expands to for classA lasers, wherey,> vy, and o, the signal detuning.

" - R The third-order correction to the amplitude of the first
D=Do+Do+(Dy+Dy)exp—iot) signal satellite line is P

+(D*+ D" )expliwh)

m_ _ ~2,32 42 i3 _
+Dexp — 2i @) + D3 exp( 2i o) as=—0v5 y{20"C(2C+1)+2iw”y.,C(C—1)

2 2,.2~2 2

+Daexp — 3iwh) + Diexp(3iol), (5.2 X(C7+2C+3) =507y CHC~1)
H 3 3

where the new terms are those with 3 subscripts or three F2loyC(C-1)
primes. It is seen that the terms of first order in the input —4y4(C—1)" B4l B 0®y, ¥/ C/(w) (5.3
signal amplitude acquire additional third-order corrections
and that new terms associated with the satellites at detunings
+ 3w from the shifted laser frequenay, appear. and the change in the amplitude of the first image line is

49773 e By v wC—iy(C—1)]af +2ig%ycal e }
oy — "
! 0Y; ¥iloC—i2y(C—1)J?

) 49*y.ydH 0 C—3iw?y(C?—1)— wy’(C—1)(5C—4) +iyd(C— 1)} a?BE| B4l
0?1y CY* (w) ’

(5.4)

where correct to ordefBg|2, and this reduces to the definition of the
linear gain in(3.3) if the fourth-order terms on the right-hand
SN, 2 _ 2 ; _ 2 side of (5.6) are neglected. The inclined lines on the left-
/(@)= +[27(C-DICPHo+i[27(C=1/C hand sides in Fig. 9 show the differential gains obtained from
X{w+i[ y.(C—1)/IC]} (5.5 (5.6) with the use of(4.1) and(5.3).
The extension to fourth order in the amplitude of the input
signal is performed in a similar fashion. Thus the mean in-

order pobulation pulsation. the amplitudes. anda.. of the ternal fielda of the laser acquires terms additional to those in

pop on p o plituaess @3 O1H (5.1 that oscillate at frequencie®, = 4w and there are
two new satellites that occur in the third order of the mJeCtedfourth-order corrections to the laser fildenoteda!”) and
signal amplitude, and the amplitud2; of the third-order L

modulation of the population pulsation have all been deter%) the si?telIltterr:eldsézéﬁiazdlo?,.t;]'he F(’glg;"t"ﬂ'?n |r}ve:3|ort1
mined[21], but their detailed forms are not needed for the acquires terms additional fo those at puisate &
: : frequencies+=4w and there are fourth-order corrections to
present discussions. the static term and to the terms that pulsate at frequencies
The changé5.3) in the signal amplitude modifies the lin- P q

ear transmission gait.21) by the addition of a nonlinear *2w. The laser frequency itself acquires a fourth-order cor-

contribution. The nonlinear gain is best expressed in differ€ction. so tha(2.40 is replaced by

ential form as

anda, is determined by4.14). The changd’ in the first-

o =0t o/t (5.7
) a|aou42 and the definition(2.41) of the signal detuning from the
Grs(w,|Bg*) = ABZ shifted laser line is replaced by
|
w=w—w~0/"Fos- o o o . (5.9

J
=71 55 s+ ased +atag},
Bs The detuning for which injection looking occurs also ac-

(5.6)  quires a fourth-order correction, denoteq)”, and this is
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determined by the condition for extinction of the laser line, 2 -_—

obtained by generalization of the expressidnld for the of + 67 o,

mean number of photons in the cavity at the shifted laser S

frequency 15 |

total

2

IH/|2

|a|_+aﬁ+af|_ %|a|_|2+a|_afﬁ*

*x " nn* * mn "2
tala taa’ tala T+ |a|_|

0.5 q
=0. (5.9 spon \
l x
The detailed expressions for the various fourth-order 0 Aiss
guantities have been calculatgl], but they are quite com-
plicated and instead of giving their explicit forms, we show , , , , ,
their effects by means of some numerical examples. Thus 0 02 04 06 08 1 12 14 16 18 2
Fig. 8 shows the effects of addition of the fourth-order cor- (2) oY,
rections to both the laser frequency shift and the injection-
locking frequency. It is seen that the correction to the laser Sw(Lw’{L' oy
frequency shift is small for the signal input fluxes towards 12 | .
the left-hand end of the axis, but that the correction is rela- L total
tively large for the larger input fluxes and truncation of the
theory at the fourth-order terms does not provide reliable
values for the shift in this region. The fourth-order correction
to the injection-locking frequency is seen to lie between
about one-fifth and one-third of its second-order value over
most of the illustrated range of input signal fluxes, again
indicating that the expansion of the laser equations of motion
in power series of the input flux requires additional terms in
order to obtain accurate results close to the injection-locking 02 Fgpon
point. 04 ‘ , s .

The effects of the third- and fourth-order terms in the 0 02 0.4 06 08 1
laser and satellite amplitudes and in the population pulsation () ©/Ye
are illustrated by Fig. 10, which shows the variations with
signal detuning of the contributions to the total output flux ~ FIG. 10. Energy conservation in an above-threshold clas-
from the laser amplifier, again f@=2 and for a symmetri- S€r amplifier withC=2 and a symmetrical cavity, showing the
cal cavity. The curves can be compared with the Secom]\zfariations with §ignal detuning of 'the output fluxes at t.he laggr (
order results shown on the right-hand sides of Fig. 7. Théignal ), and image () frequencies and the change in spontane-
total emitted fluxes are unchanged, in conformity with the@US emission ratéspon, correct to fourth order ifs . The rates are
requirements of energy conservation, but they are redistripiomalized by the output flux 2|a, |* of the free-running laser

uted between the different components. For a given value g9 "ésults are shown for input signal strengfig®/ vl a|* equal
wly,, the output flux at the laser frequency is always re_to (a) 0.5 and(b) 0.05. The sums of the rates, shown by the lines at

. . . inates 1 212 2 ify th tion of :
duced, in accordance with the larger values of the detunlnélmJllna es 1 (|Bel*/2yc| . [), verify the conservation of energy

for which the transition to the injection-locked state occurs in

the fourth-order theory. The outputs at the second image, angPnsidered some aspects of the stability of the state. Here we
particularly the second signal, frequencies are small in fourtifletermine the main features of the injection-locked state in
order. greater detail, including its stability, for comparison with the

other regimes of operation of the laser amplifier.

The single-component cavity field, whose form is given
by (2.26), has an amplitudéag determined by solution of

The injection-locked state of the laser amplifier is simpler(2.33); the same cubic equation also occurs in the theory of
than its normal, or unlocked, state because the extinction dPantell[5], which is valid in the injection-locked state since
the laser line removes the multiple satellite spectrum. Thehere is no excitation at the image frequency. The static
field in the laser cavity thus has only the single component opopulation inversion is given by2.32. The continuous
frequencywsg, illustrated in the final part of Fig. 3, and the curves in Figs. 11 and 12 show the results of some numerical
population inversiorD loses its pulsating components. The calculations of the mean-square intracavity field and the
theory outlined in Sec. Il D therefore applies, withnow  population inversion as functions of the input signal flux, for
taken to be larger than unity. The injection-locked state thuseveral values of detuning from the unshifted laser fre-
resembles the laser amplifier below threshold, treated in Sequency. It is seen that both of these quantities have three
[, but important differences occur on account of the highdifferent solutions for the smaller values of signal detuning
level of excitation of the signal mode in the laser cavity. The[6], but only single solutions occur for the larger detunings.
theory of injection-locking in the limit of small input signals The solutions forw=0 and their stability have been consid-
is described by Siegma#], and Tredicceet al. [14] have  ered previously7]. All of the solutions satisfy the inequality

(output flux) /2y, o |
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VI. INJECTION-LOCKED LASER AMPLIFIER
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FIG. 11. Variation of the normalized intracavity mean photon  FIG. 13. Same as Fig. 11, but for a cladaser amplifier with
number with normalized input signal flux in the injection-locked ¥,/ v.=0.2, as appropriate for GO
state of a clasgx laser amplifier withC=2 for the values of detun-
ing w/ vy, indicated. The broken curves are the boundaries of theapproximation for small input signal fluxes is discussed later
stability region shown by the shaded area. in the section and the corresponding broken curves in Figs.

11 and 12 are obtained numerically. They are seen to inter-

(2.31) and the mean-square cavity field and population inversect the continuous curves at points where these have vertical
sion take the simple values given (2.34 when this is sat- tangents, and indeed the conditiag=0 can be rederived by
isfied as an equality. The continuous curves in Figs. 11 andifferentiation of(2.33 or, symbolically,
12 are valid for both clasé-and clasSB lasers, irrespective
of the value ofy,/y,. 9| ag?

The shaded regions in Figs. 11 and 12, bounded by the aO:O‘:’W:w'
broken curves, indicate the parameter ranges for which the

injection-locked state is stable. These stability regions ar@y contrast, the boundaries determined by the conditions
determined by Hurwitz's theorem and their boundaries argy, =0 anda,a; =a, obtained from(2.39 do depend on the
determined by the condition@.39 expressed as equalities. ratio y,/y, and they are different for the different classes of
Consider first the boundary determined by the conditiongser.

ap=0, which is represented by the broken curves on the left Consider first the clasa- laser, wherey,> 7., and the

of the figures. It is apparent fro2.36) that this condition is  condition a;=0 from (2.37) takes the limiting form
also independent of the ratig/y., and the same boundary

applies for all clas#x and classB lasers. The condition D |ag?
a,=0 has no simple analytic form in generalthough an 1- D—O+ =

(6.9

SO 6.2

The a;=0 stability boundaries obtained with the use of
(2.32 are thus

2
D
o’ 51, P _e 6.3
ns DO

These straight-line boundaries are shown in Figs. 11 and 12.
The remaining stability boundary conditiega, =a, is seen
from (2.36—(2.38 to be identical toa; =0 to leading order
in /v, and the second and third conditions (.39 are
degenerate for the clagsiaser.
The straight-line boundaries do not occur for the class-
: laser, where all of the bounding curves of the stability re-
0 02 0.4 0.6 0.8 gions must be obtained numerically. The continuous curves
BsP /vl in Figs. 13 and 14 show the same variations of mean-square
intracavity field and population inversion with input signal
FIG. 12. Variation of the normalized population inversion with flux as Figs. 11 and 12, but with shaded stability regions and
normalized input signal flux in the injection-locked state of a their broken boundary curves drawn for a rafigy, appro-
classA laser amplifier withC=2 for the values of detuning/y,  Priate to a CQ laser. It is seen that the stability conditions
indicated. The broken curves are the boundaries of the stability2.39 now give rise to three different boundary curves in
region shown by the shaded area. principle, although the conditioa; =0 has no real solutions
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tained in the fourth-order theory from the conditit9) for

the vanishing of the field excitation at the laser frequency in
the normal state of the laser amplifier. However, it is clear
from Fig. 8 that the fourth-order terms in the theory of the
normal state make significant corrections to the second-order
frequencies, and it is expected that the sixth- and higher-
order terms will produce further increases in the injection-
locking frequency as the emission at the laser frequency suf-
fers further reductions by transfer into the growing number
of satellite lines. More accurate treatments of the normal
state should thus bring the two curves of injection-locking
frequency closer together.

The identical left-hand sides of Figs. 7 and 10 show some
typical results for the variations with signal detuning of the
5 5 output flux at the signal frequency and the change

B /¥l y(D—Dy) in the spontaneous emission rate from the free-
] - ] running laser value, obtained by numerical solution of the

FIG. 14. Same as F_|g. 12, but for a cldddaser amplifier with  ~ \pic equatior(2.33 for |as|2_ A comparison of the differ-

%/ 7c=0.2, as appropriate for GO ent right-hand sides of these figures shows how the apparent
regions of coexistence of the injection-locked and normal
%tates of the laser amplifier shrink as higher-order terms are
included in the theory of the normal state. The change in
L . . . spontaneous emission rate in the injection-locked state from
injection-locked state persists, denoteg , is a function of 4 free running laser value can be either positive or negative

the input signal flux that can be obtained from the equation$, sccordance with the solutions .30 for D—D,, and

for the .boundanes_of the stability region, W'.th th? Mmean-the occurrence of positive values at the larger detunings ac-
square intracavity field and population inversion eliminated

: cords with the increase in spontaneous emission predicted by
by the use of(2.32) and (2.33. The calculation must be the theory for the normal state.
performed numerically for the cunag=0, but for a clas#

I he limiting f 6.3 b d for th The signal gain in transmission is nonlinear in the
aser the limiting forms in(6.3) can be used for the curve o ction-locked state, and it is again appropriate to work
a,;=0 and the resulting relation obtained frd33) is

with the differential gain defined i¥6.6), where the output
flux y,|ag/® is now obtained by solution of the cubic equa-
tion (2.33. Some typical numerical results are shown in the
sections of the curves of Fig. 9 for input signal fluxes greater
than the value for which injection locking occurs. It is seen

where the laser cavity is assumed symmetricalby comparison with Fig. 11 that the gain remains finite at the
(71=7v,=17.). The right-hand side of6.4) becomes nega- ;=0 injection-locking boundary, as in Fig(8, but that
tive for a sufficiently small input signal, and it appears thatinfinite differential gain occurs on th&,=0 boundary, as in
an imaginary injection-locking frequency could be obtained.Fig. 9b), in accordance with the infinite slope condition
However, it is straightforwardly shown frof2.36 and(6.3) (6.1 on this boundary. The onset of injection locking gener-

that the stability boundaries,=0 anda,;=0 intersect at the ally leads initially to an increase in the gain, compared to the
input signal strength and frequency given by gain in the normal state shown on the left-hand sides in Fig.

9, but higher-order terms in the normal-state theory could
| B4/? o)L again lead to closer agreement between the values on either
Yol =2(JC-1)%, 72\/6—1, (6.5  side of the injection-locking transition. For the injection-
e ¢ locked state with very high input fluxes, whedygs|?> y.n.,
tthe approximate solution of2.33 given in (3.2) remains
valid and the gain approaches the limiting value given by
(3.6).

0 0.2 0.4 0.6 0.8 1

for the chosen parameter values. The broken curves f
a,=0 are unchanged from those in Figs. 11 and 12.
The maximum detuning frequency for which the

i 1Bd?

7_§_ YcNs \/E—l

—(yJC-1)?, (6.4)

and thea; =0 boundary becomes redundant before the righ
hand side of6.4) becomes negative. The frequengy puts
limits on the maximum value of detuning and minimum . L S
value of input signal field for which the injection-locked The condition for energy conservation in the injection-
state is stable. It thus provides a value of the detuning foloCked state resembles that in the below-threshold laser am-

injection locking that can be compared with the values Obplifier, given by(3.9), as signal amplific;ation or attenua.tion
tained from the theory of the normal state. can only be compensated by reduction or increase in the

The results for a clasa-laser are shown in Fig. 8, where spontaneous emission. The condition can be written in the

the composite curve labelad,, is constructed numerically 0'™M

from the boundary condition,=0 for smaller values of the

input signal flux and analytically from the boundary condi- |aou®+1Boud*+ 71(D—Do) =2yc|ar|*+|Bin|*, (6.6)

tion a; =0 given by(6.4) for the larger values of input signal

flux. It is seen that the injection-locking frequenay, ob-  where the first two terms on the left-hand side represent the
tained from the condition for the existence of a stabletotal output flux at the signal frequency. The energy conser-
injection-locked state is larger than the valug + ;" ob-  vation is illustrated by the numerical results in Figs. 7 or 10,
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where each frame shows a sum total of the contributions tpopulation pulsations in the laser cavity, and tith image
the rate of emission of energy that remains equal to the samsatellite and the {+1)th signal satellite are generated by
constant value throughout the normal and injection-locke® (n+ 1)-wave-mixing processes. The emission of output
states of the laser amplifier, in accordance Wi#t27 and  flux in the satellite lines occurs at the expense of the output
(6.6). flux in the laser line, which is reduced from its free-running
The properties of the injection-locked state derived hergjaue. The satellites grow in intensity and the laser line
can be compared with those found in the limit of a weakyeakens as the input signal flux is increased and as the signal
input signal 4], wherey,| B¢|*<|a, |*. The injection locking  getuning from the laser line is reduced. We have also evalu-

in this case occurs at small signal detunings with ye, and  g4e4 the shifts in the frequency of the laser line that occur
it is seen from Figs. 11-14 that only the stability boundary

hen t f th dand f i i
conditionay=0 need be considered. With the use(®32 when terms of the second and fourth orders in the amplitude

. " . : of the input signal are included.
and(2.39), this condition can be approximated to obtain The second aim is the comparison of the conditions for

larg? c? w2 injection locking obtained by an increase in input signal
_52~1_ ——— (6.7  strength, or a reduction in the signal detuning, in the normal
|| 2(C—1)° ¢ state of the laser amplifier and from the stability of the
injection-locked state itself. The former approach was devel-
and oped by Pantell[5], who identifies the injection-locking

5 point from the condition that the emission at the laser fre-
R%1+ c i (6.9 quency is extinguished. We have improved on this earlier

Do 2(C-1) y2’ work by inclusion of the first image satellite in the linear

theory and by inclusion of the second signal and image sat-
correct to second order in/y,. These forms can now be ellites in the nonlinear theory. The inclusion in the theory of
substituted into(2.30 to obtain an approximation to the more satellites produces enhanced transfer of energy away
injection-locking frequency from the laser line and thus causes the transition to the
injection-locked state to occur for smaller input signal

wIZL _ 1B4? c? |Bg* \? 6.9 strength and larger detuning. This approach to the theory of
V2 yde? T 4C-1)2 |yl ?) : injection locking can only be approximate, as it becomes

algebraically impractical to include all of the significant sat-
with the cavity again assumed symmetrical. This expressiogllites in the immediate vicinity of the injection-locking
provides a good approximation to the curve &gy in Fig. 8  point.
for small input signals, and in combination wit.7) and The injection-locked state itself is amenable to a more
(6.9 it reproduces th@,=0 boundaries in Figs. 11-14 in exact treatment, as the cavity field is excited at the single
the same regime. Previous derivations for small input signalrequency of the input signal and its mean-square amplitude
fluxes have included only the first terms on the right-handsatisfies a cubic equation. We have determined the ranges of
sides of the above three resuls14]. Figures Tb) and 1@b)  signal strength and detuning for which the state is stable by
correspond to small input signals and provide a more desolutions of the cubic equation and evaluation of the Hurwitz
tailed description, compared to Fig. 29.4 of Ref], of the  conditions for the stability of its roots. These calculations are

behavior close to the injection-locking point. mainly numerical, given the basic cubic form of the ampli-
tude equation, but some of the stability boundary conditions
VII. CONCLUSIONS can be written as analytic expressions, particularly for the

classA laser or for small input signal fluxes. Thus the rela-

The calculations reported in this paper have two mairtion between the input signal detuning and strength at the
aims in the development of the understanding of the propernjection-locking point of a clas#r laser is largely express-
ties of a clas®A or classB laser with an injected signal. The ible in analytic form. The detuning for a given signal
first aim is the extension of previous calculations of the ef-strength obtained from this latter theory is consistently larger
fects of the input signal on the output fields of the laserthan that obtained from the former approach, which is to be
beyond the regime of linear amplification. In the normal, orexpected, given the approximations inherent in the power-
unlocked, state of the laser amplifier this is accomplished bgeries expansion, but we have shown that the two results for
the expansion of the dynamical variables of the laser irthe detuning become closer as higher-order terms are in-
power series in the amplitude of the input signal. The lasecluded in this expansion. The properties of the injection-
equations of motion can then be solved progressively to inlocked state and its transition to or from the normal state
creasing orders in the signal amplitude, and we have givederived here agree with previous work in the limit of small
results up to fourth order. It has been shown that increasinmput signal strengtfi4].
orders correspond to the excitation of an output spectrum We have evaluated the transmission gains, or losses, at
that contains increasing numbers of pairs of signal-image¢he frequency of the input signal that are achieved in the
satellites centered symmetrically on the laser line and sepasrious states of the laser amplifier, namely, below threshold,
rated by integer multiples of the detuning of the input signalthe normal state above threshold, and the injection-locked
from the laser frequency. The pulsations in the populatiorstate, and for each state we have determined the natures of
inversion likewise acquire higher harmonics of the frequencythe energy redistributions that are needed to source the am-
detuning. These contributions are produced by higher-ordeplification or attenuation. For the below-threshold and
nonlinearities in the coupling of the optical waves and theinjection-locked states, the energy balance for amplification
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or attenuation is taken from or given to the spontaneousw, , of the free-running laser, from positive to negative de-
emission in all directions and indeed there is no other sourcaunings, so that the states of the system pass from normal to
or sink of energy for these states. The situation is more cominjection locked and back to normal. The natures of the tran-
plex for the normal state of the laser amplifier, where thesitions between states, as the equilibrium of the initial state
presence of an amplified input signal produces an increase Imlecomes unstable, could thus be observed and compared
the spontaneous emission in all directions, together wittwith the predictions of theory for such quantities as the sat-
axial emission into other satellites of the laser line, all ofellite intensities, transition signal strengths and detunings,
which are sourced by reductions in the emission at theand laser frequency shifts. It would also be interesting to
shifted laser frequency. observe the predicted change in the sign of this frequency
It has not been possible to compare the detailed predicshift as the detuning of the injected signal passes through the
tions of the injection-locking theory presented here with ex-relaxation oscillation frequency of a claBsaser. It is hoped
perimental results, as the measurements currently availabtbat the calculations reported here will stimulate more de-
do not provide sufficient numerical data for evaluation of thetailed experimental work, leading to a better understanding
various expressions. However, the general scheme shown of the injection-locked state and the transitions between it
Fig. 3 for the development of the laser spectrum with reducand the normal state of the laser amplifier.
tion in the detuning of the input signal is in good agreement
with measurements on the Q@se_r[3]. Thu_s the grovvth of ACKNOWLEDGMENTS
the satellite spectrum and falloff in laser intensity were ob-
served as the detuning was reduced, leading to the extinction We are indebted to Dr. Mike Harris of the Defense Re-
of all except the signal contribution at the injection-locking search Agency for helpful discussions. J.J. thanks the Iranian
point. Such measurements, made, for example, with a signdlinistry of Culture and Higher Education for financial sup-
of fixed intensity, can tune the signal through the frequencyport.
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