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Instability of a multimode oscillation in a photorefractive ring oscillator
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A theory of multimode oscillation in an optical unidirectional ring resonator with photorefractive gain was
given in the weak-field limit, in which the mode coupling is considered carefully. The characteristics of
single-mode oscillation in steady state were analyzed in detail, especially when the externally applied dc
electric field is not zero. By numerical simulation, we investigated a three-mode oscillation and observed
instability phenomena which are similar to the periodic oscillation of several transverse family modes observed
in experiment[S1050-294{®6)01011-9

PACS numbes): 42.65.Hw, 42.65.5Sf, 05.45b

[. INTRODUCTION nomena such as periodic alteration of the transverse modes
[8,10] are observed. In nondegenerate states, however, the
In the study of the spatiotemporal dynamics of nonlinearsystem can be described by the Lotka-Volterra equation. The
optical systems, most experimental and theoretical studiegonclusions are presented in Sec. V.
are devoted to lasefd—4]. Recently there has also been an
increase of interest in photorefractive oscillatGpRO’s for Il. MULTIMODE OSCILLATION EQUATION
their rich spatiotemporal phenomena, for example, periodic FOR A PRO IN THE WEAK-FIELD LIMIT
alternation of transverse modes, optical vortices, and spa-
tiotemporal chao$8—10. So PRO provides another good ~ We know that the volume index grating induced by two
physics model for studying spatiotemporal behavior of noninterfering light waves in a photorefractive medium is gen-
linear optical systems. However, even in a PRO operating i¢fally accompanied by an energy redistribution between
the weakly multimode case, the spatiotemporal instabilitieghese two waves. This kind of intensity transfer beam
have not been given completely by theory, although somé&oupling is due to a finite spatial phase shiftbetween the
characteristics and phenomena such as multimode competiidex grating and the interference pattern, and when this
tion, spatiotemporal periodic behavior resulting from the fre-Phase shifty=m/2, the maximum energy transfer is ob-
quency beating between two different transverse modedained. The phase shift includes a constant phase shf
have been considerdd1—14. related to the nonlocal response of the medium under fringe
There are generally two different research methods tdlumination and the phase shift introduced artificially by ex-
study spatiotemporal dynamics of lasers. One is a global agernal meanse.g., moving medium, fringe displacemgnt
proach similar to that used in hydrodynam{d$,16. An-  Where ¢, is dependent on the dc electric fieldd) applied
other is decomposition of the electric field on the modes ofn the photorefractive medium and decreases frghto 0
the empty cavity{2—7]. In this paper, we pursue the latter as the field E) increases from zerid.7,18. This means that
research line with the derivation following procedures in lit- We can study the characteristics of the PRO under different
erature[2] for a laser. Neglecting the depletion of the pumpdc electric fieldsE, by changing the parametes, in the
beam in the weak-field limit, we give the multimode oscilla- €quations.
tion equation in Sec. Il for a PRO in which the influence of A typical photorefractive oscillator based on the two-
an externally applied dc electric field is included. The uni-Wave-mixing process is presented in Fig. 1. It is composed of
form field limit which has already played a useful role in @ ring cavity and a photorefractive medium which is placed
studying lasers is also introduced to simplify the equationsbetween two spherical mirrors!, and M,. M, is a total
In Sec. Ill we give some characteristics of single-mode osteflection mirror, and the reflectivity dff, is R. The total
cillation in steady state, particularly the intensity and fre-cavity length isL, the length of the medium is,. We as-
quency pulling when the externally applied dc electric fieldSume for simplicity that both wavepump and signal beams
is not equal to zero. Finally, multimode oscillation is dis- in Fig. 1) have the same state of polarization and the pump
cussed in Sec. IV, in which a three-mode oscillation is studPeam is a plane wave:
ied by numerical simulation. Because of the mode coupling o
in degenerate or quasidegenerate states, some instability phe- Ep(t,1)=Ael % et cc. 1)

When the PRO operates in the weak-field limit, i.e., the in-

*Present address: Department of Physics, FuDan Universitytensity of the signal beam is far less than that of the pump
200433 Shanghai, China. beam,ls<l,, the depletion of the pump beam can be ne-
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induced by the fringe illumination E@4), we decompose the
factor ApAF (t,1)/1o(t,r) of Mj(t,r) by Fourier transform in
transverse space:

Signal Beam

—ApA_J*(t’F)—fd C(t,z,ky)e K T+cc. (5
Io(t'r,) = Rcv \Z, q’ .C.
and
y C(t,z,K )—fd* md%"%—f- c
Ml%‘ M, ( 12y q’) ™ rxy Io(t,r_)) C.C.,

Active Medium
where [ dr,, indicates the integration in transverse space.

Pump B i P i
ump Beam Then the modulatioM;(t,F) can be written as

FIG. 1. Schematic representation of a unidirectional ring photo-
refractive oscillator with two spherical mirrors. The length of the Mj(t,r):f dRq,C(t’Z’IZq,)e_qu'*Fei(kpj-F—(spjt)_{_C.C.
ring is L. »=0 indicates the origin of the longitudinal coordinate
system, andy measures various longitudinal positions of relevance
to our discussion, in units df. The length of the active medium is = f dRqC(t,z,IZq)ei(qu'F* %Y +c.c.,
Ip.
glected, and sd\, in Eg. (1) is written as a constant irrel- Kpq=Kp—Kq

evant to the time and space. The signal beam, however, i (R st
should be a sum of modes: where Ky=K;+Ky . Noting that [C(t,z,Kg)e'pa ™ %)

+c.c] can be regarded as the modulation of the pump beam
. Ty o iR P oi)] with a uniform plane wave, we can write out the index grat-
Es(t,r)=§j: Aj(t,neltitTeiti+ec, @ ing An;(t,F) induced byM(t,F) [17],

wherej indicates the different modes ang are their oper-
ating frequencyunknown. Drawing the fast varying factor
eli(Ke"=wcD] from the above equation, we can rewrite it to

Ey(t,1)=Ay(t,F)eli®e ot g g, (3) X( f dRq¥(Kpg) C(t',2,Rg) e ®oa ™ %1t | +c.c.,

where (6)

1 [t ,
Any(t,F)=— f dt’ e ("I
7o Jo

— . . where 1, is the dielectric relaxation time which depends on
Ast,F) =2 Aj(t,Pell—ke (ejmeotl, the light intensity and can be regarded approximately as a
J constant in the weak-field limity(k,q) = Ang(k,q) €' #otked,
¢ (reference frequenay's the empty_cavity resonance fre- Ans is the saturation value of the phOtOinduced index
quency of one oscillating mode. From Eq4) and (2) we  change, andp, is a constant phase shift related to the non-

can write out the interference pattern formed in the region ofocal response of the medium under fringe illumination. The
the medium: parametersing and ¢, are all dependent ok,q=|Kpq| (or

the fringe spacing\ ,,=27/«y) besides the material prop-
[(t,F)=1o(t,F)[1+M(t,F)], (4) erties of the crystal, e.g., the electro-optic coefficidrid).
From Eq.(5) we know that the spectrumk,,= sk, around
where kp; results from a transverse profile of the fiedg(t,F) and
o can be estimated byk,,~ 1ivy~(1 mm)~* when the num-
IO(tir):|p+|s:|Ap|2+z |Aj(t,F)|2, ber of transverse modes is not very large in the oscillator,
] wherew, is the beam waist. On the other hand, the fringe
— spacing in the two-wave-mixing process is typifally on the
R R AAT (L) order of 1 um [17,18, i.e., ky~1/A,i~(1 pum) 1>6k,,.
M(U):; Mi(t’r):; TO(]T e il4ce,  This meanssk,,q aroundk; can be r;)églected and we have
¥(Kpg) = v(Kpj) . Therefore Eq(6) becomes

Kpj=Ko—Kj,  Spj=wp—ay. 1 [t A A (t,7)
. : . ~ Z | e (ttirg P A
In Eq. (4) the interference patterns of the various modes with An;(t,1) = y(kp;) Tofoe ( I (L)
each other are neglected, because the index gratings arising o
from these patterns are much smaller than that caused by the x e'(Roj =it dt’ + ¢.c.

interference of each mode with the pump beam in the weak-
field limit [14]. In order to get the index gratingn(t,r) and
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AGAR (t,F)
lo(t,F)

x e (Ko ™= %Vdt’ +¢.c. (7)

An(t,r*)=7i02 v(kpj)fote‘“‘”’fo E(p,¢,n,7)=§m: fm( 72, 7)Am(p, &, 1),

11

P(p.d.7.7)=2 Am( 7.0 Am(p. . 7).
because the difference of the operating frequengyfor m
various modes is only a few Hz in PRQ@2]. With the same
consideration as above we havgk,;)~ y(k,s), Where
Kps=(wp—wg)/c and wg is the operating frequency of the
mode whose empty-cavity resonance frequency wig.
Therefore Eq(7) becomes

where A (p, ¢, n) are the model functions. Index indi-
cates the different transverse moéeg., m—{p,l,i} for
Gauss-Laguerre mogleand the index for longitude modes is
omitted for convenience. Substituting E4.1) into Eq. (10)
and using the orthogonality relatigh"d¢ [5p dp AmlAﬁl2

1 [t AAX(L,F) = 6m.m,,» We obtain
AN(t,7) = Ang(kyge! Pokos) — f o h
oo Tott T
. —+ == = fu—alqn,
x ell(Rp=Ke) T=dpct Jlo= (=t 7oqt'  c.c., (8) dn v dt v
(12)
where Eq.(3) is used, and,.= w,— w.. Now, noticing that MAm _ 11iAY g+ f_m_ 1
the refractive index of the photorefractive mediur(t,r) ar (1+142)0m lp 12
should be written as=ny+ An(t,f), wheren,, is the index P
in the absence of photorefractive coupling, and substituting 2 TG,
Egs. (1), (3), and (8) into the Maxwell equation with the Xml "y m| mz| mymymym [+
slowly varying amplitude approximation, we get the follow-
ing equation for the signal beam: where ~we use the  approximation E/(l,+1)
~E/l,—(E/l p)IS in the weak-field limit. Fm m,m,m |n Eq.
ot As [ c\ 9Ag 2
—i V2A+ | I (12 are the mode-mode coupling coefﬂaents
2nbmC ot n,/ dz
—t/7 * *
i 2Angm i e U o i(d0+ 3ped) 1_‘mlmzmzm f p dp dd’ AmlAmzA An(p,d,7m).
N Ny P )
On the other hand, the boundary conditions for model am-
jt As ioatreirog t,) (9 Plitudest (7,7 are[3]
ol '
i f 1|A T —\/—e( i6m)gli 87, (L=1)/c]
whereV 2=g%/ar?+ (1) (ol ar) + (1Ir?) (9% d¢?). For sim- mo2L
plicity, we introduce
11, L—1Ia
E:Asei(ssq, fm EfiT_YL T y (13)
e Y7o [t Ag s 5 s whereé,,= (w,m— w¢)/(c/L), indexn indicates the different
P=- o fo I el %t et I ot %pct longitude modes. For convenience we transform them to

standard periodicity form by introducing the new set of in-

where ds= ws— ¢, dps=w,— wg, and adopting the new dependent variables

variablest= (1/7,)t, n=2/L, p=r(an,/LA)Y? Eq. (9) be- L
comes n'=—m,
la
i, JE 14E &
——V2E+—+——=i —E—alP, L—IafL 1
4 dn v dt v T=1+7y, I_n_|_§
(10
A +(1+iA))P and defining the new field amplitudés,,
ar lptls 20

f( 7', 7)) =T ' 7)),
where 81=08./y,, Apy=8pd v, v.=1lr, v=c/nyy.L, " " "

=i(2Andl 77/)\)9"“’0 Equation(10) is what we need to _ Am( 77 ) =0m( 7" 7 )Lm( 7)),
descrlbe the signal beam varying with the time and space in
the two-wave-mixing process. where
The next step is to derive a set of equations for the field
model amplitudes. For this purpose we decompose the field Ly(n')=et"ln Reiomtiopy (L-Inlcl(n' +12} (14

E and P on the empty-cavity modes, i.e., we consider the
expansion Then the boundary conditions become
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L) =fn(3,7)

?m( -

and the equations f&rm(n’,r’) take the form

6_77”,‘4_ . a, (In \/§—|6m+|51ng>fm—a|ACIm’
aq T 1
(9—;,“ (1+iA)qm+ ___2 E Ly mmym
p my,m
Lin,Lm L’r;,
m

where the approximatioh +(n,—1)I,~L is used. From
Eq. (14), the factor (_mlezL’r‘nzle) in Eq. (16) can be writ-
ten as

m;

Lo Ll
L

) = gli(L/e) (@ m, —wnm) (7' +1/2)]g—In R(7' +1/2)
17
Now, we integrate the left- and right-hand sides of Ef)

with respect tos’. Using boundary conditions E¢l5) and
defining

P 1/2
o= [ dn a7,

(v
Qm:f zdﬂ'Qm(n'.T’),

we have

f ~

Fe — =—K'(1+ia}, —|Al)f —RI,K'qp,

o (18
I0m o
W - (1+IA2)qm+ ;
E mlmzmzm mlm m1|fm2|2
pml ma

where

1/2
lem:J d 7’ eliL/Oon,m—onm (7' +12] (19
—-1/2

K=cT/2L, K'=K/y,, an=38u/(T/2)=(wpm— w)/K, Aj
=(y.IK)61=06s/K, pump parameterR=al,/(T/2)I,
=ibe %, b=(2mc/\K)(I,/L)An,, and transmissivity of

the m|rrorT 1-R. To get Eq.(18) we have made some
approximations as follows. In the first approximation we

carry out the uniform field limiti.e., T,|al | <<€1) by retain-
ing only the first-order terms i andal 5, so the integration
of the last factor in Eq16) is written approximately as
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1 1/2 I—mle2|-§12 - = 5
|_ i, Jll/zdn lemzmzm L, fml|fm2|

2 E fmlfm2|2Jl Zdnlrmlmzmzm

p My,my

 @li (L) o m —onm) (7 +1/2)]

In the second approximation we assume that the length of the
medium |, is far smaller than the Rayleigh length of the
cavity field in the region occupied by the active medif2

so for —1/2<%'<1/2 we have

Am(p:&:1")=Am(p,$,.0)=Am(p, ).

As for Ap(p,¢) we choose the Gauss-Laguerre modes in
this paper:

1/2

0 2 < p )l/Z p|
An(p,¢)=A P)=—|2—
m(p, @) p,l(p ) \/E ” (p+1)!
2p2) ) )
XLy| —|e ?7mB{(¢),
p m I(¢)
20
) (20)
1
_—— =0
N2
Bi"(¢)={ icoslqﬁ, 1>0, i=1
N
! inlg, 1>0, i=2
—= SIn ) 1 =
T
wherep=0,1,... is theradial index and=0,1,... is the an-

gular index,i=1,2 for [>0. L|p(2p2/ 7,) indicates the La-
guerre polynomial of ordep andl. It is obviously conve-
nient for our calculation to eliminate the parametgrin
working Eq.(18), so we introduce a new radial variaké
=pl\/n,, and Eq.(20) becomes

AS(p' p)= TT; Al (p' ),
1

(21
— 1/2
Wy 1 o\ 127112 :
_ 12 H
XLy(2p'%)e " B{(¢),
the coupling coefficients
1

lemzmzm: — lemzmzm )

(22)
lemzmzm:jo P,dP,JO dopAn A A m(p’,®).

Substituting them into Eq.(18) and defining E,,

:fm/\/z\/l_! Pm:(an/\/Z) \/l_!T,:‘YLt! we have
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9Em . ' - Where§r= b singy, ﬁi =b cosp, are the real and imaginary
. —K[(gm+ian—iA1)En—RPp], part of the pump paramet®, respectively. If we introduce
23 the frequency differencé between the pump beam,, and
(23 the empty-cavity resonanae,,, 6= w,— w,y, and notice
P ) : p )
—=—9,| (1+iA)P,—E the relationd= ds.+ 6,5, We get the frequency pulling from
Eq. (25):
+ > T Cim.mEm |Em |2]. __n _T
m%z m;m,m,m~m;m m1| m2| 5ps_ng+')’L d, ¢?o—2, (26)
The parametery, is no longer explicitly in evidence in the 1ot 12— 211
above equation. Equatiof23) is the basic equation for the 5ps:%a do# g (27
1

field model amplitudes and these modes may have the same
longitude index or not. For convenience we list its param-

. : where
eters againK=cT/2L and y, =1/7, are the relaxation rates

of the oscillating field and the grating, respectively. Coeffi- |l:§_
cientsg,,=1+d,,, whered,, denote the diffraction losses of v

the different transverse mode®/,=(w,m— w)/K, Aj l,=RKgn+R 7, — R4,
=5SC/K=LwS—wC)_/K, A= 6psl v, =(wp—wg)y, . Pump _ B
parameteR=ibe %0 [b=(27c/\K)(Io/L)Ang] is gener- [3=—(RKy, gnt+ Ry, 9).

ally complex and becomes real only when the dc electric

field Eq=0 (i.e., ¢o=/2). The Cp, ry and the mode-mode When the dc electric fi_eIch=0, from Eq.(26) we can see

coupling coefficientd™ are given by Eqs(19) and f[hat the frequ_en_cy pulling has the same form as that in Ia}sers
. My Mpmym : . if g,=1. While in PRO the response time of the oscillating

(22), respectively. From Eq19), the magnitude o€ miS  field is much shorter than that of the gratifig., v, <K),

related closely to the frequency spacing of the oscillatinghen we haves,;< & which means that the frequency pulling

modes: When these modes are nondegenerate, dg.m( is very strong; but whery#0, the frequency pulling be-

—wym)>K, then Crnym= On;ndm,m- Bt if the oscillating ~comes complicated, as shown in E&7). In this case, we
modes are degenerate or quasidegenerate, i‘eninh( give the 5— 6y curves labeledl), (2), (3), and (4) for Ag

) mode in Fig. 2a), their nonlocal phase shift being,= /2,
—onm) ~K, we haveCp, n~1. As shown in the latter text, 5 5 /6 and 0, respectively. The other parameters are
the behavior of the oscillator in this case is more compli-R=0.8, L=2 m, [,=0.02 m, =1 s, A=1.0x10"% m, for

cated. Ay mode g,=1, the coefficientI,,mni=0.3183, and
An,=0.805<10°%  0.865x10°5  1.08<10°%  and

Ill. THE CHARACTERISTICS 1.63x10 ° corresponding to curvefl), (2), (3), and (4),

OF SINGLE-MODE OSCILLATION respectively. In Fig. @) the detuningé for every curve is

varied under the condition df'=0, i.e., above the oscillat-

As a preparation for studying multimode oscillation, the i,y eshold. With Eqs(25)(27), the variation fors can be
characteristics of single-mode oscillation are discussed i'ovritten as ’

this section, particularly when the dc electric fidig+#0.
For smgle?mode oscillation, it is convenient to choose its Ri(y, —K)— /wRi2+4(nRr—1)(n+K)
empty-cavity resonance frequeney,,, as the reference fre-

quency w., then we havea;,=0, A;=(ws— w,n)/K, and 2

Eq. (23) can be simplified to ﬁ-(y —K)+ m—_l)()’ +K)
<5<t S ——. (29
IEm . ~ 2
WZ_K[(gm_lAl)Em_RPm]: ]

In the case oE,#0, Fig. 2(a) shows that the curve afs
op @24 vssis nonlinear, and the detuning=0 does not mean the
_m__ A _ T frequency differences, (between the oscillating field and

ot Vi[(1+142)Pm=Em+ FmnmmoErnl ] the pump beanis alsgsequal to zero, i.e., th#and 5, are

not equal to zero at the same time. In addition, the oscillating
wherel ,=EqE},. Making JE/dt=0, 9P, /dt=0, we get threshold given by Eq(28) is asymmetric with respect to
the steady intensity and the corresponding frequency relas=0. These characteristics, however, are absent when the
tion: electric fieldEy=0.
5 " Next we consider the steady intenslifff. Owing to our
_ OmtA; abandoning the plane-wave description, E2p) for 13 in-
TCmmmm Rgm—RiA] ’ cludes the mode-mode coupling coefficiehts,,hmwWhich is
(25) the result of the transverse effect, and then the intensity of
ﬁ-g +RA’ the higher-order mode will be stronger than that of the lower
—um one if neglecting the diffraction losses, because the coupling
Rigm—RiAg coefficientsI',,mm Of the higher-order mode are smaller.

st_
=

2
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14 A stationary /2 shift component of the grating which causes
] L&) the beam coupling, therefore the gain of the medium is in-
12 ¢ creased. This is the reason for the extreme valué; ot
1 F 670 in the case oE,#0. It can be seen more clearly in Fig.
4 2(b) in which we give thes— Iﬁﬁ curves(1), (2), (3), and(4)
N 08 G for Agg mode-with the nonlocal phase shifyy=m/2, 27/6,
2 ; / 71/6 and 0O, respectively; the other parameters are the same as
é 06 f ./ in Fig. 2(a). Each curve in Fig. @) has a peak value at the
0.4 7 2 detuning points determined by Eq(29). So far the charac-
; teristics of the single-mode oscillation under the different dc
02 t electric fields are clear.
. (1)
0 F IV. INSTABILITY OF MULTIMODE OSCILLATION
02

In this section we discuss multimode oscillation, and the
modes operating in degenerate or quasidegenerate states are
(@) ) S(Hz) studied carefully by numerical simulation. As mentioned
above, there is a relatiod>y, in PRO, so it is reasonable

2.0x107 -1.5x107 -1.0x107 -5.0x10° 0.0x10° 5.0x10°

0.08 ] f to adiabatically eliminate the field by makinte,/dt~0 in
= s /\(“) Eq. (23), and have
g ; i
g oos} B Em=(An+iBmy)Pm, (30)
2 3
5; where
k] 2. 0.04 /\lz\ ~ ~ ,
ot ( A4 . A = Rrgm_ RiAm
? / / \() TN
0.02 © _ ~
_ Rigm+ RrAm
| "G AT
0 - P _ AT Al _ . .
2.0x107 -1.5x107 -1.0x107 -5.0x10° 0.0x10° 5.0x10° ém_@% foa:mlg(g);coﬁgs)/ K. With the relation Eq.(30),
(b) | é (Hz) & "

P

FIG. 2. Dependence of the frequency differerdizg (&) and the Tm ==y, | (1+iA)Py— (Apt+iBmn) Py
steady intensity S, (b) on the detuning with the different nonlocal
phase shift{1) ¢pg=7/2, (2) 27/6, (3) /6, and(4) O standing for _ .
the different dc electric fieldg,. + > Iy mymomCmym(Am, +1Bm ) D, I m, P, |

mq,m,

The reason is that the higher-order mode can take better ad- ) , -~ .
vantage of the available gain because of its greater modal Dm=An+Bmn Im=PnPq. (39
extent when the pumped region is sufficiently broad. Another_ = _ - . .
characteristic of the intensitl?! is the existence of an ex- _Th|s Is the equation for de_scnblng the multimode oscillation
treme value with respect té,s (or the detunings). From in the photo.re.fractlve osqllator. I
Eqs. (25)—(27) and relationd= 6.+ dys, 8,6 and the detun- For simplicity, we consider a three-mode oscillation,
ing 6 corresponding to this extreme value are "

— 2
Aglp' ) =——e""",
) _tg(w d)o)y oolp’ b) \/Ee
1077 | 7
(29 Agi(p’ )= 2 (2p'%) Y% """ cosp, (32
T ¢ Vm
5=tg(2_7)(')ﬂ_—Kgm)-

1/2 )
!
31 ) e cos2p.

When the electric fielE,=0, Eq. (29) indicates that the Aodp’ ¢)= N (2p"%)
steady intensityﬁﬁ reaches its extreme value in the resonant

state 6=0; if Eo#0, however, the extreme value bf ap- These modes have different angular but the same radial in-
pears in the detuning sta#®*0 (and §,s#0) which means dex (p=0); for convenience, we only write out the angular
there is a moving interference pattern in the photorefractivéndex | for the mode indexn in the following. From Egs.
medium[see Eq(8)]. We know that in certain circumstances (22) and (32), we can get the mode-mode coupling coeffi-
the fringe displacement will enhance the amplitude of thecientsl"mlmzmzm:
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[ Toooo Tooor Toosz| | 0.3183 0.0000 0.000 aY ,
oooo 1ooo1 1 o002 — [ (By— A Xt (Am—1) Y

T1000 L1001 Tio02| =| 0.0000 0.1592 0.000p, IT

| Taooo Tooor Toogel L 0-0000 0.0000 0.079

- E lemzmszmzlmZ(Bmlxml+Aleml) )

my,my

[Towo Tows Touz| [0.1592 0.0000 0.079 T ox2iy?
Ti110 Tya1n Taiin| =| 0.0000 0.2387 0.0000
| 0.0796 0.0000 0.119

T=1v,1

where indexn=0,1,2 indicates the three different transverse

modes given by Eq.32). Equation(34) is the basic equation

for our numerical simulation, and we integrate it with the

-~ ~ ~ 4 - Runge-Kutta method. In the simulation, the parametejs
Tozz0 Tozor Tozzz 0.0796 0.0000 0.000 and A/, (i.e., Ay, Ay, Agy) are given by the following

Tis20 Tizo1 Tizpp| =| 0.0000 0.1194 0.000p, considerations only for convenience: We choose the empty-
0.0000 0.0000 0.179 cavity resonance frequency éf,o(p’,®) mode wyy as the

- reference frequency,, SOAj,=A1—a’oo=A;. While the

Aj and A, are determined in the case of single-mode

[Aoo(p’,®)] oscillation in the best state, which means that
We know that the nonzero elements of the coupling coeffithe detunings is satisfied to Eq(29), andAj,, A} can be
cients are corresponding to a kind of interaction among thegjiven by
modes which makes the behavior of the oscillator more com-

-F2110 F2111 Ij212|.2-

-’1:2220 F2221 ’f2222-
(33)

plicated, but from Eq(31) whether these interactions really , T &g
operate or not is also dependent on another parameter A2:tg(2_ 7)
lem. If the oscillating modes are nondegenerate, we have (35)
Cim.m= n.nOm.m this means that the modes interact with (77 bo
. o = A1=Ag={t9| 7= 5| |Yoo-
each other only by the terms oE g I'nm,mmEm(Am 4 2

+iBm)Dm,Im,Pm [see Eq.(31)] which can be regarded as . A¢;, Ad, can be determined arountd), if we realize

the c_ontribution from the diagonal elements of_ the couplingna; the difference among them indicates the frequency spac-
coefficients, Eq(33). In fact, these terms describe the modeing of these modes. The only point we need pay attention to

competition and in this case E(B1) can be simplified to the 5 "the difference & —A’ )#1 in degenerate or quaside-
Lotka-Volterra equation: my Tmy
generate states.

The case of dc electric field,=0 is studied first, i.e., the
5Tm - _ nonlocal phase shiftyo=n/2. From Eq.(35) we obtainA;
v~ %ml m_E Qmm I m/lm, =A,=0. The other parameters are reflectivity- 0.8, cav-

m ity length L=2 m, medium lengtH ,=0.02 m, delay time
=1 s, wavelength\=1.0x10"° m, diffraction losses
de=0.0, dp;=2.8x10"3, dy,=8.0x10 3, and the satura-
tion value of the photoinduced index change
Ang=0.82x10"°, while the parameters af(; andA/, are
which indicates the multimode oscillation in nondegeneratevariable to change the frequency spacing among the modes.
states will be stable after a competition process. In this papekhenAj;=A(,=0, Fig. 3a) gives relative intensity of each
however, we discuss emphatically a degenerate or quasiderode varying with the time. It shows that the modes become
generate case, therefo@nlm~1, which leads to the mode- stable after competing. IfAj;=4.0X 1073, A;,=8.0
mode interaction term&, m T m m m(Am, +1Bm ) D I m, X10 3, however, the system becomes unstable as shown in
X P, (m;#m) resulting from the nondiagonal elements of Fig. S(.b) n Wh'c.h the_ intensity of eaph mode appears as a

1 . o o periodic fluctuation with_a large amplitude, and the intensity
coupling coefficients operating in addition to the mode com-4iations of theA o, and Ay, modes are in phase_but out of
petition terms=, I'mm,m,m(Amti1Bm)Dm,Im,Pm, and we  phase with theAy; mode, i.e., we can observe tig, and
expect rich spatiotemporal phenomena are the results @iy, modes appear simultaneously but alternately with the
these additional interactions. If we introdueg =X, +iY , Ap1 mode. Increasing the frequency spacinggy,=3.0
Eq. (31) becomes X 1072, Aj,=6.0x 1072, different from Fig. 3b), the inten-

sity fluctuation of the modes decreases as shown in Fgy, 3
which means the mode-mode interaction is weaker than that

am:Am_l, QmmI:melm/mDm/Am, t,:2'ylt

%z (Am— D) Xm+ (A5—Bm) Y (34)  inFig. 3(b). In addition, the time unit in the figures indicates
aT that the instability phenomenon is a slowly varying behavior.
Next, we simulate the three-mode oscillation when the dc
- > T Dyl (A X =B Y ) | electric fieldEy# 0, and assuming,=0. Therefore we have
myam, L2 o Mt T T AS=1, Ajy=0qo from Eq.(35). The other parameters are the
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FIG. 3. Normalized intensity of the modégg, Ag;, andAg,, as
a function of time(secondlin the case 0E,=0 (i.e., pg=7/2). The
frequency difference parametefs) Aj,=A(,=0, (b) Ay=4.0
X103, A(,=8.0x1073, and () Ay=3.0x1072, A(,=6.0
X102,
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FIG. 4. Same as in Fig. 3, but the dc electric fiélg=0 and
corresponding nonlocal phase shif=0. The frequency difference
and diffraction loss parameters ar&g,=1.011, Aj,=1.022,
doo=0.0, dp;=3.0x103, dp,=7.3x10"% for (@ and A
=0.9984, A(,=0.9968, dqy=0.0, dg;=4.8x1073, dy,=10.0
%1072 for (b).

same as the above exceptn,=1.64x10 °, dg,=0.0,
do;=3.0x 103, dg,=7.3x 10 3. With the parameterd ), ,

A¢, increasing, the variation process of the system is similar
to that of Eq=0: WhenA(;=A[,= 1.0, the system is stable;
while Ag;=1.011,A4, = 1.022, thentensity of each mode

as shown in Fig. @) fluctuates largely with the time, hut the
variation of Agy mode is no longer in phase with that Af,

as in Fig. 3b). Therefore, in this case, we will observe a
periodic alternation behavior in which each mode oscillates
one after another in_a regular _periodic sequence, from Fig.
4(a) its sequence igo—Agi—Aga—Agg. Moreover, this
sequence is variable, for example, when we change the pa-
rameters dou=0.0, dy;=4.8x10"3, dy,=10.0x10"3,
A§;=0.9984, A;,=0.9968, the sequence as shown in Fig.
4(b) becomesAyy— Agy—Agi—Agg reversing with that in
Fig. 4(a).

These results show that the additional mode couplings
corresponding to the nondiagonal elements of the coupling
coefficients indeed make the dynamics of the photorefractive
oscillator more complicated. This fact indicates that some
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more complicated spatiotemporal phenomena such as spaen of 6,5 with the detunings is nonlinear, and the maxi-
tiotemporal quasiperiodic behavior and spatiotemporal chaosium intensity appears at the detuning st@@t®. In the case
will possibly appear when the number of oscillating modesof multimode oscillation, for simplicity, we studied the
increases. three-mode oscillation by numerical simulation. The results
show that the system is unstable in certain circumstances
V. CONCLUSION because of the additional mode-mode interactions in degen-
. ___ erate or quasidegenerate states. Instabilities such as the peri-
We have developed a theory for multimode oscillation inggic alternation phenomenon are observed, and the dc elec-

a photorefractive ring oscillator in the weak-field limit. Ap- ic field E, can affect its alternation sequence.
plying the theory to single-mode oscillation, we obtained

some characteristics of steady intensity and frequency pull-

ing under different dc electric fields, When the fidlg=0, ACKNOWLEDGMENTS

the frequency differences,s (between pump and signal
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