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A theory of multimode oscillation in an optical unidirectional ring resonator with photorefractive gain was
given in the weak-field limit, in which the mode coupling is considered carefully. The characteristics of
single-mode oscillation in steady state were analyzed in detail, especially when the externally applied dc
electric field is not zero. By numerical simulation, we investigated a three-mode oscillation and observed
instability phenomena which are similar to the periodic oscillation of several transverse family modes observed
in experiment.@S1050-2947~96!01011-6#
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I. INTRODUCTION

In the study of the spatiotemporal dynamics of nonlinear
optical systems, most experimental and theoretical studies
are devoted to lasers@1–4#. Recently there has also been an
increase of interest in photorefractive oscillators~PRO’s! for
their rich spatiotemporal phenomena, for example, periodic
alternation of transverse modes, optical vortices, and spa-
tiotemporal chaos@8–10#. So PRO provides another good
physics model for studying spatiotemporal behavior of non-
linear optical systems. However, even in a PRO operating in
the weakly multimode case, the spatiotemporal instabilities
have not been given completely by theory, although some
characteristics and phenomena such as multimode competi-
tion, spatiotemporal periodic behavior resulting from the fre-
quency beating between two different transverse modes,
have been considered@11–14#.

There are generally two different research methods to
study spatiotemporal dynamics of lasers. One is a global ap-
proach similar to that used in hydrodynamics@15,16#. An-
other is decomposition of the electric field on the modes of
the empty cavity@2–7#. In this paper, we pursue the latter
research line with the derivation following procedures in lit-
erature@2# for a laser. Neglecting the depletion of the pump
beam in the weak-field limit, we give the multimode oscilla-
tion equation in Sec. II for a PRO in which the influence of
an externally applied dc electric field is included. The uni-
form field limit which has already played a useful role in
studying lasers is also introduced to simplify the equations.
In Sec. III we give some characteristics of single-mode os-
cillation in steady state, particularly the intensity and fre-
quency pulling when the externally applied dc electric field
is not equal to zero. Finally, multimode oscillation is dis-
cussed in Sec. IV, in which a three-mode oscillation is stud-
ied by numerical simulation. Because of the mode coupling
in degenerate or quasidegenerate states, some instability phe-

nomena such as periodic alteration of the transverse modes
@8,10# are observed. In nondegenerate states, however, the
system can be described by the Lotka-Volterra equation. The
conclusions are presented in Sec. V.

II. MULTIMODE OSCILLATION EQUATION
FOR A PRO IN THE WEAK-FIELD LIMIT

We know that the volume index grating induced by two
interfering light waves in a photorefractive medium is gen-
erally accompanied by an energy redistribution between
these two waves. This kind of intensity transfer~or beam
coupling! is due to a finite spatial phase shiftc between the
index grating and the interference pattern, and when this
phase shiftc5p/2, the maximum energy transfer is ob-
tained. The phase shiftc includes a constant phase shiftf0
related to the nonlocal response of the medium under fringe
illumination and the phase shift introduced artificially by ex-
ternal means~e.g., moving medium, fringe displacement!,
wheref0 is dependent on the dc electric field (E0) applied
on the photorefractive medium and decreases fromp/2 to 0
as the field (E0) increases from zero@17,18#. This means that
we can study the characteristics of the PRO under different
dc electric fieldsE0 by changing the parameterf0 in the
equations.

A typical photorefractive oscillator based on the two-
wave-mixing process is presented in Fig. 1. It is composed of
a ring cavity and a photorefractive medium which is placed
between two spherical mirrorsM1 andM2 . M1 is a total
reflection mirror, and the reflectivity ofM2 is R. The total
cavity length isL, the length of the medium isl A . We as-
sume for simplicity that both waves~pump and signal beams
in Fig. 1! have the same state of polarization and the pump
beam is a plane wave:

Ep~ t,rW !5Ape
@ i ~kWp•rW2vpt !#1c.c. ~1!

When the PRO operates in the weak-field limit, i.e., the in-
tensity of the signal beam is far less than that of the pump
beam,I s!I p , the depletion of the pump beam can be ne-
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glected, and soAp in Eq. ~1! is written as a constant irrel-
evant to the time and space. The signal beam, however,
should be a sum of modes:

Es~ t,rW !5(
j
Ā j~ t,rW !e@ i ~kW j •rW2v j t !#1c.c., ~2!

where j indicates the different modes andv j are their oper-
ating frequency~unknown!. Drawing the fast varying factor
e@ i (kWc•rW2vct)# from the above equation, we can rewrite it to

Es~ t,rW !5As~ t,rW !e@ i ~kWc•rW2vct !#1c.c., ~3!

where

As~ t,rW !5(
j
Ā j~ t,rW !e$ i @~kW j2kWc!•rW2~v j2vc!t#%.

vc ~reference frequency! is the empty-cavity resonance fre-
quency of one oscillating mode. From Eqs.~1! and ~2! we
can write out the interference pattern formed in the region of
the medium:

I ~ t,rW !5I 0~ t,rW !@11M ~ t,rW !#, ~4!

where

I 0~ t,rW !5I p1I s5uApu21(
j

uĀj~ t,rW !u2,

M ~ t,rW !5(
j
M j~ t,rW !5(

j

ApĀj* ~ t,rW !

I 0~ t,rW !
ei ~kWp j•rW2dp jt !1c.c.,

kW p j5kW p2kW j , dp j5vp2v j .

In Eq. ~4! the interference patterns of the various modes with
each other are neglected, because the index gratings arising
from these patterns are much smaller than that caused by the
interference of each mode with the pump beam in the weak-
field limit @14#. In order to get the index gratingDn(t,rW)

induced by the fringe illumination Eq.~4!, we decompose the
factorApĀj* (t,rW)/I 0(t,rW) of M j (t,rW) by Fourier transform in
transverse space:

ApĀj* ~ t,rW !

I 0~ t,rW !
5E dkWq8C~ t,z,kWq8!e

2 ikWq8•rW1c.c. ~5!

and

C~ t,z,kWq8!5E drWxy
ApĀj* ~ t,rW !

I 0~ t,rW !
eikWq8•rWxy1c.c.,

where * drWxy indicates the integration in transverse space.
Then the modulationM j (t,rW) can be written as

M j~ t,rW !5E dkWq8C~ t,z,kWq8!e
2 ikWq8•rWei ~kWp j•rW2dp jt !1c.c.

5E dkWqC~ t,z,kWq!e
i ~kWpq•rW2dp jt !1c.c.,

kW pq5kW p2kWq

where kWq5kW j1kWq8 . Noting that @C(t,z,kWq)e
i (kWpq•rW2dp jt)

1c.c.# can be regarded as the modulation of the pump beam
with a uniform plane wave, we can write out the index grat-
ing Dnj (t,rW) induced byM j (t,rW) @17#,

Dnj~ t,rW !5
1

t0
E
0

t

dt8 e2~ t2t8!/t0

3S E dkWqg~kpq!C~ t8,z,kWq!e
i ~kWpq•rW2dp jt8!D1c.c.,

~6!

wheret0 is the dielectric relaxation time which depends on
the light intensity and can be regarded approximately as a
constant in the weak-field limit.g(kpq)5Dns(kpq)e

if0(kpq),
Dns is the saturation value of the photoinduced index
change, andf0 is a constant phase shift related to the non-
local response of the medium under fringe illumination. The
parametersDns andf0 are all dependent onkpq5ukW pqu ~or
the fringe spacingLpq52p/kpq! besides the material prop-
erties of the crystal, e.g., the electro-optic coefficients@18#.
From Eq.~5! we know that the spectrumdkpq5dkq8 around
kp j results from a transverse profile of the fieldAj (t,rW) and
can be estimated bydkpq;1/w0;~1 mm!21 when the num-
ber of transverse modes is not very large in the oscillator,
wherew0 is the beam waist. On the other hand, the fringe
spacing in the two-wave-mixing process is typically on the
order of 1mm @17,18#, i.e., kp j;1/Lp j;~1 mm!21@dkpq .
This meansdkpq aroundkp j can be neglected and we have
g(kpq)'g(kp j). Therefore Eq.~6! becomes

Dnj~ t,rW !'g~kp j!
1

t0
E
0

t

e2~ t2t8!/t0
ApĀj* ~ t,rW !

I 0~ t,rW !

3ei ~kWp j•rW2dp jt !dt81c.c.

and

FIG. 1. Schematic representation of a unidirectional ring photo-
refractive oscillator with two spherical mirrors. The length of the
ring is L. h50 indicates the origin of the longitudinal coordinate
system, andh measures various longitudinal positions of relevance
to our discussion, in units ofL. The length of the active medium is
l A .
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Dn~ t,rW !5
1

t0
(
j

g~kp j!E
0

t

e2~ t2t8!/t0
ApĀj* ~ t,rW !

I 0~ t,rW !

3ei ~kWp j•rW2dp jt !dt81c.c. ~7!

because the difference of the operating frequencyv j for
various modes is only a few Hz in PRO@12#. With the same
consideration as above we haveg(kp j)'g(kps), where
kps5(vp2vs)/c andvs is the operating frequency of the
mode whose empty-cavity resonance frequency isvc .
Therefore Eq.~7! becomes

Dn~ t,rW !5Dns~kps!e
if0~kps!

1

t0
E
0

t ApAs* ~ t8,rW !

I 0~ t8,rW !

3ei @~kWp2kWc!•rW2dpct8#e2~ t2t8!/t0dt81c.c., ~8!

where Eq.~3! is used, anddpc5vp2vc . Now, noticing that
the refractive index of the photorefractive mediumn(t,rW)
should be written asn5nb1Dn(t,rW), wherenb is the index
in the absence of photorefractive coupling, and substituting
Eqs. ~1!, ~3!, and ~8! into the Maxwell equation with the
slowly varying amplitude approximation, we get the follow-
ing equation for the signal beam:

2 i
c2

2nb
2vc

¹'
2As1

]As

]t
1S cnbD ]As

]z

5 i
2Dnsp

l S cnbD I p e
2t/t0

t0
e2 i ~f01dpct !

3S E
0

t As

I 0
eidpct8e

t8/t0dt8D , ~9!

where¹'
25]2/]r 21(1/r )(]/]r )1(1/r 2)(]2/]f2). For sim-

plicity, we introduce

E5Ase
idsct,

P52S e2t/t0

t0
E
0

t As

I 0
eidpct8et8/t0dt8D e2 idpct,

where dsc5vs2vc , dps5vp2vs , and adopting the new
variablest5(1/t0)t, h5z/L, r5r (pnb/Ll)1/2, Eq. ~9! be-
comes

2
i

4
¹'
2E1

]E

]h
1
1

v
]E

]t
5 i

d18

v
E2aLP,

~10!
]P

]t
52S E

I p1I s
1~11 iD28!PD ,

where d185dsc/g' , D285dps/g' , g'51/t0, v5c/nbg'L,
a5 i (2DnsI pp/l)e

2 if0. Equation~10! is what we need to
describe the signal beam varying with the time and space in
the two-wave-mixing process.

The next step is to derive a set of equations for the field
model amplitudes. For this purpose we decompose the field
E and P on the empty-cavity modes, i.e., we consider the
expansion

E~r,f,h,t!5(
m

fm~h,t!Am~r,f,h!,

~11!

P~r,f,h,t!5(
m

qm~h,t!Am~r,f,h!,

whereAm(r,f,h) are the model functions. Indexm indi-
cates the different transverse mode~e.g., m→$p,l ,i % for
Gauss-Laguerre mode!, and the index for longitude modes is
omitted for convenience. Substituting Eq.~11! into Eq. ~10!
and using the orthogonality relation*0

2pdf*0
`r dr Am1

Am2
*

5dm1m2
, we obtain

] f m
]h

1
1

v
] f m
]t

5 i
d18

v
f m2aLqm ,

~12!
]qm
]t

52S ~11 iD28!qm1
f m
I p

2
1

I p
2

3 (
m1 ,m2

f m1
u f m2

u2Gm1m2m2mD ,
where we use the approximation E/(I p1I s)
'E/I p2(E/I p

2)I s in the weak-field limit.Gm1m2m2m
in Eq.

~12! are the mode-mode coupling coefficients:

Gm1m2m2m
5E

0

`

r drE
0

2p

df Am1
Am2

Am2
* Am* ~r,f,h!.

On the other hand, the boundary conditions for model am-
plitudes f m(h,t) are @3#

f mS 2
1

2

l A
L
,t D5ARe~2 idm!e@ id18g'~L2 l A!/c#

3 f mS 12 l A
L
,t2g'

L2 l A
c D , ~13!

wheredm5(vnm2vc)/(c/L), indexn indicates the different
longitude modes. For convenience we transform them to
standard periodicity form by introducing the new set of in-
dependent variables

h85
L

l A
h,

t85t1g'

L2 l A
c S Ll A h1

1

2D
and defining the new field amplitudesf̃ m ,

f m~h8,t8!5 f̃ m~h8,t8!Lm~h8!,

qm~h8,t8!5q̃m~h8,t8!Lm~h8!,

where

Lm~h8!5e$2@ ln AR2 idm1 id18g'~L2 l A!/c#~h811/2!%. ~14!

Then the boundary conditions become
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f̃ m~2 1
2 ,t8!5 f̃ m~ 1

2 ,t8! ~15!

and the equations forf̃ m(h8,t8! take the form

] f̃ m
]h8

1
Lg'

c

] f̃ m
]t8

5S ln AR2 idm1 id18g'

L

c D f̃ m2a l Aq̃m ,

]q̃m
]t8

52F ~11 iD28!q̃m1
f̃ m
I p

2
1

I p
2 (
m1 ,m2

Gm1m2m2m

3S Lm1
Lm2

Lm2
*

Lm
D f̃ m1

u f̃ m2
u2G , ~16!

where the approximationL1(nb21)l A'L is used. From
Eq. ~14!, the factor (Lm1

Lm2
Lm2
* /Lm) in Eq. ~16! can be writ-

ten as

S Lm1
Lm2

Lm2
*

Lm
D 5e@ i ~L/c!~vn1m1

2vnm!~h811/2!#e2 ln R~h811/2!.

~17!

Now, we integrate the left- and right-hand sides of Eq.~16!
with respect toh8. Using boundary conditions Eq.~15! and
defining

f̄ m5E
21/2

1/2

dh8 f̃ m~h8,t8!,

q̄m5E
21/2

1/2

dh8q̃m~h8,t8!,

we have

] f̄ m
]t8

52K8~11 iam8 2 iD18! f̄ m2R̃I pK8q̄m ,

~18!
]q̄m
]t8

52S ~11 iD28!q̄m1
f̄ m
I p

2
1

I p
2 (
m1 ,m2

Gm1m2m2m
Cm1m

f̄m1
u f̄ m2

u2D ,
where

Cm1m
5E

21/2

1/2

dh8e@ i ~L/c!~vn1m1
2vnm!~h811/2!#, ~19!

K5cT/2L, K85K/g' , am8 5dm/(T/2)5(vnm2vc)/K, D18

5(g' /K)d185dsc/K, pump parameter R̃5a l A /(T/2)I p
5 ibe2 if0, b5(2pc/lK)( l A/L)Dns, and transmissivity of
the mirror T512R. To get Eq.~18! we have made some
approximations as follows. In the first approximation we
carry out the uniform field limit~i.e.,T,ua l Au!1! by retain-
ing only the first-order terms inT anda l A , so the integration
of the last factor in Eq.~16! is written approximately as

1

I p
2 (
m1 ,m2

E
21/2

1/2

dh8Gm1m2m2m
S Lm1

Lm2
Lm2
*

Lm
D f̃ m1

u f̃ m2
u2

'
1

I p
2 (
m1 ,m2

f̄ mu f̄ m2
u2E

21/2

1/2

dh8Gm1m2m2m

3e@ i ~L/c!@vn1m1
2vnm!~h811/2!#.

In the second approximation we assume that the length of the
medium l A is far smaller than the Rayleigh length of the
cavity field in the region occupied by the active medium@2#,
so for21/2<h8<1/2 we have

Am~r,f,h8!'Am~r,f,0!5Am~r,f!.

As for Am(r,f) we choose the Gauss-Laguerre modes in
this paper:

Am~r,f!5Ap,l
~ i ! ~r,f!5

2

Ah1
S 2 r2

h1
D l /2S p!

~p1 l !! D
1/2

3Lp
l S 2r2

h1
De2r2/h1Bl

~ i !~f!,

~20!

Bl
~ i !~f!55

1

A2p
, l50

1

Ap
cos lf, l.0, i51

1

Ap
sin lf, l.0, i52

wherep50,1,... is theradial index andl50,1,... is the an-
gular index,i51,2 for l.0. L p

l (2r2/h1) indicates the La-
guerre polynomial of orderp and l . It is obviously conve-
nient for our calculation to eliminate the parameterh1 in
working Eq. ~18!, so we introduce a new radial variabler8
5r/Ah1, and Eq.~20! becomes

Apl
~ i !~r8,f!5

1

Ah1

Āpl
~ i !~r8,f!,

~21!

Āpl
~ i !~r8,f!52@2r82# l/2S p!

~p1 l !! D
1/2

3Lp
l ~2r82!e2r82Bl

~ i !~f!,

the coupling coefficients

Gm1m2m2m
5

1

h1
G̃m1m2m2m

,

~22!

G̃m1m2m2m
5E

0

`

r8dr8E
0

2p

dfĀm1
Ām2

Ām2
Ām~r8,f!.

Substituting them into Eq. ~18! and defining Em

5 f̄ m /Ah1AI p, Pm5(q̄m /Ah1)AI p,t85g't, we have
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]Em

]t
52K@~gm1 iam8 2 iD18!Em2R̃Pm#,

~23!
]Pm

]t
52g'S ~11 iD28!Pm2Em

1 (
m1m2

G̃m1m2m2m
Cm1m

Em1
uEm2

u2D .
The parameterh1 is no longer explicitly in evidence in the
above equation. Equation~23! is the basic equation for the
field model amplitudes and these modes may have the same
longitude index or not. For convenience we list its param-
eters again:K5cT/2L andg'51/t0 are the relaxation rates
of the oscillating field and the grating, respectively. Coeffi-
cientsgm511dm , wheredm denote the diffraction losses of
the different transverse modes.am8 5(vnm2vc)/K, D18
5dsc/K5(vs2vc)/K, D285dps /g'5(vp2vs)/g' . Pump
parameterR̃5 ibe2 if0 @b5(2pc/lK)( l A /L)Dns# is gener-
ally complex and becomes real only when the dc electric
field E050 ~i.e., f05p/2!. The Cm1m

and the mode-mode

coupling coefficientsG̃m1m2m2m
are given by Eqs.~19! and

~22!, respectively. From Eq.~19!, the magnitude ofCm1m
is

related closely to the frequency spacing of the oscillating
modes: When these modes are nondegenerate, i.e., (vn1m1

2vnm)@K, then Cm1m
5dn1ndm1m

. But if the oscillating

modes are degenerate or quasidegenerate, i.e., (vn1m1

2vnm);K, we haveCm1m
'1. As shown in the latter text,

the behavior of the oscillator in this case is more compli-
cated.

III. THE CHARACTERISTICS
OF SINGLE-MODE OSCILLATION

As a preparation for studying multimode oscillation, the
characteristics of single-mode oscillation are discussed in
this section, particularly when the dc electric fieldE0Þ0.
For single-mode oscillation, it is convenient to choose its
empty-cavity resonance frequencyvnm as the reference fre-
quencyvc , then we haveam8 50, D185(vs2vnm)/K, and
Eq. ~23! can be simplified to

]Em

]t
52K@~gm2 iD18!Em2R̃Pm#,

~24!
]Pm

]t
52g'@~11 iD28!Pm2Em1G̃mmmmEmIm#,

where I m5EmEm* . Making ]Em/]t50, ]Pm/]t50, we get
the steady intensity and the corresponding frequency rela-
tion:

I m
st5

1

G̃mmmm
S 12

gm
2 1D18

2

R̃rgm2R̃iD18
D ,

~25!

D285
R̃igm1R̃rD18

R̃rgm2R̃iD18
,

whereR̃r5b sinf0, R̃i5b cosf0 are the real and imaginary
part of the pump parameterR̃, respectively. If we introduce
the frequency differenced between the pump beamvp and
the empty-cavity resonancevnm , d5vp2vnm , and notice
the relationd5dsc1dps , we get the frequency pulling from
Eq. ~25!:

dps5
g'

gmK1g'

d, f05
p

2
, ~26!

dps5
2 l 21Al 2224l 1l 3

2l 1
, f0Þ

p

2
, ~27!

where

l 15R̃i ,

l 25R̃rKgm1R̃rg'2R̃id,

l 352~R̃iKg'gm1R̃rg'd!.

When the dc electric fieldE050, from Eq.~26! we can see
that the frequency pulling has the same form as that in lasers
if gm51. While in PRO the response time of the oscillating
field is much shorter than that of the grating~i.e., g'!K!,
then we havedps!d which means that the frequency pulling
is very strong; but whenE0Þ0, the frequency pulling be-
comes complicated, as shown in Eq.~27!. In this case, we
give thed2dps curves labeled~1!, ~2!, ~3!, and ~4! for Ā00
mode in Fig. 2~a!, their nonlocal phase shift beingf05p/2,
2p/6, p/6, and 0, respectively. The other parameters are
R50.8, L52 m, l A50.02 m,t051 s, l51.031026 m, for
Ā00 mode gm51, the coefficient Gmmmm50.3183, and
Dns50.80531026, 0.86531026, 1.0831026, and
1.6331026 corresponding to curves~1!, ~2!, ~3!, and ~4!,
respectively. In Fig. 2~a! the detuningd for every curve is
varied under the condition ofI m

st>0, i.e., above the oscillat-
ing threshold. With Eqs.~25!–~27!, the variation ford can be
written as

R̃i~g'2K !2AR̃ i
214~R̃r21!~g'1K !

2

<d<
R̃i~g'2K !1AR̃ i

214~R̃r21!~g'1K !

2
. ~28!

In the case ofE0Þ0, Fig. 2 ~a! shows that the curve ofdps
vs d is nonlinear, and the detuningd50 does not mean the
frequency differencedps ~between the oscillating field and
the pump beam! is also equal to zero, i.e., thed anddps are
not equal to zero at the same time. In addition, the oscillating
threshold given by Eq.~28! is asymmetric with respect to
d50. These characteristics, however, are absent when the
electric fieldE050.

Next we consider the steady intensityI m
st . Owing to our

abandoning the plane-wave description, Eq.~25! for I m
st in-

cludes the mode-mode coupling coefficientsG̃mmmmwhich is
the result of the transverse effect, and then the intensity of
the higher-order mode will be stronger than that of the lower
one if neglecting the diffraction losses, because the coupling
coefficients G̃mmmm of the higher-order mode are smaller.
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The reason is that the higher-order mode can take better ad-
vantage of the available gain because of its greater modal
extent when the pumped region is sufficiently broad. Another
characteristic of the intensityI m

st is the existence of an ex-
treme value with respect todps ~or the detuningd!. From
Eqs.~25!–~27! and relationd5dsc1dps , dps and the detun-
ing d corresponding to this extreme value are

dps5tgS p

4
2

f0

2 Dg' ,

~29!

d5tgS p

4
2

f0

2 D ~g'2Kgm!.

When the electric fieldE050, Eq. ~29! indicates that the
steady intensityI m

st reaches its extreme value in the resonant
stated50; if E0Þ0, however, the extreme value ofI m

st ap-
pears in the detuning statedÞ0 ~and dpsÞ0! which means
there is a moving interference pattern in the photorefractive
medium@see Eq.~8!#. We know that in certain circumstances
the fringe displacement will enhance the amplitude of the

stationaryp/2 shift component of the grating which causes
the beam coupling, therefore the gain of the medium is in-
creased. This is the reason for the extreme value ofI m

st at
dÞ0 in the case ofE0Þ0. It can be seen more clearly in Fig.
2~b! in which we give thed2I m

st curves~1!, ~2!, ~3!, and~4!
for Ā00 mode-with the nonlocal phase shiftf05p/2, 2p/6,
p/6 and 0, respectively; the other parameters are the same as
in Fig. 2~a!. Each curve in Fig. 2~b! has a peak value at the
detuning pointd determined by Eq.~29!. So far the charac-
teristics of the single-mode oscillation under the different dc
electric fields are clear.

IV. INSTABILITY OF MULTIMODE OSCILLATION

In this section we discuss multimode oscillation, and the
modes operating in degenerate or quasidegenerate states are
studied carefully by numerical simulation. As mentioned
above, there is a relationK@g' in PRO, so it is reasonable
to adiabatically eliminate the field by making]Em/]t'0 in
Eq. ~23!, and have

Em5~Am1 iBm!Pm , ~30!

where

Am5
R̃rgm2R̃iDm8

gm
2 1Dm8

2 ,

Bm5
R̃igm1R̃rDm8

gm
2 1Dm8

2 ,

Dm8 5D182am8 5(vs2vnm)/K. With the relation Eq.~30!,
Eq. ~23! for Pm becomes

]Pm

]t
52g'S ~11 iD28!Pm2~Am1 iBm!Pm

1 (
m1 ,m2

G̃m1m2m2m
Cm1m

~Am1
1 iBm1

!Dm2
Ĩ m2

Pm1D ,
Dm5Am

2 1Bm
2 , Ĩ m5PmPm* . ~31!

This is the equation for describing the multimode oscillation
in the photorefractive oscillator.

For simplicity, we consider a three-mode oscillation,

Ā00~r8,f!5
2

A2p
e2r82,

Ā01~r8,f!5
2

Ap
~2r82!1/2e2r82 cosf, ~32!

Ā02~r8,f!5
2

Ap
~2r82!S 12! D

1/2

e2r82 cos2f.

These modes have different angular but the same radial in-
dex (p50); for convenience, we only write out the angular
index l for the mode indexm in the following. From Eqs.
~22! and ~32!, we can get the mode-mode coupling coeffi-
cientsGm1m2m2m

:

FIG. 2. Dependence of the frequency differencedps ~a! and the
steady intensityI 00

st ~b! on the detuningd with the different nonlocal
phase shifts~1! f05p/2, ~2! 2p/6, ~3! p/6, and~4! 0 standing for
the different dc electric fieldsE0 .
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F G̃0000 G̃0001 G̃0002

G̃1000 G̃1001 G̃1002

G̃2000 G̃2001 G̃2002

G5F 0.3183 0.0000 0.0000

0.0000 0.1592 0.0000

0.0000 0.0000 0.0796
G ,

F G̃0110 G̃0111 G̃0112

G̃1110 G̃1111 G̃1112

G̃2110 G̃2111 G̃2112

G5F 0.1592 0.0000 0.0796

0.0000 0.2387 0.0000

0.0796 0.0000 0.1194
G ,

F G̃0220 G̃0221 G̃0222

G̃1220 G̃1221 G̃1222

G̃2220 G̃2221 G̃2222

G5F 0.0796 0.0000 0.0000

0.0000 0.1194 0.0000

0.0000 0.0000 0.1790
G .
(33)

We know that the nonzero elements of the coupling coeffi-
cients are corresponding to a kind of interaction among the
modes which makes the behavior of the oscillator more com-
plicated, but from Eq.~31! whether these interactions really
operate or not is also dependent on another parameter
Cm1m

. If the oscillating modes are nondegenerate, we have

Cm1m
5dn1ndm1m

; this means that the modes interact with

each other only by the terms of(m2
G̃mm2m2m

Em(Am

1 iBm)Dm2
Ĩ m2

Pm @see Eq.~31!# which can be regarded as
the contribution from the diagonal elements of the coupling
coefficients, Eq.~33!. In fact, these terms describe the mode
competition and in this case Eq.~31! can be simplified to the
Lotka-Volterra equation:

] Ĩ m
]t8

5amĨm2(
m8

Qmm8 Ĩ m8 Ĩ m ,

am5Am21, Qmm85G̃mm8m8mDm8Am , t852g't

which indicates the multimode oscillation in nondegenerate
states will be stable after a competition process. In this paper,
however, we discuss emphatically a degenerate or quaside-
generate case, thereforeCm1m

'1, which leads to the mode-

mode interaction terms(m1m2
G̃m1m2m2m

(Am1
1 iBm1

)Dm2
Ĩ m2

3Pm1
(m1Þm) resulting from the nondiagonal elements of

coupling coefficients operating in addition to the mode com-
petition terms(m2

G̃mm2m2m
(Am1 iBm)Dm2

Ĩ m2
Pm , and we

expect rich spatiotemporal phenomena are the results of
these additional interactions. If we introducePm5Xm1 iYm ,
Eq. ~31! becomes

]Xm

]t
5S ~Am21!Xm1~D282Bm!Ym

2 (
m1 ,m2

G̃m1m2m2m
Dm2

Ĩ m2
~Am1

Xm1
2Bm1

Ym1
! D ,

~34!

]Ym

]t
5S ~Bm2D28!Xm1~Am21!Ym

2 (
m1 ,m2

G̃m1m2m2m
Dm2

Ĩ m2
~Bm1

Xm1
1Am1

Ym1
! D ,

Ĩ m5Xm
2 1Ym

2 , t5g't

where indexm50,1,2 indicates the three different transverse
modes given by Eq.~32!. Equation~34! is the basic equation
for our numerical simulation, and we integrate it with the
Runge-Kutta method. In the simulation, the parametersD28
and Dm8 ~i.e., D008 , D018 , D028 ! are given by the following
considerations only for convenience: We choose the empty-
cavity resonance frequency ofĀ00(r8,f) modev00 as the
reference frequencyvc , soD008 5D182a8005D18 . While the
D18 and D28 are determined in the case of single-mode
[ Ā00(r8,f)] oscillation in the best state, which means that
the detuningd is satisfied to Eq.~29!, andD28 , D18 can be
given by

D285tgS p

4
2

f0

2 D ,
~35!

D185D008 5F tgS p

4
2

f0

2 D Gg00.
ThenD018 , D028 can be determined aroundD008 if we realize
that the difference among them indicates the frequency spac-
ing of these modes. The only point we need pay attention to
is the difference (Dm1

8 2Dm2
8 )@” 1 in degenerate or quaside-

generate states.
The case of dc electric fieldE050 is studied first, i.e., the

nonlocal phase shiftf05p/2. From Eq.~35! we obtainD28
5D008 50. The other parameters are reflectivityR50.8, cav-
ity length L52 m, medium lengthl A50.02 m, delay time
t051 s, wavelengthl51.031026 m, diffraction losses
d0050.0, d0152.831023, d0258.031023, and the satura-
tion value of the photoinduced index change
Dns50.8231026, while the parameters ofD018 andD028 are
variable to change the frequency spacing among the modes.
WhenD018 5D028 50, Fig. 3~a! gives relative intensity of each
mode varying with the time. It shows that the modes become
stable after competing. IfD018 54.031023, D028 58.0
31023; however, the system becomes unstable as shown in
Fig. 3~b! in which the intensity of each mode appears as a
periodic fluctuation with a large amplitude, and the intensity
variations of theĀ00 and Ā02 modes are in phase but out of
phase with theĀ01 mode, i.e., we can observe theĀ00 and
Ā02 modes appear simultaneously but alternately with the
Ā01 mode. Increasing the frequency spacing,D018 53.0
31022, D028 56.031022, different from Fig. 3~b!, the inten-
sity fluctuation of the modes decreases as shown in Fig. 3~c!,
which means the mode-mode interaction is weaker than that
in Fig. 3~b!. In addition, the time unit in the figures indicates
that the instability phenomenon is a slowly varying behavior.

Next, we simulate the three-mode oscillation when the dc
electric fieldE0Þ0, and assumingf050. Therefore we have
D2851,D008 5g00 from Eq.~35!. The other parameters are the
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same as the above exceptDns51.6431026, d0050.0,
d0153.031023, d0257.331023. With the parametersD018 ,
D028 increasing, the variation process of the system is similar
to that ofE050: WhenD018 5D028 51.0, the system is stable;
while D018 51.011,D028 5 1.022, theintensity of each mode
as shown in Fig. 4~a! fluctuates largely with the time, but the
variation ofĀ00 mode is no longer in phase with that ofĀ02
as in Fig. 3~b!. Therefore, in this case, we will observe a
periodic alternation behavior in which each mode oscillates
one after another in a regular periodic sequence, from Fig.
4~a! its sequence isĀ00→Ā01→Ā02→Ā00. Moreover, this
sequence is variable, for example, when we change the pa-
rameters d0050.0, d0154.831023, d02510.031023,
D018 50.9984,D028 50.9968, the sequence as shown in Fig.
4~b! becomesĀ00→Ā02→Ā01→Ā00, reversing with that in
Fig. 4~a!.

These results show that the additional mode couplings
corresponding to the nondiagonal elements of the coupling
coefficients indeed make the dynamics of the photorefractive
oscillator more complicated. This fact indicates that some

FIG. 3. Normalized intensity of the modesĀ00, Ā01, andĀ02, as
a function of time~second! in the case ofE050 ~i.e.,f05p/2!. The
frequency difference parameters~a! D018 5D028 50, ~b! D018 54.0
31023, D028 58.031023, and ~c! D018 53.031022, D028 56.0
31022.

FIG. 4. Same as in Fig. 3, but the dc electric fieldE0Þ0 and
corresponding nonlocal phase shiftf050. The frequency difference
and diffraction loss parameters areD018 51.011, D028 51.022,
d0050.0, d0153.031023, d0257.331023 for ~a! and D018
50.9984, D028 50.9968, d0050.0, d0154.831023, d02510.0
31023 for ~b!.
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more complicated spatiotemporal phenomena such as spa-
tiotemporal quasiperiodic behavior and spatiotemporal chaos
will possibly appear when the number of oscillating modes
increases.

V. CONCLUSION

We have developed a theory for multimode oscillation in
a photorefractive ring oscillator in the weak-field limit. Ap-
plying the theory to single-mode oscillation, we obtained
some characteristics of steady intensity and frequency pull-
ing under different dc electric fields, When the fieldE050,
the frequency differencedps ~between pump and signal
beams! varies with the detuningd linearly, and the intensity
attains its maximum value atd50. But if E0Þ0, the varia-

tion of dps with the detuningd is nonlinear, and the maxi-
mum intensity appears at the detuning statedÞ0. In the case
of multimode oscillation, for simplicity, we studied the
three-mode oscillation by numerical simulation. The results
show that the system is unstable in certain circumstances
because of the additional mode-mode interactions in degen-
erate or quasidegenerate states. Instabilities such as the peri-
odic alternation phenomenon are observed, and the dc elec-
tric field E0 can affect its alternation sequence.
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