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Quantum stereographic projection and the homographic oscillator
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The quantum deformation created by the stereographic mappingSyamC is studied. It is shown that the
resulting algebra is locally isomorphic to(@and is an unconventional deformation of which the undeformed
limit is a contraction onto the harmonic oscillator algebra. The deformation parameter is given naturally by the
central invariant of the embedding(8 The deformed algebra is identified as a member of a larger class of
quarticq oscillators. We next study the deformations in the corresponding Jordan-Schwinger representation of
two independent deformed oscillators and solve for the deforming transformation. The invertibility of this
transformation guarantees an implicit coproduct law which is also discussed. Finally we discuss the analogy
between Poincaie geometric interpretation of the quantum Stokes parameters of polarization and the stereo-
graphic projection as an important physical application of the Iqt8#050-294{6)00106-0

PACS numbe(s): 03.65.Fd, 02.20.Sv, 02.20.Qs

[. INTRODUCTION discuss possible physical applications where quantized ste-
reographic projection and the resulting homographic oscilla-
Since the discovery of the first deformed quantum algebrdor algebra become relevant.
by Biedenharn and Macfarlarid] a tremendous effort has

been madg to.findl physical realizations of these a!gebras. Il. STEREOGRAPHIC PROJECTION
Much earlier, inspired by an operator representation for _ o _ _ _
g-deformed dual resonance modg23, Baker, Coon, and Yu Stereographic projectio(SP) is a mapping from the Rie-

formulated the simplest algebra which produced a suitably mann sphere, onto an extended complex plafe At the
bounded spectrum determined by the parameter of deform&lassical level, SP is defined by a mapping fr6gin spheri-
tion g. Apart from their profound mathematical significance calJ,6,¢ parametrization to that,z* on the complex plane
mainly related to the solution of the quantum Yang-Baxterdiven by
equation[3], and other problem§4], physical applications

can be found in the deformed Jaynes-Cummings mffslel

the ubiquitous quantum phase probléf], the relativistic

g oscillator [7], and recently, in reproducing deformed

nuclear energy levelg3], the Morse oscillatof9], and the 2

i w
z=2Jcotd/2e'?, with S":m ,

w =1, z*z
Kepler problem10]. ngm, where w= 57 1)

In particular, several possible realizations of deformed Lie
algebras can be constructed by applying certain nonlinear
invertible deforming transformations to the generators of thevhereJ is fixed 6 and ¢ are real coordinates describing the
undeformed algebrafll]. In this context, some explicit Polar and azimuthal angleS, andC, describe the sine and
cases have been examined by Curtright and Zagh@f  cosine off, respectively, and,z* are defined on the pro-
among several previously studied examples. jected plane as shown in Fig. 1. SP is an invertible mapping

The quantum deformation of a physical symmetry shouldexcept for thedeal point at infinity However, this does not
be identified by a deformation parameter which must beviolate the formal equivalence between the two representa-
uniquely determined by a set of observables. In this worklions; since, as will be shown later, when E@) is quan-
we give a particular example of that by examining the stelized, the ideal point at infinity is well represented by infinity
reographic projection of the @) generators on an extended in the discrete spectrum of the Corresponding deformed alge-
complex plane and show that the resulting deformation idra. We now proceed by defining an operator realization of
described by a deformation parameter which is directly conEqg. (1) via sine-cosineoperatorsC, andS, as
nected with the central invariant of the embeddin@suln
Sec. Il we define and derive the properties of the quantum . 02-1 . 20
stereographic projection. Section Ill is devoted to the prop- Cg==92—, So=—""=5"
erties of the central invariant. In Sec. IV the deformation +1 1+0
induced by the homographic oscillator on(3uis studied
using Jordan-Schwinger representation. The proof of existwhere
ence of the coproduct for the corresponding?suleforma-
tion is presented in Sec. V. In the last section, Sec. VI, we 0=\72'z, z=Eg,0, 2
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FIG. 1. Geometric interpretation of stereographic projection.
Herez=x+iy andz* is conjugate ta.

and () andE, are operator counterparts af and e’ re-
spectively. As in the case of angular decomposition ¢2su
here we deal withideal unitary polar operators(i.e.,
C;+S;=1 and[C,,S,]=0) whereas the azimuthal phase
operatorE,, has both a nonunitary as well as a unitary rep-
resentation.

Throughout this work we assume that a quantum defor
mation is understood explicitly in the same sense as Ref
[11,12. To be more precise, providing invertible nonlinear

functionals of generators, the deformed algebraic structure

and its representations are obtained by directly applyin

these nonlinear functionals to a particular representation

the undeformed mother algebra(8u[11]. Depending on

which level this substitution and following quantization take

place, one naturally obtains different quantum deformation
Using EQgs.(2) it can be found that

1+C,

1_Cg

2'z=

El,. 3

' 1-C,
In deriving Eq.(3) we did not assume the existence of any
particular unitary representation féi, (i.e., E}ﬁé E;l). The
algebraic structure of the,Z" operators, however, as will be
discussed later, is not influenced by any conflict between th
unitary and nonunitary description &,. The algebra de-
fined byZ,Z" can be found by using the well-known (8
relation[13,14]

PN 1.
[Cy.Eyl=— 3E¢ (4)

in Eq. (3), which is expressed by thgeneralized commuta-
tion relation

aat pé*é“(u[é EL]), with 3 12
aa =——— , , WIth a= — /£,
kafa+1 $1=d @

(5

wherea(a') represent the normalized annihilatireation
operators and the parameterk,« are given by

|a|2:|2\]_1|*1, p=(2J+1)/(2J—-1),
k=—(23-1)"2, ©

Equation(5) is not an example of prototype deformed alge-

S,
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recently shown that it is possible to find a manifestly unitary
description ofE , without affecting any of its operator prop-
erties[6]. Here,E is identical to the azimuthal phase opera-
tor in the sui2) polar decompositior6,15] and its unitary
representation has the cyclic property

i
By= 2 lim=1)(im|+Bli-i)il. [E, Ej]=0
@

in the finite dimensional Hilbert space spanned by the basis
vectors|jm). Here|B|=1 and is otherwise undetermined,
referring to an arbitrary reference phase. On the other hand,
we must mention as a side remark that, if one adopts the
nonunitary description oE 4 [i.e. =0 in (7)], the first de-
formed excitation energy of the algebi® is influenced by

the nonunitarity ofE , in such a way that it produces a scale
transformation on the operataasa’. However, its effect can
always be absorbed by a further trivial renormalization of
these operators. We will not elaborate on the other implica-

Yions of the nonunitary description of g, operator in this

work
Equation(5) is actually in the class of generalized quartic
scillators[16] whose properties cannot be simply obtained

qDy taking the square of any generalized commutator. Be-

cause of the homographic dependenceatd on aa' we
term the algebra in Ed5) a homographic oscillatqHO). In
the limit J— we observe the limitp— 1 andk— 0, there-
fore HO contracts to the simple harmonic oscilla(8HO).
This is reminiscent of thenloni+Wigner contraction of S@)
onto the SHQ 17]. The spectrum of HO can be solved ex-
actly by considering a generalized Hermitiammberopera-
tor N such tha{a,N]=4a;[a’,N]=—a". For the most gen-
eral solution, we havé'a=[N] and aa'=[N+1] where
[N] is the principal number operator, ahal); are the basis
vectors such that

e
[n+1]:%, ®
where
any;=[n1*3n—-1);, a'|n)y;=[n+1]¥4n+1),,
N|m)y=n[n),. ©

Enforcing the ground stat®); to be annihilated by, we
have[0]=0. Using this ground state i{8), the whole spec-
trum can be analytically iterated to yield

_
[[n1] (117

(e

[n] (ri#ry),

(10
where[0]=[[0]]=0 and[1]=[[1]]=1, with

t, 2 =1+
ry rp P rirs

rh Iy (11)

p—k.

bras and has not been studied in the literature. The commuFrom Eqgs.(6) and(11) we findr,=r,=q. The spectrum is

tation[E¢,EL] naturally arises in the derivation. It has been

thus given by the first derivative fn]] with respect tay as
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[[n]]=ng"" 1. Here we identifyg=(2J—1)/2] as the de-
formation parameter of the HO algebra.

It is known that the basic numbégfn]] arises in the so-
lution of the generalized Fibonacci ser{ds]

[[n+2]]=eal[[n+1]]+ BL[N]],
where

01=r1+l'2, ,8=—rll’2. (12)

Further, it can be shown that E¢L2) defines a class of
generalizedi.e., rl;trz’l) Biedenharn-MacfarlanBM) (or
Fibonacci q oscillator. The commutation relation which
yields (12) can be found if two new operatobsb’r are de-
fined such thab™b=[[N]],bb'=[[N+1]] as

BBTerBTBH’f. (13

In principle, Eqs.(10), (12), and(13) plausibly suggest that

Eq. (5) can be effectively obtained from the generalized BM
g oscillator by a second deformation. Although a direct
transformation from one into the other has not been found,
recently an attempt has been made to unify all quartic oscil-

lators. In this schemeﬁS) and (13) correspond to special
cases such as,=r; ', r,=r2, orr,=r; (see Ref[18]).

This can be shown by applying the nonlinear transformatio

~b(B+ybb"2, (14

where[ﬁ,N]zﬁ in Eq. (13), we get the form

Abb Tbb T+ Bbb b b+ Cb'bb b

Dbb'+Eb'b+F=0, (15)

with the coefficients

A:/)/! B:O, C:_qy’

D=pB, E=-qB, F=-1, (16)

whereas the HO corresponds to the special case of the gen- f

eralized quartic oscillator in Eq15) with the coefficients

A=0, B=k, C=0, D=1, F=-1.

17

Both Egs.(16) and(17) have the propertAE= CD which is
possessed by the quartic square root oscil g6t as a spe-
cial case of(15). In the limit J—% both homographic and
Fibonacci oscillators contract to SHO.

E=—q,

IIl. CENTRAL INVARIANT

The HO algebra in(5) is isomorphic to its underlying
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vectors generates lower and upper bounds for its energy
spectrum(i.e., a]0);=a'|2J);=0). By direct substitution
we find[2 J]=co.

In order to find the central invarianflq we first write the
HO algebra in the conventional form

[a,N]=3, [afN]=-&f [&&"]=G4N),
where
GQ(N)Z(N_SS&T?;_Q)’ Q=¢/(1-q). (8
éq is then formulated as
C,=a'a+aa’+F(N),
where
E(R)= ASNZJr'AFIA\H—U 19
(N-Q)(N-1-Q)

with the coefficients S=(cq+2Q), T=[—c4(1+2Q)
—-2Q?, andU= (cg—1)(Q+ Q?). Herec, is an undeter-
It is easy to see also from Eq4.8)

and (19) that there are lowern=0) and upper =2J)
bounds in the spectrum such that

a'al0);=aa'|23);,=0
and

F(2J)—G4(2J)=F(0)+G4(0). (20

IV. THE HOMOGRAPHIC q-BOSON REALIZATION OF
su(2) DEFORMATION

In the g-boson realization of 4@) deformation, the fun-
damental spinor realization is mapped onto a pair of com-
muting homographic oscillators as

ata por 1o e
=a;ay, 21 |z:§(N1_N2), (22)
where independent algebras @y anda, are given by the
analogs of5). Using(5) and(6) the operators ifi21) can be

found to satisfy

[0 0=F1., [I30-1=fd)—fi(,~1), (22
where
i -1,  1+1,+1 23
|( Z)_Qlei—Tz—l Qz lA_HAZ_Ql

su2) algebra. The range of values which the quantum num-

bern can take is limited by the total angular momentam HereQ;=q;/(1—-q;) (i=1,2) andg;’s are the deformation
(i.e., 0=n<2J). This can be seen easily by causing theparameters. It is also easy to see that=1/2(1 .1 _
diagonal operatorcg to act on the angular momentum +I_I+)+I2 is an invariant of the algebra with eigenvalue
|[Jm) and, simultaneously, on the homographic oscillatori(i+1) wherei=1/2(n;+n,) andi,=1/2(n;—n,). Hence
In), bases. The action of th&,a’ operators on the basis |ii,) form the orthogonal basis vectors of the algeta).
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As g4 and g, independently approach unity in the zero de-
formation limit, the deformed algebra i22) approaches
su2).

Now, our aim is to find the i[lve[tible nonlinear transfor-
mation between the generatots ,I, and the generators

Iimqiﬂl[’l\"’ v’l\f]ZZi\Zv

limg, .14 1-1=4el, /1,

J. ,J, of the limiting sy2). We seek an invertible operator

function fﬁ/(f]z) such thaf11]

1,=93)3,, 1_=1%, 1,=3,+const, (29

where
Qi=—(1+e), e<l. (29

Hence in both limits the deformed algel2?) behaves like
a pure s(2). In principle,A(l ) andA(l,) can be obtained

where the constant only depends on the central invarianRy the application of the deforming invertible transformation

The type of deformation in22) is not suitable for any

Laplace(or Fouriep representatiohl1] in terms of the pow-

ers of J,. However, one can still find the central element

¢ of this algebra such that

i1, =3.22%3)3.=7-7(,+1),
(25

vyhereﬂ”(f]z) is to be found. Sincé is the group invariant,
¢ is a function ofl only. Therefore its eigenvalueg,q,

only depends ol and the deformation parameteys,qs.

found in Egs.(24) and(27) (e.g., see Ref11]) as

AG)=T[I®T YG)+T YG)aI], (30)
whereg=(J..,3,), G=(I. ,I,), andG=T(g) is just a com-
pact notation for the transformation in ER4). Equation
(30) implies

[AG),A(0)]1=A()).
(31)

[A(.),A()]=FA(I.),

Here we notice than(é) should behave like\(g) in the
symmetric limits(i.e., g;—1,0;— —). A possibly existing
simple analytic form ofA(G) might be connected to the

Furthermore, the existence of the lowermost and uppermo&t0seéd form(30) by a unitary transformatiofl.2]. However,

states on which the action of andf+ yields zero, respec-

tively, implies that”=.7(—J)=.7(J+1). Using the con-
dition[1..,Z7=0, the operator functiorr(J,) can be easily
found as

7(3,)=—1(3,—1).

s(2)

(26)

From (24), (25, and the relation :]+fL

=1(32-32+13,) we finally obtain

f1(3,—1)+7

57/2(3)=2#.
T (3223243

(27)

Equations(23), (26), and(27) define the invertible deforma-

tion £1(J,).

V. COPRODUCT

One implication of Sec. IV is that the existence of the

simple sy2) coproduct
A=, 01+IRJ,,
A(J)=3,01+173,, (28)

and the invertibility of.?(jz) guarantee a coproduct lg/1]
for 1. ,l,. The deforming map defined in Eq24) and(27)

no explicit and general form for such a transformation is
known at the moment.

VI. DISCUSSION

The isomorphism between the homographic oscillator al-
gebra(5) and s@2) has subtle implications in the angular
momentum addition theorem and the coproduct law for
l.,l,. From (24) and (25 it is easy to see that
[1,J.]1=[1,J,]=0 and[1,J?]=0. These commutations fur-
ther imply an isomorphism betweéii,) and|jj,). In other
words, the two basis vectors are parallel to each other al-
though they are raised and lowered in different scales on the
z axis[19]. We also note thdtis a function ofd only. Let us
now definei andi, as quantum numbers corresponding to a
basis setii,) on which the generators i22) apply. Then,
using (27) and acting Eq(24) on this basis, one obtains

i(i+1)
—Q)(i—Qx—1)’

which is the desired relation betweemndJ. Herecq q, is
the eigenvalue of#. In the undeformed limit(i.e.,
Q1,Q,—») the equivalence of the two algebras requires
CQ1Q2—>O.

The arguments presented above guarantee the existence of
an implicit coproduct, making it possible to considerand

I, as elements of a quantum deformation of23uThe de-

j(j+1)=cq,* Qle(i (32)

is, however, not in the class of generalized prototypeformation parameter is shown to be determined bytthal

su(2), deformations of Curtright and Zach¢$1,12. The
nonpolynomial forms ofGy(N) and fi(l,) do not permit a
closed analytic form for the coproduct(l.) and A(l,).

angular momentum.JOur work is under progress to extend
the arguments presented above to the most general case of
quartic oscillator algebra. To the knowledge of the authors,

However, one can get some hint from the interesting symsuch generalized cases have also been examined recently by

metry displayed by Eq22) in the limits of very large(i.e.,
gi— —) and very smalli.e., q;—1) deformations as

Smith [20] as applied to the more general nonunitary case
l_#()"



56 T. HAKIOGLU AND M. ARIK 54

The stereographic projection is intimately connected withof weak fields[14]. Using Poincars stereographic projec-
the polar construction of $8) generators, the quantum phase tion, the angular parameters of the polarization ellipse can be
problem, and, in particular, certain geometrical realizationsnapped conveniently on the Stokes parameters. This has a
[21] of quantum Stokes parameters of polarizationcertain advantage from the operational point of view. The
[14,21,23. Nevertheless, the nonunitarity of the azimuthaldirect measurement of the quantum Stokes parameters might
phaseE , and/or the unavoidable nonzero commutations bebe more relevant in determining the orientation of the polar-
tween the azimuthal and polar phase operdters., see Eq. ization ellipse both for experimental perspective and the suit-
(4) herd plague the polar operator construction of3uAs  able group properties that quantum Stokes parameters pos-
briefly mentioned in Sec. Il, the resolution was given bysess. This is where the authors believe that the homographic
Ellinas[6] by adding a cyclic property to the matrix elements oscillator introduced here can be linked with the quantum
of E,4 along theJ, axis with a periodicity of (3+1). This S_tokes_parameters an_d polarlzatlc_m measurement. An_other
new term does not affect the original spectrum and furtheflimension of our work in progress is to exploit this physical
makesE,, manifestly unitary. application.
The homographic oscillator representation is physically
relevant for its application, particularly in the weak intensity
regime of quantum Stokes parametgt4,21]. The quantum
phase problem has been studied in the context of an opera- T. H. appreciates critical comments by Professor C. K.
tional point of view by Noh, Fouges, and Mandel using Zachos and Professor S. Stepanov. He is also grateful to
two coherent laser sourc¢83]. More recently this formal- Professor O. Viskov for remarks on Sec. Ill and for bringing
ism has been applied to the case of polarization measuremeRef. [20] to his attention.
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