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We show that efficient transfer of molecules or atoms from one bound state to another is possible via the
continuum in some cases, using two overlapping laser pulses. The structure of the continuum determines the
pulse delay, laser frequencies, and laser intensities that should be used. We present simple formulas that relate
the optimum values of pulse intensities, pulse separation, and detuning; these estimates can be used as a guide.
More detailed calculations give quantitative results for two specific potentials.@S1050-2947~96!06412-8#

PACS number~s!: 42.50.Hz, 33.80.Rv, 32.80.Rm

The concept of adiabatic population transfer from one
bound state of a molecule or atom to another in a Raman-
type transition via an intermediate bound state with use of
two laser pulses arranged in the counterintuitive order@1# has
led to numerous experimental successes@2# that are still con-
tinuing. We have suggested that the intermediate bound state
can be replaced by states in the continuum@3#, but our cal-
culation was simplified by use of a flat and featureless con-
tinuum. Nakajimaet al. @4# have pointed out that the struc-
ture of the continuum should be considered; it reduces the
maximum population transfer to 61% in their calculations for
one particular example. Also, they point out that unwanted
laser-driven transitions to distant parts of the continuum can
reduce the population transfer by a few orders of magnitude.
These problems must be addressed before this technique can
become a useful experimental tool. Conversely, experiments
on transfer of population via the continuum may be used to
infer the continuum structure.

In another approach to selective excitation, an autoioniz-
ing state is used in place of the intermediate bound state. If
this state has a rather long or short lifetime, the selective-
excitation process is nearly the same as with three bound
states, or nearly the same as transfer through a flat con-
tinuum. This use of an autoionizing state has recently been
treated by Nakajima and Lambropoulos@5#. In our calcula-
tions, no autoionizing state is explicitly recognized. We as-
sume that no pronounced structure is found in the con-
tinuum, and treat the problem of a smooth continuum. The
parameters that describe the continuum are derived from the

model of one electron moving in a potential; this is a feature
of this paper. We adjust parameters of the laser pulse pair to
give maximum transfer probability. This maximum is over
95% in one example. These calculations are supplemented
by simple approximate formulas for the optimum laser de-
tuning and pulse separation.

Let the two bound states have unperturbed~negative! en-
ergiesE0 andE2. Direct transitions between these two states
are forbidden or negligible. Transitions between them and
the continuum are driven by two laser beams, with carrier
frequenciesv0 andv2. The intermediate states used in this
stimulated Raman process occupy a narrow region of the
continuum; their energies are nearE andE8 ~Fig. 1!, which
satisfy v05(E1uE0u)/\ and v25(E81uE2u)/\. Transitions
from either bound state to the continuum occur at a rate
proportional to the laser intensity. When both laser beams
are present, cross terms that are proportional to the
geometric-mean intensity appear. Moreover, distant parts of
the continuum give rise to an ac Stark shift of each bound
state relative to the bottom of the continuum and a related
cross term which is emphasized by Knight, Lauder, and Dal-
ton @6#. They show that adiabatic elimination of all con-
tinuum states can be justified if the ‘‘width’’ of the con-
tinuum times the laser pulse duration is large compared to\.
This calculation gives coupled differential equations forA0
andA2, the probability amplitudes for the two bound states.
Using Fermi’s second golden rule to estimate the rate of
unwanted laser-driven transitions to distant parts of the con-
tinuum ~nearF andF8 in Fig. 1!, we have
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whereLn(t) is proportional to the intensity of thenth laser
beam times the square of the dipole matrix element for tran-
sitions between thenth state and the continuum. Also,
D5(E2E8)/\ is the mismatch of the laser frequency differ-
ence from the difference of binding energies; it is small com-
pared to the other energies here, in order to justify the adia-
batic elimination of continuum states. The continuum
structure determines the dimensionless parametersq0, q2,
q02, s0, ands2. The first three of these depend on principal
values of integrals over all energies in the continuum@6#, and
the ac Stark shifts are proportional toq0 andq2. However,
the counter-rotating term in the ac Stark shift@7# is an im-
portant correction, which is included in our computations of
q0 andq2; it depends on another integral over all energies in
the continuum. The dimensionless strengths of unwanted
laser-driven transitions are

s05 z^Fuxu0& z2/ z^E8uxu2& z2 and s25 z^F8uxu2& z2/ z^Euxu0& z2.
~2!

All five of these continuum parameters are computed, using
methods described in the Appendix. After this, we find nu-
merical solutions of Eq.~1!, using the initial condition that
uA0u

251 andA250 at the initial time.
Continuum-continuum transitions, which have been ne-

glected in the derivation of Eq.~1!, cause a rather fast ap-
portionment of excited electrons among continuum regions
that are separated by the photon energy@8#. If the laser in-
tensity is small compared to a certain saturation intensity, we
can neglect this~above-threshold ionization! effect. The

square-well model used below gives a saturation intensity
above 1011 Watt/cm2, assuming thatv0 andv2 are optical
frequencies. We consider intensities below 1011 Watt/cm2,
and neglect continuum-continuum transitions.

We expect selective excitation via the continuum to be
feasible only whens0 ands2 are small. If the smaller laser
frequency is too small to drive single-photon transitions from
the deeply bound state to the continuum, the first of these
transitions is suppressed, as in Fig. 1. Indeed,s050 if F is
below the continuum threshold~zero energy! andF is not the
energy of a bound state. The other unwanted transition is
unimportant ifs2 is small or zero. Calculations for the Cou-
lomb potential ~1s-continuum-3s! and the sech2 potential
~numbers appear below! show thats2 can be much less than
unity if uE0u@uE2u, meaning that transfer to a high-lying
bound state is wanted. In other cases,s250 because the
bound-continuum transition matrix element changes sign at a
certain energy. Such a sign change is not rare. When such a
sign change affects ground-state-continuum transitions, we
have a Cooper minimum@9#. Raoet al. @10# have recently
remarked that ‘‘Cooper minima are ubiquitous for atomic
and molecular systems.’’

If s05s250 andq05q25q02, then solution of Eq.~1!
gives population transfer close to 100%, in agreement with
the conclusion of@3#.

A simple solution of Eq.~1! is obtained by setting
q05q25s05s25D50 and omitting the delay between la-
ser pulses. UsingL0(t)5L2(t)5L(t), we find

uA2~ t !u25$sinh2L~ t !1sin2@q02L~ t !#%exp@22L~ t !#,

where L(t)5* t i
t L(t8)dt8, t i being the initial time. If

uq02uL(t)'p/2 andL(t) is small at the end of the pulse pair,
nearly complete transfer is obtained. More generally, any
pair of weak pulses gives nearly complete transfer ifuq02u is
large and

uq02u E
t i

t fAL0~ t !L2~ t !dt'p/2, ~3!

wheret f is the final time. If the pulses are not weak, theory
says that counterintuitive pulse order is required for efficient
transfer to state two@1#.

More generally, useful insights into solutions of Eq.~1!
are obtained by applying the adiabatic approximation, in
which AW [(A2

A0) follows an eigenvector of the matrix appear-

ing in Eq. ~1!; the corresponding eigenvalue is used to get
the time-dependent coefficient of this eigenvector. The ei-
genvalues of this matrix are

FIG. 1. Two bound states are labeled 0 and 2; continuum states
are found at every positive energy. Four laser-driven transitions,
including two unwanted transitions~dotted lines with double ar-
rows! are shown.

TABLE I. Strengths of potentials, dimensionless energies of narrow continuum regions used as intermediaries, and calculated dimen-
sionless parameters of the continuum.

Potential
shape

Dimensionless
strength of potential

Dimensionless energy
of region used s0 s2 q0 q2 q02

Sq. well mDw2

2\2 524
mEw2

2\2 52.5916
0 0 227.506 22.7848 211.180

sech2 2mDw2

\2 56.51
2mEw2

\2 5
1
2

0 0.040 325 26.5622 213.726 20.606 51
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in the special case ofs050. Both have negative real parts,
which represent transfer to the continuum. Let these eigen-
values bel1(t) andl2(t), two continuous complex functions
of t. The corresponding eigenvectors areVW 1 andVW 2. Suppose
that the real part ofl1(t) is less negative than that ofl2(t) at
early times. We assume thats0 is zero or much less than
unity, and we use the counterintuitive pulse order, so that
L0(t)/L2(t) is much less than unity at early times. Then,
VW 1→(0

1) as t→t i . The real parts ofl1(t) andl2(t), repre-
sented by curves, may cross one or more times. The dark-
state eigenvalueld(t) is defined so that its real part is less
negative than the real part of the other eigenvalue, or equal
to it. The real part ofld(t) is continuous, but the imaginary
part is generally discontinuous when the real parts ofl1(t)
andl2(t) are equal. We computeld(t) by using the upper
sign in Eq.~4! and the principal value of the square root. The
corresponding eigenvector isVW d . Using the initial condition
for Eq. ~1!, we find thatAW follows VW d at early times. Our
numerical evidence suggests that, for a high probability of
transfer to state two,AW follows VW d at almost all times, even
though this requires a breakdown of the adiabatic approxi-
mation near any discontinuity. This following ofVW d greatly
reduces the rate of transfer to the continuum, and the prob-
ability for occupation of a bound state at the final time is
approximately

Pb[exp E
t i

t f
~ld1ld* !dt, ~5!

whereld* is the complex conjugate. Computations ofPb can
account for the two maxima shown in Fig. 2~b! of @4#, where
ld(t) is continuous. Ifld(t) is not continuous, we have to
estimate the probability thatAW jumps from followingVW 1 to
following VW 2; this is done below.

We can reduce population transfer to the continuum by
making the real part ofld vanish at one time. Ifs05s250,
we make the real part ofld vanish by setting

D5~q02q02!L01~q022q2!L2 . ~6!

If s0 and s2 are small rather than zero, this makes the real
part of ld small. SinceL0 andL2 are generally time depen-
dent, Eq. ~6! suggests that a chirp of the laser-frequency
difference is desirable. If the laser frequencies are fixed, the
maximum values ofL0(t) and L2(t) should generally be
unequal, in order to satisfy Eq.~6! approximately or to make
s0L2 or s2L0 small.

In order to use a realistic pulse shape, we treat two oscil-
lating external electric fields whose amplitudes are Gaussian
functions oft, with standard deviations. This means

L0~ t !5
G0

s
expF2

~ t1S/2!2

s2 G

and

L2~ t !5
G2

s
expF2

~ t2S/2!2

s2 G ,
whereS is the pulse separation. For a counterintuitive pulse
pair S,0,s. The dimensionless parameters of this pulse
pair areG0,G2, S/s, andDs. Formula~6! suggests that they
should satisfy

Ds5exp~2S2/4s2!@~q02q02!G01~q022q2!G2#, ~7!

and Eq.~3! suggests that

p1/2uq02u~G0G2!
1/2exp~2S2/4s2!'p/2 ~8!

should hold whenuq02u is large. These two formulas are a
useful guide to choice ofDs andS/s.

Explicit computations of the five continuum parameters
have been done for two specific one-dimensional models.
We use

H5
p2

2m
1V~x! ~9!

to describe the unperturbed molecule or atom; here,m andp
are the electronic mass and momentum. The potential wells
have widthw and depthD. The square-well model has

V~x!5 H 2D
0

for uxu,w/2
for uxu.w/2,

and the sech2 model has

V~x!52D sech2~x/w!.

Each potential is an even function, and we do calculations
for a stimulated Raman transition from the ground state to
the second excited state. These two potentials deviate from
realistic atomic potentials in opposite ways. For the square
well, the two jumps inV(x) are too sudden; and the sech2

potential is too smooth. We neglect the difference betweenE
andE8 ~Fig. 1!, and evaluate the five continuum parameters
in ways described in the Appendix. We chooseE to give
s050 ands250 or s2!1. Using the values ofD andE speci-
fied in Table I, we find values ofs0, s2, q0, q2, andq02 listed
in Table I. For the sech2 model, there are three bound states
and uE0u@uE2u, meaning that the second excited state is just
barely bound. For the square-well model, there are four
bound states.

We present some results from numerical solution of Eq.
~1!. For each model, we consider first pulse pairs with
G05G2 and D50, meaning that\~v02v2!5uE0u2uE2u
holds exactly. The maximum probability of transfer to state
two is given by pulse pairs listed as examples 1 and 3 in
Table II. This probability of transfer is much greater for the
square-well model than for the sech2 model. For either
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model, this probability can be greatly increased by letting
G02G2 andD have the same sign asq02q2 . The maximum
population transfer to state two is given by pulse pairs listed
as examples 2 and 4 in Table II, and Eq.~7! gives a rough
approximation to the optimum value ofDs. For all four
examples, the final occupation probabilities of states zero
and two are listed in Table II, along withPb , the sum of
these two final occupation probabilities, or the probability of
staying in a bound state. Transfer to the continuum occurs
with probability 12Pb . We notice thatPb is much greater
for the square-well model than for the sech2 model. For the
sech2 model, quite a significant amount of population re-
mains in the ground state. Table II shows thatG05G2 and
D50 are not the best choices for transfer through a real
continuum with structure. Martin, Shore, and Bergmann
have found that a jump from one adiabatic path to another is
sometimes necessary for efficient selective excitation, in
their work on several bound states@11#.

Some insight into these results can be obtained by using
the adiabatic approximation, but we must count the discon-
tinuous changes inld(t) and estimate their effect. In all four
examples,ul1(t)2l2(t)u has a minimum at some interme-
diate time. We use the Landau-Zener formula@12# to esti-
mate the probability thatAW jumps from followingVW 1 to fol-
lowing VW 2. We use the minimum value and the curvature of
ul1(t)2l2(t)u

2 to computer ands, the rapidity and separa-
tion that appear in Wannier’s treatment@13# of the Landau-
Zener model. The jump probability isPLZ5exp~2ps2/2r !,
which is listed in Table III; the probability of followingVW 1 is
12PLZ . We usePLZ as our estimate of the probability that
AW follows VW d whenld(t) changes discontinuously, and use
12PLZ as our estimate of the probability thatAW follows VW d

5VW 1 whenld(t) is continuous. The strongest pulse pair used
here appears as example 1, for whichPLZ is small and adia-
batic following is a good approximation.

In examples 1 and 3,AW follows VW d5VW 1 with probability
12PLZ ; and the estimated probability of remaining in a

bound state is Eq.~5!. Hence, the estimated probability of
transfer to state two isPb~12PLZ!. In examples 2 and 4,
ld(t) is a function with one jump discontinuity, which im-
plies a jump inVW d . Transfer to state two requiresAW to follow
this jump. This occurs with probabilityPLZ , andPbPLZ is
the probability of transfer to state two. For all four examples,
this estimated probability appears in the last column of Table
III, which should be compared with the next-to-last column
in Table II. The adiabatic approximation has been combined
with the Landau-Zener formula, to estimate the probability
of transfer to state two. This estimate is much more accurate
for the square-well examples than for the sech2 examples.
We have usedPb , given by Eq.~5!, as our estimate ofPb ;
this estimate is also much more accurate for the square-well
examples than for the sech2 examples.

All these calculations have used potentials with three and
four bound states. As the Rydberg series is absent, these
models have a resemblance to negative ions. Recent mea-
surements and calculations@14# show that some negative
ions have several bound states. Our results may be applicable
to some negative ion, but we do not exclude application to
neutral molecules and atoms.

We also report some numerical results for the symmetri-
cal special case ofq05q25s05s250, which was previ-
ously studied in@4# and @15#. The highest probability of
transfer to state two is obtained by usingG05G2 andD50.
The maximum transfer probabilities are listed in Table IV,
along with the values ofG5G05G2 and uqu5uq02u. Al-
though the assumption thatuquÞ0 reduces the probability of
transfer to state two, the pulse pair can always be arranged to
give more than 54% transfer. Ifuqu is rather small or rather
large, the maximum transfer probability is close to 100%.
The last column of Table IV shows how
p1/2uquG exp~2S2/4s2! approachesp/2'1.57 as uqu in-
creases; this agrees with Eq.~8!. For a fixed value ofuqu, we
find that quite a range of values ofG andS/s give transfer
probabilities near the maximum, if the product

TABLE II. Parameters for optimal Gaussian pulse pairs, and resulting final occupation probabilities for
states zero and two.

Example
number

Potential
shape G0 G2 S/s Ds

Final occupation probabilities

uA0u
2 uA2u

2 Pb

1 Sq. well 3.96 3.96 23.39 0 531028 0.712 79 0.712 79
2 Sq. well 0.269 0.760 21.78 24.52 0.004 26 0.950 60 0.954 86
3 sech2 0.590 0.590 20.88 0 0.158 84 0.073 32 0.232 16
4 sech2 1.290 0.692 20.15 0.89 0.082 22 0.258 61 0.340 83

TABLE III. Estimates of final occupation probabilities, based on
adiabatic approximation and Landau-Zener formula.

Example
number

Discontinuities
in ld(t) Pb PLZ

Estimated
transfer probability

1 0 0.783 0.062 0.735
2 1 0.980 0.981 0.962
3 0 0.413 0.922 0.032
4 1 0.504 0.952 0.480

TABLE IV. Maximum probability of transfer for various values
of uqu5uq02u.

uqu G S/s uA2u
2 p1/2uquG exp~2S2/4s2!

0.25 9.41 21.47 0.764 00 2.43
0.5 4.39 21.52 0.631 75 2.18
1.0 2.16 21.72 0.546 62 1.83
2.0 1.12 21.87 0.579 73 1.66
4.0 0.564 21.92 0.690 83 1.59
8.0 0.290 21.96 0.806 35 1.57
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G exp~2S2/4s2! is kept nearly constant; see@15#. In the case
of uqu54, the transfer probability varies from 0.654 42 to
0.690 83 to 0.623 65 andG exp~2S2/4s2! varies from 0.199
to 0.316 whenG varies from 0.25 to 64.

Some physical effects not represented in Eq.~1! should be
mentioned. In a more elaborate treatment of two bound states
and a continuum, the ac Stark shifts of state zero by laser
beam two and state two by laser beam zero would be taken
into account; this would turns0 ands2 into complex coeffi-
cients. Also, further counter-rotating terms would be taken
into account. We believe that treatment of these additional
terms would not greatly affect the results of our calculations.

We conclude that the effects of continuum structure and
unwanted laser-driven transitions can be overcome, by ap-
propriate choices of pulse separation, laser frequencies, and
laser intensities. This means that population transfer through
the continuum can be realized. The best laser intensities for
this process are generally quite moderate, unlike those in the
original calculation@3#. Although the process cannot always
be regarded as adiabatic transfer, relations~7! and ~8! may
give a useful guide to optimum pulse parameters. Also, these
relations can be used to interpret experimental data in terms
of continuum structure.

Note added in proof. We have received a manuscript by
Yatsenko, Unanyan, Bergmann, Halfmann, and Shore that
describes similar calculations.
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APPENDIX

Five dimensionless parameters that describe the con-
tinuum appear in Eq.~1!, and we compute them for a model

described by Eq.~9!. It is not difficult to find eigenfunctions
of Eq. ~9! for the potentialsV(x) used here. We mention that
associated Legendre functions@16# are used for the sech2

shape. Their degree isn ~52.1 for the case listed in Table I!,
and 2mDw2/\25n~n11!. Their order ism, which is imagi-
nary for the continuum wave functions. When eigenfunctions
of Eq. ~9! are known, evaluation of Eq.~2! is straightfor-
ward. However,q0, q2, andq02 involve sums over all odd
eigenfunctions, as we treat transfer from one even bound
state to another. Each sum includes a sum over odd bound
states and an integration over odd continuum states. We have
five of these sums, because counter-rotating terms inq0 and
q2 are computed. For the square-well potential, these five
sums over odd eigenfunctions are easily evaluated by using
two functions ofz

K ebUx 1

z2H
xUebL and K ebUx 1

z2H
xUeb8L .

Here,z is the complex variable and the ketsueb& and ueb8&
describe two different even bound states. Although these are
elementary functions ofz, the explicit formulas are too long
to quote here. These formulas are evaluated atz5E1 i01, in
order to evaluate the principal-value integrals indirectly. The
counter-rotating term inqn is obtained from

K ebUx 1

E22\vn2H
xUebL .

This calculation ofq0, q2, andq02 for the square-well model
is entirely analytic, apart from preliminary solution of a tran-
scendental equation for

muE0uw2

2\2 and
muE2uw2

2\2 ,

the two-dimensionless binding energies.
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