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We study the three-dimensional atomic Bose gas using renormalization group techniques. Using our knowl-
edge of the microscopic details of the interatomic interaction, we determine the correct initial values of our
renormalization group equations and thus obtain also information on nonuniversal properties. As a result, we
can predict, for instance, the critical temperature of the gas and the superfluid and condensate density of the
Bose-Einstein condensed phase in the regimenaL th

2 !1, where the average interaction energy is small com-
pared to the average kinetic energy.@S1050-2947~96!08612-X#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 64.60.2i

I. INTRODUCTION

After a long history in which a large number of experi-
mental groups around the world contributed to the develop-
ment of successful methods to master stabilization and cool-
ing of dilute Bose gases, last year the aim of achieving Bose-
Einstein condensation in such a system was finally reached.
Indeed, a macroscopic occupation of the one-particle ground
state was irrefutably observed in magnetically trapped and
evaporatively cooled alkali-metal gas samples of87Rb and
23Na using relatively simple time-of-flight measurements
@1,2#. The transition that was claimed to be seen in an ex-
periment using7Li was less convincing@3#. In the latter
case, the interatomic interaction is effectively attractive and
the potential has a negative scattering lengtha. Therefore,
Bose-Einstein condensation in this system is preempted by a
first order phase transition to a liquid or solid phase in the
homogeneous case@4#. Nevertheless, for inhomogeneous gas
samples the trapping potential has a stabilizing influence and
a macroscopic occupation of the ground state is possible in
principle. However, when the condensate contains more than
some 1500 particles under the conditions of the7Li experi-
ment @5#, the condensate is still expected to collapse@6#.

Since these first experiments, which were primarily aimed
at proving the existence of a Bose condensate, many experi-
mental groups have been building or improving on their ex-
perimental setups to be able to perform much more precise
measurements of various interesting properties of the gas in
the degenerate regime. Superfluidity@7#, the condensate den-
sity and its profile, the dynamics of condensate formation
@8#, the Josephson effect@9#, vortex dynamics, collective ex-
citations@10–13#, and the precise value of the critical tem-
perature are examples of phenomena and quantities of inter-
est. Other types of experiments will presumably also study
the properties of mixtures of atomic gases. In this respect one
might think of two bosonic species with a different sign of
the scattering length, or mixtures of bosons and fermions, or
mixtures uniting both aspects. In the case of a pure fermionic
gas of 6Li atoms, a BCS transition to a superfluid state is
predicted to occur and should be within reach of the current
experimental technology@14#. Furthermore, in some cases
the magnitude and even the sign of the scattering length can
be changed by varying the applied magnetic field. This opens
the road to yet another type of experiment.

It is clear from these possibilities that a large number of
experiments are expected to be performed in the near future,
which clearly makes the degenerate dilute Bose gas also a
very interesting subject for theoretical studies. Indeed, this
field of research has rapidly expanded during the past year.
However, most approaches to the dilute Bose gas use the
Bogoliubov ~or Popov! theory and are therefore of mean-
field type and susceptible to improvements, from a practical
as well as a fundamental point of view. In these approaches
one mostly uses the so-called two-bodyT matrix, or equiva-
lently the scattering lengtha. Technically, this important
quantity describes the collisions taking place in the dilute
Bose gas by summing all possible two-body scattering pro-
cesses, i.e., all ladder diagrams, without taking into account
the fact that the surrounding gaseous medium has an effect
on these collisions. However, we have recently shown that
the many-body corrections arising from the surrounding gas
may be important@15#, and are even essential for solving the
problem connected to the order of the phase transition which
is found to be of first order when using the two-bodyT
matrix @16–19#.

Including quantitatively the same many-body corrections
in the case of a highly inhomogeneous gas sample has at this
point not yet been done. Moreover, introducing the effect of
the medium on two-particle collisions also in the condensed
phase by means of the many-bodyT matrix leads to funda-
mental problems if we want to describe the physics at long
wavelengths correctly as the ladder diagrams contain infra-
red divergencies in this case. Using renormalization group
techniques, we expect in principle to be capable of resolving
these infrared problems as with this method a correct resum-
mation of diagrams is automatically performed, eliminating
any potentially troublesome large distance behavior of the
individual diagrams. Furthermore, a renormalization group
calculation can be used to improve the usual mean-field ap-
proaches and the many-bodyT-matrix theory in the critical
region. Indeed, we recently predicted by these means, for
example, that the critical temperature in the87Rb and 23Na
experiments can, due to interaction effects only, be raised
with as much as 10% compared to the ideal gas value found
from the criterionncL th

35z(3/2).2.612@20#, which is iden-
tical to the criterion also found using mean-field calculations
@15#. Here n is the density andL th5(2p\2/mkBT)

1/2 the
thermal de Broglie wavelength of the atoms in the gas.
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Therefore, it is highly conceivable that in the critical region
also other properties of the dilute Bose gas, such as the su-
perfluid and condensate densities, will significantly change
when going beyond the mean-field level or beyond the
many-bodyT-matrix theory.

The renormalization group method is a very powerful
method which was developed by Wilson@21# to study the
universal properties of second order phase transitions. The
basic idea is to perform the trace in the grand canonical
partition function Zgr5Tr(e2b(H2mN)) gradually, starting
with the high momentum states. After each step one tries
to find a new effective Hamiltonian such thatZgr
5Tr8(e2b(H82m8N)) and the trace is limited to the low mo-
mentum states which have not been reached yet. One pro-
ceeds until the complete sum has been performed. Besides
the partition function one in this manner also ends up with
the effective Hamiltonian describing the long distance prop-
erties of the system.

The renormalization group method has been applied to the
dilute Bose gas before, but without performing an extensive
quantitative study of this system@22–25#. Indeed, these pa-
pers essentially rederive the results of the Bogoliubov~or
Popov! theory by means of a renormalization group analysis.
A quantitative study that goes beyond this approximation is
complicated by the fact that in general the quantities of non-
universal nature, such as the critical temperature and the su-
perfluid and condensate densities, depend on the microscopic
details of the system considered. Put differently, they depend
on the ultraviolet cutoffL of the theory and this quantity is
usually unknown. However, due to the diluteness of the gas
the nonuniversal properties are in the present and forthcom-
ing experiments the most interesting ones, and therefore we
are in this paper mainly interested in these aspects. The rea-
son that it is nevertheless possible to perform a quantitative
study of the dilute Bose gas using the renormalization group
method is that for this system we do have sufficient informa-
tion about the microscopic details to calculate and predict the
nonuniversal properties. Thus we can, by correctly applying
this knowledge, use the renormalization group method and
eliminate the cutoff dependence at the same time. Further-
more, we will show that, in contrast to regular perturbation
theory, the problems related to the infrared divergencies are
in principle indeed resolved, but lead nevertheless to some
problems whose solution requires further investigation.
However, these problems are only of importance when the
interaction energy is no longer negligible compared to the
kinetic energy of the particles. The dimensionless parameter
reflecting this aspect isnaL th

2 . Therefore, we will in this
paper first concentrate on the regime wherenaL th

2!1.
We treat here only the homogeneous Bose gas with effec-

tively repulsive interactions, i.e., with a positive scattering
length. However, as in all experiments up until now the num-
ber of particlesN is so large that the critical temperature
Tc is much larger than the energy splitting\v between sub-
sequent levels, one can practically for all temperatures use a
local density approximation to describe the gas in the trap.
The criterion for this description to be valid is that the cor-
relation length should be smaller than the typical length scale
on which the atomic density varies. Therefore, a local den-
sity approximation breaks down close to the edge of the gas

cloud, which is for most practical purposes an unimportant
region, but also in the center of the trap if the temperature
approaches the critical temperature and the diverging corre-
lation length starts to exceed the typical dimensions of the
trap. The temperature interval where this occurs has a width
of O„Tc(\v/kBTc)… around the critical temperature. As this
region is very small, we conclude that the results we find in
this paper for the homogeneous gas are essentially also valid
for the inner part of the trapped Bose gases, and in particular
pertain to the87Rb and 23Na experiments. Furthermore, we
want to remark here that it would in principle also be pos-
sible to set up a renormalization group calculation for the
inhomogeneous Bose gas. Of course, there is no real second
order phase transition present in this system because the cor-
relation lengthj can never become infinite, but the tech-
niques of the renormalization group as presented in this pa-
per can still be used to calculate the~nonuniversal! properties
also in this case.

The paper is organized as follows. In Sec. II we briefly
discuss the theoretical description of the dilute Bose gas and
the renormalization group method. In Sec. III we first apply
the renormalization group to the uncondensed phase of the
Bose gas because the flow equations are relatively simple
and easy to understand in this case. In Sec. IV we then go
over to the degenerate Bose gas and again describe the gas
properties following from the renormalization group ap-
proach. Finally, in Sec. V we end with some concluding
remarks. In the numerical calculations we always use23Na
as an example, because the experiment with this atomic spe-
cies is closest to the conditions of homogeneity@2#. We take
in these cases the most up-to-date value of 52a0 for the two-
body scattering length@26#.

II. THE RENORMALIZATION GROUP

The renormalization group equations are most easily ob-
tained using the functional integral formulation of the grand
canonical partition function@27#. We thus write

Zgr5Tr~e2b~H2mN!!5E d@c* #d@c#expH 2
1

\
S@c* ,c#J .

~1!

This functional integral is overc-number fieldsc* (x,t) and
c(x,t) periodic in imaginary time over\b5\/kBT. The
so-called Euclidian action for the dilute Bose gas is given by

S@c* ,c#5E
0

\b

dtS E dxc* ~x,t!F\ ]

]t
2

\2¹2

2m
2m G

3c~x,t!1
1

2E dxE dx8c* ~x,t!c* ~x8,t!

3V~x2x8!c~x8,t!c~x,t! D , ~2!

with m the chemical potential andV(x2x8) the effectively
repulsive interaction potential. In principle, the action also
contains a term describing three-particle interactions, i.e.,
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1

6E0
\b

dtE dxE dx8E dx9c* ~x,t!c* ~x8,t!c* ~x9,t!

3U~x2x8,x2x9!c~x9,t!c~x8,t!c~x,t!,

and terms describing interactions between four and more par-
ticles due to the finite extent of the electron clouds of the
atoms. However, as we are describing thedilute Bose gas
these terms are expected to make in general no significant
contribution to the thermodynamic properties to be calcu-
lated. Indeed, in usual approaches to the dilute Bose gas
these terms are always neglected for this very reason. One
aspect of the renormalization group calculation is that it is
possible, and even rather straightforward, to include the
three-body interaction in the calculations. As its influence
will turn out to be extremely small, except in the critical
region where it becomes somewhat larger, we will in the rest
of this section omit this term for reasons of brevity. How-
ever, in Sec. III we perform some calculations including the
three-body term to show its effect quantatively, and at that
point introduce it again.

Expanding the fields in Fourier modes through

c~x,t!5
1

~\bV!1/2(k,n ak,ne
i ~k–x2vnt! ~3!

and the complex conjugate expression forc* (x,t), we can
write the action in momentum space as

S@a* ,a#5(
k,n

~2 i\vn1ek2m!ak,n* ak,n

1
1

2

1

\bV (
k,k8,q
n,n8,m

Vqak1q,n1m* ak82q,n82m
* ak8,n8ak,n .

~4!

In this equation ek5\2k2/2m is the kinetic energy,
Vq5*dxV(x)e2 iq–x is the Fourier transform of the interac-
tion potential,V is the volume of the system, and the bosonic
Matsubara frequenciesvn52pn/\b reflect the periodicity
of the fields in imaginary time.

The renormalization group equations now follow from re-
peatedly applying the renormalization group transformation
to this action. It consists of three different stages@21,28#
which we summarize here. The first step is to perform the
functional integral in Eq.~1! for the most rapidly oscillating
fields. In other words, we eliminate the highest Fourier
modes from the action in Eq.~4!. In practice, we therefore
have to split the fields in ‘‘slow modes’’ and ‘‘fast modes,’’
i.e., we define

c,~x,t!5
1

~\bV!1/2(k,n ak,ne
i ~k–x2vnt!

for 0,uku,L2dL,
~5!

c.~x,t!5
1

~\bV!1/2(k,n ak,ne
i ~k–x2vnt!

for L2dL,uku,L,

whereL is the ultraviolet cutoff in the theory, anddL is the
thickness of the shell in momentum space which is going to
be integrated out. We will dwell on the issue of the ultravio-
let cutoff shortly. With the definitions in Eq.~5!, we can
write the action as

S@c* ,c#5S0@c,* ,c,#1S0@c.* ,c.#

1SI@c,* ,c, ,c.* ,c.#, ~6!

whereS0 is quadratic in the fields, andSI contains the re-
maining terms, and in particular the terms that couple the
slow and fast modes. The partition function can now be writ-
ten as

Zgr5E d@c,* #d@c,#expH 2
1

\
S0@c,* ,c,#J

3E d@c.* #d@c.#

3expH 2
1

\
~S0@c.* ,c.#1SI@c,* ,c, ,c.* ,c.# !J

[E d@c,* #d@c,#expH 2
1

\
S0@c,* ,c,#J

3expH 2
1

\
DS@c,* ,c,#J . ~7!

After performing the last integral, we obtain an expression
for the partition function containing the new effective action
S8@c,* ,c,#5S0@c,* ,c,#1DS@c,* ,c,# for the slow
modes. The two remaining stages of the renormalization
group transformation consist of a rescaling of the momenta
such that the new cutoff, which isL2dL, is restored to its
initial valueL, and a rescaling of the frequency and fields in
the action such that there is no effect from this momentum
rescaling on some appropriate terms in the quadratic part of
the action. If we neglect the renormalizations from the first
step, this procedure yields the so-called trivial scaling of the
coupling constants. Having completed these final steps of the
renormalization group transformation, we can read off the
new coupling constants from the action. Thus, the renormal-
ization group equations have two contributions. One is from
the rescaling, the other is from the actual integrating out of
high momenta from the action.

Concerning the trivial scaling, there are two cases to dis-
tinguish. For the normal renormalization group equations
this scaling is found using the full quadratic action. The other
situation occurs exactly at the critical temperature. At that
point the correlation lengthj of the system is infinite. More-
over, the correlation timetc also diverges and we can ne-
glect the time dependence in the action. As a result, we then
only need to consider the kinetic energy term to find the
trivial scalings. In renormalization group studies, one nor-
mally restricts oneself to couplings which are relevant or
marginal at the critical temperature, and this we will also do.
However, it turns out that even the marginal coupling con-
stantU0 from the three-body interaction term is quite irrel-
evant to the nonuniversal properties to be calculated. This is
of course due to the fact that three-body interactions are un-
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important for adilute system. However, if one is interested
in the universal properties of the phase transition, such as,
e.g., the critical exponentn connected to the divergence of
the correlation length when approaching the critical tempera-
ture, marginal and also irrelevant couplings can have a con-
siderable effect. We will explicitly encounter this fact in the
next section.

The renormalization group equations describe the change
of the coupling constants as we integrate out momentum
shells from the action. Having arrived at the long wavelength
effective action, we find whether or not we are in the con-
densed phase, and we can calculate universal properties con-
nected to this phase transition. However, our aim is to use
the renormalization group method to obtain information on
other properties as well. This can also straightforwardly be
done by noting that, e.g., for the total density we have
n5(k,n^ak,n* ak,n&. This equation can be cast into a differen-
tial equation describing the building up of the density as we
proceed with the elimination of the fast Fourier modes. For
that purpose, we have to use the right value of the chemical
potentialm in each subsequent momentum shell as found
from the renormalization group equations. In the same fash-
ion one can also determine, e.g., the superfluid density and
the thermodynamic potential.

Before we can start with the derivation of the flow equa-
tions, we first have to pay some attention to the high momen-
tum limit of the action. In principle, there is no real sharp
ultraviolet cutoff L in our problem. However, the typical
behavior of the Fourier transform of the two-body interaction
potential, depicted in Fig. 1, is such that there is an effective
ultraviolet cutoff around the momentum scale set by the scat-
tering lengtha of this potential. Below this value, the Fourier
transform is practically momentum independent and equal to
V0 . As in the Bose systems considered here and realized
experimentally, the temperatures are so low that
\/a@\/L th , and the particles in the gas reside in a momen-
tum range well below this ultraviolet cutoff. Thus, we can
represent the interaction potential by the momentum-
independent valueV0 for momenta below a cutoff\L of
O(\/a), and zero for larger momenta.

Modeling the potential as such implies that the nonuniver-
sal properties we find from a renormalization group calcula-
tion will be sensitive to the specific value of the cutoffL
taken in the calculations. However, at this point our knowl-

edge about the microscopic details of the Bose gas comes in
to resolve this potential problem. In particular, we know that
the two-body interaction potentialVq has to renormalize to
the two-bodyT matrix T2B„(k2k8)/21q,(k2k8)/2;\2(k
2k8)2/m… when we include all possible two-body scattering
processes in the vacuum@29#. The two-body T matrix
roughly has the same momentum dependence asVq , cf. Fig.
1, and is in particular constant and equal to 4pa\2/m in the
range of thermal momenta and energies. Thus, given an ul-
traviolet cutoffL we can fix the renormalization group equa-
tions by demanding that for the two-body problem,V0 in-
deed correctly renormalizes to 4pa\2/m. Since this value is,
due to the inequalitya/L th!1, already attained before we
enter the thermal regime as we integrate out more and more
momentum shells from the action, this indeed leads to a cor-
rect description of the properties of the Bose gas which is
independent of the ultraviolet cutoffL. Having eliminated
the cutoff dependence, we are then in a position to determine
also the nonuniversal properties of the dilute Bose gas. Fur-
thermore, we can perform the calculation for any~positive!
value of the scattering length, thus being able to describe any
atomic species with effectively repulsives-wave scattering.
The results we find are therefore relevant to the current ex-
periments using87Rb and 23Na, but also to future experi-
ments using atomic hydrogen or other atoms with a positive
scattering length.

We now turn to the application of the renormalization
group method to the dilute Bose gas. First, we derive the
renormalization group equations when the chemical potential
is negative, starting from the action in Eq.~4!. These equa-
tions, however, do not describe the Bose condensed phase,
for then it is required that the chemical potential be positive.
As a result, we have to rederive the renormalization group
equations for that case and this is carried out in Sec. IV. The
derivation is now much more involved as the space and time
independent part of the effective action, i.e.,
2mua0,0u21V0ua0,0u4/2\bV, has for m.0 a Mexican hat
shape and we first have to expand the action around the
correct extremum by performing the shifta0,0→a0,01
An0\bV and introducing the condensate densityn0 . Only
after that can we proceed to find the contributions to the
renormalization of the vertices.

III. THE SYMMETRY-UNBROKEN PHASE

In this section we first concentrate on the renormalization
group equations valid for negative chemical potential. The
reasons for this are threefold. The equations correctly de-
scribe the Bose gas in the uncondensed phase, and they offer
an easy way to determine the influence of three-body effects
on the quantities of interest. Moreover, it is best to start with
this relatively simple set of equations because it illuminates
most clearly our procedure to eliminate the cutoff depen-
dence of the theory.

A. The flow equations

To calculate the change of the couplings after each step of
the renormalization group transformation we can technically
proceed in two different, but equivalent ways. The first and
probably most familiar method is to expand the integrand in

FIG. 1. Typical behavior of the Fourier transform of the inter-
atomic interaction potentialV(x2x8).
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the partition function in powers ofSI@c,* ,c, ,c.* ,c.#, and
then perform the integrals over the fast modes by evaluating
the appropriate Feynman diagrams contributing to the renor-
malization or flow of the vertices of interest. The renormal-
ization of the gradient and time-derivative terms of interest
are found by performing a Taylor expansion in external mo-
menta and frequencies of these diagrams. However, the as-
sociated couplings become more and more irrelevant for
higher order terms in this expansion. The second way to
obtain the renormalization group equations does not explic-
itly make use of Feynman diagrams, and is therefore very
useful and efficient when the number of diagrams is large
and/or the associated combinatorics is complicated. We use
here the diagrammatic method because in the unbroken
phase the number of diagrams is limited and the combinator-
ics is simple. We use the other method in Sec. IV. Moreover,
using Feynman graphs also gives a transparent way to find
the trivial scaling of the vertices in a somewhat different
fashion than from the rescaling procedure described in Sec.
II, which brings out more clearly the physics of this proce-
dure.

As mentioned before, we include also the three-body in-
teraction term from the preceding section in our consider-
ations, and take it, as the two-body interaction, to be momen-
tum independent below the cutoffL. The one-loop diagrams
to be calculated are depicted in Fig. 2. To derive the renor-
malization group equations and the trivial scalings of the
coupling constants we focus on the chemical potential. In the
thermodynamic limit the total contribution to the chemical
potential from integrating out an infinitesimal momentum
shell in the Hartree and Fock diagrams is

dm522V0E
L~ l !2dL

L~ l ! d3k

~2p!3
N~ek2m!, ~8!

whereL( l )5Le2 l denotes the radius of the shell in momen-
tum space andN(ek2m)51/(eb(ek2m)21) is the Bose-
Einstein distribution function which results from the summa-
tion over the Matsubara frequenciesvn . Using
uku5L( l )5Le2 l and performing the angular integrals, we
can write Eq.~8! as

dm522V0

L3

2p2E
l

l1dl

N~eLe
22l2m!e23ldl. ~9!

Next, we remove all explicitl dependencies from the Bose-
Einstein distribution function by letting both the temperature
and the chemical potential scale with exponent 2, i.e., we set
T( l )5Te2l and m( l )5me2l . Hence, both temperature and
chemical potential scale trivially with exponent 2 and we
find for the differential equation describing the change of the
chemical potential when integrating out a momentum shell

dm

dl
52m2

L3

p2V0e
2 lN~eL2m!. ~10!

Finally, we now also absorb the factore2 l into V0 in order to
remove the remaining explicitl dependence. As a result,
V0 scales trivially with exponent21. Analogously, from a
similar exercise with the equation for the interaction poten-
tial one can show that the vertexU0 trivially scales with an
exponent24. Note first of all that to find the real physical
quantities we should remove the trivial scalings again and
furthermore that these scalings do not have an essential ef-
fect on the renormalization of the vertices; it is merely a
rewriting of the differential equations. In the case of a nega-
tive chemical potential we eventually obtain the following
coupled set of renormalization group equations for the cou-
pling constantsm, V0 , andU0 :

dm

dl
52m2

L3

p2V0N~eL2m!, ~11a!

dV0
dl

52V02
L3

2p2V0
2F112N~eL2m!

2~eL2m!
14bN~eL2m!

3@N~eL2m!11#G1
3L3

2p2U0N~eL2m!, ~11b!

dU0

dl
524U01

L3

2p2V0
3F8b2N~eL2m!@N~eL2m!11#

3@2N~eL2m!11#1
3

~eL2m!2
$112N~eL2m!

12b~eL2m!N~eL2m!@N~eL2m!11#%G
2

L3

2p2U0V0F3@112N~eL2m!#

eL2m
118bN~eL2m!

3@N~eL2m!11#G . ~11c!

Without the three-body term Eqs.~11a! and~11b! agree with
the flow equations obtained by Fisheret al. @22#.

To argue that these equations are the only ones we need to
consider, we still have to determine the trivial scaling at the
critical temperature. This different scaling comes about be-
cause in the limitl→` the Bose-Einstein distribution func-
tion behaves asN(eL2m)51/b( l )@eL2m( l )# as we are ef-
fectively at very high temperatures due tob( l )5be22l . To
remove again all explicitl dependencies after substituting

FIG. 2. The one-loop Feynman graphs contributing to the renor-
malization of~a! the chemical potential,~b! the two-body interac-
tion, and~c! the three-body interaction. The dot represents the two-
body vertexV0 and the square the three-body vertexU0 .
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this behavior, we clearly need a different trivial scaling of
the vertices, and this is precisely the trivial scaling at the
critical temperature, since settingN(eL2m)51/b(eL2m)
is equivalent to neglecting the time-derivative in the action.
In this manner we can straightforwardly show that the scal-
ing of the chemical potential remains the same, i.e., we have
m( l )5me2l , that the scaling of the two-body interaction be-
comesV0( l )5V0e

l instead ofV0( l )5V0e
2 l , and that the

three-body interaction does not scale, i.e.,U0( l )5U0 instead
of U0( l )5U0e

24l . From this we conclude thatm andV0 are
relevant andU0 is marginal at the critical temperature. Fur-
thermore, the four-body interaction is indeed irrelevant and
therefore not included in the calculations. The coefficients of
the gradient and time derivative terms in the quadratic part of
the action are, likeU0 , marginal and would in principle also
have to be included in the renormalization group equations.
However, as we are in the regimea/L th!1, the interactions
are expected to be independent of momentum and energy
~but see below! and there is no renormalization of the]/]t
and u¹u2 terms. Moreover, we know from thee expansion
that the anomalous dimensionh, indicating the importance
of the u¹u2 renormalization at the critical temperature, is very
small, namelyh50.02 @30#. Therefore, the]/]t and u¹u2
renormalizations will be neglected and Eq.~11! describes the
renormalization of the vertices we will consider.

To calculate the partition function of the gas, we need,
next to the flow equations for the above quantities, also the
correct boundary conditions. The first one for the chemical
potentialm is just the bare value in the action Eq.~4!. For the
two-body interaction potentialV0 we need to be more care-
ful, as this vertex has to correctly fix the renormalization
group equations as described in the preceding section. From
Eq. ~11b! we recognize that in a vacuum, i.e.,
N(eL2m)50, the renormalization of the interaction be-
tween two particles is governed by

dV0
dl

52V02
L3

2p2V0
2 1

2~eL2m!
. ~12!

This is just the differential form of the Lippmann-Schwinger
equation@29# for the two-bodyT matrix at energy 2m, i.e.,
T2B(0,0;2m). As the two-bodyT matrix is energy indepen-
dent for low energies, we can neglectm and use
T2B(0,0;2m).T2B(0,0;0)54pa\2/m. As the solution of
Eq. ~12! is also practically independent of the chemical po-
tential, we can neglect it as well. As a result, the requirement
is now that, given an ultraviolet cutoffL, V0 flows for
l→` to the value 4pa\2/m. This can be ascertained by
choosing the right initial condition forV0 , and more pre-
cisely we find from analytically solving Eq.~12! that

V0~ l50!5
4pa\2

m

1

122aL/p
~13!

leads to the correct result. Note that we can describe different
atomic species by only changing the value of the scattering
lengtha used in this equation. Finally, in principle we also
need a boundary condition for the three-body interaction
U0 . For this interaction we can, analogous to the scattering

length a for the two-body interaction, introduce a length
scaleb, and again fixU0( l50) such that the renormalization
group calculation gives the correct resultU0( l5`)
54p\2b4/m for elastic three-body scattering in a vacuum.
However, in general not much is known about the micro-
scopic details of the three-body interaction in a dilute Bose
gas, and in particular about the value of the ‘‘three-body
scattering length’’b. But, as can be expected from the fact
that the three-body interactions are in the renormalization
group sense irrelevant at large momenta, the results are prac-
tically insensitive to the boundary value ofU0 used, and
U0( l50) is hardly of any importance. This is shown explic-
itly in Sec. III B. Note that takingU0( l50)50 is equivalent
to assuming that three-particle scattering is solely due to the
sum of pair interactions. This is a standard approximation in
atomic three-body calculations.

Finally, to describe the dilute Bose gas we still need to
derive expressions for the total and superfluid density and the
equation giving the thermodynamic potentialV, and thus the
pressurep52V/V[2v. To do so, we make use of the
following well-known one-loop expressions for the density:

n5E
0

L d3k

~2p!3
N~ek2m!, ~14!

the superfluid density

ns5n2nn5n2E
0

L d3k

~2p!3
2

3
bekN~ek2m!@N~ek2m!11#,

~15!

where nn is the normal density given by the momentum-
momentum correlation function, and the thermodynamic po-
tential

v5
1

bE0
L d3k

~2p!3
ln~12e2b~ek2m!!. ~16!

Casting these equations into a differential form by perform-
ing the integration shell by shell leads to

dn

dl
5

L3

2p2N~eL2m!e23l , ~17a!

dns
dl

5
dn

dl
2

L3

3p2beLN~eL2m!@N~eL2m!11#e23l ,

~17b!

dv

dl
5
1

b

L3

2p2ln~12e2b~eL2m!!e25l , ~17c!

where the inverse temperature again scales asb( l )5be22l

and the chemical potential is found from Eq.~11a! at each
step of the integration. These equations describe the building
up of these quantities as we integrate out more and more
momentum shells from the action. For convenience, the ex-
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plicit l dependence is not removed from these equations, and
they thus immediately yield the physical quantities. Note fur-
thermore that these equations have no influence on the renor-
malization ofm, V0 , andU0 as they are decoupled from the
renormalization group equations~11!. The last equation was
also derived in earlier work by Fisheret al. @22#.

B. Analysis of the flow equations

We start our analysis by first focusing on the critical prop-
erties of Eq.~11! and in particular on the critical exponent
n pertaining to the divergence of the correlation length, i.e.,
the correlation length behaves asj5j0u(T2Tc)/Tcu2n when
approaching the critical temperature. For that purpose we
have to find the fixed point of the renormalization group
equations, linearize the flow equations around this fixed
point, and identify the largest eigenvaluel1 which is related
to this critical exponent vian51/l1 @21#. We first omit the
three-body interaction, but in a subsequent calculation in-
clude it again to determine the influence of this marginal
vertex on the value ofn. Only for the set$m,V0%, when
U0( l )50, do we perform the calculation of the fixed point
explicitly. With the remarks made in Sec. III A we have that
the fixed point is found from

dm

dl
52m2

L3

p2V0

kBT

eL2m
50, ~18a!

dV0
dl

5V02
L3

2p2V0
2 5kBT

~eL2m!2
50, ~18b!

yielding (m* ,V0* )5(eL/6, 5p
2eL

2 /18kBTL3). From linear-
ization of Eqs.~18a! and~18b! around this value we find for
the largest eigenvaluel151.878, implying thatn50.532.
Repeating the calculation including the equation forU0( l ),
the fixed point is shifted and the critical exponent is found to
ben50.613. Thus, we see that the marginal operatorU0 has
a rather large effect. Moreover, we can conclude from this
result that also irrelevant coupling constants must have a
considerable effect as it is known, from thee expansion of
theO(2) model@30# and from measurements in4He experi-
ments, that the true critical exponent of the Bose gas should
have the valuen50.67. This discrepancy should be allevi-
ated by including more and more irrelevant vertices.

However, as we are particularly interested in the nonuni-
versal properties of the dilute Bose gas, we now turn to the
influence of the three-body interaction termU0 on these
quantities. The influence of this term will of course be largest
when we start close to the critical chemical potential, be-
cause at the critical point in principle all fluctuations are of
importance. Starting with a chemical potential near the criti-
cal value leads to a trajectory that almost flows into the fixed
point of the renormalization group equations, and the mo-
mentum interval in which irrelevant vertices can have a sig-
nificant contribution to the flow, and also to the building up
of the density, is then largest. The bare chemical potential
yielding a flow into the fixed point is positive, and the physi-
cal chemical potential~i.e., with the trivial scaling removed!
renormalizes to zero. For a bare chemical potential larger
than this critical value the flow is no longer defined as at
some value ofl we have that@eL2m( l )# becomes zero and

the Bose-Einstein distribution function diverges. We will
come back to this point later on and restrict ourselves here to
the accessible regime, which physically implies thatn,nc .

The first aspect connected to the three-body interaction
concerns the initial value problem forU0 . Indeed, as alluded
to before, an explicit calculation shows that changing the
boundary condition forU0 from zero to one corresponding to
a ‘‘three-body scattering length’’b510a5520a0, which is
extremely large in general, changes the total density and the
pressure in the system with less than 0.1%. Thus, the results
we obtain are practically insensitive to this boundary condi-
tion and henceforth we simply useb5a552a0. The second
aspect we want to consider is the influence of the three-body
interaction term itself on the outcome of the renormalization
group flow. This we do by alternatively including and ex-
cluding this vertex. That is, we solve the set$m,V0 ,U0% and
the set$m,V0% and compare the results we find. For that
purpose, we plot in Fig. 3 thep-n21 diagram near the critical
densitync , where the influence ofU0 is largest. From this
figure we see that the change in density and pressure is about
1% at maximum. Far away from the critical conditions, i.e.,
at large negative chemical potential, the system becomes
more and more dilute, and the influence of theU0 term van-
ishes, consistent with expectations. In principle, we could
choose to maintain the three-body interaction term in the
renormalization group equations. However, as its effect is
very small we will from now on neglectU0 altogether. Thus,
the dilute Bose gas, and more in particular the nonuniversal
properties in which we are interested, is accurately described
by only following the renormalization of the chemical poten-
tial and the two-body interaction. Having concluded this, we
restrict ourselves from now on to the coupled Eqs.~11a! and
~11b!.

However, before we analyze some physical implications
of these equations, we want to remark that the dependence
on the ultraviolet cutoffL is indeed eliminated from the
theory. The influence on, e.g., the density can be shown to be
completely absent, of course with the limitations that\L
should be larger than the thermal momentum\/L th and that
V0 is properly renormalized to 4pa\2/m when we enter the
thermal regime. We are going to compare the results from
the renormalization group calculation with known results for

FIG. 3. Thep-n21 diagram including~solid line! and excluding
~dashed line! a three-body interaction term for atomic23Na at a
temperature of 0.1mK. The influence ofU0 is approximately 1.5%
near the critical density.
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the weakly interacting Bose gas as found from the many-
bodyT-matrix theory@15,31#. Far from the critical tempera-
ture we expect the results of the mean-field and renormaliza-
tion group calculations to be identical. However, close to the
critical temperature the renormalization group method will
clearly deviate from mean-field theory. We will focus here
on the behavior of the effective two-body interaction, and
defer the discussions concerning the equation of state and
other thermodynamic quantities to Sec. IV when we are able
to describe also the condensed phase of the gas.

In the many-bodyT-matrix theory, the chemical potential
is renormalized tom85m22nT2B(0,0;0) @31#. This is one
of the results of including all two-body scattering processes,
but also incorporating the effect of the medium on the scat-
tering. Including the latter effect on the collisions in the gas,
which was first carried out explicitly in Refs.@8#, @15#, and
@31#, is an important step forward in the correct mean-field
treatment of the dilute Bose gas, since including many-body
effects causes the effective interaction to go to zero at the
critical temperature. This resolves a number of problems
found in previous approaches using just the two-body scat-
tering lengtha @16–19#. With our renormalization group ap-
proach we can corroborate this result and even go somewhat
further than that. In our previous work we included only the
many-body effects coming from the ladder diagrams. How-
ever, a class of diagrams that in principle also affects the
two-body interaction is the bubble diagram. With our current
set of renormalization group equations we can precisely
study the effect of these bubble diagrams on the effective
interaction. This is straightforward because we can pinpoint
the ladder and bubble contributions in the equation describ-
ing the renormalization of the interaction. By alternatively
including and excluding the bubble diagrams and then solv-
ing the renormalization group equations we can study the
relative importance of the bubble diagrams on the effective
‘‘many-body’’ scattering lengthaeff. To avoid any confusion
we will adopt the following notation for the scattering
length. The normal ‘‘bare’’ two-body scattering length as
found, e.g., from analysis of the appropriate association
spectra is denoted bya, as usual. The effective scattering
lengthaeff includes also effects of the medium on two-body
scattering, and therefore depends on the specific approxima-
tion used to calculate this effect. Here we consider two such
approximations and denote the corresponding scattering
lengths byaMB andaRG. In the first case it is the result of a
many-body T-matrix calculation and is defined through
TMB(0,0,0;0)54paMB\2/m. In the second case it is the re-
sult of a renormalization group calculation and is defined
through V0( l5`)54paRG\2/m, irrespective of whether
bubbles are or are not included in this calculation. In Fig. 4
we depict the ratio of the effective scattering length resulting
from the renormalization group approach to the simple two-
body scattering lengtha when we include and exclude the
bubble diagrams, as a function ofT/Tc and at a density of
1.531012 cm23. We conclude that the effect of the bubbles
can be rather large and is in particular important near the
critical temperature. Farther away from the critical tempera-
ture the importance of the bubbles rapidly decreases. This
implies that calculating the influence of many-body effects
by means of the ladder diagrams~i.e., doing the full many-
body T-matrix calculation! can quantitatively give a poor

estimate foraeff. However, qualitatively there is clearly good
agreement as we find from the renormalization group calcu-
lation that the effective scattering length indeed goes to zero
at the critical temperature.

As already mentioned, a bare chemical potential larger
than the critical one, which is positive and yields a flow into
the fixed point, corresponds to an inaccessible density re-
gime. Therefore, we are not able to penetrate the region with
a Bose condensate and cannot describe the Bose gas below
the critical temperature with the renormalization group equa-
tions in Eq. ~11!. Moreover, the critical exponentn found
from this set is not a very good approximation to the true
valuen50.67, even if we would include three-body interac-
tions. These aspects are intimately related and due to the fact
that in the case of a positive chemical potential, thek50 part
of the effective action has a Mexican hat shape. Therefore,
we must explicitly break the symmetry and introduce the
condensate density into the action by expanding the action
around its minimum, and not around^c&50. For a negative
chemical potential, the above approach is of course correct as
then ^c& is equal to zero.

IV. THE SYMMETRY-BROKEN PHASE

Breaking the symmetry allows us to describe the dilute
Bose gas below the critical temperature. Moreover, also
above the critical temperature we find considerable improve-
ment. This is due to the fact that a positive bare chemical
potential can renormalize to negative values. Thus, starting
out in the broken phase, the fluctuations can restore the sym-
metry and we end up in the unbroken phase above the critical
temperature. The new set of renormalization group equations
explicitly takes this broken symmetry into account and there-
fore gives a much better description than the one resulting
from the set of equations in Eq.~11!.

A. The flow equations

In order to expand the action around the correct extremum
we have to perform the shifta0,0→a0,01An0\bV which in-

FIG. 4. The ratio of the many-body scattering lengthsaRG in-
cluding~solid line! and excluding~dashed line! the bubble diagrams
in the flow equations as a function ofT/Tc for atomic

23Na at a
density of 1.531012 cm23.
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troduces the condensate densityn0 . Substituting this in the
action Eq.~4! leads to the familiar expression@32#

S@a,a* #52\bVS mn02
1

2
n0
2V0D1~2mAn01n0An0V0!

3~a0,0* 1a0,0!1(
k,n

~2 i\vn1ek2m12n0V0!

3ak,n* ak,n1
1

2
n0V0(

k,n
~ak,n* a2k,2n* 1ak,na2k,2n!

1A n0
\bV(

k,q
n,m

V0~aq,m* ak2q,n2m* ak,n

1ak1q,n1m* aq,mak,n!

1
1

2

1

\bV (
k,k8,q
n,n8,m

V0ak1q,n1m* ak82q,n82m
* ak8,n8ak,n ,

~19!

for the action. The magnitude of the condensate is deter-
mined by eliminating the linear term from the action. We
thus findn05m/V0 . As a result, we can write the action as

S@a,a* #52\bVv01(
k,n

~2 i\vn1ek1G11!ak,n* ak,n

1
1

2
G12(

k,n
~ak,n* a2k,2n* 1ak,na2k,2n!

1
G3

A\bV
(
k,q
n,m

~aq,m* ak2q,n2m* ak,n

1ak1q,n1m* aq,mak,n!

1
1

2

V0

\bV (
k,k8,q
n,n8,m

ak1q,n1m* ak82q,n82m
* ak8,n8ak,n ,

~20!

introducingv05n0
2V0/2 as the lowest order approximation

to the thermodynamic potential density, and defining the ver-
tices G115m2\S11(0;0), G125\S12(0;0), and G3 for
which we have in lowest order thatG115G125n0V05m and
G35An0V05AmV0. These are the boundary conditions for
the flow equations we derive next.

Deriving the renormalization group equations using Feyn-
man diagrams is in this case more involved than in the un-
broken phase as the number of vertices is larger, but more so
because we now also can have anomalous propagators
^ak,n* a2k,2n* & and^ak,na2k,2n& in these diagrams. The num-
ber of diagrams is therefore much larger and the combina-
torics is more complicated. Therefore, we will use here a
different method to obtain the renormalization group equa-
tions which does not explicitly make use of Feynman dia-
grams, and is therefore very useful and efficient in this case.
It relies on the fact that in Eq.~7!

E d@c.* #d@c.#expH 2
1

\
~S0@c.* ,c.#

1SI@c,* ,c, ,c.* ,c.# !J
[exp$2Tr@ ln~2G.

21!#%, ~21!

where the trace is over Fourier modes in the shelldL only
andG. is the Green’s function for these fast modes. Taking
the shell infinitesimal again, we can simply calculate ln
(2G.

21) because we then only need the part of the total
action which is quadratic in the fast Fourier modes~yielding
all one-loop contributions!. The coefficients of this quadratic
part also contain the slow modes because the interaction term
SI@c,* ,c, ,c.* ,c.# couples the slow and fast modes. By
simply Taylor expanding ln(2G.

21) we straightforwardly
find the new effective action for the slow modes and the
renormalization group equations of any vertex we would like
to consider.

Thus, we split the fields in slow modes and fast modes as
in Eq. ~5! and find that the part from the action which is
quadratic in the fast modes and only leads to the renormal-
ization of coupling constants reads

S~2!@c.* ,c.#5(
k,n

8@2 i\vn1ek1G1112G3~c,* 1c,!

12V0uc,u2#ak,n* ak,n

1S 12G121G3c,1
1

2
V0c,

2 D
3(

k,n
8ak,n* a2k,2n*

1S 12G121G3c,* 1
1

2
V0c,*

2D
3(

k,n
8ak,na2k,2n , ~22!

where the prime denotes that the sum over momenta is re-
stricted to an infinitesimal momentum shelldL at the cutoff.
Evaluating the functional integral over these fast modes
leads to adding Tr„ln(2G.

21)… to the action for the slow
fields, and thus changes the vertices. This quantity is most
easily evaluated by performing a Bogoliubov transformation
to diagonalize Eq.~22! @33#, and we find that

Tr„ln~2G.
21!…5

L2

2p2 F 1b ln~12e2bEL!

1
1

2
$EL2@eL1G1112G3~c,* 1c,!

12V0uc,u2#%GdL, ~23!

where the second term originates from the diagonalization
procedure, and the ‘‘dispersion’’EL is found from
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EL
2 5@eL1G1112G3~c,* 1c,!12V0uc,u2#2

2S G121G3c,1
1

2
V0c,

2 D S G121G3c,* 1
1

2
V0c,*

2D .
~24!

In zeroth order inc, andc,* we retrieve the well-known
Bogoliubov dispersion\vL5A(eL1G11)

22G12
2 , equal to

\vL5AeL
2 12G11eL and thus gapless atl50 due to the

equality G11( l50)5G12( l50). This corresponds to the
Hugenholtz-Pines theorem@34#. Performing a Taylor expan-
sion in terms of the slow modes we find the new action.
Thus, integrating out a momentum shell renormalizes the
existing vertices, but also generates new terms in the action,
and in particular a linear term. To eliminate this term and
remain in the minimum of the action we again have to per-
form a small shift ina0,0 . This implies that the magnitude of
the condensate changes as we are integrating out momentum
shells and we also have a flow equation for the condensate
density. Since we omit three-body interactions containing six
fields, we also have to neglect terms containing five fields
since they correspond, together with the condensate field,
with a three-body term. As a result, the action remains of the
form written down in Eq.~20! and the renormalization group
equations can now be obtained for all the vertices of interest.
However, due to theU(1) symmetry of our problem, we can
relate some of these vertices and thereby limit the number of
flow equations we actually need to describe the complete
renormalization of the action in Eq.~20!. As thisU(1) sym-
metry cannot be broken during the process of renormaliza-
tion, the action can, at any time, be recast in the explicitly
U(1) symmetric form

S8@c,* ,c,#5E
0

\b

dtE dxS c,* ~x,t!F\ ]

]t
2

\2¹2

2m
2m~ l !G

3c,~x,t!1
1

2
V0~ l !uc,~x,t!u4D . ~25!

From this it is then first of all easy to see that the
Hugenholtz-Pines theorem@34# holds, implying that
G11( l )5G12( l )5m( l ). ~See Appendix A for an explicit deri-
vation of this important relation.! Next, also due to the ne-
glect of three-body interactions, we have that
G3( l )5An0( l )V0( l ) andV0( l )5G12( l )/n0( l ). Thus, we only
need to know the flow equations for, e.g.,n0( l ) andG12( l )
and then the other renormalization group equations can be
determined. In the following we can therefore restrict our-
selves to the renormalization of the linear term and the term
proportional to (c,*

21c,
2 ) as these determine the change of

the condensate density and the anomalous self-energyG12,
respectively. Note that the equalityG11( l )5G12( l ) ensures
that the dispersion\vL is gapless at any point during renor-
malization, as it should.

To arrive at the flow equations forn0( l ) andG12( l ), we
first of all need the linear termdG0(a0,0* 1a0,0) that is gen-

erated by integrating out a momentum shell. We find that

dG05
L3

2p2 F2G3~eL1G112
1
2G12!

\vL
N~\vL!

1
1

2
S 2G3~eL1G112

1
2G12!

\vL
22G3D Gdl. ~26!

Analogously we find a changedG12
(0) in the anomalous self-

energy.~See Appendix A for details.! However, before we
know the full renormalization of this vertex we have to de-
termine the shift needed to eliminate the linear term that is
generated. Substitutinga0,0→a0,01A\bVd(An0) and retain-
ing only the term linear ind(An0) we find that

d~An0!52
dG0

G111G12
, ~27!

which influences the renormalization ofG12 because we have
for the total renormalization of the anomalous self-energy

dG125dG12
~0!12G3d~An0!. ~28!

due to this shift. When we use the above mentioned relations
between the vertices implied from theU(1) symmetry we
then make contact with the renormalization group equations
for the unbroken phase by determining the flow equations for
the chemical potentialm5G12 and the two-body interaction
V05G12/n0 . After some algebra we ultimately find

dm

dl
52m2

L3

2p2V0F2eL
3 16meL

2 1m3

2\3vL
3 @2N~\vL!11#21

1
m~2eL1m!2

\2vL
2 bN~\vL!@N~\vL!11#G , ~29a!

dV0
dl

52V02
L3

2p2V0
2F ~eL2m!2

2\3vL
3 @2N~\vL!11#

1
~2eL1m!2

\2vL
2 bN~\vL!@N~\vL!11#G , ~29b!

and the condensate density follows fromn0( l )
5m( l )/V0( l ). Breaking the symmetry is irrelevant to the
trivial scaling of the vertices, and thus these are identical to
what was found in the preceding section. Comparing these
flow equations to Eqs.~11a! and ~11b! omittingU0 , we see
that both sets coincide whenm is taken equal to zero. Thus,
the renormalization group equations for negative and posi-
tive chemical potential yield a flow which is continuously
differentiable, also atm50.

We now know the renormalization of the chemical poten-
tial and the two-body interaction. Finally, we again have to
find the equations describing the building up of the total and
superfluid densities and the thermodynamic potential as we
are integrating out momentum shells. Analogous to the pro-
cedure followed in the preceding section we find for the total
density, being the sum of the condensate density and the
above condensate density,
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dn

dl
52

L3

2p2 S eL

2\vL
@2N~\vL!11#2

1

2De23l ~30!

with the boundary condition n( l50)5n0( l50)
5m( l50)/V0( l50). The superfluid density follows from

dns
dl

5
dn

dl
2

L3

3p2beLN~\vL!@N~\vL!11#e23l , ~31!

and the thermodynamic potential from

dv

dl
5

L3

2p2 S 1b ln~12e2b\vL!e25l1
1

2
~\vL2eL2m!e23l D

~32!

@cf. Eq. ~23!# with the boundary conditionv( l50)5v0

5n0
2V0/2.

B. The critical temperature of BEC

With the boundary conditions mentioned above we can
again numerically integrate the renormalization group equa-
tions. For a fixed temperature, we vary the value of the~posi-
tive! bare chemical potential, and calculate, e.g., density and
pressure. The physical effective chemical potential, i.e., with
the trivial scaling removed, decreases as we perform the in-
tegration, and, depending on the starting value, remains posi-
tive, renormalizes exactly to zero, or becomes negative at
some value of the integration parameterl . In the first case we
start out and remain in the broken phase and are below the
critical temperature of Bose-Einstein condensation, i.e., we
have a finite condensate density. In the second case, the con-
densate densityn0( l )5m( l )/V0( l ) renormalizes exactly to
zero forl→`, and we are at the critical conditions for Bose-
Einstein condensation. In the third case we started out in the
broken phase, but the fluctuations restore the symmetry. At
the value of l for which the chemical potential becomes
negative we have to continue the integration with the set Eqs.
~11a! and ~11b!, and we are thus in the uncondensed phase.
Hence, to be able to describe the dilute Bose gas above, but
not too far from, the critical temperature, we need the renor-
malization group equations for both signs ofm. In Fig. 5 we

depict the trajectories resulting from the integration of Eqs.
~29a! and ~29b!.

It is evident from this figure that the critical properties of
the Bose gas are determined by this set of equations. By
linearizing the flow equations around the fixed point we can
identify the largest eigenvaluel1 , and determine the critical
exponentn following from this set. We findn50.685, which
gives a much better approximation to the critical exponent
than the renormalization group equations studied in Sec. III
and is to be compared with the valuen50.67 found from the
e expansion of theO(2) model @30# and measured in4He
experiments. The agreement is surprisingly good, and to-
gether with the fact that we explicitly showed that three-body
effects are negligible, this indicates that we are indeed accu-
rately describing the Bose gas with the derived renormaliza-
tion group equations, also in the critical region. The cause of
this good agreement is that although we only consider the
renormalization ofm and V0 , the types of scattering pro-
cesses in terms of real~bare! particles we are actually taking
into account are very elaborate. The propagator for the Bo-
goliubov quasiparticles is namely the result of dressing the
original bare propagator\/( i\vn2eL1m) with interactions
with the condensate as we use the terms 2n0V0ak,n* ak,n and
n0V0(ak,n* a2k,2n* 1ak,na2k,2n)/2 in the zeroth order qua-
dratic part of the action. Thus, the diagrams we calculate
actually contain an infinite number of scattering processes
with the condensate. Therefore, we are describing the system
much better than in Sec. III already at this level of renormal-
ization group.

The first nonuniversal property we concentrate on is the
change in the critical temperature of Bose-Einstein conden-
sation due to interaction effects. This result is presented also
elsewhere@20#, but we will recapitulate it here because of its
experimental significance. At fixed temperatures we vary the
~bare! chemical potential to find the trajectories flowing into
the fixed point. Using Eq.~30!, this yields the critical densi-
ties for these specific temperatures and gives us thenc-T
relation at which Bose-Einstein condensation occurs. We re-
peat this for different values of the scattering length to obtain
the dependence of the critical temperature on the strength of
the interaction. In Fig. 6 we show the degeneracy parameter
ncL th

3 found from the renormalization group calculation as a

FIG. 5. Flow diagram resulting from the renormalization group
equations. The fixed point is indicated with an asterisk.

FIG. 6. The critical degeneracy parameterncL th
3 found from the

renormalization group calculation as a function ofa/L th .
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function ofa/L th . As seen from this figure we conclude that
the critical temperature israisedwith respect to the ideal gas
value. This is in qualitative agreement with the recent experi-
ments@1,2# and also preliminary quantum Monte Carlo cal-
culations seem to confirm this result@35#. An indication of
an upward shift was also found some time ago by one of us
studying the nucleation of Bose-Einstein condensation@8#.
From our calculations we predict that for the87Rb and
23Na experiments the critical temperature can be raised by as
much as 10%, which appears to be a very promising result
because one might expect that an effect of this magnitude
can very well be measured in future, more accurate, experi-
ments. It is important to note that this shift inncL th

3 can be
observed in magnetically trapped atomic gases if one directly
measures the density in the center of the trap at the critical
temperature. One should in particularnot measure the total
number of particles, because this involves the density profile
in the trap and due to the repulsive nature of the interactions
thus tends to obscure the effect@36#.

The reason for a higher critical temperature, or more pre-
cisely, a lower critical density is the following. The effective
chemical potential renormalizes from a positive initial value
exactly to zero. Consequently, we have the Bogoliubov dis-
persion in the equation for the density, and this depresses the
occupation of the nonzero momentum states relative to the
ideal gas case, where we would just haveeL in the Bose-
Einstein distribution function. The magnitude of the effect is
related to the behavior of the chemical potential when renor-
malizing to the fixed point valuem*5eL . Suppose we ef-
fectively havem( l )5aeL independent ofl , with some posi-
tive a smaller than 1. We can then translate the differential
equation for the density into an ordinary integral over mo-
mentum space following the inverse procedure from which
we found the flow equations in Sec. III. Doing so, we find
that the Bogoliubov dispersion effectively becomes
\vk5A112aek . Thus, this essentially boils down to a
mass renormalization, and the change in the critical tempera-
ture is directly related to the magnitude of this renormaliza-
tion. Starting with the equation describing the building up of
the above condensate density@cf. Eq. ~A6a! from Appendix
A# one can easily show that we approximately have
ncL th

35(11a)g3/2(1)/(112a). For an increase of 10% in
the critical temperature, we find from this result thata must
be equal to 0.2. Indeed, this turns out to be the typical value
of a in the thermal regime where the contributions to the
density are largest.

C. The region naL th
2 !1

To obtain also information on the properties of the Bose
gas below the critical temperature we have to start with a
chemical potential which always remains positive under
renormalization. We are then always in the condensed phase
and have to use the renormalization group equations~29a!
and ~29b!. Written as ordinary one-loop integrals, these
equations contain infrared divergencies and a straightforward
perturbative analysis is not possible. This is a well known
problem in the theory of the interacting Bose gas@37,38#.
However, doing the calculation by means of the renormal-
ization group approach, this problem is in principle resolved
due to the resummation which is automatically performed.

The presence of infrared divergencies causes both the physi-
cal chemical potential and two-body interaction in the renor-
malization group approach to renormalize to zero, instead of
becoming infinite as they would in a regular one-loop calcu-
lation. Indeed, one can show from Eqs.~29a! and~29b! that
for l→` we havem}el andV0}e

22l . These scalings are
different from the trivial scalingsm}e2l andV0}e

2 l , and
are therefore termed anomalous. Physically, the anomalous
scaling implies an effective energy and momentum depen-
dence of the coupling constants, as we show explicitly in
Appendix B. In particular, the anomalous scaling we find
leads to the result that the chemical potential, and thus the
normal and anomalous self-energies, as well as the two-body
interaction, behave linearly withk for low momenta, i.e., our
renormalization group approach reveals that\S11(k;0)}k
and \S12(k;0)}k. This behavior, implying that
\S11(0;0)5\S12(0;0)50, is an exact result for low mo-
menta @38# which we explicitly recover here. The conse-
quences for the application of renormalization group, how-
ever, are twofold. First, it implies that the Bogoliubov
dispersion\vk does not possess a sound mode anymore
since the low momentum behavior is not linear, but instead
we have\vk}k

3/2. This is of course an incorrect result@37#
indicating that Eqs.~29a! and ~29b! are insufficient to de-
scribe the sound mode. Indeed, following the argument in
Sec. III we neglected the renormalization of the~marginal!
]/]t and u¹u2 terms since the interactions were anticipated
to be momentum and energy independent. However, below
the critical temperature we see that the momentum and en-
ergy dependence of the self-energies does become important,
and should therefore be included in the renormalization
group calculation by Taylor expanding the self-energies in
terms of the external momentum and frequency. Put differ-
ently, the anomalous dimensionh is no longer small below
the critical temperature. The extra renormalization group
equations obtained in this manner may change the particular
anomalous scaling found above, but since
\S11(0;0)5\S12(0;0)50 is an exact result we still expect
to have anomalous scaling of the coupling constants. The
effect of the extra renormalization group equations will be to
change the dispersion relation in such a way that the linear
sound mode is recovered. At zero temperature, this expecta-
tion is confirmed in a recent paper by Castellaniet al. @39#.

The reason for the anomalous scaling and consequently
the disappearance of the sound mode is caused by the infra-
red divergence in the one-loop expressions for the self-
energies and two-body interaction. This can be traced back
to the behavior of the coherence factorsuk and vk of the
Bogoliubov transformation diagonalizing the quadratic part
of the action. The Bogoliubov transformation is given by

ak,n5ukbk,n2vkb2k,2n* , ~33a!

ak,n* 5ukbk,n* 2vkb2k,2n , ~33b!

wherebk,n* andbk,n are the Fourier components of the fields
creating and annihilating a Bogoliubov quasiparticle, respec-
tively. The coherence factors are given by

uk5
1

2 SA\vk

ek
1A ek

\vk
D , ~34a!
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vk5
1

2 SA\vk

ek
2A ek

\vk
D , ~34b!

and satisfy the requirement thatuk
22vk

251 because the Bo-
goliubov transformation is unitary. As the Bogoliubov dis-
persion is given by\vk5Aek

212mek, it is easy to see that
uk→1 andvk→0 for large momenta, and both factors be-
have as 1/Ak ask tends to zero. The region where the cross-
over occurs between these two regimes is determined by the
parameternaL th

2 found from comparing the chemical poten-
tial with the thermal energy, and also determining the cross-
over from quadratic to linear behavior of the Bogoliubov
dispersion. WhennaL th

2@1 the linear regime of the disper-
sion is extremely important in determining the properties of
the Bose gas. Conversely, whennaL th

2!1, the Bogoliubov
dispersion can be approximated by the normal dispersion
ek1m, except for a very small region at low momenta,
which is then not very important and can for most practical
purposes be neglected. In the following, we therefore con-
centrate on the regimenaL th

2!1, covering a large tempera-
ture interval below the critical temperature, and useuk51
andvk50 in contributions to the renormalization of the ver-
tices that contain infrared divergencies. Otherwise, we will
use the full expression Eq.~34!. This procedure turns out to
be necessary to ensure the Hugenholtz-Pines theorem to be
satisfied, as is shown in Appendix A.

In the method used in the preceding section it is not pos-
sible to pinpoint the Bogoliubov coherence factors at any
stage of the derivation of the renormalization group equa-
tions. Therefore, we really have to go through the calculation
of the Feynman diagrams relevant to the various vertices in
which we are interested. In our case these are the linear terms
of the action and the anomalous self-energy. The one-loop
diagrams of interest are depicted in Fig. 7 and contain also
the anomalous propagators^ak,n* a2k,2n* & and ^ak,na2k,2n&.
Using the Bogoliubov transformation, these diagrams are
straightforward to calculate, and we find that for the renor-
malization of the condensate density both diagrams forG0
contribute, but that for the renormalization of the anomalous
self-energy only diagramsA andB give contributions that do
not contain infrared divergencies. The explicit calculation of
these diagrams is presented in Appendix A. Using the ex-
pressions obtained there, we find that the flow equations be-
come

dm

dl
52m2

L3

2p2V0S eL1m

\vL
@2N~\vL!11#21

14bmN~\vL!@N~\vL!11# D , ~35a!

dV0
dl

52V02
L3

2p2V0
2S 112N~\vL!

2\vL
14bN~\vL!

3@N~\vL!11# D , ~35b!

where we again made use of the relationsm( l )
5G11( l )5G12( l )5An0( l )G3( l )5n0( l )V0( l ) due to U(1)
symmetry. Note that also this set coincides with Eqs.~11a!
and~11b! when the chemical potential is equal to zero, so the
flow is also in this case everywhere continuous and continu-
ously differentiable. Moreover, the equations for the density,
superfluid density, and thermodynamic potential do not con-
tain an infrared divergency, so the flow equations for these
quantities remain the same and are given by Eqs.~30!, ~31!,
and ~32!, respectively.

D. Analysis of the flow equations

At this point we can describe any point in the phase dia-
gram of the dilute Bose gas. For negative chemical potential
we have Eqs.~11a! and~11b!, for positive chemical potential
we must use Eqs.~35a! and ~35b!. Moreover, we have to
combine both sets when we are not too far below the critical
density when the chemical potential changes sign during ap-
plication of the renormalization group transformation. Using
Eq. ~35!, we find that the critical temperature of Bose-
Einstein condensation changes with less than 0.1% compared
to the more accurate result found using Eq.~29!. Therefore,
this shows that using the set not containing the infrared di-
vergencies essentially leads to the same results, implying that
it is indeed correct to neglect the linear part of the Bogoliu-
bov dispersion. Having proven this explicitly, we will in the
following present the results of the renormalization group
calculation of the effective two-body interaction, i.e., the
many-body scattering lengthaeff, the condensate and super-
fluid densities, and thep-n21 diagram below as well as
above the critical temperature, and compare them in all cases
with the results from the many-bodyT-matrix calculation.

We start with the scattering lengthaeff. Above the critical
temperature it is straightforward to take into account only the
contributions of the ladder diagrams, or to include the effect
of the bubble diagrams as well. Below the critical tempera-
ture there are no clear ladder and bubble diagrams, so the
various contributions are in principle not clearly associated
with ladders or bubbles. However, comparing the differential
equations for positive and negativem we can conclude that
the first nontrivial term on the right-hand side of Eq.~35b! is
effectively related to a ladder contribution, and that the sec-
ond nontrivial term is effectively related to a bubble dia-
gram. We depict in Fig. 8 the scattering lengthaeff, normal-
ized to the two-body scattering lengtha552a0 for 23Na,
when including and excluding the bubble contributions
(aRG/a), and also the result found from the many-body
T-matrix calculation (aMB/a) @15#. As our approach is re-

FIG. 7. The one-loop Feynman diagrams contributing to the
renormalization of~a! the linear term and~b! the anomalous self-
energy in the broken phase. The filled circle represents the vertex
V0 and the open circle the vertexG3.

54 5097RENORMALIZATION GROUP THEORY OF THE THREE- . . .



stricted to the regimenaL th
2!1, we present no results for

naL th
2 larger than one. The renormalization of the effective

two-body interaction to zero at the critical temperature, a
result already found in the many-bodyT-matrix approach,
turns out to be correct. Indeed, this can be easily understood
from the renormalization group equations. A fixed point
(m* ,V0* ) is present in the set$m( l ),V0( l )e

2l%, which means
that for l→` the physical two-body interaction, i.e., with the
trivial scaling removed, behaves asV0* e

2 l and thus goes to
zero. The depression in the scattering length around the criti-
cal temperature occurs in a fairly large temperature interval.
Note, furthermore, that applying the renormalization group
equations~29a! and~29b! would lead toaRG50 everywhere
below the critical temperature due to the anomalous scaling
found from this set. This property is actually expected to
hold true even in a more elaborate renormalization group
calculation and is an issue worth studying as it may have
important consequences for, e.g., the exact form of the
Gross-Pitaevskii equation describing the condensate.

Next, we turn to the equation of state. For the ideal Bose
gas we have in general that

nL th
35n0L th

31g3/2~z!, ~36!

wheregn(z) is a Bose-function defined as

gn~z!5
1

G~n!
E
0

` yn21

z21ey21
dy ~37!

and z5ebm is the fugacity. In the many-bodyT-matrix
theory above the critical temperature we have that the chemi-
cal potential is renormalized tom85m22nT2B(0,0;0) @31#.
Below the critical temperature the dispersion changes to the
Bogoliubov dispersion and the equation for the density is in

essence given by Eq.~30!, recast in the form of an ordinary
one-loop integral. In Fig. 9 we plotnL th

3 for the ideal Bose
gas, following from the many-bodyT-matrix calculation,
and from the renormalization group calculation. In the latter
case, we numerically integrate the flow equations for a fixed
temperature, and vary the value of the bare chemical poten-
tial. This changes the total density in the system, and there-
fore the value ofnL th

3 For the ideal Bose gas, positive values
of the chemical potential are not allowed. With the repulsive
interactions taken into account, a positive value is possible
and the fugacity can be larger than one. The renormalization
group calculation yields the same density for a chemical po-
tential slightly above and slightly below the critical chemical
potential. This double valuedness in the density occurs in an
extremely small region around the critical density and the
effect is smaller than 1 promille in the case of23Na. For
1H, with a scattering lengtha51.34a0, the effect is even far
below the promille level. However, it is important to note
that this effect is much smaller than the change in density we
obtain when we include three-body interactions, being ap-
proximately 1%~cf. Sec. III!. Therefore, the double valued-
ness we find cannot be trusted physically and should be ne-
glected. It presumably disappears when we include three-
body effects or extend the renormalization group calculation
otherwise.

When the bare chemical potential decreases the gas be-
comes more and more dilute and the influence of the inter-
actions can better and better be accounted for using mean-
field theory. This fact is actually evident from the
renormalization group equations in Eq.~11!. When the
chemical potential is large and negative, the Bose-factors
N(eL2m) are strongly depressed and there is hardly any
many-body effect on the renormalization of the two-body
interaction so we will find that it is just renormalized to
T2B(0,0;0)54pa\2/m. Indeed, the same is true in the
many-bodyT-matrix calculation@15#, since we have that
TMB(0,0,0;0)'T2B(0,0;0) when the system is extremely

FIG. 8. The ratio of the effective scattering lengthaeff and the
two-body scattering lengtha for atomic 23Na at a density of
1.531012 cm23. The dashed line corresponds to the result from the
many-bodyT-matrix calculation, i.e.,aeff5aMB. The solid lines
correspond to the result from the renormalization group approach,
i.e., aeff5aRG, with bubble diagrams included and excluded. The
effect of the bubbles~lower solid line! is seen to be considerable,
certainly below the critical temperature.

FIG. 9. The degeneracy parameternL th
3 as a function of the

fugacity z for the ideal gas~dotted line!, from the many-body
T-matrix theory~dashed line! and as found from the renormaliza-
tion group calculation~solid line!.
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dilute, i.e., there is no effect of the medium in this regime. In
addition, the differential equations form and V0 are now
almost decoupled, and consequently the chemical potential
will renormalize approximately tom22nT2B(0,0;0), which
is only a small effect in this limit. Therefore, the renormal-
ization group equations can practically be recast in the regu-
lar one-loop expressions one encounters in the many-body
T-matrix theory and the results we find in this regime are
approximately the same.

In Figs. 10~a! and 10~b! we depict the condensate and
superfluid fractions as a function of temperature for a density
of 1.531012 cm23 both from the renormalization group and
many-bodyT-matrix calculation. Again, not too close to the
critical temperature we have good agreement. Note that the
superfluid density has not yet become zero at the temperature
where the condensate density vanishes. To explain this as-
pect we will focus on the equation for the superfluid density
in the unbroken phase. When we interpret the fact that the
chemical potential is renormalized as we integrate out mo-
mentum shells as a chemical potential depending on momen-
tum, we can express the superfluid density as a regular inte-

gral over momentum space, i.e.,

ns5E d3k

~2p!3
1

eb[ ek2m~k!]21

2E d3k

~2p!3
2

3
bek

eb[ ek2m~k!]

~eb[ ek2m~k!]21!2
. ~38!

Writing m(k)5m01dm(k) and performing a Taylor expan-
sion, we find to first order indm that

ns5E d3k

~2p!3
bN~ek2m0!@N~ek2m0!11#

3F12
2

3
bek@2N~ek2m0!11#Gdm~k!, ~39!

where the lowest order terms drop out. This is due to the fact
that these terms yield the expression for the superfluid den-
sity in an ideal Bose gas above the critical temperature which
can be shown to be exactly equal to zero. It is clear from Eq.
~39! that the superfluid density will in general not be equal to
zero. The behavior ofdm(k) would have to be very special
to give a superfluid density exactly equal to zero. It is there-
fore not surprising that we find from our limited set of renor-
malization group equations a different temperature for which
the condensate and superfluid densities vanish. For the situ-
ation depicted in Fig. 10 we have, however, thatDT/Tc is
only about 831023. Extending the renormalization group
calculation would in principle lead to a superfluid density
which vanishes at the same temperature as where the con-
densate density becomes zero.

Finally, we also present the pressure of the dilute Bose
gas as a function of the inverse density. Using Eq.~32!, we
depict this behavior in Fig. 11 for a23Na gas at 0.1mK,
together with the result of the many-bodyT-matrix calcula-
tion. Although the critical densities are different, we find a
fairly good agreement between the two curves and the dif-
ference between the renormalization group calculation and
the many-bodyT-matrix calculation is small when it con-
cerns the pressure of the gas. However, concerning the other

FIG. 10. ~a! The condensate fraction and~b! the superfluid frac-
tion as a function of temperature for a density of 1.531012 sodium
atoms per cubic centimeter, both from the many-bodyT-matrix
calculation~dashed line! as from the renormalization group calcu-
lation ~solid line!.

FIG. 11. The pressure as a function of inverse density for atomic
23Na at a temperature of 0.1mK. The dashed line is the result from
the many-bodyT-matrix calculation, the solid line from the renor-
malization group calculation.
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nonuniversal properties discussed in this paper, the differ-
ence can be substantial near the critical temperature as we
have seen.

V. CONCLUSIONS

In summary, we have derived the renormalization group
equations for a dilute Bose gas. To obtain these equations we
have to make a distinction between the case of a negative
and a positive chemical potential. In the latter case we have
to take the presence of a condensate into account, and the
renormalization group equations are different from the ones
valid in the unbroken phase. Our philosophy of using the
renormalization group approach is not to study universal
properties of the dilute Bose gas, which are the same as for
theO(2) model in three dimensions, but to make quantative
predictions about various nonuniversal properties of this sys-
tem. To achieve this goal one has to find a method to elimi-
nate the ultraviolet cutoff dependence inherent to the appli-
cation of the renormalization group. Our knowledge about
the two-body scattering problem is sufficient in this respect
and we can fix the renormalization group equations in this
manner. We compared results of the renormalization group
with mean-field calculations and showed the difference to
vanish in appropriate limits. We also checked the influence
of three-body effects, which turned out to be unimportant
even in the critical region. Furthermore, we showed that the
influence of bubble diagrams on the effective interaction can
be fairly large, and that the effective scattering lengthaeff

vanishes when approaching the critical temperature. This
confirms earlier results@20,31# and is of importance for a lot
of current work concerning condensate properties in trapped
Bose gases. It implies that there can in principle be an im-
portant change in the results of calculations that make use of
the nonlinear Schro¨dinger equation when determining these
properties. For that purpose the effective scattering length
aeff is of importance, and not the two-body scattering length
a.

Next, we derived the renormalization group equations in
the broken phase, i.e., for positive chemical potential, and
showed that the transition to the Bose-Einstein condensed
phase is contained in this set of renormalization group equa-
tions. We found a critical exponentn50.685, which agrees
very well with n50.67 found in studies of theO(2) model,
and furthermore calculated the effect of the interactions on
the critical temperature of the phase transition. The change
can be as much as 10% in the current type of experiments
and may be measured if one can improve the precision in
determining the temperature and the central density in the
trap.

As these latter renormalization group equations lead to a
dispersion relation which has no linear part, i.e., there is no
sound mode, we have to restrict ourselves to the regime
naL th

2!1, where the linear part of the dispersion is unim-
portant for determining properties such as density and pres-
sure. The region wherenaL th

2!1 is currently still the most
interesting one from the experimental point of view although
the other region is certainly within reach. Including the
renormalization of the time derivative and gradient terms in
the action is expected to resolve the problem of the disap-
pearance of the sound mode, but we postponed this to future

work. A resolution of this problem would correspond to a
resolution of the long standing problem of the infrared diver-
gencies in the perturbation expansion around the Bogoliubov
theory.

We concluded this work by using the renormalization
group to calculate superfluid and condensate densities as a
function of temperature and also ap-n21 diagram is pre-
sented. Of course the renormalization group can be used to
find out many more things about the dilute Bose gas. Note,
e.g., that it is in principle also possible to use the renormal-
ization group method to find the quantitative form of the
correlation function as it is the Fourier transform of the oc-
cupation numberNk . This can also be translated into a dif-
ferential equation as in Eq.~17!, where we now have the
distancer as a free parameter. Also the specific heat may be
calculated. In principle, our results pertain to a homogeneous
Bose gas, but in situations where the application of a local
density approximation is allowed, they are also applicable to
trapped Bose gases. Moreover, we indicated that it is in prin-
ciple also possible to set up a renormalization group calcu-
lation for the inhomogeneous case.

Finally, we want to note that the procedure of the renor-
malization group as described in this paper can in principle
also be used to study the Kosterlitz-Thouless transition to the
superfluid phase in a two-dimensional Bose gas. However,
there are difficulties in this case connected with the fact that
all coupling constants are relevant at the critical temperature.
Nonetheless, work along these lines is in progress since a
number of experiments are currently under construction
which aim at reaching the Kosterlitz-Thouless phase in dou-
bly spin-polarized atomic hydrogen adsorbed on a superfluid
helium film.

We acknowledge helpful discussions with Eric Cornell,
Wolfgang Ketterle, and Steve Girvin.

APPENDIX A

In this appendix we go through some of the technicalities
of the calculation of the one-loop Feynman diagrams for the
coupling constantsG11 andG12, i.e., essentially the normal
and anomalous self-energies, and explicitly show the
Hugenholtz-Pines theorem to hold in our renormalization
group approach. This theorem states that@34#

m5\S11~0;0!2\S12~0;0!, ~A1!

where\S11(0;0) and\S12(0;0) are the irreducible normal
and anomalous self-energies, respectively. In our notation
this relation reads

G115G12. ~A2!

Figure 7 in the main text contains the diagrams renormaliz-
ing G12 and in Fig. 12 we depict the one-loop diagrams
renormalizingG11. Using the designation of the diagrams as
in these figures one can show, after going through the com-
binatorics, that the~infinitesimal! change of the vertices after
integrating out an infinitesimal momentum shell is given by

dG1154dG11
A 14dG11

B 12dG11
C 14dG11

D 14dG11
E 14dG11

F

14G3d~An0!, ~A3a!

5100 54M. BIJLSMA AND H. T. C. STOOF



dG1252dG12
A 14dG12

B 14dG12
C 14dG12

D 14dG12
E 12dG12

F

12G3d~An0!. ~A3b!

The last term in both expressions originates from the shift in
a0,0 required to eliminate the linear term dG0(a0,0* 1a0,0)
from the action. From Figs. 7 and 12 it is clear that a number
of diagrams contributing toG11 or G12 are mathematically
identical. Most notably we havedG11

B 5dG11
F 5dG12

D 5dG12
E ,

dG11
D 5dG12

C 5dG12
F , and dG11

E 5dG12
B . Therefore, there are

only six independent diagrams, namelydG11
A , dG11

B ,
dG11

C , dG11
D , dG11

E , anddG12
A . Using the Bogoliubov trans-

formation from Eq.~33!, it follows that

^ak,n* ak,n&5uk
2^bk,n* bk,n&1vk

2^b2k,2n* b2k,2n&, ~A4!

^ak,n* a2k,2n* &5^ak,na2k,2n&52ukvk~^bk,n* bk,n&

1^b2k,2n* b2k,2n&!, ~A5!

with uk andvk given in Eq.~34!, and these diagrams are now
straightforward to calculate by applying the usual Feynman
rules @33#. We have

dG11
A 5

1

2
V0dn8

5
L3

4p2V0S 12 ~uL
2 1vL

2 !@2N~\vL!11#2
1

2De23ldl,

~A6a!

dG11
B 5

L3

2p2G3
2~uL

3 vL1uLvL
3 !S 112N~\vL!

2\vL
1bN~\vL!

3@N~\vL!11# De23ldl, ~A6b!

dG11
C 52

L3

2p2G3
2S ~uL

4 1vL
4 !
112N~\vL!

2\vL

12uL
2 vL

2bN~\vL!@N~\vL!11# De23ldl,

~A6c!

dG11
D 52

L3

p2 G3
2uL

2 vL
2 S 112N~\vL!

2\vL
1bN~\vL!

@N~\vL!11# De23ldl, ~A6d!

dG11
E 52

L3

2p2G3
2S 2uL

2 vL
2 112N~\vL!

2\vL

1~uL
4 1vL

4 !bN~\vL!@N~\vL!11# De23ldl,

~A6e!

dG12
A 5

1

2
V0dñ52

L3

4p2V0uLvL@112N~\vL!#e23ldl,

~A6f!

introducing dn85L3(n^aL,n* aL,n&e
23ldl/2p2 and

dñ5L3(n^aL,n* a2L,2n* &e23ldl/2p2 with which one can
easily verify that

d~An0!52
dG0

G111G12
52

1

G111G12
G3~2dn81dñ!. ~A7!

Combining these equations leads to the flow equations for
G11 and G12. However, we here concentrate on the
Hugenholtz-Pines relation, which is satisfied atl50, and
therefore remains valid if alsodG115dG12 at l50. Using the
above mentioned equalities of the various diagrams, this
equality reduces in the first instance to

2dG11
A 1dG11

C 1G3d~An0!5dG12
A 1dG12

C 5dG12
A 1dG11

D .
~A8!

However, due to theU(1) symmetry of the action
S@c* ,c# we have at any value of l that
G3
25n0V0

25G12V0 , and atl50, whenG115G12, Eq. ~A8!
reduces with the help of Eq.~A7! to

dG11
C 2dG11

D 5V0dñ, ~A9!

or equivalently

2
L3

2p2G3
2~uL

4 22uL
2 vL

2 1vL
4 !
112N~\vL!

2\vL

52
L3

2p2V0uLvL@112N~\vL!#. ~A10!

Note that, due to the fact thatuL
2 2vL

2 51, the left-hand side
of this equation actually does not contain Bogoliubov coher-
ence factors. From the definition of the coherence factors in
Eq. ~34! it is now easy to show that indeed, atl50, we have
dG115dG12 and as a consequence that the Hugenholtz-Pines
relation remains valid at any point during the integration.

Next, we briefly turn to the regimenaL th
2!1 where we

put uk51 andvk50 in contributions containing infrared di-
vergencies. In this case, only the first term on the left-hand
side of Eq.~A10! contributes, but now with a factor 1 instead
of uL

4 . Thus, nothing changes with respect to the previous
situation, and the Hugenholtz-Pines relation is again valid at
any point during the renormalization if we still use the exact
expressions foruk and vk in contributions not containing
infrared divergencies, and most importantly indñ.

FIG. 12. The one-loop Feynman diagrams contributing to the
renormalization of the normal self-energy in the broken phase. The
filled circle represents the vertexV0 and the open circle the vertex
G3.
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APPENDIX B

In this appendix we discuss the implications of anomalous
scaling, focusing on the situation at the critical temperature
where the coupling constants flow into the fixed point
(m* ,V0* ). We start with the fundamental statement from
renormalization group theory that the exactn-point vertex
function remains identical during renormalization, i.e., in our
case

G~n!~pi ,v i ;m,V0 ,T;L!

5G~n!
„pi ,v i ;m~ l !,V0~ l !,T~ l !;Le2 l

…, ~B1!

wherepi,Le2 l . The coupling constants obey the derived
renormalization group equations~without trivial scaling! and
T( l )5Te2l . When we are at the critical temperature, we can
takev i50 and we find after performing the trivial rescaling
that

G~n!~pi ,0;m,V0 ,Tc ;L!

5e2„32 n/2…lG~n!
„pie

l ,0;m~ l !,V0~ l !,Tc~ l !;L….
~B2!

A dimensional analysis then shows that

G~n!
„pie

l ,0;m~ l !,V0~ l !,Tc~ l !;L…

5L32 n/2G~n!S pielL
,0;

m~ l !

L2 ,
V0~ l !

L
,
Tc~ l !

L2 ;1D . ~B3!

Combining these two equations, and taking the limitl→` in
which we approach the fixed point, this implies

G~n!~pi ,0;m,V0 ,Tc ;L!

5L32 n/2~ l !G~n!S pi
L~ l !

,0;
m*

L2 ,
V0*

L
,`;1D

[L32 n/2~ l !G~n!* S pi
L~ l ! D . ~B4!

The right-hand side, just like the left-hand side, has to be
independent ofl , and this leads to the conclusion that

G~n!* S pi
L~ l ! D5Ln/2 23~ l !G~n!* ~pi ! ~B5!

or thatG (n)* (pi) has to be a homogeneous function of de-
gree (32n/2). Thus

G~n!* ~lpi !5l32 n/2G~n!* ~pi ! ~B6!

and we can conclude that anomalous scaling reveals infor-
mation about the momentum dependence of then-point ver-
tex function. In particular, we have, e.g., for the self-energy
at the critical temperature that

G~2!* ~k!}k2, ~B7!

and most importantly for the four-point function that

G~4!* ~k,k8,K !}~ uku1uk8u!1auK u, ~B8!

which shows that the effective interaction at long wave-
lengths has to vanish at the critical temperature.

Clearly, the above reasoning is in principle not restricted
to the critical temperature and a similar argument can be set
up for arbitrary temperatures. As a result, the anomalous
scaling we find from the set of renormalization group equa-
tions derived in Sec. IV A for the symmetry broken phase
also implies a nontrivial momentum dependence of the cou-
pling constants.
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