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Renormalization group theory of the three-dimensional dilute Bose gas
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We study the three-dimensional atomic Bose gas using renormalization group techniques. Using our knowl-
edge of the microscopic details of the interatomic interaction, we determine the correct initial values of our
renormalization group equations and thus obtain also information on nonuniversal properties. As a result, we
can predict, for instance, the critical temperature of the gas and the superfluid and condensate density of the
Bose-Einstein condensed phase in the regima 2 <1, where the average interaction energy is small com-
pared to the average kinetic ener§$1050-29476)08612-X]

PACS numbsg(s): 03.75.Fi, 05.30.Jp, 32.80.Pj, 64.60.

I. INTRODUCTION It is clear from these possibilities that a large number of
experiments are expected to be performed in the near future,
After a long history in which a large number of experi- which clearly makes the degenerate dilute Bose gas also a
mental groups around the world contributed to the developvery interesting subject for theoretical studies. Indeed, this
ment of successful methods to master stabilization and coofield of research has rapidly expanded during the past year.
ing of dilute Bose gases, last year the aim of achieving BoseHowever, most approaches to the dilute Bose gas use the
Einstein condensation in such a system was finally reache@®ogoliubov (or Popoy theory and are therefore of mean-
Indeed, a macroscopic occupation of the one-particle grountield type and susceptible to improvements, from a practical
state was irrefutably observed in magnetically trapped an@s well as a fundamental point of view. In these approaches
evaporatively cooled alkali-metal gas samples®@®b and one mostly uses the so-called two-boHynatrix, or equiva-
ZNa using relatively simple time-of-flight measurementslently the scattering lengtia. Technically, this important
[1,2]. The transition that was claimed to be seen in an exquantity describes the collisions taking place in the dilute
periment using’Li was less convincind3]. In the latter ~Bose gas by summing all possible two-body scattering pro-
case, the interatomic interaction is effectively attractive and€sses, i.e., all ladder diagrams, without taking into account
the potential has a negative scattering lengthTherefore, the fact that the surrounding gaseous medium has an effect
Bose-Einstein condensation in this system is preempted by @1 these collisions. However, we have recently shown that
first order phase transition to a liquid or solid phase in thethe many-body corrections arising from the surrounding gas
homogeneous ca$d]. Nevertheless, for inhomogeneous gasmay be importanf15], and are even essential for solving the
samples the trapping potential has a stabilizing influence angroblem connected to the order of the phase transition which
a macroscopic occupation of the ground state is possible it$ found to be of first order when using the two-body
principle. However, when the condensate contains more thafatrix [16—19.
some 1500 particles under the conditions of fheé experi- Including quantitatively the same many-body corrections
ment[5], the condensate is still expected to collapse in the case of a highly inhomogeneous gas sample has at this
Since these first experiments, which were primarily aimed?oint not yet been done. Moreover, introducing the effect of
at proving the existence of a Bose condensate, many expefff€ medium on two-particle collisions also in the condensed
mental groups have been building or improving on their ex-phase by means of the many-bo@iymatrix leads to funda-
perimental setups to be able to perform much more precisgental problems if we want to describe the physics at long
measurements of various interesting properties of the gas Wwavelengths correctly as the ladder diagrams contain infra-
the degenerate regime. Superfluidify, the condensate den- red divergencies in this case. Using renormalization group
sity and its profile, the dynamics of condensate formatiortechniques, we expect in principle to be capable of resolving
[8], the Josephson effefd], vortex dynamics, collective ex- these infrared problems as with this method a correct resum-
citations[10—13, and the precise value of the critical tem- mation of diagrams is automatically performed, eliminating
perature are examples of phenomena and quantities of inteany potentially troublesome large distance behavior of the
est. Other types of experiments will presumably also studyndividual diagrams. Furthermore, a renormalization group
the properties of mixtures of atomic gases. In this respect onealculation can be used to improve the usual mean-field ap-
might think of two bosonic species with a different sign of proaches and the many-bodymatrix theory in the critical
the scattering length, or mixtures of bosons and fermions, ofegion. Indeed, we recently predicted by these means, for
mixtures uniting both aspects. In the case of a pure fermioni€xample, that the critical temperature in tFf&®b and *Na
gas of 5Li atoms, a BCS transition to a superfluid state isexperiments can, due to interaction effects only, be raised
predicted to occur and should be within reach of the currenwith as much as 10% compared to the ideal gas value found
experimental technologyl4]. Furthermore, in some cases from the criterionn A3 = £(3/2)=2.612[20], which is iden-
the magnitude and even the sign of the scattering length caical to the criterion also found using mean-field calculations
be changed by varying the applied magnetic field. This opengL5]. Heren is the density and\ = (27#%2/mksT)*? the
the road to yet another type of experiment. thermal de Broglie wavelength of the atoms in the gas.
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Therefore, it is highly conceivable that in the critical region cloud, which is for most practical purposes an unimportant
also other properties of the dilute Bose gas, such as the stegion, but also in the center of the trap if the temperature
perfluid and condensate densities, will significantly changeapproaches the critical temperature and the diverging corre-
when going beyond the mean-field level or beyond thdation length starts to exceed the typical dimensions of the
many-bodyT-matrix theory. trap. The temperature interval where this occurs has a width
The renormalization group method is a very powerfulof O(T¢(%w/kgTc)) around the critical temperature. As this
method which was developed by Wils¢@1] to study the egion is very small, we conclude that the results we find in

universal properties of second order phase transitions. TH&IS paper for the homogeneous gas are essentially also valid

basic idea is to perform the trace in the grand canonicalOr the inner part of the trapped Bose gases, and in particular

H 87| 23 P
partition function ZgrzTr(e*ﬁ(H*“M) gradually, starting pertain to the®’'Rb and “°“Na experiments. Furthermore, we

with the high momentum states. After each step one trie¥\{ant to remark here that it. WO.UId in principle als_o be pos-
o fi : L Sible to set up a renormalization group calculation for the
o find a new effective Hamiltonian such thaZg,

. o inhomogeneous Bose gas. Of course, there is no real second

=Tr'(e” 0 ~#'Y) and the trace is limited to the low mo- qorder phase transition present in this system because the cor-

mentum states which have not been reached yet. One preelation length¢ can never become infinite, but the tech-

ceeds until the complete sum has been performed. Besid@sques of the renormalization group as presented in this pa-

the partition function one in this manner also ends up withper can still be used to calculate t@nuniversalproperties

the effective Hamiltonian describing the long distance prop-also in this case.

erties of the system. The paper is organized as follows. In Sec. Il we briefly
The renormalization group method has been applied to thdiscuss the theoretical description of the dilute Bose gas and

dilute Bose gas before, but without performing an extensivéhe renormalization group method. In Sec. Ill we first apply

quantitative study of this systefi22—25. Indeed, these pa- the renormalization group to the uncondensed phase of the

pers essentially rederive the results of the Bogoliubov ~ Bose gas because the flow equations are relatively simple

Popoy theory by means of a renormalization group analysisand easy to understand in this case. In Sec. IV we then go

A quantitative study that goes beyond this approximation igver to the degenerate Bose gas and again describe the gas

complicated by the fact that in general the quantities of nonproperties following from the renormalization group ap-

universal nature, such as the critical temperature and the sgroach. Finally, in Sec. V we end with some concluding

perfluid and condensate densities, depend on the microscopiemarks. In the numerical calculations we always @3¢a

details of the system considered. Put differently, they depends an example, because the experiment with this atomic spe-

on the ultraviolet cutoffA of the theory and this quantity is Cies is closest to the conditions of homogeng2y We take

usually unknown. However, due to the diluteness of the ga# these cases the most up-to-date value af,5®r the two-

the nonuniversal properties are in the present and forthconbody scattering lengtf26].

ing experiments the most interesting ones, and therefore we

are in this paper mainly interested in these aspects. The rea-

son that it is nevertheless possible to perform a quantitative

study of the dilute Bose gas using the renormalization group The renormalization group equations are most easily ob-

method is that for this system we do have sufficient informa+ained using the functional integral formulation of the grand

tion about the microscopic details to calculate and predict theanonical partition functiofi27]. We thus write

nonuniversal properties. Thus we can, by correctly applying

this knowledge, use the renormalization group method and 1

eliminate the cutoff dependence at the same time. Furtherz r=Tr(e*ﬁ(H*“N))=j d[ ¢* 1d[ ¢lexp, — _5[(/,*,,#]]_

more, we will show that, in contrast to regular perturbation h

theory, the problems related to the infrared divergencies are 1)

in principle indeed resolved, but lead nevertheless to some

problems whose solution requires further investigation.This functional integral is ovec-number fieldsy* (x,7) and

However, these problems are only of importance when they(x,r) periodic in imaginary time ovekB=#/kgT. The

interaction energy is no longer negligible compared to theso-called Euclidian action for the dilute Bose gas is given by
kinetic energy of the particles. The dimensionless parameter

reflecting this aspect inaA3,. Therefore, we will in this ip

paper first concentrate on the regime whees\3<1. s[,/,*,,/,]:f dr
We treat here only the homogeneous Bose gas with effec- 0

tively repulsive interactions, i.e., with a positive scattering 1

length. However, as in all experiments up until now the num- X (X, 1)+ _f dxf ax'y* (x, 7)* (X', 7)

ber of particlesN is so large that the critical temperature 2

T. is much larger than the energy splittifige between sub-

sequent levels, one can practically for all temperatures use a XV(X=Xx")(x',7) ¢(x,r)), 2

local density approximation to describe the gas in the trap.

The criterion for this description to be valid is that the cor-

relation length should be smaller than the typical length scalevith w the chemical potential and(x—x') the effectively

on which the atomic density varies. Therefore, a local denfepulsive interaction potential. In principle, the action also

sity approximation breaks down close to the edge of the gasontains a term describing three-particle interactions, i.e.,

Il. THE RENORMALIZATION GROUP

"o am M

h2v?
J' adxy™* (x,7) }
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1 (#B whereA is the ultraviolet cutoff in the theory, ardlA is the
gfo de de dX'J dx"¢* (X, T)* (X', 1) ¢ (X, 7) thickness of the shell in momentum space which is going to
be integrated out. We will dwell on the issue of the ultravio-

XU (X=X X=X") (X", ) (X", ) (X, T), let cutoff shortly. With the definitions in Eq5), we can

write the action as
and terms describing interactions between four and more par-

ticles due to the finite extent of the electron clouds of the SLy* w]=Sol ¥, p< 1+ Sl 9% -]
atoms. However, as we are describing thkute Bose gas N N
these terms are expected to make in general no significant Sy < v s, ©®)

contribution to the thermodynamic properties to be calcu-\g
lated. Indeed, in usual approaches to the dilute Bose ga aining terms, and in particular the terms that couple the

these terms are always neglected for this very reason. O slow and fast modes. The partition function can now be writ-
aspect of the renormalization group calculation is that it is en as ' P

possible, and even rather straightforward, to include th
three-body interaction in the calculations. As its influence

. ; " 1
WlII_turn out t_o be extremely small, except in 'gh(_a critical zgr:f d[:,b’;]d[z,/;<]ex4 - %50[,/,2 ,(/,<]]
region where it becomes somewhat larger, we will in the rest

here S, is quadratic in the fields, an§, contains the re-

of this section omit this term for reasons of brevity. How-
ever, in Sec. lll we perform some calculations including the X j dl 2 1d[ -]
three-body term to show its effect quantatively, and at that

point introduce it again. 1
Expanding the fields in Fourier modes through Xexp — = (Sl 2 =1+ SIYZ e Y2 4 ])
_ 1 2 i(K-X—wp7) (3) * 1 *
Y(X,7)= —r(ﬁBV)l 26 a n€ = [ dl¢Z]d[¢<]exp — %SO[ V2 <]
and the complex conjugate expression #6r(x,7), we can 1
write the action in momentum space as xexp — ﬁAS[‘/’Z YL (@)

After performing the last integral, we obtain an expression
for the partition function containing the new effective action
S'TYL - ]=S[ YL .1+ AS YL -] for the slow
+ = 2 V.a¥ a* A A modes. The two remaining stages of the renormalization
2BV iy ° k*g.n+mZk’—g,n’—m=K"n"Ekn group transformation consist of a rescaling of the momenta
nn’,m such that the new cutoff, which i§ —dA, is restored to its
(4) initial value A, and a rescaling of the frequency and fields in
the action such that there is no effect from this momentum
In this equation e,=%%k?/2m is the kinetic energy, rescaling on some appropriate terms in the quadratic part of
Vq=fde(x)e‘iq'X is the Fourier transform of the interac- the action. If we neglect the renormalizations from the first
tion potential V is the volume of the system, and the bosonicstep, this procedure yields the so-called trivial scaling of the
Matsubara frequencies,=27n/#% 3 reflect the periodicity coupling constants. Having completed these final steps of the
of the fields in imaginary time. renormalization group transformation, we can read off the
The renormalization group equations now follow from re- new coupling constants from the action. Thus, the renormal-
peatedly applying the renormalization group transformatiorization group equations have two contributions. One is from
to this action. It consists of three different staded,2g the rescaling, the other is from the actual integrating out of
which we summarize here. The first step is to perform thdligh momenta from the action.
functional integral in Eq(1) for the most rapidly oscillating Concerning the trivial scaling, there are two cases to dis-
fields. In other words, we eliminate the highest Fouriertinguish. For the normal renormalization group equations
modes from the action in Eq4). In practice, we therefore this scaling is found using the full quadratic action. The other
have to split the fields in “slow modes” and “fast modes,” Situation occurs exactly at the critical temperature. At that
i.e., we define point the correlation lengt§j of the system is infinite. More-
over, the correlation time also diverges and we can ne-

Sa*,al=2 (~ihont e ma

11

B 1 ke o) glect the time dependence in the action. As a result, we then

Yo (X,7)= sz;] a,n€ " only need to consider the kinetic energy term to find the
' trivial scalings. In renormalization group studies, one nor-

for 0<|k|<A—dA, mally restricts oneself to couplings which are relevant or

(5)  marginal at the critical temperature, and this we will also do.
B ke on7) However, it turns out that even the marginal coupling con-
P (X,7)= (ﬁ,B—V)me] a,n€ " stantU, from the three-body interaction term is quite irrel-
' evant to the nonuniversal properties to be calculated. This is
for A—dA<|k|<A, of course due to the fact that three-body interactions are un-
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edge about the microscopic details of the Bose gas comes in
AV to resolve this potential problem. In particular, we know that
the two-body interaction potential, has to renormalize to
the two-body T matrix T?B((k—k')/2+q,(k—k")/2;A?(k
—k’)2/m) when we include all possible two-body scattering

: processes in the vacuurf29]. The two-body T matrix
roughly has the same momentum dependendé,a<f. Fig.

! 1, and is in particular constant and equal teaf>/m in the

; range of thermal momenta and energies. Thus, given an ul-
5 traviolet cutoffA we can fix the renormalization group equa-

{ tions by demanding that for the two-body proble¥y, in-
deed correctly renormalizes tar%2/m. Since this value is,
due to the inequality/A,<1, already attained before we
enter the thermal regime as we integrate out more and more

FIG. 1. Typical behavior of the Fourier transform of the inter- momentum shells from the action, this indeed leads to a cor-
atomic interaction potentia¥ (x—x’). rect description of the properties of the Bose gas which is

independent of the ultraviolet cutoff. Having eliminated
important for adilute system. However, if one is interested the cutoff dependence, we are then in a position to determine
in the universal properties of the phase transition, such aslso the nonuniversal properties of the dilute Bose gas. Fur-
e.g., the critical exponent connected to the divergence of thermore, we can perform the calculation for appsitive
the correlation length when approaching the critical temperavalue of the scattering length, thus being able to describe any
ture, marginal and also irrelevant couplings can have a coratomic species with effectively repulsigewave scattering.
siderable effect. We will explicitly encounter this fact in the The results we find are therefore relevant to the current ex-
next section. periments using®Rb and #Na, but also to future experi-

The renormalization group equations describe the changments using atomic hydrogen or other atoms with a positive
of the coupling constants as we integrate out momentunscattering length.
shells from the action. Having arrived at the long wavelength We now turn to the application of the renormalization
effective action, we find whether or not we are in the con-group method to the dilute Bose gas. First, we derive the
densed phase, and we can calculate universal properties caienormalization group equations when the chemical potential
nected to this phase transition. However, our aim is to usés negative, starting from the action in E¢). These equa-
the renormalization group method to obtain information ontions, however, do not describe the Bose condensed phase,
other properties as well. This can also straightforwardly bedor then it is required that the chemical potential be positive.
done by noting that, e.g., for the total density we haveAs a result, we have to rederive the renormalization group
n=ZX, n(ay ,axn). This equation can be cast into a differen- equations for that case and this is carried out in Sec. IV. The
tial equation describing the building up of the density as wederivation is now much more involved as the space and time
proceed with the elimination of the fast Fourier modes. Foindependent part of the effective action, ie.,
that purpose, we have to use the right value of the chemicat 1|aqol®+Volage /2% 8V, has for >0 a Mexican hat
potential  in each subsequent momentum shell as foundshape and we first have to expand the action around the
from the renormalization group equations. In the same fasheorrect extremum by performing the shitigo—agq+
ion one can also determine, e.g., the superfluid density angng% 8V and introducing the condensate density. Only
the thermodynamic potential. after that can we proceed to find the contributions to the

Before we can start with the derivation of the flow equa-renormalization of the vertices.
tions, we first have to pay some attention to the high momen-
tum limit of the action. In principle, there is no real sharp
ultraviolet cutoff A in our problem. However, the typical
behavior of the Fourier transform of the two-body interaction  |n this section we first concentrate on the renormalization
potential, depicted in Fig. 1, is such that there is an effectivgyroup equations valid for negative chemical potential. The
ultraviolet cutoff around the momentum scale set by the scatreasons for this are threefold. The equations correctly de-
tering lengtha of this potential. Below this value, the Fourier scribe the Bose gas in the uncondensed phase, and they offer
transform is practically momentum independent and equal tan easy way to determine the influence of three-body effects
Vo. As in the Bose systems considered here and realizedn the quantities of interest. Moreover, it is best to start with
experimentally, the temperatures are so low thathis relatively simple set of equations because it illuminates
fla>h/Ay,, and the particles in the gas reside in a momenimost clearly our procedure to eliminate the cutoff depen-
tum range well below this ultraviolet cutoff. Thus, we can dence of the theory.
represent the interaction potential by the momentum-
independent valu&/, for momenta below a cutoff A of
O(#/a), and zero for larger momenta.

Modeling the potential as such implies that the nonuniver- To calculate the change of the couplings after each step of
sal properties we find from a renormalization group calculathe renormalization group transformation we can technically
tion will be sensitive to the specific value of the cutdff  proceed in two different, but equivalent ways. The first and
taken in the calculations. However, at this point our knowl-probably most familiar method is to expand the integrand in

O(I/A,)  O(l/a) q

Ill. THE SYMMETRY-UNBROKEN PHASE

A. The flow equations
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A3 [l1+dl
@ K) d,u:—ZVOFJ'I N(EAeizl—M)eisldL 9

Next, we remove all explicit dependencies from the Bose-
Einstein distribution function by letting both the temperature
>Q< >© and the chemical potential scale with exponent 2, i.e., we set
© T(H=Te” and u(1)=pue?. Hence, both temperature and
chemical potential scale trivially with exponent 2 and we
find for the differential equation describing the change of the

chemical potential when integrating out a momentum shell
4 )< d A3
© w \Q d—l:/:Z,u,—?Voe_lN(GA_,u). (10)

Finally, we now also absorb the facter' into V, in order to
FIG. 2. The one-loop Feynman graphs contributing to the renorremove the remaining explicit dependence. As a result,
malization of(a) the chemical potentialb) the two-body interac- V, scales trivially with exponent-1. Analogously, from a
tion, and(c) the three-body interaction. The dot represents the tWojmilar exercise with the equation for the interaction poten-
body vertexV, and the square the three-body vertgy. tial one can show that the vertéX, trivially scales with an
N o . . exponent—4. Note first of all that to find the real physical
the partition function in powers @[ = ,¢< ¢~ =], and  guantities we should remove the trivial scalings again and
then perform the integrals over the fast modes by evaluatingrthermore that these scalings do not have an essential ef-
the appropriate Feynman diagrams contributing to the renokgct on the renormalization of the vertices; it is merely a
malization or flow of the vertices of interest. The renorma"rewriting of the differential equations. In the case of a nega-
ization of the gradient and time-derivative terms of interestjye chemical potential we eventually obtain the following

are found by performing a Taylor expansion in external mo-coypled set of renormalization group equations for the cou-
menta and frequencies of these diagrams. However, the agjing constantss, Vo, andU,:

sociated couplings become more and more irrelevant for

higher order terms in this expansion. The second way to du A3

obtain the renormalization group equations does not explic- qr ~2s~ —2VoN(ea—p), (1139
ity make use of Feynman diagrams, and is therefore very

useful and efficient when the number of diagrams is large gy, A [1+2N(ey—p)

and/or the associated combinatorics is complicated. We use ar - —Vo— FVS 2—_+4ﬁN(eA—,u)
here the diagrammatic method because in the unbroken g (€x=w)

phase the number of diagrams is limited and the combinator- 3A3

ics is simple. We use the other method in Sec. IV. Moreover, X[N(ep—p)+1]|+ WUON(EA_/.L), (11b
using Feynman graphs also gives a transparent way to find

the trivial scaling of the vertices in a somewhat different 3

fashion than from the rescaling procedure described in Sec.d_loz —4Ug+ %ZVS[SIBZN(E'A_M)[N(EA_,U«)"}'1]
II, which brings out more clearly the physics of this proce- ™

dure.
As mentioned before, we include also the three-body in- ><[2N(eA—,u)+1]+%{1+2N(5A—,u)
teraction term from the preceding section in our consider- (en—p)
ations, and take it, as the two-body interaction, to be momen-
tum independent below the cutoff. The one-loop diagrams +2B(ey—u)N(ex—u)[N(epy—p)+17}
to be calculated are depicted in Fig. 2. To derive the renor-
malization group equations and the trivial scalings of the A3 3[1+2N(ey—p)]
coupling constants we focus on the chemical potential. In the —ﬁUOVO[ - +188N(ep— )

thermodynamic limit the total contribution to the chemical

potential from integrating out an infinitesimal momentum
shell in the Hartree and Fock diagrams is X[N(€ey—p)+1]|. (119
A dik : .
du=—2V, ——N(e—p), (8) Without the three-body term Eqgél1a and(11b) agree with
A()—dA(27) the flow equations obtained by Fishetral. [22].

To argue that these equations are the only ones we need to
whereA (1)=Ae ™' denotes the radius of the shell in momen- consider, we still have to determine the trivial scaling at the
tum space andN(e,—u)=1/(ef(k"#)—1) is the Bose- critical temperature. This different scaling comes about be-
Einstein distribution function which results from the summa-cause in the limit —o the Bose-Einstein distribution func-
tion over the Matsubara frequenciesv,. Using tion behaves abBl(e,—u)=21/8(1)[ex— u(l)] as we are ef-
lk|=A(l)=Ae~" and performing the angular integrals, we fectively at very high temperatures due #gl)=ge 2. To
can write Eq.(8) as remove again all explicit dependencies after substituting
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this behavior, we clearly need a different trivial scaling of length a for the two-body interaction, introduce a length
the vertices, and this is precisely the trivial scaling at thescaleb, and again fiXJy(1 =0) such that the renormalization
critical temperature, since setting(e,—u)=1/8(e\— ) group calculation gives the correct resulty(l =)
is equivalent to neglecting the time-derivative in the action.=4+#2b* m for elastic three-body scattering in a vacuum.
In this manner we can straightforwardly show that the scalHowever, in general not much is known about the micro-
ing of the chemical potential remains the same, i.e., we havecopic details of the three-body interaction in a dilute Bose
w(l)=pue?, that the scaling of the two-body interaction be- gas, and in particular about the value of the “three-body
comesV,(l)=Vge' instead ofVy(l)=Vee™!, and that the scattering length”b. But, as can be expected from the fact
three-body interaction does not scale, il&y(l) =Ug instead  that the three-body interactions are in the renormalization
of Ug(l)=Uqe~*. From this we conclude that andVyare  group sense irrelevant at large momenta, the results are prac-
relevant andJ, is marginal at the critical temperature. Fur- tically insensitive to the boundary value tf, used, and
thermore, the four-body interaction is indeed irrelevant andJ (1= 0) is hardly of any importance. This is shown explic-
therefore not included in the calculations. The coefficients oftly in Sec. Il B. Note that takindJ (I =0)=0 is equivalent
the gradient and time derivative terms in the quadratic part ofo assuming that three-particle scattering is solely due to the
the action are, liké&J,, marginal and would in principle also sum of pair interactions. This is a standard approximation in
have to be included in the renormalization group equationsatomic three-body calculations.
However, as we are in the regina¢A ,<1, the interactions Finally, to describe the dilute Bose gas we still need to
are expected to be independent of momentum and energlerive expressions for the total and superfluid density and the
(but see belowand there is no renormalization of t#édr  equation giving the thermodynamic potentid) and thus the
and|V|? terms. Moreover, we know from the expansion pressurep=—Q/V=—w. To do so, we make use of the
that the anomalous dimensiop indicating the importance following well-known one-loop expressions for the density:
of the|V|? renormalization at the critical temperature, is very
small, namelyz=0.02 [30]. Therefore, thes/dr and|V|? A g3
renormalizations will be neglected and Efjl) describes the n= J ﬁN(ek—,u,), (14
renormalization of the vertices we will consider. 0 (2m)

To calculate the partition function of the gas, we need,
next to the flow equations for the above quantities, also théhe superfluid density
correct boundary conditions. The first one for the chemical
potentialw is just the bare value in the action Ed). For the A d3k
two-body interaction potential , we need to be more care- ng=n—n,=n-— o 2m )3 =BeN(e— w)[N(e— ) +1],
ful, as this vertex has to correctly fix the renormalization (15
group equations as described in the preceding section. From
Eq. (11b we recognize that in a vacuum, i.e.,
N(ey—)=0, the renormalization of the interaction be- wheren, is the normal density given by the momentum-

tween two particles is governed by momentum correlation function, and the thermodynamic po-
tential
Wo__yp- Ayt (12) A d3k
dl O 272 702(epx—p)° ﬁf _§|n(1 g Alekw)y, (16)

This is just the differential form of the Lippmann-Schwinger

equation[29] for the two-bodyT matrix at energy 2, i.e.,  Casting these equations into a differential form by perform-
T28(0,0;2u). As the two-bodyT matrix is energy indepen- ing the integration shell by shell leads to

dent for low energies, we can neglegi and use

T28(0,0;2)=T2?8(0,0;0)=4mah?/m. As the solution of dn A3

Eq. (12) is also practically independent of the chemical po- HIWN(GA—M)??", (1739
tential, we can neglect it as well. As a result, the requirement

is now that, given an ultraviolet cutofA, V, flows for

|—oo to the value 4rafi’/m. This can be ascertained by ~ dns_dn A3

-3l
choosing the right initial condition fo¥,, and more pre- dl dl 37w g2 PeaN(ea=w)N(ey—p)+1]e=,
cisely we find from analytically solving Eq12) that (17b
4mah? 1 do 1 A8
Vo(l=0)= ——— 757~ (13 W=E2_n(l e Alea~r)ye~ (179

leads to the correct result. Note that we can describe differenthere the inverse temperature again scaleg(@s=ge '
atomic species by only changing the value of the scatteringnd the chemical potential is found from Edla at each
lengtha used in this equation. Finally, in principle we also step of the integration. These equations describe the building
need a boundary condition for the three-body interactiorup of these quantities as we integrate out more and more
U,. For this interaction we can, analogous to the scatteringnomentum shells from the action. For convenience, the ex-
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plicit | dependence is not removed from these equations, and
they thus immediately yield the physical quantities. Note fur-
thermore that these equations have no influence on the renor-
malization ofu, Vg, andU, as they are decoupled from the
renormalization group equatioi$l). The last equation was
also derived in earlier work by Fishet al. [22].

124x10" —

12x10"

p (N/m)

B. Analysis of the flow equations

We start our analysis by first focusing on the critical prop-
erties of Eq.(11) and in particular on the critical exponent
v pertaining to the divergence of the correlation length, i.e.,
the correlation length behaves &s &o|(T—T¢)/ T~ when
approaching the critical temperature. For that purpose we 552107 cox 10" 65x10"
have to find the fixed point of the renormalization group " )
equations, linearize the flow equations around this fixed
point, and identify the largest eigenvalNe which is related
to this critical exponent via=1/\ , [21]. We first omit the
three-body interaction, but in a subsequent calculation in
clude it again to determine the influence of this marginal
vertex on the value of. Only for the set{u,Vy}, when the Bose-Einstein distribution function diverges. We will
Uo(1)=0, do we perform the calculation of the fixed point come back to this point later on and restrict ourselves here to
explicitly. With the remarks made in Sec. Il A we have that the accessible regime, which physically implies thatn,.

-2

1.20x 10

FIG. 3. Thep-n~1 diagram includingsolid line) and excluding
(dashed ling a three-body interaction term for atomiéNa at a
temperature of 0.1uK. The influence ol is approximately 1.5%
near the critical density.

the fixed point is found from The first aspect connected to the three-body interaction
concerns the initial value problem fak,. Indeed, as alluded

du A3 kgT to before, an explicit calculation shows that changing the
a1 - 2p— pVo eA— =0, (18a boundary condition folJ ; from zero to one corresponding to

a “three-body scattering lengthb=10a=5208,, which is
qv. A3 5K.T extremely_ large in general, changes the total density and the
0y o2 T8 ) (18  Pressure in the system with less than 0.1%. Thus, the results
dl O 27 Oep—p)? we obtain are practically insensitive to this boundary condi-
tion and henceforth we simply use=a=>52a,. The second
yielding (u*,V§)=(e,/6, 5m2e3/18kgTA®). From linear-  aspect we want to consider is the influence of the three-body
ization of Eqs.(18g and(18b) around this value we find for interaction term itself on the outcome of the renormalization
the largest eigenvaluk . =1.878, implying thatv=0.532.  group flow. This we do by alternatively including and ex-
Repeating the calculation including the equation (1), cluding this vertex. That is, we solve the $gt,V,,Uq} and
the fixed point is shifted and the critical exponent is found tothe set{u,Vo} and compare the results we find. For that
be v=0.613. Thus, we see that the marginal operitghas  purpose, we plot in Fig. 3 the-n~—* diagram near the critical
a rather large effect. Moreover, we can conclude from thiglensityn., where the influence dfl is largest. From this
result that also irrelevant coupling constants must have &gure we see that the change in density and pressure is about
considerable effect as it is known, from tleeexpansion of 1% at maximum. Far away from the critical conditions, i.e.,
the O(2) model[30] and from measurements ftHe experi-  at large negative chemical potential, the system becomes
ments, that the true critical exponent of the Bose gas shoulthore and more dilute, and the influence of thgterm van-
have the valuer=0.67. This discrepancy should be allevi- ishes, consistent with expectations. In principle, we could
ated by including more and more irrelevant vertices. choose to maintain the three-body interaction term in the
However, as we are particularly interested in the nonunitenormalization group equations. However, as its effect is
versal properties of the dilute Bose gas, we now turn to thevery small we will from now on negledi ; altogether. Thus,
influence of the three-body interaction terdy, on these the dilute Bose gas, and more in particular the nonuniversal
guantities. The influence of this term will of course be largestproperties in which we are interested, is accurately described
when we start close to the critical chemical potential, be-by only following the renormalization of the chemical poten-
cause at the critical point in principle all fluctuations are oftial and the two-body interaction. Having concluded this, we
importance. Starting with a chemical potential near the critirestrict ourselves from now on to the coupled Ed4.g and
cal value leads to a trajectory that almost flows into the fixed11b).
point of the renormalization group equations, and the mo- However, before we analyze some physical implications
mentum interval in which irrelevant vertices can have a sig-of these equations, we want to remark that the dependence
nificant contribution to the flow, and also to the building up on the ultraviolet cutoffA is indeed eliminated from the
of the density, is then largest. The bare chemical potentiaheory. The influence on, e.g., the density can be shown to be
yielding a flow into the fixed point is positive, and the physi- completely absent, of course with the limitations that
cal chemical potentigli.e., with the trivial scaling removed should be larger than the thermal momenttifa 4, and that
renormalizes to zero. For a bare chemical potential largev, is properly renormalized to#a#?/m when we enter the
than this critical value the flow is no longer defined as atthermal regime. We are going to compare the results from
some value of we have thafe, — u(l)] becomes zero and the renormalization group calculation with known results for
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the weakly interacting Bose gas as found from the many- .,
body T-matrix theory[15,31]. Far from the critical tempera-
ture we expect the results of the mean-field and renormaliza-
tion group calculations to be identical. However, close to the s
critical temperature the renormalization group method will
clearly deviate from mean-field theory. We will focus here
on the behavior of the effective two-body interaction, and
defer the discussions concerning the equation of state ands
other thermodynamic quantities to Sec. IV when we are able *
to describe also the condensed phase of the gas.

In the many-bodyl-matrix theory, the chemical potential
is renormalized tqu’ = u—2nT28(0,0;0) [31]. This is one 02
of the results of including all two-body scattering processes,
but also incorporating the effect of the medium on the scat-
tering. Including the latter effect on the collisions in the gas, oo
which was first carried out explicitly in Ref§8], [15], and ° T,
[31], is an important step forward in the correct mean-field
treatment of the dilute Bose gas, since including many-body FIG. 4. The ratio of the many-body scattering lengé?€ in-
effects causes the effective interaction to go to zero at theluding(solid line) and excludingdashed lingthe bubble diagrams
critical temperature. This resolves a number of problemsn the flow equations as a function @¥ T, for atomic Na at a
found in previous approaches using just the two-body scatdensity of 1.5¢10'2 cm™3,
tering lengtha [16—19. With our renormalization group ap-
proach we can corroborate this result and even go somewhestimate for®". However, qualitatively there is clearly good
further than that. In our previous work we included only theagreement as we find from the renormalization group calcu-
many-body effects coming from the ladder diagrams. Howdation that the effective scattering length indeed goes to zero
ever, a class of diagrams that in principle also affects thét the critical temperature.
two-body interaction is the bubble diagram. With our current As already mentioned, a bare chemical potential larger
set of renormalization group equations we can preciselghan the critical one, which is positive and yields a flow into
study the effect of these bubble diagrams on the effectivéhe fixed point, corresponds to an inaccessible density re-
interaction. This is straightforward because we can pinpoingime. Therefore, we are not able to penetrate the region with
the ladder and bubble contributions in the equation describa Bose condensate and cannot describe the Bose gas below
ing the renormalization of the interaction. By alternatively the critical temperature with the renormalization group equa-
including and excluding the bubble diagrams and then solvtions in Eq.(11). Moreover, the critical exponent found
ing the renormalization group equations we can study thérom this set is not a very good approximation to the true
relative importance of the bubble diagrams on the effectivevalue »v=0.67, even if we would include three-body interac-
“many-body” scattering lengti®". To avoid any confusion tions. These aspects are intimately related and due to the fact
we will adopt the following notation for the scattering thatin the case of a positive chemical potential, k€0 part
length. The normal “bare” two-body scattering length as of the effective action has a Mexican hat shape. Therefore,
found, e.g., from analysis of the appropriate associationve must explicitly break the symmetry and introduce the
spectra is denoted by, as usual. The effective scattering condensate density into the action by expanding the action
lengtha®™ includes also effects of the medium on two-body around its minimum, and not aroudeg/)=0. For a negative
scattering, and therefore depends on the specific approximghemical potential, the above approach is of course correct as
tion used to calculate this effect. Here we consider two suclthen() is equal to zero.
approximations and denote the corresponding scattering
lengths byaM® andaR®. In the first case it is the result of a IV. THE SYMMETRY-BROKEN PHASE

many-body T-matrix calculation and is defined through . . .
TMB(0,0,0:0)=4aB42/m. In the second case it is the re- Breaking the symmetry allows us to describe the dilute

dBose gas below the critical temperature. Moreover, also
above the critical temperature we find considerable improve-
4ment. This is due to the fact that a positive bare chemical
otential can renormalize to negative values. Thus, starting
‘out in the broken phase, the fluctuations can restore the sym-
metry and we end up in the unbroken phase above the critical
temperature. The new set of renormalization group equations

bubble diagrams, as a function ®fT. and at a density of oy . X
1.5% 1022 cm 3. We conclude that the effect of the bubbles EXPIICiLl takes this broken symmetry into account and there-
fore gives a much better description than the one resulting

can be rather large and is in particular important near th?rom the set of equations in EqL1)
critical temperature. Farther away from the critical tempera- q '
ture the importance of the bubbles rapidly decreases. This
implies that calculating the influence of many-body effects

by means of the ladder diagrartis., doing the full many- In order to expand the action around the correct extremum
body T-matrix calculation can quantitatively give a poor we have to perform the shiélyo—ag o+ Vneg# BV which in-

0.6

04

sult of a renormalization group calculation and is define
through Vy(l =)=47aR%2?/m, irrespective of whether
bubbles are or are not included in this calculation. In Fig.
we depict the ratio of the effective scattering length resultin
from the renormalization group approach to the simple two
body scattering lengtla when we include and exclude the

A. The flow equations
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troduces the condensate dengity. Substituting this in the N 1 .
action Eq.(4) leads to the familiar expressigB?2] f diy=]dlyJexp — +(Sol Y= 4]
1
S[a,a*]=—#pV| uno— 5ngVo| +(— uno+noyvneVo) +SIYE v 0t ,¢>]>]
— _ _r~-1
X(850+ B00) 2 (~ifiant e pu+2n0Vo) == Trlin(= G- 15 @
' ' k,n

where the trace is over Fourier modes in the stall only

andG. is the Green'’s function for these fast modes. Taking
the shell infinitesimal again, we can simply calculate In
(—GZ') because we then only need the part of the total

1
* * *
Xay paknt EnoVo% (akn@lk —nTakn@—k,—n)

n [ No 2 Vo(a* ar a action which is quadratic in the fast Fourier modgi®lding
hBVEg O “amTk-gn-mkn all one-loop contributions The coefficients of this quadratic
n,m part also contain the slow modes because the interaction term

S[¢% - % -] couples the slow and fast modes. By

+a:+q,n+maq,mak,n) k . _1 X
simply Taylor expanding Int GZ~) we straightforwardly

11 S vt o* a a find the new effective action for the slow modes and the

2 ﬁ,B’Vk K q 0%k+g.n+m%’ —q,n’ —mk’,n" Sk, renormalization group equations of any vertex we would like
nn’.m to consider.

(19 Thus, we split the fields in slow modes and fast modes as

in Eq. (5) and find that the part from the action which is
quadratic in the fast modes and only leads to the renormal-

for the action. The magnitude of the condensate is deter.
[Zation of coupling constants reads

mined by eliminating the linear term from the action. We
thus findng=u/Vy. As a result, we can write the action as

SALYL 1= 2 [~ ihont ect Tyt 20(YE+ 9o)
a,a*]=—%ABVwy+ —ihw,t+e+Tpak a Y
S[ ] ﬂ 0 k§:4] ( n k 11) k,nk,n +2V0| ¢<|2]a:,nak,n

+EF > (af @, ot
> 12kn(ak,na—k,—n Ax,nd—k,—n)

1 1
+ 51‘12+ Fapo+ 5V0¢<

FS E;/ * *
+ a* a*_ _a X ak,nafk,fn
ey (Sanfi-an o k.

n,m

1 1
+a:+q,n+maq,mak,n) + §F12+F3’/’2+ Evolﬂiz)

1V,

+= ay ay a Ak .n»
2 BBV, 2, Herans g nd B X 2,8 k0, (22
n,n’,m Y

(200 where the prime denotes that the sum over momenta is re-
stricted to an infinitesimal momentum shelh at the cutoff.

introducing wo=n3Vy/2 as the lowest order approximation Evaluating the functional integral over these fast modes
to the thermodynamic potential density, and defining the verteads to adding Tn(—GZ1)) to the action for the slow
tices T'jy;=u—%214(0;0), I'1,=%%,50;0), and I'; for fields, and thus changes the vertices. This quantity is most
which we have in lowest order thlt;=I';,=ngVo=w and  easily evaluated by performing a Bogoliubov transformation
I';=noVo= Vo These are the boundary conditions for to diagonalize Eq(22) [33], and we find that
the flow equations we derive next.

Deriving the renormalization group equations using Feyn- 1

man diagrams is in this case more involved than in the un- TrIn(=G.")= 212
broken phase as the number of vertices is larger, but more so
because we now also can have anomalous propagators 1 "
(ag na*y _n) and(ay na_x —n) in these diagrams. The num- + E{EA_[€A+F11+ 2ls(dic+ibe)
ber of diagrams is therefore much larger and the combina-
torics is more complicated. Therefore, we will use here a
different method to obtain the renormalization group equa-
tions which does not explicitty make use of Feynman dia-
grams, and is therefore very useful and efficient in this casewhere the second term originates from the diagonalization
It relies on the fact that in Eq7) procedure, and the “dispersiong , is found from

2

1
Eln(l—e’ﬂEA)

+2Volgp|*]} [dA (23)
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E/Z\:[€A+F11+ 2T 3(% + o)+ 2V |22 erated by integrating out a momentum shell. We find that
1 1 8| 20(ep+ Ty — 3T
—| P+ 3+ §V0¢2<)(F12+F31//i+zvol//22 : O=A—2 ent T3l 1) N(w,)
2 hawy
=9 1[2T5(ep+T 11— 3110
sleaTln— 3l
+§( fron —2F3> dl. (26

In zeroth order ing. and % we retrieve the well-known

Bogoliubov dispersioniw,=(e,+ 19>~ 2, equal to Analogously we find a changel"{? in the anomalous self-
hwy=\€2+2I 1€, and thus gapless at=0 due to the energy.(See Appendix A for details.However, before we
equality T14(1=0)=T1,(I=0). This corresponds to the know the full renormalization of this vertex we have to de-

Hugenholtz-Pines theoref84]. Performing a Taylor expan- termine the shift needed to eliminate the linear term that is
sion in terms of the slow modes we find the new action_generated. SUbStit_Uti@OvQ_’aOOJr Vﬁﬁ_vd(‘/n_O) and retain-
Thus, integrating out a momentum shell renormalizes thd"d only the term linear ird(\ng) we find that

existing vertices, but also generates new terms in the action, dr
and in particular a linear term. To eliminate this term and d(v/ng)=— %
remain in the minimum of the action we again have to per- Fy+Ty

form a small shift inago. This implies that the magnitude of L o
the condensate changes as we are integrating out momentyHich influences the renormalization b{, because we have

shells and we also have a flow equation for the condensafcgr the total renormalization of the anomalous self-energy

density. Since we omit three-body interactions containing six 0)

fields, we also have to neglect terms containing five fields dl'pp=dI';; +2F3d(\/n—o). (28)
since they correspond, together with the condensate field ] ) ] ]
with a three-body term. As a result, the action remains of th&lue to this shift. When we use the above mentioned relations

form written down in Eq(20) and the renormalization group P€tween the vertices implied from thé(1) symmetry we
equations can now be obtained for all the vertices of interesth€n make contact with the renormalization group equations

However, due to theJ(1) symmetry of our problem, we can for the unbroken phase by determining the flow equations for
relate some of these vertices and thereby limit the number dhe chemical potentigk=1I";, and the two-body interaction
flow equations we actually need to describe the complet?/o=1"12/No. After some algebra we ultimately find
renormalization of the action in EqR0). As thisU(1) sym-

(27)

metry cannot be broken during the process of renormaliza-d_Mz B A—3V 26i+6ﬂ612x+:“3[2N(ﬁ )+1]-1
tion, the action can, at any time, be recast in the explicitly dlI K= 2@ Yo 2ﬁ3w/3\ @A
U(1) symmetric form )
m(2ep+p)
+ =27 BN [N(iwy)+1]], (299
hB Zv2 A
’ * — * - B
S [l//< ,¢<] J’O de dX( lﬂ<(X,T) h(?T 2m M(I)} dVO A3 (eA_M)Z
——=—Vo— 5=V =373 [2N(hw,)+1]
L dl O 27279 21303 A
- 4
X (x,7)+ 5 VoD (x, 7% (25) (2ert )2
—hzwi BN(fiwy)[N(fiwy)+1]|, (29b

From this it is then first of all easy to see that the and the Condensate density fo”ows frormo(|)
Hugenholtz-Pines theorem(34] holds, implying that = ,(1)/v(l). Breaking the symmetry is irrelevant to the
Lyy(N=T1(1)= u(1). (See Appendix A for an explicit deri-  trjvial scaling of the vertices, and thus these are identical to
vation of this important relation.Next, also due to the ne- \yhat was found in the preceding section. Comparing these
glect of three-body interactions, we have thatfiow equations to Eq9118 and(11b) omitting Uy, we see
La(1) = Vno(1) V(1) andV(l) =T'15(1)/ng(l). Thus, we only  that both sets coincide when is taken equal to zero. Thus,
need to know the flow equations for, e.ge(l) andI'15(I)  the renormalization group equations for negative and posi-
and then the other renormalization group equations can bgve chemical potential yield a flow which is continuously
determined. In the following we can therefore restrict our-djfferentiable, also ag.=0.

selves to the renormalization of the linear term and the term \we now know the renormalization of the chemical poten-
proportional to ¢*°+ ¢ ) as these determine the change oftial and the two-body interaction. Finally, we again have to
the condensate density and the anomalous self-edéygy find the equations describing the building up of the total and
respectively. Note that the equalily;;(1)=I"15(1) ensures superfluid densities and the thermodynamic potential as we
that the dispersiofiw, is gapless at any point during renor- are integrating out momentum shells. Analogous to the pro-
malization, as it should. cedure followed in the preceding section we find for the total

To arrive at the flow equations fory(l) andI' (1), we  density, being the sum of the condensate density and the
first of all need the linear termdI'g(ag,+ao0) that is gen-  above condensate density,
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FIG. 5. Flow diagram resulting from the renormalization group

FIG. 6. The critical degeneracy parameten 3 found from the
equations. The fixed point is indicated with an asterisk. g P ey

renormalization group calculation as a functionadf\ , .

dn A3 [ e, 1\ depict the trajectories resulting from the integration of Eqgs.
a2 m[ZN(ﬁwAHl]—E e (30 (299 and(29b. o N _

It is evident from this figure that the critical properties of
wih the boundary condifion n(l=0)=n(1=0) 1 R 98 B8 COENET e Txed point we can
= u(I=0)/Vo(1=0). The superfluid density follows from identify the largest eigenvalue, , and determine the critical
dng dn A3 exponentv following from this set. We find/=0.685, which
—=————Be,N(fw,)[N(hw,)+1]e" %, (31) gives a much better approximation to the critical exponent
didl 37 than the renormalization group equations studied in Sec. llI
and is to be compared with the value=0.67 found from the
€ expansion of thed(2) model[30] and measured ifHe
do A3 /1 1 experiments. The agreement is surprisingly good, and to-
—=——|=In(l—e Are St Z(hoy— ey — M)e_S') gether with the fact that we explicitly showed that three-body
di 27718 2 effects are negligible, this indicates that we are indeed accu-

(32 rately describing the Bose gas with the derived renormaliza-
: s tion group equations, also in the critical region. The cause of
[_Cf'qu' (23] with the boundary conditions(l=0)=w, this goodp agreement is that although Wegonly consider the
=NoVo/2. renormalization ofu and Vg, the types of scattering pro-
N cesses in terms of reébare particles we are actually taking
B. The critical temperature of BEC into account are very elaborate. The propagator for the Bo-
With the boundary conditions mentioned above we cargoliubov quasiparticles is namely the result of dressing the
again numerically integrate the renormalization group equaoriginal bare propagatdi/(ifw,— €, + u) with interactions
tions. For a fixed temperature, we vary the value of(fiesi- ~ with the condensate as we use the termg\2ag ,ax , and
tive) bare chemical potential, and calculate, e.g., density andoV(ay ,a*, _,+axna_k —n)/2 in the zeroth order qua-
pressure. The physical effective chemical potential, i.e., withdratic part of the action. Thus, the diagrams we calculate
the trivial scaling removed, decreases as we perform the imactually contain an infinite number of scattering processes
tegration, and, depending on the starting value, remains posivith the condensate. Therefore, we are describing the system
tive, renormalizes exactly to zero, or becomes negative anuch better than in Sec. Ill already at this level of renormal-
some value of the integration paramdtein the first case we ization group.
start out and remain in the broken phase and are below the The first nonuniversal property we concentrate on is the
critical temperature of Bose-Einstein condensation, i.e., wehange in the critical temperature of Bose-Einstein conden-
have a finite condensate density. In the second case, the casation due to interaction effects. This result is presented also
densate densitng(l)=u(1)/Vy(l) renormalizes exactly to elsewherd20], but we will recapitulate it here because of its
zero forl -, and we are at the critical conditions for Bose- experimental significance. At fixed temperatures we vary the
Einstein condensation. In the third case we started out in thébare chemical potential to find the trajectories flowing into
broken phase, but the fluctuations restore the symmetry. Ahe fixed point. Using Eq(30), this yields the critical densi-
the value ofl for which the chemical potential becomes ties for these specific temperatures and gives usnth&
negative we have to continue the integration with the set Eqgelation at which Bose-Einstein condensation occurs. We re-
(119 and(11b), and we are thus in the uncondensed phasepeat this for different values of the scattering length to obtain
Hence, to be able to describe the dilute Bose gas above, btite dependence of the critical temperature on the strength of
not too far from, the critical temperature, we need the renorthe interaction. In Fig. 6 we show the degeneracy parameter
malization group equations for both signsofIn Fig. 5 we ncAfh found from the renormalization group calculation as a

and the thermodynamic potential from
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function ofa/Ay,. As seen from this figure we conclude that The presence of infrared divergencies causes both the physi-
the critical temperature isisedwith respect to the ideal gas Cal chemical potential and two-body interaction in the renor-
value. This is in qualitative agreement with the recent experiMalization group approach to renormalize to zero, instead of
ments[1,2] and also preliminary quantum Monte Carlo cal- be_commg infinite as they would in a regular one-loop calcu-
culations seem to confirm this resi5]. An indication of 'ation. Indeed, one can show from E¢898 and(29b) that

| -2l H
an upward shift was also found some time ago by one of ur | —= we haveuxe andVy=xe . These scalings are

. .. . 2| 7'
studying the nucleation of Bose-Einstein condensafgin ~ different from the trivial scalingg.=e” and Voxe™, and
From our calculations we predict that for tHERb and are therefore termed anomalous. Physically, the anomalous

ZNa experiments the critical temperature can be raised by aﬁcalmg implies an effective energy and momentum depen-

X gy ence of the coupling constants, as we show explicitly in
much as 10%, which appears to be a very promising resu X . . .
: . ) ppendix B. In particular, the anomalous scaling we find
because one might expect that an effect of this magnltudF

can very well be measured in future, more accurate, expen-eads to the result that the chemical potential, and thus the

o X e normal and anomal If-energi well as the two-
ments. It is important to note that this shift ipA 3 can be ormal and anomalous self-energies, as well as the two-body

observed in magnetically trapped atomic gases if one directlilmeraCtion’ behave linearly witk for low momenta, i.e., our
e - fenormalization gr roach reveals th k;0)ock
measures the density in the center of the trap at the crltlcaf ormalization group approach reveals thaty(k;0)

temperature. One should in particulaot measure the total nd 7 k0)k. This behavior, implying that

number of particles, because this involves the density profil%ze#tg)fgg]:xﬁéﬁo\;vog :eg "fma : rgﬁi&;:eﬁggé fo.lfhlg\'\éomngé_
in the trap and due to the repulsive nature of the interactio plcitly '

n . . . .
thus tends to obscure the effdgH]. auences for the application of renormalization group, how-

i N ever, are twofold. First, it implies that the Bogoliubov
The reason for a higher critical temperature, or more pre-

cisely, a lower critical density is the following. The effective dispersionfiwy_does not possess a sound mode anymore
Y, . y 9. 'he e since the low momentum behavior is not linear, but instead
chemical potential renormalizes from a positive initial value

we havei o, k%2 This is of course an incorrect res{i7]

exactly to zero. Consequently, we have the Bogoliubov dlsindicating that Eqs(293 and (29b) are insufficient to de-

persion in the equation for the density, and this depresses the . . .
. : sctribe the sound mode. Indeed, following the argument in

occupation of the nonzero momentum states relative to th o .

) . ; ec. lll we neglected the renormalization of tfmeargina)

ideal gas case, where we would just haygin the Bose-

Einstein distribution function. The magnitude of the effect iSféﬁgea;%l:gmt:},;m;nzmgﬁe:he ;Egeeragﬁggitwﬁgewicte'?pl‘;’léfgw
related to the behavior of the chemical potential when renor: i ay P ) '

- ! . * the critical temperature we see that the momentum and en-
malizing to the fixed point valug* =€, . Suppose we ef-

fectively haveu(1)= ae, independent of, with some posi- ergy dependence of the self-energies does become important,

tive a smaller than 1. We can then translate the differentiafelnd should therefore be included in the renormalization
@ C X . group calculation by Taylor expanding the self-energies in
equation for the density into an ordinary integral over mo-

. . .~ terms of the external momentum and frequency. Put differ-
mentum space following the inverse procedure from which

we found the flow equations in Sec. Ill. Doing so, we find ently, the anomalous dimensiopis no longer small below
v €q . >ec. 11, Loing so, the critical temperature. The extra renormalization group
that the Bogoliubov dispersion effectively becomes

. . . equations obtained in this manner may change the particular
hw=+1+2a¢,. Thus, this essentially boils down to a 9 y g P

ke ; L anomalous scaling found above, but  since
mass renormalization, and the change in the critical temperg:s (0;0)=#3 1,(0:0)=0 is an exact result we still expect
ture is directly related to the magnitude of this renormaliza "po &5 0= scaling of the coupling constants, The
tion. Starting with the equation describing the building up of ¢ fth o . o
X xtra renormalization gr ions will
the above condensate dendity. Eq. (A6a) from Appendix effect of the extra renormalization group equations be to

change the dispersion relation in such a way that the linear

A] one can easily show that we approximately h""Vesound mode is recovered. At zero temperature, this expecta-

NcAq=(1+@)3(1)/(1+2a). For an increase of 10% in o1 'is confirmed in a recent paper by Castellanal. [39].
the critical temperature, we find from this result thamust The reason for the anomalous scaling and consequently
be equal to 0.2. Indeed, this turns out to be the typical valug,g disappearance of the sound mode is caused by the infra-
of a_in the thermal regime where the contributions to theqq divergence in the one-loop expressions for the self-
density are largest. energies and two-body interaction. This can be traced back
to the behavior of the coherence factars and v, of the
C. The regionnaAf <1 Bogoliubov transformation diagonalizing the quadratic part

To obtain also information on the properties of the Bose©f the action. The Bogoliubov transformation is given by
gas below the critical temperature we have to start with a N
chemical potential which always remains positive under A= UkDin = U= (339
renormalization. We are then always in the condensed phase
and have to use the renormalization group equati@9s)
and (29b). Written as ordinary one-loop integrals, these . .
equations contain infrared dive?lgencies aﬂd a s?raightforwarwher?b;’“ andbk’.” are the Fourler compone_nts O.f the fields
perturbative analysis is not possible. This is a well knowncreating and annihilating a Bogoliubov quasiparticle, respec-

problem in the theory of the interacting Bose ¢&3,38. tively. The coherence factors are given by

However, doing the calculation by means of the renormal-

. . . .. . . 1 ﬁwk €y

ization group approach, this problem is in principle resolved Ug== — ], (343
due to the resummation which is automatically performed. 2 €x hwy

ag ,=Uxby \—vkb_y _p, (330
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d,LL A3 €A+ILL
‘ ‘Q @ W—ZM—ﬁVo(m[ZN(ﬁwA)JFl]—l

+4BuN(fiwp)[N(hAwy)+1] ], (353
* * ¢ > dVo A3 2(1+2N(th)
: W——Vo— ﬁvo T+4BN(ﬁw/\)
’ ' X[N(fw,)+1]], (35h)

FIG. 7. The one-loop Feynman diagrams contributing to the
renormalization of(a) the linear term andb) the anomalous self- where we again made use of the relations(l)
energy in the broken phase. The filled circle represents the vertexxT" (1) =T 1,(I) = \no(1)T3(1) =ng(1)Vo(l) due to U(1)

V, and the open circle the vertdss. symmetry. Note that also this set coincides with Ed4.9
and(11b) when the chemical potential is equal to zero, so the
1 [hwy | € flow is also in this case everywhere continuous and continu-
YkTo &« Vho)' (34D ously differentiable. Moreover, the equations for the density,

superfluid density, and thermodynamic potential do not con-

and satisfy the requirement thaf—v2=1 because the Bo- tain an infrared divergency, so the flow equations for these
goliubov transformation is unitary. As the Bogoliubov dis- quantities remain the same and are given by £8@), (31),
persion is given byiw,= e+ 2ue,, it is easy to see that and(32), respectively.
u,—1 andv,—0 for large momenta, and both factors be-
have as 1Jk ask tends to zero. The region where the cross- D. Analysis of the flow equations
over occurs beztween these two reg.imes is determined by the At this point we can describe any point in the phase dia-
parametenalj, found from comparing the chemical poten- gram of the dilute Bose gas. For negative chemical potential
tial with the thermal energy, and also determining the crossye have Eqs(118 and(11b), for positive chemical potential
over from quadratic to linear behavior of the Bogoliubov e must use Eqs359 and (350. Moreover, we have to
dispersion. WhemaA§s>1 the linear regime of the disper- combine both sets when we are not too far below the critical
sion is extremely important in determining the properties ofdensity when the chemical potential changes sign during ap-
the Bose gas. Conversely, wheaAj <1, the Bogoliubov plication of the renormalization group transformation. Using
dispersion can be approximated by the normal dispersiogq. (35), we find that the critical temperature of Bose-
et u, except for a very small region at low momenta, Einstein condensation changes with less than 0.1% compared
which is then not very important and can for most practicalto the more accurate result found using E2p). Therefore,
purposes be neglected. In the following, we therefore conthis shows that using the set not containing the infrared di-
centrate on the regimlea_Atzh<1, covering a large tempera- vergencies essentially leads to the same results, implying that
ture interval below the critical temperature, and wge= 1 it is indeed correct to neglect the linear part of the Bogoliu-
andv =0 in contributions to the renormalization of the ver- bov dispersion. Having proven this explicitly, we will in the
tices that contain infrared divergencies. Otherwise, we willfollowing present the results of the renormalization group
use the full expression E@34). This procedure turns out to calculation of the effective two-body interaction, i.e., the
be necessary to ensure the Hugenholtz-Pines theorem to beany-body scattering leng™, the condensate and super-
satisfied, as is shown in Appendix A. fluid densities, and thg-n~! diagram below as well as

In the method used in the preceding section it is not posabove the critical temperature, and compare them in all cases
sible to pinpoint the Bogoliubov coherence factors at anywith the results from the many-body-matrix calculation.
stage of the derivation of the renormalization group equa- We start with the scattering leng#$". Above the critical
tions. Therefore, we really have to go through the calculationemperature it is straightforward to take into account only the
of the Feynman diagrams relevant to the various vertices igontributions of the ladder diagrams, or to include the effect
which we are interested. In our case these are the linear ternas the bubble diagrams as well. Below the critical tempera-
of the action and the anomalous self-energy. The one-looture there are no clear ladder and bubble diagrams, so the
diagrams of interest are depicted in Fig. 7 and contain alsearious contributions are in principle not clearly associated
the anomalous propagatofay ,a*, _,) and(ay,a_y _n).  With ladders or bubbles. However, comparing the differential
Using the Bogoliubov transformation, these diagrams arequations for positive and negatiyewe can conclude that
straightforward to calculate, and we find that for the renor-the first nontrivial term on the right-hand side of Eg5b) is
malization of the condensate density both diagramsIfer effectively related to a ladder contribution, and that the sec-
contribute, but that for the renormalization of the anomalousond nontrivial term is effectively related to a bubble dia-
self-energy only diagrama andB give contributions that do gram. We depict in Fig. 8 the scattering lengtf, normal-
not contain infrared divergencies. The explicit calculation ofized to the two-body scattering length=52a, for *Na,
these diagrams is presented in Appendix A. Using the exwhen including and excluding the bubble contributions
pressions obtained there, we find that the flow equations bdaR®a), and also the result found from the many-body
come T-matrix calculation &MB/a) [15]. As our approach is re-
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FIG. 8. The ratio of the effective scattering lengtfl’ and the FIG. 9. The degeneracy parametek?, as a function of the

two-body scattering lengtta for atomic *Na at a density of fugacity ¢ for the ideal gas(dotted ling, from the many-body
1.5X 10" cm~3. The dashed line corresponds to the result from theT-matrix theory(dashed lingand as found from the renormaliza-
many-body T-matrix calculation, i.e.a*f=a"8. The solid lines tjon group calculatior(solid line).

correspond to the result from the renormalization group approach,

i.e., a®"=aR®, with bubble diagrams included and excluded. The ) ] )
effect of the bubbleglower solid ling is seen to be considerable, €SSence given by E¢30), recast in the form of an ordinary
Certaimy below the critical temperature. One-loop integral. In Flg 9 we p|0‘lAt3h for the ideal Bose

gas, following from the many-bodyl-matrix calculation,

stricted to the regimemaA2 <1, we present no results for and from the renormalization group calculation. In the latter

naA2 larger than one. The renormalization of the effectiveCaSe, We numerically integrate the flow equations for a fixed

two-body interaction to zero at the critical temperature, a€mperature, and vary the value of the bare chemical poten-

result already found in the many-bodymatrix approach, tial. This changes ghe total d_ensity in the systenj,_ and there-
turns out to be correct. Indeed, this can be easily understod@'® the value ohAy, For the ideal Bose gas, positive values
from the renormalization group equations. A fixed point©f the chemical potential are not allowed. With the repulsive
(w* V%) is present in the sdiu(1),Vo(1)€?}, which means interactions ta}ken into account, a positive value is pqssn_)le
that forl — the physical two-body interaction, i.e., with the and the fugacity can be larger than one. The renormalization

trivial scaling removed, behaves ¥&e~' and thus goes to group calculation yields the same density for a chemical po-

S ! . tential slightly above and slightly below the critical chemical
zero. The depression in the scattering length around the criti- . 7 ; ; .

. . . potential. This double valuedness in the density occurs in an
cal temperature occurs in a fairly large temperature mtervaléxtremel small reaion around the critical density and the
Note, furthermore, that applying the renormalization group y 9 Y

cquaion299 and200 would e 0 everywhere *S1CCLLs STAler e 1 ol n e cese €ho For
below the critical temperature due to the anomalous scaling g lengta=1.5%,,

found from this set. This property is actually expected toghe;?mi;h:ffgg?:lrlﬁulfg ilr.n;?ev;/?r\]/:rr; tgésczr:r;r?oétﬁ\n;é%s?()tsve
hold true even in a more elaborate renormalization grouﬁ 9 ty

calculation and is an issue worth studying as it may havé)btaln when we include three-body interactions, being ap-

i 0, -
important consequences for, e.g., the exact form of th(ﬁ;%’grcvaet?:z dlc/oa(r?Iio??)Z tI:B'stTeZererfosr?c'aﬁTe:n%uglr?oz%usg ne-
Gross-Pitaevskii equation describing the condensate. pny y

Next, we turn to the equation of state. For the ideal Bos lected. It presumably disappears .wh(.an we include th(ee—
gas we’have in general that ' ody effects or extend the renormalization group calculation

otherwise.
NAS =NnoAS+gs(0), (36) When the bare chemical potential decreases the gas be-
comes more and more dilute and the influence of the inter-
whereg,(z) is a Bose-function defined as actions can better and better be accounted for using mean-
field theory. This fact is actually evident from the
1 (= yvt renormalization group equations in E@l1l). When the
9n(2)= F(n)fo Z,ley_ldy 37 chemical potential is large and negative, the Bose-factors

N(e,—u) are strongly depressed and there is hardly any
and {=eP* is the fugacity. In the many-bodyff-matrix ~ many-body effect on the renormalization of the two-body
theory above the critical temperature we have that the cheminteraction so we will find that it is just renormalized to
cal potential is renormalized to’ = u—2nT28(0,0;0) [31].  T?B(0,0;,0)=4ma%? m. Indeed, the same is true in the
Below the critical temperature the dispersion changes to theany-body T-matrix calculation[15], since we have that
Bogoliubov dispersion and the equation for the density is inTM®(0,0,0;0)~T25(0,0;0) when the system is extremely
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FIG. 10. (a) The condensate fraction afio) the superfluid frac-
tion as a function of temperature for a density of>4 B'? sodium X
atoms per cubic centimeter, both from the many-bddynatrix
calculation(dashed lingas from the renormalization group calcu-
lation (solid line).

2
1= g Bad2N(ex—po) +1] ou(k), (39

where the lowest order terms drop out. This is due to the fact
that these terms yield the expression for the superfluid den-
sity in an ideal Bose gas above the critical temperature which
dilute, i.e., there is no effect of the medium in this regime. Incan be shown to be exactly equal to zero. It is clear from Eq.
addition, the differential equations fqi and V, are now  (39) that the superfluid density will in general not be equal to
almost decoupled, and consequently the chemical potentiaiero. The behavior of.(k) would have to be very special
will renormalize approximately ta.—2nT28(0,0;0), which  to give a superfluid density exactly equal to zero. It is there-
is only a small effect in this limit. Therefore, the renormal- fore not surprising that we find from our limited set of renor-
ization group equations can practically be recast in the regunalization group equations a different temperature for which
lar one-loop expressions one encounters in the many-bodye condensate and superfluid densities vanish. For the situ-
T-matrix theory and the results we find in this regime areation depicted in Fig. 10 we have, however, tha/T, is
approximately the same. only about 8<10~3. Extending the renormalization group

In Figs. 1Ga) and 1@b) we depict the condensate and calculation would in principle lead to a superfluid density
superfluid fractions as a function of temperature for a densityvhich vanishes at the same temperature as where the con-
of 1.5x 10'? cm™~3 both from the renormalization group and densate density becomes zero.
many-bodyT-matrix calculation. Again, not too close to the  Finally, we also present the pressure of the dilute Bose
critical temperature we have good agreement. Note that thgas as a function of the inverse density. Using 8%8), we
superfluid density has not yet become zero at the temperatugepict this behavior in Fig. 11 for 8Na gas at 0.1uK,
where the condensate density vanishes. To explain this ategether with the result of the many-bodymatrix calcula-
pect we will focus on the equation for the superfluid densitytion. Although the critical densities are different, we find a
in the unbroken phase. When we interpret the fact that théairly good agreement between the two curves and the dif-
chemical potential is renormalized as we integrate out moference between the renormalization group calculation and
mentum shells as a chemical potential depending on mometthe many-bodyT-matrix calculation is small when it con-
tum, we can express the superfluid density as a regular inteerns the pressure of the gas. However, concerning the other
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nonuniversal properties discussed in this paper, the differwork. A resolution of this problem would correspond to a
ence can be substantial near the critical temperature as wesolution of the long standing problem of the infrared diver-
have seen. gencies in the perturbation expansion around the Bogoliubov
theory.

We concluded this work by using the renormalization
group to calculate superfluid and condensate densities as a

In summary, we have derived the renormalization grougiunction of temperature and alsomn™" diagram is pre-
equations for a dilute Bose gas. To obtain these equations wgented. Of course the renormalization group can be used to
have to make a distinction between the case of a negativiénd out many more things about the dilute Bose gas. Note,
and a positive chemical potential. In the latter case we have.d., that it is in principle also possible to use the renormal-
to take the presence of a condensate into account, and tigation group method to find the quantitative form of the
renormalization group equations are different from the onegorrelation function as it is the Fourier transform of the oc-
valid in the unbroken phase. Our philosophy of using thecupation numbeN, . This can also be translated into a dif-
renormalization group approach is not to study universaferential equation as in E¢17), where we now have the
properties of the dilute Bose gas, which are the same as fdlistancer as a free parameter. Also the specific heat may be
the O(2) model in three dimensions, but to make quantativecalculated. In principle, our results pertain to a homogeneous
predictions about various nonuniversal properties of this sysBose gas, but in situations where the application of a local
tem. To achieve this goal one has to find a method to elimidensity approximation is allowed, they are also applicable to
nate the ultraviolet cutoff dependence inherent to the applitrapped Bose gases. Moreover, we indicated that it is in prin-
cation of the renormalization group. Our knowledge aboutiple also possible to set up a renormalization group calcu-
the two-body scattering problem is sufficient in this respectation for the inhomogeneous case.
and we can fix the renormalization group equations in this Finally, we want to note that the procedure of the renor-
manner. We compared results of the renormalization grouphalization group as described in this paper can in principle
with mean-field calculations and showed the difference tcalso be used to study the Kosterlitz-Thouless transition to the
vanish in appropriate limits. We also checked the influenceuperfluid phase in a two-dimensional Bose gas. However,
of three-body effects, which turned out to be unimportantthere are difficulties in this case connected with the fact that
even in the critical region. Furthermore, we showed that thé&ll coupling constants are relevant at the critical temperature.
influence of bubble diagrams on the effective interaction cafNonetheless, work along these lines is in progress since a
be fairly large, and that the effective scattering lengffi ~ number of experiments are currently under construction
vanishes when approaching the critical temperature. Thidhich aim at reaching the Kosterlitz-Thouless phase in dou-
confirms earlier resultg20,31] and is of importance for a lot  bly spin-polarized atomic hydrogen adsorbed on a superfluid
of current work concerning condensate properties in trappefelium film.

Bose gases. It implies that there can in principle be an im- We acknowledge helpful discussions with Eric Cornell,
portant qhange mﬂthe results of_ calculations that'make use %olfgang Ketterle. and Steve Girvin.

the nonlinear Schidinger equation when determining these
properties. For that purpose the effective scattering length
a®™ is of importance, and not the two-body scattering length
a. In this appendix we go through some of the technicalities

Next, we derived the renormalization group equations inof the calculation of the one-loop Feynman diagrams for the
the broken phase, i.e., for positive chemical potential, an@&oupling constant$';; andI',,, i.e., essentially the normal
showed that the transition to the Bose-Einstein condenseghd anomalous self-energies, and explicity show the
phase is contained in this set of renormalization group equadugenholtz-Pines theorem to hold in our renormalization
tions. We found a critical exponemt=0.685, which agrees group approach. This theorem states {{3af]
very well with »=0.67 found in studies of th&(2) model,
and furthermore calculated the effect of the interactions on m=hn2%1,(0;,0)—%%150;0), (A1)
the critical temperature of the phase transition. The change ) _
can be as much as 10% in the current type of experimentyherefi%,(0;0) and#iX,5(0;0) are the irreducible normal
and may be measured if one can improve the precision iRnd anomalous self-energies, respectively. In our notation
determining the temperature and the central density in th&is relation reads
trap.

As these latter renormalization group equations lead to a
dispersion relation which has no linear part, i.e., there 'S.m?:igure 7 in the main text contains the diagrams renormaliz-
sound mode, we have to restrict ourselves to the regime I . .

2 . . oo 2" "Ihg I'1, and in Fig. 12 we depict the one-loop diagrams
naAy<1, where the_z linear paf‘ of the dlsperspn IS unim- renormalizingl’;;,. Using the designation of the diagrams as
portant for deFermmmg prozpert|e_s such as de_nsny and P'e3A these figures one can show, after going through the com-
sure. The region wheneaA <1 is currently still the most  pinq4rics; that théinfinitesima) change of the vertices after
interesting one from the experimental point of view althoughnegrating out an infinitesimal momentum shell is given by
the other region is certainly within reach. Including the

renormalization of the time derivative and gradient terms in gr = 4dT)+4dT 8 +2dT S, + 4dT D+ 4dT 5+ 4dTE,
the action is expected to resolve the problem of the disap-
pearance of the sound mode, but we postponed this to future + 4TI 3d( \/n—o), (A3a)

V. CONCLUSIONS

APPENDIX A

3=T1,. (A2)
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FIG. 12. The one-loop Feynman diagrams contributing to the

renormalization of the normal self-energy in the broken phase. The
filled circle represents the vertdk, and the open circle the vertex

Fg.
dI';,=2dI',+4dl 5, +4dT §,+ 4dT D, + 4dl T+ 2dT ],

+205d(Vny). (A3b)

5101
[N(Fw,)+1] e 3dl, (A6d)
3 1+2N(fw,)
driz - ﬁl“g( ZUiU%W
+ (Ut +v})BN(hw ) )[N(hwy)+1] e 3dl,
(A6e)

1 A3
drg\zzivod”ﬁz—mvouAuA[H2N(ﬁwA)]e*3'd|,

(ABf)

introducing  dn’=A3% (a} ,a, e 2dl/27? and
dn=A3S (aX ,a* , _ye 2'dl/2z? with which one can

The last term in both expressions originates from the shift ireasily verify that

ago required to eliminate the linear terml’g(ag,+ag )

from the action. From Figs. 7 and 12 it is clear that a number d(\/n—o)=

of diagrams contributing td*;; or I'y, are mathematically
identical. Most notably we havel's,=dI'},=dI'D,=dr'%,,
dr?l: dr(fz: drfzv

only six independent diagrams, namelgI'?,, dT'%,,
dr§;, dre,, drf;, anddrs,. Using the Bogoliubov trans-
formation from Eq.(33), it follows that

<aﬁ,nak,n> = UE<b:,nbk,n> + U§<btk,—nb—k,—n>: (A4)

<a’kr,natk,—n> = <ak,na—k,—n> =—Ugv k(<b’kc,nbk,n>

+<btk,—nbfk,fn>)i (AS)

and dI'E,=dTI'S,. Therefore, there are

aro
TR EP) TR EP)

Ta(2dn’ +dh). (A7)

Combining these equations leads to the flow equations for
')y and I'y,. However, we here concentrate on the
Hugenholtz-Pines relation, which is satisfied a0, and
therefore remains valid if alsdl’;=dI";, atl =0. Using the
above mentioned equalities of the various diagrams, this
equality reduces in the first instance to

2dI Y +dI$+ T ad(Vng) = dl,+dr$,=drs,+dry;.

(A8)
However, due to theU(1) symmetry of the action
S¢*,4] we have at any value ofl that

with u, andv, given in Eq.(34), and these diagrams are now r%: nngzrleo, and atl=0, whenT';=T;,, Eq. (A8)
straightforward to calculate by applying the usual Feynmaneduces with the help of EGA7) to

rules[33]. We have

a_ Lo
dI'=>Vedn

2
A3 1 2 2 1 -3l
=mvo E(UA+UA)[2N(th)+1]_§ e °'dl,
(A6a)
3 1+2N(hw,)
dl“i:ﬁl“g(uiv,ﬁuwi) W+ﬁN(ﬁwA)
x[N(ﬁwA)+1])e-3'd|, (A6b)
3 1+2N(Aw,)
dF&:—ﬁF% (U4A+U4A)W

+2u3viBN(fiw ) [N(hwy)+1] e~ %I,
(A6c)

1+2N(fiw,)

Zth +IBN(th)

A3
D_ 2,2 2
dl'y=— _W2F3UAUA

dIr§,—dI'5=Vedh, (A9)
or equivalently
A3 14+ 2N(hw,)
- ﬁfg(Ui—ZUﬁviJrvi)W
A3
=—ﬁV0uAvA[1+2N(th)]. (A10)

Note that, due to the fact thaf —v2% =1, the left-hand side
of this equation actually does not contain Bogoliubov coher-
ence factors. From the definition of the coherence factors in
Eq. (34) it is now easy to show that indeed,lat0, we have
dI',=dI';, and as a consequence that the Hugenholtz-Pines
relation remains valid at any point during the integration.
Next, we briefly turn to the regimea_Atzh<1 where we
putu,=1 andv,=0 in contributions containing infrared di-
vergencies. In this case, only the first term on the left-hand
side of Eq.(A10) contributes, but now with a factor 1 instead
of u“A. Thus, nothing changes with respect to the previous
situation, and the Hugenholtz-Pines relation is again valid at
any point during the renormalization if we still use the exact
expressions fow, and v, in contributions not containing
infrared divergencies, and most importantlydn.



5102 M. BIJLSMA AND H. T. C. STOOF 54

APPENDIX B The right-hand side, just like the left-hand side, has to be

In this appendix we discuss the implications of anomalouénde[)endent of, and this leads to the conclusion that
scaling, focusing on the situation at the critical temperature
where the coupling constants flow into the fixed point
(u*,Vg). We start with the fundamental statement from (n)*(i):[\n/z3(|)F<n>*(p.) (B5)
renormalization group theory that the exacpoint vertex A(l) '
function remains identical during renormalization, i.e., in our
case
or thatT'(™*(p,) has to be a homogeneous function of de-
I™(p;,wi;1,Vo,T;A) gree (3-n/2). Thus

=T (p; 0 m(1),Vo(D),T(1);Ae™), (B1)

(n)* N=\3—n2p(N)* (.
wherep;<Ae~'. The coupling constants obey the derived O =2 (e (B6)

renormalization group equatiowithout trivial scaling and

T()=Te?. When we are at the critical temperature, we can d lude that | i Is inf
take w;=0 and we find after performing the trivial rescaling and we can conclude that anomalous scaling reveals infor-

that mation about the momentum dependence ofrtfpint ver-
tex function. In particular, we have, e.g., for the self-energy
T™M(p;,0;, Vo, T} A) at the critical temperature that

—a=B=n2)Ir(N)(nh.al N .
e F (ple vO’M(I)!VO(I):TC(l )’/\()BZ) F(Z)*(k)ockZ, (B?)

A dimensional analysis then shows that
and most importantly for the four-point function that

I ™(p;e,0;(1),Vo(), Te(1); A)

:A3nlzr(n)(piTel’O;Mjilz)’V(;il)’T/(:\(ZI);l)' (83) T (kK K)oc([k|+ k') + a|K], (B8)

Combining these two equations, and taking the limit in  \hich shows that the effective interaction at long wave-
which we approach the fixed point, this implies lengths has to vanish at the critical temperature.
IO 0w Ve T A Clearly, the above reasoning is in principle not restricted
(Pi.0:s, Vo, T A) to the critical temperature and a similar argument can be set
P, u* VA up for arbitrary temperatures. As a result, the anomalous
=A% ”/Z(I)F“‘)(F,O;P, T,oo;l) scaling we find from the set of renormalization group equa-
) tions derived in Sec. IV A for the symmetry broken phase
P; ) also implies a nontrivial momentum dependence of the cou-

=A% "2 )F(’”*(m (B4)  pling constants.
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