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A cylindrical light lens for atoms is studied in the limit of high detuning. The dynamics of atomic motion in
a quantized electromagnetic field is shown to be separable into strictly classical and purely quantum-
mechanical aspects when an ideal lens of arbitrary thickness is assumed. New insight is gained in the thick-lens
regime, both in the classical and quantal domain. Different sources of aberration in nonideal lenses are studied.
Their inclusion in a subsequent feasibility discussion for the observation of focal structures caused by field
quantization sets experimental tolerances for an eventual measuring apparatus.@S1050-2947~96!08112-7#

PACS number~s!: 03.75.Be, 32.80.Lg, 42.50.Vk

I. INTRODUCTION

Recent advances in the field of atom optics have demon-
strated several techniques for manipulating neutral atom
beams. In particular, since the first realization of a conver-
gent lens for atoms@1#, a wide range of focusing schemes
has been conceived and concretized experimentally, among
them radiation pressure force-@2#, Fresnel-@3#, and magnetic
hexapole@4# lensing. The first demonstration of atomic beam
focusing with laser light was however based on the dipole
force and made use of a red detuned TEM00 laser beam that
caused the copropagating near-resonant atoms to be attracted
to its center@5#. A similar technique using a blue detuned
TEM01* mode has been proposed in order to minimize spon-
taneous forces by attracting the atoms to the zero field at the
donut-laser core@6#. Alignment problems are less severe
when the atomic beam intersects a standing laser field or-
thogonally, but the ideal, i.e., parabolical shape of the optical
potential will only be realized close to the maxima~minima!
of the red~blue! detuned standing light wave. Such a cylin-
drical lens potential can have quite a large period, if formed
above a mirror by reflection at a near-grazing incidence
angle. With a single period of such a lens, imaging of a
microstructure was demonstrated for the first time@7#. Mul-
tiple periods can be used as an array of cylindrical lenses,
which focus the incoming atomic beam into a parallel set of
lines. By depositing these onto a substrate, a lithographic
technique was created@8–10#. For an appropriate choice of
relative phases and polarizations, a pair of orthogonal lin-
early polarized standing waves forms a two-dimensional ar-
ray of atom lenses and could be used for depositing a high
number of identical, arbitrary patterns onto a substrate@11#.

The recent observation of multilevel effects in direct-
write lithography using Cr atoms@12# shows that the present
state of the art is in need of a deeper understanding of the
basic interaction of atoms with near-resonant light. As an
example for a useful extension of two-level atomic models,
we mention here the recently proposed possibility of improv-
ing the parabolic shape of standing-wave optical potentials
by making use of a three-level configuration@13#. The de-
scription of the external degree of freedom can be improved
as well, by going beyond ordinary particle optics. For some
lens configurations, both corpuscular and wave-mechanical
descriptions have already been developed@6,10#, thus allow-

ing the estimation of diffractive limits for the focal spot size.
Also the modeling of the light field has been enhanced. In
their seminal paper@14#, Averbukh, Akulin, and Schleich
predict a focal substructure caused by the quantal nature of a
thin light lens for two-level atoms in the limit of high detun-
ing.

In the present paper we show that even under extreme
experimental conditions, the influence of light quantization
on the detailed focal shape of perfect atomic light lenses can
be completely ignored in the classical limit.

Here is a brief outline. After specifying the system we are
interested in and proposing a dynamic model for its descrip-
tion, the essentials of the atomic focusing process are studied
in detail. Under these idealized conditions a clean separation
of ‘‘classical’’ ray-optical and ‘‘quantum’’ wave optical
properties is possible, thus establishing a very intuitive rela-
tion among the usual atom-optical viewpoint@16# and the
results presented in@14,15#. Expressions describing the size
of the ‘‘classical’’ focus~disregarding details imposed by the
given photon statistics! are derived as well as the geometry
of the ‘‘quantal’’ focal distribution. Since we deal with a
parabolic lens of arbitrary thickness~with obvious restric-
tions on the interaction time imposed by diffusive aberration!
it becomes possible to study the thick-lens regime. On the
classical level and contrary to what one would naively expect
by extrapolating thin-lens results, we find that our atom lens
should become divergent for high enough laser intensities.
On the quantum level, an interesting ‘‘eight’’-shaped distri-
bution of foci over the focal plane is found. In Sec. V the
strict physical conditions imposed so far are relaxed and
various sources of aberration are studied. The stage is then
set for discussing the observability of focal details imposed
by the quantum nature of light. A simple criterion is given
and tested using very extreme, recently achieved experimen-
tal parameters@25#. After a quantitative estimation of the
maximal tolerances that an eventual measuring apparatus
would have to fulfill, the paper closes with the proposition of
several observational schemes.

In order to ease the comparison with prior work, we de-
cided to keep as close as possible to the notational conven-
tions introduced in@15#.

II. THE MODEL

We consider a tightly collimated beam of neutral atoms of
massM that moves in thex-z-plane alongx5k.0. We will
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assume that the atoms are prepared in such a way, that they
can be well described as two-level systems with a character-
istic transition energy\va . In the interaction region2L,z
,0, the atoms cross an orthogonal one-mode standing light
wave detuned by an amountD[va2v from the atomic reso-
nance. The velocityvz of the atoms along the beam axis~z
axis! is considered to be sufficiently large so that the spatial
dependence of the electromagnetic field alongz can be re-
placed with the explicit time dependencet5z/vz . For the
sake of simplicity the system is assumed to be uniform in the
y direction, i.e., we are analyzing the properties of a cylin-
drical quantum light lens.

Under these circumstances, the physical problem effec-
tively reduces to analyzing the quantum dynamics of a two-
level system moving in one dimension~x axis! and interact-
ing with one mode of a given, quantized electromagnetic
field. If u1& and u2& denote the upper and lower atomic
states, respectively, the extended Jaynes-Cummings Hamil-
tonian describing this situation reads

H5\va†a1
\va

2
sz1

px
2

2M
1\@as1g~x!1a†s2g* ~x!#,

~2.1!

wheresz[u1&^1u2u2&^2u, s1[u1&^2u5s2
† and the pair

x,px of complementary operators [x,px]5 i\ describes the
atomic motion alongx. The one mode of the electromagnetic
field is represented by the operatorsa anda†, [a,a†]51, and
by its space dependence which is included, together with the
electric dipole moment of the atomic transition, in the cou-
pling constantg(x). Outside the interaction regiong(x)[0,
of course.

We will concentrate on the limiting case of high detuning,
for which Eq.~2.1! reduces to the effective Hamiltonian@17#

Heff5\va†a1
\va

2
sz1

px
2

2M
1

\ug~x!u2

D
sza

†a. ~2.2!

In this limit, the atoms remain in their initially prepared in-
ternal state, which we will assume to beu2&. If this is a true
ground state, spontaneous emission plays no role at all. More
realistically, however, for a given interaction timeT5L/vz
there exists a nonvanishing probability of finding the atom in
its excited level and one has to operate sufficiently far from
resonance in order to keep the average number of spontane-
ous decays well below one. We will assume such conditions
and thus neglect diffusive aberrations in this paper.

III. ESSENTIALS OF THE FOCUSING PROCESS

A. The perfect lens

First of all we want to learn about the basic physics in-
volved in the focusing process. For this purpose we will
make some further assumptions about our system. In the
spirit of @18# ‘‘rather than confuse the physical results by
mathematical complexity, we shall set up a different, but
analogous, expression which leads to a simpler mathematical
form.’’ This is why we will imagine that the collimation of
the atomic beam is accomplished with aGaussian~instead of
a rectangular! slit of width d. On the contrary, the usually
Gaussian laser-beam profile will be modeled asrectangular

and of widthL. Experimentally we will usually encounter
sinusoidal standing waves and we will therefore assume

g~x!5G sinS 2px

l D . ~3.1!

Since spontaneous forces are smaller in regions of low-field
intensity, we will expandugu2 up to quadratic order,

ug~x!u2.S 2pG

l D 2x2, ~3.2!

around a field intensity minimum and requirek, d!l/4. This
situation is in the spirit of@7,16# and should be contrasted
with the more usual situation, in which the atomic beam
width is much larger than the standing-wave period em-
ployed.

If we expand the quantum-mechanical states in the prod-
uct basis,

(
j52,1

(
n50

` E
2`

`

dx8u j ,n,x8,t&^ j ,n,x8,tu51, ~3.3!

^ j ,n,x8,tuk,m,x9,t&5d jkdnmd~x82x9!, ~3.4!

of eigenstates ofsz , a
†a, andx, the Schro¨dinger equation

corresponding to Eq.~2.2! decouples into a set of equations
for each photon numbern50,1,2 . . . . Because of the initial
condition selected, the atoms remain in their lower state all
the time. Thus forD,0 we get a simple harmonic-oscillator
problem,

i\
d

dt
^2,n,x8,tuc&5^2,n,x8,tu\vn2

\va

2
1

px
2

2M

1
Mvn

2x2

2
uc&, ~3.5!

for eachn, whose angular frequency is given by

vn
252

2\

DM S 2pG

l D 2n. ~3.6!

B. Initial conditions and solution

In a real experiment, the lateral velocity of the atoms
before entering the interaction region will in general not ex-
actly equal zero. On the one hand, the orthogonal beam-
beam alignment is only possible within certain experimental
margins. On the other hand, mechanical vibrations of the
standing wave relative to the atomic beam and its nonvan-
ishing transverse temperature will cause fluctuations both in
k and in the initial lateral momentum̀. For these reasons
we will assume that just before entering the standing light
field, the system is described by

^2,n,x8,2Tuc&5wn

1

AApd
expF2

1

2
S x82k

d
D 2

2
i

\
`~x82k!G , ~3.7!
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where(0
`wnun& is the electromagnetic field photon statistics.

~Because of our lack of information about the single atom in
a beam, the center-of-mass motion should in fact be de-
scribed by a statistical operator, as pointed out in@19#. In the
name of conceptual simplicity, here we will, however, stick
with the popular bias and describe the initial atomic state as
a pure one, i.e., by a Schro¨dinger wave function!. Doppler
shifts and the corresponding velocity-dependent forces can
be neglected, as will become apparenta posterioriwhen we
discuss the restrictions that have to be imposed on the mag-
nitude of`.

The dynamics of a Gaussian wave packet in a harmonic-
oscillator potential is well known@20#. After traversing the
interaction region, the atom is ‘‘released’’ and moves freely
again. By applying the free propagator and computing the
squared modulus of the resulting wave function fort.0, one
gets the time-dependent Gaussian

u^2,n,x8,tuc&u2

5
uwnu2

ApDn~ t !
expH 2Fx82xn8~T!1vn8~T!t

Dn~ t !
G2J ,

~3.8!

whose widthDn(t) is given by

Dn~ t ![dF S \

d2Mvn
D 2„vnt cos~vnT!1sin~vnT!…2

1„cos~vnT!2vnt sin~vnT!…2G1/2. ~3.9!

Assuming`50 and by a different method, a similar1 expres-
sion has been obtained in@15#. With the introduction of the
quantitiesx8(T) and v8(T) in Eq. ~3.8! we are led to an
extremely simple physical picture. Let a classical mass point
M be subjected to the Hamiltonian

Hcl5
p82

2M
1
Mv2x82

2
, ~3.10!

with the initial conditionsx8~0!5k andp8~0!5`. The coor-
dinate and momentum of the particle after a timeT are given
by

x8~T!5k
cos~vT1f!

cosf
, ~3.11!

p8~T!5`
sin~vT1f!

sinf
5Mv8~T!, ~3.12!

where

tanf[
`

Mvk
. ~3.13!

Since in Eq.~3.5! the potentials involved are not ‘‘worse’’
than quadratic, it is no surprise to find essentially classical

features also in the quantum-mechanical result~3.8!: After
bouncing back and forth inside the harmonic pot, the atomic
wave packet is suddenly released att50 and, as the explicit
calculation shows, continues moving straight as would be
expected from a classical object.

C. Two kinds of foci

This classical behavior can be well described in terms of
effective ‘‘dipole forces’’ and has already been thoroughly
studied in the context of atomic beam focusing and manipu-
lation. Observe that thenth wave-packet trajectories,

x85xn8~T!2vn8~T!t, ~3.14!

of all parallel ~and paraxial, i.e.,ufu!1! incoming atoms in-
tersect each other at exactly one point,

S xnCFzn
CFD 5S 2

`

Mvn
csc~vnT!

vz
vn

cot~vnT!
D , ~3.15!

which is thus a focal spot~actually a focal line alongy! of
this cylindrical atomic lens. We will call it aclassicalfocus,
since most of the involved physics can be readily understood
semiclassically and described using geometrical optics. Its
width is given by

Dn~ tn
CF!5

\

dMvn

1

usin~vnT!u
. ~3.16!

It will now be convenient to introduce the dimensionless
parameter

a[
d2M

\T
~3.17!

and the short formwn[vnT. A clumsy way of writing the
beam width~3.9!,

Dn~ t !5dF S cos2wn

a2wn
2 1sin2wnD ~vnt2vntn

QF!2

1
1

cos2wn1a2wn
2sin2wn

G1/2, ~3.18!

makes evident both its symmetry around

vntn
QF[sin wncoswn

a2wn
221

cos2wn1a2wn
2sin2wn

~3.19!

and its linear growth forutu→` which, by extrapolating the
asymptotes, seems to indicate beam convergence at the po-
sition zn

QF5vztn
QF, whereDn in fact becomes minimal, thus

defining a quantal focus for thenth partial Schro¨dinger
wave. Its width is given by

Dn~ tn
QF!5

d

Acos2wn1a2wn
2sin2wn

. ~3.20!

If we restrict ourselves to photon numbers1See the discussion in the section about spherical aberration.
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n.
\~2D!

2d4M S l

2pGD 2, ~3.21!

we getawn.1 and thus

Dn~ tn
QF!,d, ~3.22!

i.e., the quantal foci are narrower than the initial beam width.

IV. CLASSICAL AND QUANTAL PROPERTIES

A. Thin vs thick lenses

In many experiments, the trajectories of the particles are
usually only slightly curved by the optical potential. In our
context, this condition means thatwn!1 must hold for all
relevantn values, and we will call it the thin-lens condition.
According to Eq.~3.15!, in this limit the rays coming in with
identical` but differentk all intersect at

S xnCFzn
CFD .

1

wn
2 S 2`/M

vz
DT, ~4.1!

which means that the focal lengthzn
CF decreases as 1/n.

If we further assume ‘‘classical light,’’ i.e., a coherent
state

uwnu25
^a†a&n

n!
e2^a†a& ~4.2!

with large ^a†a&, the single classical foci corresponding to
eachn will be distributed over a distance characterized by
the width ^a†a&1/2 of Eq. ~4.2!, i.e.,

~2D!Mvz
2\T S l

2pGD 2 1

^a†a&3/2
, ~4.3!

which provides an order-of-magnitude estimation for the size
~in the z direction! of the focal spot which is centered at

z^a†a&
CF

5
~2D!Mvz

2\T S l

2pGD 2 1

^a†a&
. ~4.4!

If `50, the focal spot width in thex direction is approxi-
mately given by

D ^a†a&~ t ^a†a&
CF

!5
~2D!

2dT S l

2pGD 2 1

^a†a&
, ~4.5!

which does not contain\ nor the atomic massM anymore.
As a consequence of Eq.~4.1!, fluctuations of the initial lat-
eral momentum` will widen the spot in thex direction
beyond the diffraction limit~4.5!. Fluctuations ofk will
broaden it additionally due to the shifts~5.5! and ~5.6!
caused by spherical aberration.

The thin lens is intrinsically convergent. As can be seen in
Eq. ~3.15!, this behavior will, however, change as we in-
creasê a†a&. As soon aswn.p/2 ~‘‘thick-lens’’ regime!, the
classical focal length will become negative and the lens a
divergent one.~For even larger intensities and as long as the
entire model keeps its validity, the lens should become con-
vergent again, etc.! In terms of the classical picture given at
the end of Sec. III B this result is not at all surprising. It

could in principle be observed with a scheme similar to the
one described in@16#. Note however that using the param-
eters leading to Fig. 2 of that paper, the critical condition
v^a†a&T5p/2 corresponds to an unrealistically high~cw! la-
ser power of;15 W. Obviously a better suited transition and
a higher coupling constant will be needed for demonstrating
the transition from the convergent into the divergent focus-
ing regime.

B. The quantum focal curve

The focal curve in thex-z plane is obtained by introduc-
ing Eq. ~3.19! into the trajectory~3.14! and can be conve-
niently rationalized via

S xnQFzn
QFD[S kjn

aLzn
D . ~4.6!

This parametrized focal curve has a surprisingly simple
structure, since one can show that for largea it rapidly ap-
proaches the asymptotical form

~ ujnu2
1
2 !21zn

25 1
4 ~4.7!

with growing n. The condition~4.7! defines the double cir-
cular lobe depicted in Fig. 1. The stretching factorsaL andk
depend solely on properties of the atomic beam. While thex
amplitude equals its initial lateral shift, the amplitude inz is
proportional to the momentum of the atoms in this direction
and the square of its width.

An example for the distribution of the individual foci
along this curve for different values ofa is also included in
Fig. 1. Already fora51 the foci concentrate mainly along
the central tangent atx'0 and only very close town[mp,
m50,1,2, . . . will they be found far away from thez axis.
~From the inequality~4.8! it follows that this becomes in-
creasingly true with growingn.! Again, as in the classical
case, we observe that for somen we get unphysical~‘‘vir-
tual’’ ! foci at negativetn

QF. The relation among the two
kinds of foci will be analyzed in Sec. IV C.

C. Relation among classical and quantal foci

Let us assumeawn>1. One then easily checks thatutn
CFu

>utn
QFu and that classical and quantal foci become real~vir-

tual! for the same value ofn. Since they both lie on the
trajectory line ~3.14!, it is geometrically evident that they
should essentially coincide in position when close to
the z axis. This is the case when the condition
a2w n

2sin2wn@ucoswnu , or equivalently

ucoswnu
wn
2sin2wn

!a2 ~4.8!

is fulfilled, since we then get

uxn
QFu!k. ~4.9!

Classical and quantal foci will then be equally distributed,

zn
QF.vzT

coswn

wnsinwn
.zn

CF, ~4.10!
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and we will introduce the superscript F as a short form for
referring to both.

In the case of thin lenses and, more generally, whenever
uwn2mpu!1 holds for a givenm50,1,2, . . . but Eq.~4.8! is
still fulfilled, the positions~4.10! simplify to

zn
F.

L

wn

1

wn2mp
, ~4.11!

and the distance between two consecutive foci, whenn is
large, becomes

zn
F2zn11

F .
L

n

1

~wn2mp!2
. ~4.12!

Correspondingly, wheneveruwn2(m11/2)pu!1, we get

zn
F.

L

wn
@p~m11/2!2wn#, ~4.13!

and

zn
F2zn11

F .
L

2n
~4.14!

is m independent.

V. ABERRATIONS

In this section we will try to estimate the relevance of the
chromatic, ‘‘isotopic,’’ and spherical aberration. Other
sources of aberration, like the one caused by fluctuations of
the detuning, can be analyzed essentially in the same man-
ner. Spontaneous aberration, on the other hand, is beyond the
scope of this paper. We will also relax the conditions im-
posed so far on the profiles of the light and the atomic beam.
We will concentrate on the region close to thez axis where,
according to Eq.~4.10!, classical and quantal foci nearly co-
incide.

A. Chromatic aberration

Chromatic aberration arises from the velocity spread in
the incident atomic beam. The momentum correlations in a
realistic matter wave beam have not been conclusively deter-
mined until now@21#. Our initial assumption thatz can sim-
ply be parametrized byvzt tacitly implied that we are mod-
eling the atomic motion alongz with a plane wave traveling
at velocity vz . In such a context the velocity spread in the
atomic beam is described by an incoherent mixture of plane
waves with different velocities. This means that different at-
oms will have different interaction times with the light field,
which produces a corresponding smearing of the focal spot.
Let us consider a velocity shiftvz→vz1dvz and its conse-
quencezn

F→zn
F1dzn

F :

dzn
F.dvz

dzn
F

dvz
5dvzTF2znFL 1

1

sin2wn
G . ~5.1!

Since we are only interested in real foci, the expression in
square brackets is always positive and unfortunately the lens
cannot be made achromatic by a suitable choice of param-
eters.

B. Isotopic aberration

When the atomic species used in the beam consists of
various isotopes, the exact focal positions will vary accord-
ing to the different atomic masses. Since it is the momentum
Mvz which defines the de Broglie wavelength of the par-
ticles, this aberration is in fact part of the chromatic one.

We will not consider isotopic shifts ofva and we will
assume that the velocity preparation is mass independent.
Then a shiftdM of the atomic mass will cause a position
shift,

dzn
F.dM

dzn
F

dM
5

dM

2M
LFznFL 1

1

sin2wn
G , ~5.2!

of the nth focus. This aberration can obviously be removed
by employing isotopically pure sources. On the other hand, if

FIG. 1. Illustrative examples of the quantum focal distribution fora50.4 ~a!, a51 ~b!, anda54 ~c!. In ~a! a slight deviation from the
asymptotic form~4.7! can be noticed. In realistic situationsa@1 and essentially all the foci concentrate close to the origin.
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quantum focusing turns out to be a feasible method for li-
thography, the isotopic aberration could be used for creating
gratings with lines made of alternating isotopes.

C. Spherical aberration

If we wanted to evaluate the spherical aberrations due to
the anharmonicity of the optical potential in the general case,
we would have to solve the quantum dynamical problem at
least up to the quartic term ofugu2. However, this problem is
not much simpler than the original one with the full sinu-
soidal potential, whose analysis requires Mathieu functions
and introduces energy-band structures.

Here instead we will limit ourselves to thin lenses and
establish a simple connection with the results given in@15#.
There the thin-lens condition is assumed from the very be-
ginning and it therefore makes sense to expand Eq.~3.1! up
to quadratic order aroundx5k instead ofx50. Now observe
that for ideal lenses like the one we analyzed so far, the
origin for the Taylor expansion is irrelevant, since any qua-
dratic expansion always reproduces the original parabola
identically. This statement does not hold anymore if there are
any deviations from the perfect harmonic shape. For in-
stance, the expansion ofugu2 from Eq. ~3.1! up to quadratic
order aroundx5k defines a new harmonic-oscillator prob-
lem with a shifted angular frequency

vn
21dvn

25vn
2cosS 4pk

l D , ~5.3!

i.e.,

dvn
252

vn
2

2 S 4pk

l D 2, ~5.4!

and whose center is~within the same approximation! dis-
placed away from zero by an amount

2
k

3 S 4pk

l D 2. ~5.5!

The anharmonicity of the true potential thus produces a
shift dzn

F in the focal positions given by

dzn
F5

1

wn
2 S 4pk

l D 2 L2 . ~5.6!

At the price of becoming increasingly useless for largerwn ,
the treatment in@15# is therefore superior in the thin-lens
limit, since it automatically includes spherical aberration ef-
fects.

D. Gaussian light beams

So far we have assumed a flat-topped laser intensity pro-
file. Sharp edges are, however, never realized in actual ex-
periments, neither in pulsed nor in cw configurations@22#.
Usually the turning on of the coupling~3.1! is modeled by
some smooth functionf that describes the cross-sectional
shape of the laser beam

g~x,z5vzt !5 f ~ t !G sinS 2px

l D . ~5.7!

It has been shown@23# that our results remain true for anyf ,
as long as the turning on is adiabatic and the time variablet
is replaced byt5*dt f2(t). If we thus take a Gaussian
f (t)5exp@~2t/T!2# instead of a square field profile@f (t)51
for a timeT# and if the assumption of adiabatic conditions is
justified, we only have to change the parametrization of time
accordingly and make sure that the region of interest is well
outside the interaction area, so that the two descriptions es-
sentially coincide. In particular, this will be the case in the
example~using Cs atoms! given below.

E. Rectangular slits

Originally we introduced a Gaussian slit of widthd be-
cause it simplified the mathematical treatment and allowed a
simple understanding of the focusing dynamics. In a real
experiment, however, such a slit will have a rectangular pro-
file and will give rise to a more complex quantum focal
pattern. The problem can still be solved analytically if ex-
pressed in terms of Fresnel integrals, but the somewhat tech-
nical details will be reported elsewhere. In very close anal-
ogy to the situation depicted in Fig. 3–6 of@18#, the
fundamental processes do not change, but plots of the focal
shape like Fig. 2~a! acquire additional structure in thex di-
rection.

In the next chapter we analyze a case which is symmetri-
cal with respect to the atomic beam axis. Secondary struc-
tures due to sharp edges of the entrance slit do not influence
the general results obtained there.

VI. OBSERVABILITY OF QUANTUM FOCUSING

We will assume now thatk50 and`50, so that the quan-
tum focal curve becomes a straight line along thez axis. The
probability density of finding the atom at the position
x,z5vzt irrespective of its internal state is then given by

(
j52,1

(
n50

`

u^ j ,n,x8,tuc&u2

5 (
n50

` uwnu2

ApDn~ t !
expH 2F x8

Dn~ t !
G2J . ~6.1!

Under which circumstances can the individual foci be ob-
served? Along the atomic beam axisx850 the above expres-
sion can be explicitly written as

1

Apd
(
n50

`

uwnu2
~cos2wn1a2wn

2sin2wn!
1/2

AFcos2wn1a2wn
2sin2wn

a

t2tn
QF

T
G 211

,

~6.2!
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which shows that in order to get clearly separated peaks, the
expression in square brackets has to satisfy the condition

cos2wn1a2wn
2sin2wn

a
•

utn21
QF 2tn

QFu
T

@1. ~6.3!

In addition we have to guarantee that the effective Hamil-
tonian description is applicable. This will be the case if the
detuning is made so large, that the inequality

S D

2 D 2@G2^a†a& ~6.4!

holds. If one introduces typical, experimentally reasonable
values for the atomic massM ~several AMU!, the interaction
time T ~several 1028 s!, the coupling constantG ~some 105

s21!, the ~optical! wavelengthl and the slit widthd ~some
fraction of l/2!, one finds that the condition~6.3! is most
easily fulfilled in the thin-lens regime. If we thus assume
wn!p/2 and approximatetn

QF2tn21
QF .dtn

QF/dn, the visibility
criterion ~6.3! becomes essentiallyn independent and reads

S 2pd

l D 2 2G2T

~2D!
@1. ~6.5!

This expression does not contain the atomic mass and de-
pends on the wavelength only via the adjustable ratiod/l. If
we now, for instance, set2D/2[3GA^a†a&, we find that
the foci will only be distinguishable ifG is very large and
the photon number comparatively low@24#. We now want to
quantify this statement.

We present a calculation based on the parameters of Ref.
@25#. There the extremely high value ofG/2p520 MHz is
achieved by coupling the~6S1/2, F54, MF54!→~6P1/2,
F855,MF855! transition of theD2 line of Cs atl5852 nm
to a high-finesse optical cavity. The atomic massM is
2.26310225 kg andT equals seven~free! spontaneous life-
times ts532 ns. Using these values a maximal number of
separable quantum focal peaks can be estimated@26#.

Figure 2 shows the atomic density along thez axis for a
Poissonian~coherent! photon distribution with^a†a&581
and the detuning2D5543G, whend5l/3. The individual
foci are clearly separated in this graph, which however rep-
resents idealized experimental conditions. We will now con-
sider the effect of aberrations and the observational require-
ments they impose.

A ~small! nonzerok or ` offset is not critical, since it
only displaces the entire focal pattern in thex-z plane. Fluc-
tuations around these values can, however, wash out what we
want to observe. Mechanical vibrations will cause varying
incidence positionsk and shifts in both focal coordinates due
to spherical aberration. Equating the interfocal distance
~4.12! with the expression for the spherical aberration~5.6!
one finds a maximal fluctuation amplitudek̂,

k̂.
l

2pA2^a†a&
, ~6.6!

which for the given case equals 10.5 nm@the corresponding
shift ~5.5! alongx can then be neglected#. This can readily be
achieved using active stabilization techniques as in Ref.@8#.
More problematical is rotational noise, which contributes to
the fluctuations of̀ . Although these only displace the foci
laterally, the small focal width imposes very strict limitations
on the fluctuation amplitudề . Indeed, if one equatesxn

F/d
from Eq. ~4.1! with Dn(tn

F) in Eq. ~4.5! one finds

`̂.\/d, ~6.7!

i.e., the atomic beam would have to be transversally cooled
close to the one-photon recoil limit. Although this could in
principle be achieved@27#, it is probably unnecessary, as
discussed below. In addition we have to consider rotational
noise, and takinĝ vz&5310 m/s from@25# we find maxi-
mally permissible rotational amplitudes of less than 1022

mrad. In any case, the potential depth\G2^a†a&/uDu.0.11
meV limits the initial lateral velocity to a value below 0.4
m/s. Only one Cs isotope is present in the atomic beam.
Chromatic aberration is therefore just a consequence of its
longitudinal velocity spread. Using Eq.~5.1! one finds that
velocity ratiosvz/dvz of 240 are necessary to avoid focal
shifts larger than the average interfocal distance. Last but not
least, we have to make sure the two-level model, on which

FIG. 2. Focal distribution for the parameters given in the text
and ^a†a&581. Plot ~a! shows contours of constant atomic prob-
ability density in thex-z plane. In~b! a cut alongx850 is shown.
The wiggled curve is the sum over the individual quantum foci
corresponding to each photon numbern ~dotted lines!. The ordinate
is in units of 1/d.
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the whole theory is based, can be applied. Experimentally
this could, for instance, be achieved by the method demon-
strated in@28#.

Several methods can be visualized for observing the focal
structure. It has been proposed to use quantum focusing as a
lithographical technique, by placing a substrate along the fo-
cal line and letting the atomic beam enter the standing light
field with a lateral offsetk @14#. It is not obvious, however,
that such a configuration would measure the focal curve
given above, since it represents quite a different physical
situation: a substrate placed alongx50 behind the interac-
tion region is a boundary condition that should be included
as part of the problem from the very beginning. A less inva-
sive approach would be scanning the focal area with a probe
laser parallel to they axis. One could also try to use the
quasiperiodicity of the focal structure as an intensity grating
and observe the diffraction it produces on an incoming elec-
tromagnetic wave. The periodicity becomes better as^a†a&
is increased and using the atomic velocity of the above ex-
ample, its wavelength is found to be in the optical regime.
The dimensions of the structure in thex direction are, how-
ever, much smaller than the diffractive focal spot size of an
eventual probe beam. A way out of this problem could be
making useof the aberration caused by fluctuations of`.
Since these do not changezn

F , the net effect would be wid-
ening the focal spot widths. Also the lithographic method
would be unsensitive to such fluctuations. Less stringent con-
ditions on the beam temperature would at the same time
increase the amount of available atomic flux.

But even with such an untypically high coupling constant
as we have considered here, not many more than;100 pho-
tons could be resolved. Figure 3 shows the focal shape for an
average number of 196 photons~2D5843G! and all other
parameters unchanged. Even in the absence of any aberra-
tions the focal structure due to light quantization can hardly
be seen and it gets completely washed out in the classical
limit.

VII. SUMMARY

The focusing behavior of a perfect dipole lens for atoms is
decomposed into classical and quantum-mechanical features.

In the thick-lens regime we predict a transition from conver-
gent to divergent classical lens behavior. On the quantum
level a simple and nontrivial expression describing the focal
distribution is found. We discuss different sources of aberra-
tion and estimate under which circumstances the quantum
nature of light leaves a visible trace in the quantum focal
shape. We plan to include spontaneous emission and to
verify up to which point adiabatic conditions are fulfilled
when a more realistic laser beam profile is assumed in a
quantum Monte Carlo simulation. A sinusoidal standing
wave will be used and Doppler shifts considered.
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