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We study the stability of a Bose condensate of atomic7Li in a ~harmonic oscillator! magnetic trap at
nonzero temperatures. In analogy to the stability criterion for a neutron star, we conjecture that the gas
becomes unstable if the free energy as a function of the central density of the cloud has a local extremum
which conserves the number of particles. Moreover, we show that the number of condensate particles at the
point of instability decreases with increasing temperature, and that for the temperature interval considered, the
normal part of the gas is stable against density fluctuations at this point.@S1050-2947~96!07312-X#

PACS number~s!: 03.75.Fi, 67.40.2w, 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Since several groups reported evidence for Bose-Einstein
condensation~BEC! in atomic gas samples of87Rb @1#,
23Na @2#, and possibly7Li @3# last year, there has been an
increased interest in this field of physics. After almost two
decades, one has finally been able to verify the prediction
which Bose and, in particular, Einstein launched so many
years ago. This opens a totally new era regarding research on
degenerate systems, and it is to be expected that there will
appear many new and interesting experimental and theoreti-
cal results about the properties of Bose condensed atomic
gases in the near future.

This is certainly true for the87Rb and the23Na systems,
but maybe less so for the7Li system, because the experi-
mental results on the latter gas are not yet completely under-
stood. In contrast to the former systems where the atoms
have a positives-wave scattering lengtha, 7Li atoms have a
negatives-wave scattering length. This leads to an effec-
tively attractive interatomic interaction, which makes the
system unstable at large densities. Indeed one of us showed
that a dilute, homogeneous gas of atoms with a negative
s-wave scattering lengtha collapses to a dense~liquid or
solid! state before the density is reached at which BEC is
expected to occur at a given temperature@4#. Furthermore, it
was shown that the BEC transition is actually preceded by a
BCS-like transition to a superfluid state and that this transi-
tion also occurs in the unstable regime of the phase diagram.

However, as was pointed out by Hulet@5# and Ruprecht
et al. @6#, the situation is different if the atoms are confined
by a magnetic trap. In particular, it was found that for an
inhomogeneous gas cloud at zero temperature the condensate
is stable at the mean-field level if the number of particles is
sufficiently small, or more precisely ifN,N0,max[
0.573l /uau, wherel5A\/mv is the typical size of the one-
particle ground state in the trap. However, quantum fluctua-
tions cause a decay of the condensate on a time scale which
is fortunately much longer than the time scales at which the
experiments were performed. The same holds true at the rela-
tively high temperatures of interest experimentally, even
though the decay is now caused by thermal fluctuations@7#.

However, in Ref.@7# only the stability of the condensate
was discussed. Although this is an important first step, it is
clearly not sufficient, because we know from the homoge-

neous case that also the noncondensed gas can be unstable
against density fluctuations. Therefore we will consider here
the stability of the complete system including condensate as
well as above condensate particles. We will try to answer the
question when the system as a whole becomes unstable and
whether it is the condensate part or the noncondensate part
which causes the instability.

In this stability analysis we cannot make use of the simple
local-density approximation. The local-density approxima-
tion is only applicable in systems for which the correlation
lengthj ~roughly speaking the distance over which the par-
ticles influence each other! is much smaller than the typical
trap sizel over which the density changes and the system
behaves locally homogeneous. However, close to the critical
temperature the correlation length diverges, and the local-
density approximation always breaks down. Nevertheless, it
is valid at the spinodal point if we satisfy the condition that
kBT/\v@ l /uau@1 or equivalentlyN@N0,max

3 @7,8#, i.e., the
total numberN of particles in the gas must be much larger
than the third power of the maximum number of condensate
particlesN0,max. Since this amounts toN@109 for the trap
parameters of the Rice experiment@3#, it is clear that on the
basis of the local-density approximation we cannot decide if
a cloud of 1042105 atoms is mechanically stable and there-
fore ~meta!stable. On the other hand, if it were allowed to
use the local density approximation at the spinodal point, we
would immediately conclude that a~meta!stable condensate
cannot exist.

To go beyond the local-density approximation, we will
present numerical results for the free energy of the system at
several temperatures. To do so, we first present in Sec. II the
finite temperature theory for the inhomogeneous gas. The
equations of motion that describe the gas are derived from a
variational principle@8#. In analogy to the homogeneous
case, we incorporate the possibility of both a BEC and a
BCS transition. Subsequently we give an expression for the
free energy. Since the experiments with7Li are performed at
densities and temperatures such thatnaL th

2 !1 ~wheren is
the density andL th5A2p\2/mkBT the thermal wavelength
of the atoms! and in particular even atT.Tc , the theory can
be simplified by neglecting the possible BCS pairing and
using the Hartree-Fock approximation. However, in view of
the fast experimental developments, it is to be expected that

PHYSICAL REVIEW A DECEMBER 1996VOLUME 54, NUMBER 6

541050-2947/96/54~6!/5055~12!/$10.00 5055 © 1996 The American Physical Society



also the regimenaL th
2 @1, which amounts toT!Tc , can be

reached in the near future and this is why we present here the
full theory including also the effects of BCS pairing. In
Sec. III we then present our numerical results. In Sec. III A
we discuss the zero temperature limit of the Hartree-Fock
approximation and make a comparison with previous calcu-
lations. Also a thermodynamic criterion for the stability of
the gas is given. In Sec. III B we proceed to nonzero tem-
peratures. We calculate the maximum number of condensate
particles as a function of temperature and pronounce upon
the issue whether the condensate or the noncondensate
causes the instability of the gas. The paper ends in Sec.
IV with some conclusions.

II. THEORY

We start this paper with the equilibrium theory for a dilute
gas of particles with massm in an external trap potential
Vext(rW), interacting with each other through an approxi-
mately local~becauseuau! l ) two-body potentialV0d(rW). In
the numerical calculations which follow subsequently, we
will specialize to 7Li atoms, which have a negatives-wave
scattering lengtha andV0,0. The interparticle interaction
is therefore effectively attractive.

The grand-canonical Hamiltonian of the system is given
by @9#

H5E drWH c†~rW !S 2
\2¹2

2m
1Vext~rW !2m Dc~rW !

1
1

2
V0c

†~rW !c†~rW !c~rW !c~rW !J , ~1!

where m is the chemical potential, andc(rW) and
c†(rW) annihilates and creates, respectively, a particle at po-
sition rW. As usual, the density of particles in the system
n(rW) is given by the grand canonical average^c†(rW)c(rW)&,
and the total number of particles isN5*drWn(rW), which ul-
timately determines the chemical potential of the gas.

For particles with a positives-wave scattering lengtha,
the annihilation operatorc(rW) has a nonvanishing expecta-
tion value below the critical temperature. By separating out
this expectation value in the usual way@9#, i.e.,

c~rW !5c0~rW !1c8~rW !, ~2!

where c8 describes the noncondensate part and

c0(rW)5^c(rW)&5An0(rW) is the condensate wave function,
one can derive the equations of motion for the condensate as
well as the noncondensate part of the gas. However, in the
case of a negatives-wave scattering length, it can be shown
for the homogeneous case that the free energy as a function
of the expectation value of the field operatorc has at low
temperatures a localmaximumfor some nonzero value of

^c(rW)& and there is only a localminimum for ^c(rW)&50,
which is therefore the correct value around which one has to
expand@8#. As a result we must use a different order param-
eter to describe a phase transition due to quantum degen-
eracy effects, namely, the BCS-type order parameter

^c(rW)c(rW)&. In the case of bosons, this is actually known as
the Evans-Rashid order parameter.

A. Evans-Rashid transition

To derive the equations of motion that describe the gas, it
is useful to determine the~exact! grand-canonical potential

Vex~T,m!52kBTlnˆTr@exp~2bH !#‰, ~3!

from which all thermodynamic quantities that we wish to
know can be calculated. It is well known that ifHt is some
trial Hamiltonian, andV t the corresponding grand-canonical
potential, we have the variational principle@10#

Vex<V[V t1^H2Ht& t , ~4!

where^O& t is the expectation value of the operatorO in the
grand-canonical ensemble based onHt . The trial Hamil-
tonian that we want to use here is given by

Ht5E drWH c†~rW !S 2
\2¹2

2m
1Vext~rW !2m1\S~rW ! Dc~rW !

1
1

2
D0~rW !c†~rW !c†~rW !1

1

2
D0* ~rW !c~rW !c~rW !J . ~5!

It is quadratic in the field operators and indeed has non-
zero expectation values for botĥ c†(rW)c(rW)& t and
^c(rW)c(rW)& t . In this expression, the functions\S(rW),
D0(rW), and its complex conjugateD0* (rW) are variational pa-
rameters which have to be determined by minimization of
the grand-canonical potentialV. The trial Hamiltonian has
nondiagonal elements proportional to the BCS order param-
eter D0(rW) and the diagonal contribution proportional to
\S(rW) is the self-energy due to the two-body interaction.

This trial Hamiltonian can be put into the diagonal form

Ht5Eg1(
j

\v jbj
†bj ~6!

by applying the Bogoliubov transformation

c~rW !5(
j

@uj~rW !bj1v j* ~rW !bj
†#, ~7a!

c†~rW !5(
j

@v j~rW !bj1uj* ~rW !bj
†#. ~7b!

The operatorsbj and bj
† are required to satisfy the usual

Bose commutation relations, and therefore the functions
uj (rW) andv j (rW) are normalized as

@c~rW !,c†~rW8!#5(
j

@uj~rW !uj* ~rW8!2v j* ~rW !v j~rW8!#

5d~rW2rW8!. ~8!

Using the relations @Ht ,bj #52\v jbj and @Ht ,bj
†#

5\v jbj
† and substituting Eqs.~7a! and ~7b! into the com-
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mutators@Ht ,c# and @Ht ,c
†#, it is found thatuj (rW) and

v j (rW) must be solutions to the following eigenvalue equa-
tion:

S H01\S~rW !2m2\v j D0~rW !

2D0* ~rW ! 2H02\S~rW !1m2\v j
D

3S uj~rW !

v j~rW !
D 50, ~9!

whereH052\2¹2/2m1Vext(rW). These coupled equations
are the Bogoliubov-DeGennes equations@11#. They can be
solved self-consistently once the functions\S(rW) and
D0(rW) are obtained from minimization ofV and expressed in
terms ofuj (rW) andv j (rW). Furthermore the ground-state en-
ergyEg in Eq. ~6! is given by

Eg5E drW(
j

H 2\v j uv j~rW !u22
1

2
D0uj* ~rW !v j~rW !

1
1

2
D0* ~rW !uj~rW !v j* ~rW !J . ~10!

We now return to the calculation of the thermodynamic
potentialV. SinceHt is diagonal according to Eq.~6!, it is
easily verified that the first term on the right-hand side of Eq.
~4! is given by

V t5Eg1kBT(
j
ln~12e2b\v j !, ~11!

whereas the second term can be rewritten, using Wick’s
theorem@9#, as

^H2Ht& t5E drWHV0^c
†~rW !c~rW !& t^c

†~rW !c~rW !& t

1
1

2
V0^c

†~rW !c†~rW !& t^c~rW !c~rW !& t2\S~rW !

3^c†~rW !c~rW !& t2
1

2
D0~rW !^c†~rW !c†~rW !& t

2
1

2
D0* ~rW !^c~rW !c~rW !& tJ . ~12!

Substituting the Bogoliubov transformation from Eq.~7!, we
find that

^c†~rW !c~rW !& t5(
j

$@ uuj~rW !u21uv j~rW !u2#N~\v j !1uv j~rW !u2%

~13!

and

^c~rW !c~rW !& t5(
j
uj~rW !v j* ~rW !@112N~\v j !#, ~14!

where the functionN(\v j )5^bj
†bj& t5(eb\v j21)21 is the

Bose distribution function for the Bogoliubov quasiparticles.

The still unknown functions \S(rW), D0* (rW), and

D0(rW) have to be chosen such that the functional
V@\S,D0 ,D0* # is minimal, i.e.,

]V

]\SU
D0 ,D0*

5
]V

]D0
U

\S,D
0*
5

]V

]D0*
U

\S,D0

50. ~15!

The last condition is just the complex conjugate of the sec-
ond, and it suffices to consider only one of them. In the
Appendix it is shown that Eq.~15! requires that

\S~rW !52V0^c
†~rW !c~rW !& t ~16!

and

D0~rW !5V0^c~rW !c~rW !& t . ~17!

As is explained in Ref.@12#, to incorporate all two-body
scattering processes in this many-particle system, the factor
V0 in Eq. ~16! must be replaced by the many-body
T-matrix TMB, but in the regime of interest where the tem-
perature is large compared to the average interaction energy,
i.e., naL th

2 !1, this can be approximated by the two-body
scattering matrixT2B54pa\2/m and we find the usual
Hartree-Fock contribution to the self-energy\S(rW)
52n(r )T2B. In addition, Eq.~17! corresponds to the gap
equation of BCS theory. Since this theory already incorpo-
rates all ladder diagrams, the factorV0 here should not be
replaced by the many-bodyT matrix. Collecting together all
terms, we find for the thermodynamic potential

V5Eg1kBT(
j
ln~12e2b\v j !

2E drWFn2~rW !T2B2
1

2

uD0~rW !u2

V0
G . ~18!

From this expression the free energy of the system can be
calculated directly using the thermodynamic identity
F5V1mN.

The equations obtained thus far are only valid when there
is no Bose condensate present. However, as in the homoge-
neous case, it is evident that the lowest energy\v0 will go
through zero at sufficiently low temperatures and at this
point the corresponding one-particle ground state becomes
macroscopically occupied, i.e., a Bose condensate is formed.
Hence, this ground state has then to be considered explicitly.

B. Bose-Einstein condensation

We now address the changes in the above equations that
are required if a Bose condensate is present. First, we con-
sider the limitT→0, for which all particles in the system
tend to occupy the ground state. In the~trial! grand-canonical
ensemble

Zt5Tr@exp~2bHt!#5TrFexpS 2bEg2b(
j

\v jbj
†bj D G

~19!
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used thus far, one can calculate by standard-statistical phys-
ics methods that for any j the expectation value
^bj

†bj
†bjbj& t5^Nj

2& t2^Nj& t52^Nj& t
2, where ^Nj& t52(1/

b)] lnZt /]\vj5N(\vj). In fact, the factor of 2 in the self-
energy Eq.~16! originates from this property. However, at
zero temperature all particles will tend to the ground state
and we therefore find that the fluctuations in the total number
of particles are given by

^N2&2^N&2

^N&2
5

^N0
2&2^N0&

2

^N0&
2 .11

1

^N0&
511

1

^N&
~20!

and of orderO(1) instead of the usualO(1/A^N&). Hence
the fluctuations in the particle number are as large as the
average itself, which leads to the conclusion that the use of
the grand-canonical ensemble does not lead to an appropriate
description of the Bose condensed gas.

There are basically two ways to restrict the grand-
canonical ensemble and circumvent this problem. The first
one is to introduce a condensate expectation value according
to ^b0&5AN0. Clearly, we then havêN0

2&5N0
2, and at zero

temperature we end up with\S5n0T
2B instead of Eq.~16!.

For nonzero temperatures the effect will be that the
ground-state wave function satisfies Eq.~9! with
\S5(2n2n0)T

2B, whereas the excited state wave functions
obey the same equation except that now\S52nT2B. More-
over, the free-energy density now contains the termf
5 1

2n0
2T2B instead of n0

2T2B @cf. Eq. ~18! and using
f5V/V1mn#. Thus from energy considerations, it is indeed
favorable to introduce a condensate expectation value if the
s-wave scattering length is positive (T2B.0), but this is not
the case for negativea. As mentioned previously, it can be
shown that the thermodynamic potentialV(^c&) is a
sombrero-shaped function with extremum atu^b0&u5AN0,
which is, however, inverted with respect to the^b0& plane
when the scattering lengtha changes from positive to nega-
tive @8#. Therefore, the local minimum at^b0&5AN0 that is
present fora.0 becomes a local maximum fora,0, and
the local minimum of the thermodynamic potential occurs at
^b0&50 in the latter case. So, for a gas of7Li atoms, the use
of the order parameter̂b0& appears not to be the correct
way to control the fluctuations in the number of condensate
particles.

The second method to restrict the condensate fluctuations
is to introduce a different restricted grand-canonical en-
semble according to

Zt5Tr@e2bHt#5(
N0

Tr@e2bEg2b( j \v j bj
†bjdb

0
†b0 ,N0

#

[(
N0

e2bV t~m,N0!, ~21!

where

e2bV t~m,N0!5e2bEg2b\v0N0)
jÞ0

exp†2 ln~12e2b\v j !‡.

From these expressions it follows that

V t~m,N0!5Eg1\v0N01kBT(
jÞ0

ln~12e2b\v j !.

The total number of particles is therefore given by
N5( j^Nj& t5( j]V t /]\v j5N01( jÞ0N(\v j ). Moreover,
the largest contribution to the sum over the number of con-
densate particles in Eq.~21! comes from a minimum in
V t , which implies that N050 if \v0,0 and
0,N0,` if \v050.

The expectation valuêN0
2& calculated in this restricted

grand-canonical ensemble~by construction! equals ^N0&
2,

whereas for the other energy levels (jÞ0) nothing has
changed compared with the results in the original grand-
canonical ensemble. In conclusion we therefore arrive at the
sameequations for the ground-state and the excited state
wave functions as we had derived by the first method for a
gas with positives-wave scattering length: The ground-state
wave function „u0(rW),v0(rW)… satisfies Eq. ~9! with
\S5@2n(rW)2n0(rW)#T

2B whereas the excited states have
just \S52n(rW)T2B. In addition, the condensate den-
sity obeys n0(rW)5N0@ uu0(rW)u21uv0(rW)u2#1uv0(rW)u2 and
the total density is given by n(rW)5n0(rW)
1( jÞ0$N(\v j )@ uuj (rW)u21uv j (rW)u2#1uv j (rW)u2%. The change
in expectation valuê Nj

2& for j50 will of course also
change the free energy if the system is Bose condensed. Tak-
ing this change into account, the grand-canonical potential
V turns out to be given by Eq.~18! except that the term
j50 must be excluded from the summation over states and
a term 1

2*drWn0
2(rW)T2B must be added. As a result, the free

energy becomes

F5mE drWn~rW !1Eg1kBT(
jÞ0

ln~12e2b\v j !

2E drWF S n2~rW !2
1

2
n0
2~rW ! DT2B2

1

2

uD0~rW !u2

V0
G .

~22!

Note that the self-energy\S for the ground state contains a
term n0(rW)T

2B. According to Ref.@12#, the two-body scat-
tering matrix in this term should again have been the many-
body T matrix. However, at sufficiently high temperatures
such thatnaL th

2 !1, or even in the opposite regime if the
interaction energy between the atoms is smaller than the en-
ergy splitting of the one-particle states, i.e.,nT2B,\v, the
many-bodyT matrix TMB can be approximated byT2B.

C. Mechanical stability

For the homogeneous gas with effectively attractive inter-
actions, the free-energy density satisfies] f /]n5m, and the
chemical potential m as a function of the density
n becomes multivalued (]2f /]n2 changes sign! for smaller
densities than those needed for BEC. This is the instability
criterium for the homogeneous system. A detailed analysis
shows that in this case the BEC transition is indeed preceded
by a BCS transition, but that both transitions occur in the
unstable regime of the phase diagram.
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However, in the Introduction we already mentioned that
in an inhomogeneous system a metastable condensate can
exist if the number of condensate particles is sufficiently
small, i.e.,N0,0.573l /uau @6#. Qualitatively this can be un-
derstood from the fact that a collapse of the condensate re-
quires that other harmonic oscillator states need to be mixed
into the wave function of the condensate. For this, energy is
needed~virtually!, which can be supplied by the interactions
provided that the densities in the system are sufficiently high.
As a result, when the density of the gas becomes so high that
the system will collapse, there must be some radial unstable
mode in the density fluctuations.

Systems of compact objects such as white dwarfs and
neutron stars@17# can also be unstable for collapse under
certain conditions. Although a compact object consists of
degenerate fermions~electrons, protons, and neutrons!, and
furthermore time and length scales for stellar systems cannot
be compared with those of the Bose condensate, the physics
in both systems has interesting similarities.

Indeed, the final state of a star when it has burnt up all its
nuclear fuel is a white dwarf, neutron star, or black hole,
depending on its mass. Such a compact object is formed
because in the final stages the star still radiates energy at the
expense of gravitational energy, i.e., the system contracts.
This cannot go on indefinitely, because at a certain point, the
electrons and protons in the star become degenerate. This
causes an extra internal pressure and the star will come to
equilibrium. For a white dwarf, which has a maximum mass
of 1.4 times the solar mass, this occurs at a radius of about
5000 km. In this stage the gradient of the pressure just can-
cels the gradient in potential energy. However, when the
mass of the original star is between 1.4 and 3 times the solar
mass, the gravitational force will be so strong that equilib-
rium can only be restored when almost all electrons and pro-
tons are squeezed together to neutrons by inverseb decay: In
that case the star contracts to an even more compact neutron
star with a radius of about 10 km. Above these definite maxi-
mum masses, the white dwarf and the neutron star cannot
support themselves against gravitational collapse and this
can lead to black hole formation. To study the stability of
these systems, it is known that it is convenient to parametrize
all equilibrium density profilesn(rW;nc) by the central density
nc of the star and that at the point of instability the mass of
the object as a function of the central density of matter
nc exhibits an extremum.

In analogy, we thus expect that in the case of a trapped
atomic gas, the onset of the instability is determined by the
condition ]F/]nc50 and that there exists a zero mode in
the density fluctuations at this point. To see this more explic-
itly, we consider the free energy functionalF@n#, which
gives the free energy of the equilibrium density profile
n(rW;nc). As a result we have

F@n~rW;nc!1dn~rW !#

5F@n~rW;nc!#1E drWm~nc!dn~rW !

1
1

2E drWdrW8
d2F

dn~rW !dn~rW8!
U
n~rW;nc!

dn~rW !dn~rW8!1•••,

~23!

where m(nc)5dF/dn(rW)un(rW;nc) . If the central density is
changed slightly, we have

F@n~rW;nc1dnc!#5FFn~rW;nc!1
]n~rW;nc!

]nc
dnc1O~dnc

2!G
5F@n~rW;nc!#1E drWm~nc!

]n~rW;nc!

]nc
dnc

1O~dnc
2!. ~24!

We thus conclude that if ]F/]nc50, then either
m(nc)50 or *drW]n(rW;nc)/]nc50. The latter possibility is
in general the physically relevant one because it shows that
the two density profilesn(rW;nc) andn(rW;nc1dnc) have the
same total number of particles, i.e.,

N~nc1dnc!5E drWn~rW;nc1dnc!.E drWn~rW;nc!5N~nc!.

~25!

The fact that two density profiles containing the same num-
ber of particles have the same free energy up to first order
indicates that there is a zero mode present. Roughly speak-
ing, it does not cost energy to deform the first density profile
continuously into the second, which indicates the threshold
for instability. We therefore anticipate that the onset of in-
stability occurs if the free energy has an extremum which
conserves particle number@i.e., m(nc)Þ0# as a function of
the central density of the gas. So, although collapse in com-
pact objects and in a Bose condensate is caused by a differ-
ent mechanism, the final criterion in both system may be,
surprisingly enough, the same.

D. Hartree-Fock approximation

We have derived the equations that describe an inhomo-
geneous gas at nonzero temperatures. A convenient proce-
dure to solve these equations numerically would be to start
with some suitable initial distribution of particlesn(rW) and
an initial BCS order parameterD0(rW), and iterate the equa-
tions to self-consistency. It is, however, well known that it is
rather difficult to ensure the self-consistency ofD0(rW) @11#,
and furthermore that Eq.~17! contains a divergence, because
the interparticle potential was approximated by a
d-function potential. For a homogeneous gas, this divergence
can easily be corrected for, but in this inhomogeneous case,
it is not a priori clear how one has to deal with it properly,
although it is not difficult to convince oneself that the diver-
gence can be canceled by calculating the molecular states of
two atoms in the trap. Fortunately it is not necessary to solve
these problems here because we are primarily interested in
the regimenaL th

2 !1, where the average energykBT of the
particles is much larger than the interaction energy and the
effect of D0(rW) is very small. Therefore, we neglect in the
following the BCS order parameterD0(rW), which in turn
means that the functionsv j (rW)50. So, for the uncondensed
gas, the Bogoliubov–de Gennes equation~9! then reduces to
the Schro¨dinger equation for a particle in an effective poten-
tial Veff(rW)5Vext(rW)12n(rW)T2B,
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S 2
\2¹2

2m
1Vext~rW !12n~rW !T2B2m Df j~rW !5\v jf j~rW !

~26!

and the free energy of the system is

F5V1mN5kBT(
j
ln@12exp~2b\v j !#

2E drWn2~rW !T2B1mE drWn~rW !, ~27!

where the particle density is given by

n~rW !5(
j

uf j~rW !u2N~\v j !, ~28!

and the wave functionsf j (rW) are subject to the condition

E drWuf j~rW !u251. ~29!

When the ground state is macroscopically occupied, the
noncondensed particles satisfy Eq.~26! for jÞ0, and the
condensate wave function satisfies

S 2
\2¹2

2m
1Vext~rW !1@2n~rW !2n0~rW !#T2B2m Df0~rW !

5\v0f0~rW !, ~30!

where the condensate density is given by
n0(rW)5N0uf0(rW)u2 andN0 is the total number of particles
in the condensate. The noncondensate density is
n8(rW)5( jÞ0uf j (rW)u2N(\v j ), and the total density is
n(rW)5n0(rW)1n8(rW). The free energy in this case, according
to Eq. ~22!, is given by

F5kBT(
jÞ0

ln@12exp~2b\v j !#

2E drWFn2~rW !2
1

2
n0
2~rW !GT2B1mE drWn~rW !. ~31!

Note that forT50, i.e., all particles in the ground state, Eq.
~30! corresponds to the nonlinear Schro¨dinger equation
~NLSE!, studied, for example, by Ruprechtet al. @6# and
first derived by Goldmanet al. @14# in their pioneering work
on spin-polarized atomic hydrogen. In addition, note that
Bergeman @13# in his analysis uses Eq.~26! with
T2B replaced byT2B/2 for both the condensate and the ex-
cited state wave functions, which corresponds to the Hartree
approximation. Although this gives correct results at zero
temperature, this is no longer true for nonzero temperatures
because it does not properly take into account the mean-field
interactions due to the noncondensate part of the gas.

III. RESULTS

At this point we have all tools available to study the sta-
bility of atomic 7Li for temperatures obeyingnaL th

2 !1. As
mentioned previously, this is done numerically by solving

Eq. ~26! and Eq.~30! self-consistently with the total particle
densityn(rW). The gas is assumed to be confined by an iso-
tropic harmonic oscillator potential

Vext~rW !5 1
2mv2r 2,

where we take forv the ‘‘average’’ (vxvyvz)
1/3 of the

~nonisotropic! trap frequencies used in the Rice experiment
@3#. This results in an energy splitting of\v/kB57.1 nK.
Due to this simplification the density profile of the gas will
depend only on the distancer from the center of the trap.
The s-wave scattering length of7Li is a5227.3a0, where
a0 is the Bohr radius@15#. We first consider the case
T50 and subsequently present results for nonzero tempera-
tures.

A. The T50 case

In this section all particles are considered to be in the
condensate, which is the case at zero temperature. This has
already been subject to extensive research of several other
papers, see for instance Refs.@6# and@16#. For a fixed num-
ber of condensate particlesN0, the lowest energy eigenvalue
and wave function of the Schro¨dinger type equation~30! is
solved by a numerical integration, and the density distribu-
tion n(r )5n0(r ), the chemical potentialm, and the free en-
ergyF are determined from this solution.

In Fig. 1 we plot first of allm as a function ofN0. If there
are only a few particles in the condensate,m is seen to be
equal to3

2\v, i.e., the ground-state energy of a particle in a
harmonic oscillator. However, asN0 increases, the effective
potential Veff(r )5

1
2mv2r 21n(r )T2B grows deeper and

deeper in a small range around the center of the trap since
T2B is negative, which pulls the particles more and more to
the center of the trap. This decreases the value of the ground-
state energy and consequently also the chemical potential. As
can be seen from the figure, forN0.1241, a solution cannot
be found anymore, indicating that the condensate becomes
unstable. The maximum number ofN0,max51241 corre-
sponds well with the conditionN0,max.0.573l /uau found by
Ruprechtet al. for the appropriate trap parameters@6#.

The free energy given by Eq.~31! is plotted as a function
of N0 and as a function of the central densitync of the gas in
Figs. 2 and 3, respectively. Notice that the derivative of the

FIG. 1. Chemical potential as a function of total number of
condensate particles.
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free energy with respect to the number of condensate par-
ticles exactly reproduces the chemical potential, i.e.,
m5]F/]N, showing the consistency of our calculations.
From Fig. 3 it follows that the free energy as a function of
the central density approaches a constant~maximum! value.
This is also shown in the inset of this figure. So, as antici-
pated in Sec. II C, the instability appears at an extremum of
the free energy as a function of the central density of the gas
cloud. If the density increases further, the gas will collapse to
a dense state. With the theory presented above we clearly
cannot describe the gas beyond this point, for we would need
a theory that can describe the system also at high densities.

B. The TÞ0 case

For nonzero temperatures the particles in the gas occupy
the harmonic oscillator states in Eq.~26! according to the
normal Bose distribution at a given chemical potential. How-
ever, if m is increased from2` to some value below
3
2\v, the number of particles in the ground state starts to
increase dramatically, and we can only put more particles in
the system by forcing them into the ground state. At this
point, \v0 equals zero and the gas consists of a condensate

part with densityn0(r )5N0uf0(r )u2, as well as a noncon-
densate part with densityn8(r )5( jÞ0N(\v j )uf j (r )u2. So,
the calculation of the chemical potential and the free energy
now consists of two parts which correspond to the use of the
unrestricted and restricted grand-canonical ensemble, respec-
tively. In the first part we increasem from 2` to some
maximum valuemmax, above which there are no longer any
solutions. In the second part, on the other hand, we increase
the numberN0 of particles in the ground state and then de-
terminem from the ground-state energy of the trap using
that \v050. Note that in this second part the chemical po-
tential decreases again, because the increasing density of the
condensate lowers the ground-state energy. This behavior of
the chemical potential explains why no solutions with
m.mmax, could be found in the calculation with the unre-
stricted grand-canonical ensemble. The two parts of the cal-
culation join smoothly together within an error of the order
of 1% atmmax, where the condensate fraction is of the order
of 5%.

At nonzero temperatures the density profiles of the gas are
determined by calculating all energy levels and correspond-
ing eigenfunctions up to 10kBT. Since the ideal 3D harmonic
oscillator energy levels are given by«n,l5(2n1 l
13/2)\v, wheren and l are integers, this corresponds to
taking as many as@1/2(10kBT/\v)#2 levels into account.
Clearly, this number increases rapidly as a function of tem-
perature. When the number of particles in the ground state is
small ~typically corresponding tom&2\v), Eq. ~26! was
used to calculate all wave functions and Eq.~27! to calculate
the free energy. For larger values ofm, the ground state was
determined by Eq.~30! and the free energy by Eq.~31!. To
check that our results are consistent, we first compare in Fig.
4 the density profile above the critical temperature with the
prediction of the local-density approximation, i.e., with

n~r !51/L th
3 g3/2„exp$b@m2V~r !22n~r !T2B#%….

The agreement is good for large and negativem, but for
m.2\v, a deviation becomes visible around the center of
the trap, indicating that the critical temperature is ap-
proached.

FIG. 2. Free energy as a function of total number of condensate
particles.

FIG. 3. Free energy as a function of the central density. The
inset shows that the derivative of the free energy with respect to the
central density approaches zero at the point of instability and that at
this point the number of particles as a function of the central density
exhibits a maximum.

FIG. 4. Comparison between exact density and
L th

23g3/2(z) above the critical temperature for~1! m52\v, ~2!
m5210\v, and~3! m5225\v.
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In Figs. 5 and 6 the free energy is plotted as a function of
the ~total! central density of the gas atT550 nK and
T5100 nK, respectively. We again checked that
m5]F/]N as required. The inset in both figures shows a
magnification of the local minimum in the free energy curve
wherem goes through zero. This is not a point of instability
of the system because small variations in the central density
do not conserve the total number of particles. The point of
instability occurs again where the free energy approaches a
local maximum. Note that the maximum densities in the cen-
ter of the trap that can be obtained are orders of magnitude
higher then those for a homogeneous trap. In the homoge-
neous case, collapse occurs already at densities smaller than
nBEC5z(3/2)/L th

3 .2.612/L th
3 For T550 nK this corre-

sponds tonBEC51.0731011 cm23, and forT5100 nK we
have nBEC53.0431011 cm23. Note, furthermore, that the
interaction term@2n(r )2n0(r )#T

2B in the effective poten-
tial Veff(r ) of the ground state becomes in the center of the
trap as large asncT

2B.25\v.
Next we take a closer look at the point of instability of the

system when the temperature increases. As was pointed out
before, however, the number of harmonic oscillator states
which have to be taken into account to calculate the density

acurately increases very rapidly and thus slows down the
calculation considerably. To avoid this, for temperatures
higher than 150 nK we make use of the fact that only the
lowest wave functions of the harmonic oscillator states are
influenced by the interaction term 2n(r )T2B or
@2n(r )2n0(r )#T

2B for the ground state, and the wave func-
tions of the higher states are unaffected, although their occu-
pation numbers change, due to the fact thatm equals the
ground-state energy if there is a Bose condensate present.

In Fig. 7 we plot at the point of instability the normal
density of the gas in the center of the trapn8(0) as a func-
tion of temperature~dashed line! and compare this with the
density nBEC.2.612/L th

3 ~solid line! required for BEC in
the homogeneous case. In the inset of the same figure, the
number of noncondensed particles as a function of tempera-
ture is plotted~dashed line!, and this is compared with the
usual criterion for the onset of BEC in a noninteracting gas,
i.e., NBEC5z(3)(kBT/\v)3.1.202(kBT/\v)3 ~solid line!.
As expected, the consequence of the attractive interatomic
interaction is that the noncondensed particles are pulled to-
wards the center of the trap. The solid line in Fig. 8 shows
the maximum number of condensate particles as a function
of temperature. Clearly, the occupation of the condensate at
the point where the gas becomes unstable decreases when the
temperature increases. In Ref.@7# it was argued that an in-
crease in temperature wouldnot lead to a decrease in the
maximum number of condensate particles since the noncon-
densed density is approximately constant over the extent of
the condensate wave function and therefore only shifts the
effective potentialVeff(r ) by a constant. If this is true, the
observed decrease can only be explained by the noncon-
densed part of the gas becoming unstable before the conden-
sate holds the maximum number of particles. This might also
be physically reasonable because the contribution of the nor-
mal part of the gas to the total density increases everywhere
and especially around the center of the trap.

In view of this we want to try to answer the question
whether it is the condensate or~as in the homogeneous case!

FIG. 5. Free energy as a function of the central density for
T550 nK.

FIG. 6. Free energy as a function of the central density for
T5100 nK.

FIG. 7. Normal densityn8(0) in the center of the trap at the
point of instability of the system~dashed line!. The solid line shows
nBEC52.612/L th

3 The inset shows the number of noncondensed
particles as a function of temperature for the harmonic oscillator
with ~dashed! and without ~solid! interaction, which is given by
N851.202(kBT/\v)3.
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the noncondensed part of the gas which causes instability. Of
course, for zero temperature the condensate becomes un-
stable, and we expect the same for such low temperatures
that the noncondensed part is only a small fraction of the gas.
For higher temperatures this might change since the number
of noncondensed particles increases very rapidly as a func-
tion of temperature. To analyze this issue, we calculated in
the temperature interval 0<T<400 nK the density profiles
of the condensaten0(r ) and the normal part of the gas
n8(r ) at the spinodal point. The condensate fraction
N0 /N decreases from 1 forT50 to about 0.005 for
T5400 nK. Subsequently, we try to add particles to the con-
densate, and try to find a new solution to the nonlinear
Schrödinger equation~30! for the increased number of con-
densate particles,while keeping the noncondensate density
profile fixed.

The results are also plotted in Fig. 8: The dots in this
figure denote the maximum number of particles that can be
in the condensate given the noncondensate density at the
temperature of interest. For temperaturesT<50 nK, the sys-
tem becomes already unstable if only one particle is added to
the condensate, from which we draw the conclusion that at
this temperature it is still the condensate which renders the
instability. For higher temperatures, it is possible to add a
few particles to the condensate, but this appears to be the
result of numerical inaccuracies in our calculation. We thus
conclude that the condensate is unstable at the point of in-
stability of the whole system.

Because of this result, we suspect that the simple argu-
ment that the maximum number of condensate particles re-
mains constant because the noncondensed part of the gas is
approximately constant over the extent of the condensate
wave function, may not be sufficiently accurate in this sys-
tem. The only difference in the condensate wave function at
different temperatures arises due to the contribution of the
term 2n8(r )T2B to the effective potential. In Fig. 9 we plot-
ted forT50 @and consequentlyn8(r )50# ~solid lines!, and
for T5300 nK ~dashed lines! the effective potential
Veff(r )51/2mv2r 212n8(r )T2B and the corresponding con-
densate densitiesn0(r ). When Veff(r ) for T5300 nK is
shifted upward such that the zeros of both potentials coin-
cide, it is clear that the normal part of the gas effectively

increases the oscillator strength of the trap potential when the
temperature increases. Since the maximum condensate size
N0,max} l /uau}1/Av, an increase in the effective oscillator
strength felt by the condensate causes a decrease in the maxi-
mum condensate size. A measure for the deviation of the
effective oscillator strength from the original strengthv is
given by the expression

veff
2 5v2

E drW$Vext~r !12@n8~r !2n8~0!#T2B%n0~r !

E drWVext~r !n0~r !

,

and for nonzero temperature we thus estimate that the maxi-
mum number of condensate particles is given by

N0,max~T!5N0,max~0!A v

veff~T!
.

For T5300 nK this amounts toN0,max(300)51174.5, which
corresponds rather accurately with the value 1173 from our
full calculation. For some other temperatures the maximum
occupation of the condensate determined in this way is de-
noted in Fig. 8 by the open circles. We can conclude that the
growth of the normal part of the gas occurs at the expense of
the condensate when temperature increases.

IV. CONCLUSION

We performed a numerical calculation to study the stabil-
ity of a Bose condensate in a trapped gas of7Li atoms at
zero and nonzero temperatures. This was done by determin-
ing all quantum states for particles in a harmonic oscillator
trap and interacting via two-body scattering. The proposed
criterion that the gas becomes mechanically unstable when
the free energy of the system as a function of the central
density of the gas approaches a maximum value, is con-
firmed by the calculations.

For zero temperature, the maximum number of conden-
sate particles is in agreement with previous calculations, and
for nonzero temperature this number decreases considerably.
This is due to the fact that the condensate experiences an

FIG. 8. Maximum number of condensate particles~solid line!.
The dots denote the maximum condensate at fixed normal part, and
the open circles give the maximum occupation of the condensate
that can be calculated from the effective oscillator strength due to
the presence of the noncondensed part of the gas.

FIG. 9. Condensate density~right scale! and effective potential
~left scale! for T50 ~solid lines! andT5300 nK ~dashed lines!.
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effective oscillator strength due to the presence of the non-
condensed part of the gas. This effective potential increases
as temperature increases and therefore results in a decrease
of the maximum occupation of the condensate. For the tem-
perature interval 0<T<400 nK the condensed part of the
gas renders the instability at the spinodal point, so in contrast
to the homogeneous case, the normal part of the gas remains
stable against density fluctuations.

Furthermore, from the results in Sec. III B and the discus-
sion in Sec. II B, it can be concluded that at low tempera-
tures it seems necessary to include also many-body effects
in, e.g., the scattering length, since the average interaction
nT2B becomes substantially larger than the energy splitting
\v. To do so appears to be an important challenge for the
future which is not only difficult in practice but even in
principle due to the presence of infrared divergences in the
theory of the dilute Bose gas@18#. Closely related to this
issue is the effect of the BCS transition on the properties of
the gas, which still needs to be incorporated in the numerical
calculations. Once the experiments enter into this low tem-
perature regime wherenaL th

2 @1, it should be interesting to
compare the experimental data with the mean-field analysis
presented here, and to see if possible deviations can be un-
derstood by the above mentioned corrections. This is of
course not only true for7Li, but also for any other atomic
species with a negative scattering length such as85Rb and
123Cs.
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APPENDIX

To calculate the minimum of the grand-canonical poten-
tial V of Eq. ~4!, it is convenient in the following to intro-
duce a compact notation for the inner product of two states.
From Eq.~8!, it is found that the normalization can be re-
written as

15E drW@ uuj~rW !u22uv j~rW !u2#

5E drW„uj* ~rW !,2v j* ~rW !…S 1 0

0 1D S uj~rW !

v j~rW !
D

[~ j u1u j !, ~A1!

which thus defines our convention for the inner product.
We start with the derivative ofV with respect to\S. For

simplicity we consider here only homogeneous variations of
\S. It is straightforward to generalize this to inhomogeneous
variations. The same will apply later on for variations in
D0. The derivative]V/]\S is given by

]V

]\S
5

]Eg

]\S
1(

j
N~\v j !

]\v j

]\S

1E drWH 2T2B^c†~rW !c~rW !& t
]^c†~rW !c~rW !& t

]\S

1
1

2
V0

]^c†~rW !c†~rW !& t
]\S

^c~rW !c~rW !& t

1
1

2
V0

]^c~rW !c~rW !& t
]\S

^c†~rW !c†~rW !& t2^c†~rW !c~rW !& t

2\S
]^c†~rW !c~rW !& t

]\S
2
1

2
D0~rW !

]^c†~rW !c†~rW !& t
]\S

2
1

2
D0* ~rW !

]^c~rW !c~rW !& t
]\S

J . ~A2!

Equating the whole expression to zero, and grouping to-
gether the terms proportional to the derivative of an expec-
tation value with respect to\S, the solution is seen to be
given by Eq.~16! and Eq.~17!, if we can prove that

]Eg

]\S
1(

j
N~\v j !

]\v j

]\S
2E drW^c†~rW !c~rW !& t50. ~A3!

This is most easily achieved by assuming that all func-
tions uj (rW), v j (rW), andD0(rW) are real. In that case, the first
term on the left reduces to

]Eg

]\S
52(

j
H E drW

]\v j

]\S
v j
2~rW !1\v j

]

]\SE drWv j
2~rW !J .

~A4!

The derivative]\v j /]\S can be calculated by perturbing
the Hamiltonian according to

dH5S d\S 0

0 2d\S
D .

The energy shift in\v j is then, to first order, given by

d\v j5~ j udHu j !5E drW@uj
2~rW !1v j

2~rW !#d\S,

and therefore

]\v j

]\S
5E drW@uj

2~rW !1v j
2~rW !#. ~A5!

Using furthermore that*drW@uj
2(rW)2v j

2(rW)#51, it is found
that

E drWv j
2~rW !5

1

2 S ]\v j

]\S
21D , ~A6!

so Eq.~A4! can be rewritten as
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]Eg

]\S
52

1

2(j S ]\v j

]\S
21D ]\v j

]\S
2
1

2(j \v j

]2\v j

]\S2

5(
j
E drWv j

2~rW !1
1

2(j F12S ]\v j

]\S D 22\v j

]2\v j

]\S2 G .
~A7!

The factor between brackets is zero. This can be seen by
first applying a Taylor expansion to show that the energy
changed\v j due to the shift\S1d\S can be written as

d\v j5
]\v j

]\S
d\S1

1

2

]2\v j

]\S2 ~d\S!21O„~d\S!3….

Therefore, the last term between the brackets in Eq.~A7! can
be identified with twice the second-order energy shift. Mak-
ing use then of the standard expression for this second-order
energy shift

d\v j5~ j udHu j !1(
iÞ j

~ j udHu i !~ i udHu j !
\v j2\v i

1•••, ~A8!

which still holds with our definition of the inner product, we
obtain

(
j

F12S ]\v j

]\S D 22\v j

]2\v j

]\S2 G

5(
j

F 12S jU ]H

]\S U j D S jU ]H

]\S U j D

22\v j(
iÞ j

S jU ]H

]\S U i D S iU ]H

]\S U j D
\v j2\v i

G
5(

j
H 12S jUS ]H

]\S D 2U j D J 50,

where the third line follows from the completeness of the
eigenstates of the Bogoliubov–de Gennes equation and from
the fact that if we write 2\v j5(\v j2\v i)
1(\v j1\v i) only the antisymmetric part contributes. Fi-
nally, we also need that

]H

]\S
5S 1 0

0 21D .
Collecting all terms together we thus indeed find that@see
Eq. ~A3!#

]Eg

]\S
1(

j
N~\v j !

]\v j

]\S
2E drW^c†~rW !c~rW !& t

5E drW(
j

$v j
2~rW !1N~\v j !@uj

2~rW !1v j
2~rW !#%

2E drW^c†~rW !c~rW !& t50. ~A9!

At the same time the derivative ofV with respect to
D0 must be zero. That this is also the case can be shown by
a similar calculation. AssumingD0, uj , andv j to be real,
the equation]V/]D050 reduces to

]Eg

]D0
1(

j
N~\v j !

]\v j

]D0
2
1

2
^cc& t2

1

2
^c†c†& t50

~A10!

if the functions\S andD0 are given by Eqs.~16! and~17!.
Using Eq.~A6!, the first term on the left-hand side is equal to

]Eg

]D0
52(

j
H ]\v j

]D0
E drWv j

2~rW !1\v j

]

]D0
E drWv j

2~rW !J
52

1

2(j H ]\v j

]D0
S ]\v j

]\S
21D1\v j

]2\v j

]D0]\S J .
~A11!

As in the previous calculation, the first and second deriva-
tives of \v j with respect toD0 and\S can be calculated
by perturbing the Hamiltonian according toH5H01dH,
with

dH5S d\S dD0

2dD0 2d\S
D .

The energy levels then shift to second order according to

d\v j5
]\v j

]\S
d\S1

]\v j

]D0
dD01

1

2 S ]2\v j

]\S2 d\S2

12
]2\v j

]\S]D0
d\SdD01

]2\v j

]D0
2 dD0

2D . ~A12!

Comparing this again with the perturbative expression for
the energy shift Eq.~A8!, we find that

]\v j

]D0
5

~ j udHu j !
dD0

5S jU ]H

]D0
U j D52E drWuj~rW !v j~rW !. ~A13!

Moreover, the second order derivative in Eq.~A11! can be
written as

]2\v j

]D0]\S

5(
iÞ j

S jU ]H

]D0
U i D S iU ]H

]\S U j D1S jU ]H

]\S U i D S iU ]H

]D0
U j D

\v j2\v i
.

~A14!

Therefore Eq.~A11! becomes
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]Eg

]D0
5(

j
H E drWuj~rW !v j~rW !2

1

2 S jU ]H

]D0
U j D S jU ]H

]\S U j D
2
1

2(iÞ j

\v j

\v j2\v i
3F S jU ]H

]D0
U i D S iU ]H

]\S U j D
1S jU ]H

]\S U i D S iU ]H

]D0
U j D G J

5(
j
E drWuj~rW !v j~rW !2

1

4(j F S jU ]H

]D0

]H

]\S U j D
1S jU ]H

]\S

]H

]D0
U j D G

5(
j
E drWuj~rW !v j~rW !, ~A15!

since

]H

]D0
5S 0 1

21 0D and
]H

]\S
5S 1 0

0 21D .
Combining all results, Eq.~A10! becomes

]Eg

]D0
1(

j
N~\v j !

]\v j

]D0
2
1

2
^cc& t2

1

2
^c†c†& t

5(
j
E drWuj~rW !v j~rW !@112N~\v j !#2

1

2
^cc& t

2
1

2
^c†c†& t50, ~A16!

which completes the proof.
To gain even more confidence in our expression forV, it

is useful to see whether

N5E drWn~rW !5E drW^c†~rW !c~rW !& t52
]V

]m U
\S,D

0
† ,D0

~A17!

is satisfied. To prove this, we first notice that
n2(rW)5„\S(rW)/2T2B…2 and that according to the matrix
form of the Hamiltonian@cf. Eq. ~9!#

]\v j

]m
52

]\v j

]\S
. ~A18!

Therefore, we can make use of our previous results in Eqs.
~A5! and ~A7! to obtain

]V

]m U
\S,D

0
† ,D0

5
]Eg

]m
1N~\v j !

]\v j

]m

52H ]Eg

]\S
1N~\v j !

]\v j

]\S J
52(

j
E drW$@ uuj~rW !u21uv j~rW !u2#

3N~\v j !1uv j~rW !u2%

52E drWn~rW !,

as desired.
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