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Stability of Bose condensed atomic Li
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We study the stability of a Bose condensate of atorii¢ in a (harmonic oscillator magnetic trap at
nonzero temperatures. In analogy to the stability criterion for a neutron star, we conjecture that the gas
becomes unstable if the free energy as a function of the central density of the cloud has a local extremum
which conserves the number of particles. Moreover, we show that the number of condensate particles at the
point of instability decreases with increasing temperature, and that for the temperature interval considered, the
normal part of the gas is stable against density fluctuations at this p8i250-29476)07312-X

PACS numbe(s): 03.75.Fi, 67.40-w, 32.80.Pj, 42.50.Vk

[. INTRODUCTION neous case that also the noncondensed gas can be unstable
against density fluctuations. Therefore we will consider here
Since several groups reported evidence for Bose-Einsteithe stability of the complete system including condensate as
condensation(BEC) in atomic gas samples of’Rb [1], well as above condensate particles. We will try to answer the
#Na[2], and possibly’Li [3] last year, there has been an question when the system as a whole becomes unstable and
increased interest in this field of physics. After almost twowhether it is the condensate part or the noncondensate part
decades, one has finally been able to verify the predictioRyhich causes the instability.
which Bose and, in particular, Einstein launched so many |n this stability analysis we cannot make use of the simple
years ago. This opens a totally new era regarding research gica.density approximation. The local-density approxima-
degenerate systems, and it is to be expected that there Wil js only applicable in systems for which the correlation
appear many new and interesting experimental and theoreti'éngthg (roughly speaking the distance over which the par-
cal results about the properties of Bose condensed aloMiftjes influence each otheis much smaller than the typical

gases in the near future. trap sizel over which the density changes and the system

This is certainly true for thé’Rb and the?®Na systems, "
: . behaves locally homogeneous. However, close to the critical
but maybe less so for théLi system, because the experi- : .
emperature the correlation length diverges, and the local-

mental results on the latter gas are not yet completely unde}— . N .
stood. In contrast to the former systems where the atomgensny approximation always breaks down. Nevertheless, it

P ; 7 is valid at the spinodal point if we satisfy the condition that
i e et T e e T 121 e o7, .
tively attractive interatomic interaction, which makes thetotal numbem of particles in the gas must be much larger
system unstable at large densities. Indeed one of us showd&dan the third power of the maximum number of condensate
that a dilute, homogeneous gas of atoms with a negativlarticlesNg may. Since this amounts thi>10° for the trap
s-wave scattering lengtla collapses to a densgiquid or ~ parameters of the Rice experimé8, it is clear that on the
solid) state before the density is reached at which BEC igasis of the local-density approximation we cannot decide if
expected to occur at a given temperati#fe Furthermore, it a cloud of 16—10° atoms is mechanically stable and there-
was shown that the BEC transition is actually preceded by &re (metastable. On the other hand, if it were allowed to
BCS-like transition to a superfluid state and that this transiuse the local density approximation at the spinodal point, we
tion also occurs in the unstable regime of the phase diagranwould immediately conclude that @netgstable condensate

However, as was pointed out by Hulgd] and Ruprecht cannot exist.
et al. [6], the situation is different if the atoms are confined To go beyond the local-density approximation, we will
by a magnetic trap. In particular, it was found that for anpresent numerical results for the free energy of the system at
inhomogeneous gas cloud at zero temperature the condens&gveral temperatures. To do so, we first present in Sec. Il the
is stable at the mean-field level if the number of particles idfinite temperature theory for the inhomogeneous gas. The
sufficiently small, or more precisely ifN<Nyq.,= €duations of motion that describe the gas are derived from a
0.573/|a|, wherel = JA/mw is the typical size of the one- Variational principle[8]. In analogy to the homogeneous
particle ground state in the trap. However, quantum fluctuacase, we incorporate the possibility of both a BEC and a
tions cause a decay of the condensate on a time scale whiGS transition. Subsequently we give an expression for the
is fortunately much longer than the time scales at which thdree energy. Since the experiments witti are performed at
experiments were performed. The same holds true at the relgensities and temperatures such that\§, <1 (wheren is
tively high temperatures of interest experimentally, everthe density and\,,= 27%2/mkgT the thermal wavelength
though the decay is now caused by thermal fluctuati@ihs  of the atom$and in particular even &t=T,, the theory can

However, in Ref[7] only the stability of the condensate be simplified by neglecting the possible BCS pairing and
was discussed. Although this is an important first step, it isusing the Hartree-Fock approximation. However, in view of
clearly not sufficient, because we know from the homogethe fast experimental developments, it is to be expected that
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also the regimaaA{,>1, which amounts td<T;, can be  (y(r)¢(r)). In the case of bosons, this is actually known as
reached in the near future and this is why we present here thde Evans-Rashid order parameter.

full theory including also the effects of BCS pairing. In

Sec. Il we then present our numerical results. In Sec. Il A A. Evans-Rashid transition

we discuss the zero temperature limit of the Hartree-Fock . . . ) .
approximation and make a comparison with previous calcu- 10 derive the equations of motion that de_scrlbe the gas, it
lations. Also a thermodynamic criterion for the stability of 1S useful to determine thgexac} grand-canonical potential

the gas is given. In Sec. Ill B we proceed to nonzero tem- __ .
peratures. We calculate the maximum number of condensate Qex(T.1) ke TIn{Tr{exp(—AH)1h ©)
om which all thermodynamic quantities that we wish to

particles as a function of temperature and pronounce upop
fiow can be calculated. It is well known thatHf, is some

the issue whether the condensate or the noncondensg}
f\?usif] the |nstab|:|ty_ of the gas. The paper ends in SG“frial Hamiltonian, and), the corresponding grand-canonical
with Some conclusions. potential, we have the variational princidl&Q]

Il. THEORY Qe =O=0+(H—Hy)y, 4

We start .this paper with thg equilibrium theory for a di!ute where(O), is the expectation value of the opera@iin the
gas of particles with mass1 in an external trap potential grand-canonical ensemble based lép. The trial Hamil-

Veu(r), interacting with each other through an approxi- tonian that we want to use here is given by

mately local(becauséa| <) two-body potentiaVy6(r). In oo

the numerical calculations which follow subsequently, we N I N > > >
will specialize to’Li atoms, which have a negativewave Ht_J dr{ Yir) 2m FVex(M) = p+AZ(r) [§(r)
scattering lengtta andVy<<0. The interparticle interaction

is therefore effectively attractive. } ROUTR e e 1 XN N
The grand-canonical Hamiltonian of the system is given * ZAO(rW (g + ZAO(r)w(rW(r) ’ ®

by [9]

It is quadratic in the field operators and indeed has non-
zero expectation values for both '(r)y(r)), and
(p(r)p(r));. In this expression, the functiong3(r),

1 R o AO(F), and its complex conjugatﬁ’g(F) are variational pa-
+ Evozpf(r)w’r(r)xp(r)l/;(r)], (1)  rameters which have to be determined by minimization of

the grand-canonical potenti&l. The trial Hamiltonian has

. ) . - nondiagonal elements proportional to the BCS order param-
Wrefe K _'S. the  chemical potent@l, andl,/;(r). and eter AO(F) and the diagonal contribution proportional to
‘/’_ _(r) Emmhﬂates and createg respechyely, ? particle at pOﬁE(F) is the self-energy due to the two-body interaction.
sition r. As usual, the density of particles in the system  Thjs trial Hamiltonian can be put into the diagonal form
n(r) is given by the grand canonical average'(r) ¢(r)),
and the total number of particles = fdrn(r), which ul-
timately determines the (?hemical potgntial(oz‘,the gas. He= Eg+§j: hwjb;rbj ©

For particles with a positives-wave scattering length,
the annihilation operatog(r) has a nonvanishing expecta- PY a@pplying the Bogoliubov transformation
tion value below the critical temperature. By separating out
this expectation value in the usual wgj, i.e., w(;):; [uj(F)bj+u}*(F)b;r], (7a)

L h2v? - -
H= [ af] g = S+ Veul ) | ()

m

P(r)= (1) + ' (T), (2)

where ¢’ describes the noncondensate part and

Yo(r)=(y(r))=+ne(r) is the condensate wave function, R . _
one can derive the equations of motion for the condensate de operatorsh; and b; are required to satisfy the usual

well as the noncondensate part of the gas. However, in thBose commutation relations, and therefore the functions
case of a negative-wave scattering length, it can be shown uj(F) andvj(F) are normalized as

for the homogeneous case that the free energy as a function

of the expectation value of the field operatgrhas at low

¢*<F)=; [v;(Nb;+u¥ (b1, (7b)

g Tro\ T g SN g =y
temperatures a locahaximumfor some nonzero value of Lo(r), 4 (r )]_; [uj(Duf (") =vf (No;(r')]
((r)) and there is only a locaminimumfor (y(r))=0, o
which is therefore the correct value around which one has to =8(r—r’). (8

expand8]. As a result we must use a different order param- _ ;
eter to describe a phase transition due to quantum degeksing the relations [H¢,b;]=—%w;b; and [H,bj]
eracy effects, namely, the BCS-type order paramete|=ﬁwjb;r and substituting Eqg.7a) and (7b) into the com-
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mutators[H,,%] and [H,,%'], it is found thatu;(r) and The still unknown functions #3(r), A%(r), and
vj(F) must be solutions to the following eigenvalue equa—Ao(F) have to be chosen such that the functional
tion: Q[A3,Aq,Af] is minimal, i.e.,
( Hot ﬁE(F)—M—ﬁwJ Ao(r) 10} Q) Q) 0 15
—AF(r) ~Ho=A3(N)+p—fo; IhE Ao A% Ao hy, A% A A3, .
x uj;(r) =0 (9) The last condition is just the complex conjugate of the sec-
UJ.(F) ond, and it suffices to consider only one of them. In the

Appendix it is shown that Eq15) requires that
where Hy= —2V2/2m+V,(r). These coupled equations
are the Bogoliubov-DeGennes equatigaid]. They can be AE(N)=2Vo( gt (N g(r)) (16)
solved self-consistently once the functiorfgX(r) and
Ao(r) are obtained from minimization & and expressed in and

terms ofu;(r) ando;(r). Furthermore the ground-state en- R ..
ergy E4 in Eq. (6) is given by Ao(r)=Vo{gh(r) g(r)):. 17

- -, 1 = As is explained in Ref[12], to incorporate all two-body
Eg:j drE —hojlv;(r]*- §A0Uj (r)vj(r) scattering processes in this many-particle system, the factor
. Vo in Eg. (16) must be replaced by the many-body
1o, o o T-matrix TMB, but in the regime of interest where the tem-
+ 580 (Nu(Nof(n)r. (10 perature is large compared to the average interaction energy,
ie., naAfh<l, this can be approximated by the two-body
We now return to the calculation of the thermodynamicscattering matrixT?6=4za%?/m and we find the usual
potential(). SinceH, is diagonal according to E@6), itis  Hartree-Fock contribution to the self-energyi> (r)
easily verified that the first term on the right-hand side of Eq.=2n(r)T?E. In addition, Eq.(17) corresponds to the gap

(4) is given by equation of BCS theory. Since this theory already incorpo-
rates all ladder diagrams, the factdg here should not be
_ - Bho replaced by the many-bodly matrix. Collecting together all
& Eg+kBT; In(1-e % (1) terms, we find for the thermodynamic potential
whereas the second term can be rewritten, using Wick’s he
theorem[9], as O=E4+ kBsz: In(1—e™ A"
> S o S o2
<H_Hl>t:J’ dr(Vo(%”T(r)l//(r»t(lﬁT(r)l//(")>t _f dr| n2(r)T28— E—lAO(rH (18)
2V
1 - - .- -
+§Vo<lﬂT(f)lﬁT(f))t(lﬂ(f)lﬁ(f))t—ﬁE(f) From this expression the free energy of the system can be
calculated directly using the thermodynamic identity
oo 1o o o e F=Q+ uN.
X)) = 5 Do) P () The equations obtained thus far are only valid when there

is no Bose condensate present. However, as in the homoge-
1 .- . - neous case, it is evident that the lowest engrgy, will go
_EAO(r)<'/’(r)‘/’(r)>t : (12 through zero at sufficiently low temperatures and at this
point the corresponding one-particle ground state becomes
Substituting the Bogoliubov transformation from E@), we  macroscopically occupied, i.e., a Bose condensate is formed.

find that Hence, this ground state has then to be considered explicitly.
WO PN)= 2 AT O+ [0 (DPINGw;) + o]} B. Bose-Einstein condensation
. (13) We now address the changes in the above equations that
are required if a Bose condensate is present. First, we con-
and sider the limitT—O0, for which all particles in the system
tend to occupy the ground state. In {teal) grand-canonical

ensemble

<¢/<F>¢<F>>t=2uj<F>vr<F>[1+2N<ﬁw,»>], (14)
Z=Trexp(—BH)]=Tr

exp — BE,— hw;blb,
where the functioN(# w;) = (b/b;);= (e#"*i—1)"* is the XF{ AEqg '8; e J”
Bose distribution function for the Bogoliubov quasiparticles. (19
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used thus far, one can calculate by standard-statistical phys-
ics methods that for anyj the expectation value Qi(u,Nog)=Eg+7woNg+ kBT;o In(1—e™#he).
(bfbfbib;)=(N)i— (N;}i=2(N;), where (N;)=~(1/ '
B)dInZi/ohw;=N(hay). In fact, the factor of 2 in the self- ne o1 number of particles is therefore given by
energy Eq.(16) ongmates_from thls property. However, at N=3(N;}=,00 /dho;=No+ =, oN(hw;). Moreover,
Zero temperature .aII particles wil tef‘d to the ground statg e largest contribution to the sum over the number of con-
and we therefore.flnd that the fluctuations in the total numbeﬁensate particles in Eq21) comes from a minimum in
of particles are given by Q,, which implies that No=0 if %wy<0 and
5 , ) 5 0<Ny<»> if hwy=0.
(N —(N) _ {No) —(No) ~14 1 :1+i (20) The expectation valu¢N3) calculated in this restricted
(N)? (No)? (Np) (N) grand-canonical ensembl@y constructioh equals(Ng)?,
whereas for the other energy level$A0) nothing has
and of orderO(1) instead of the usu&D(l/W). Hence changed compared with the results in the original grand-
the fluctuations in the particle number are as large as theanonical ensemble. In conclusion we therefore arrive at the
average itself, which leads to the conclusion that the use gfameequations for the ground-state and the excited state
the grand-canonical ensemble does not lead to an appropriatave functions as we had derived by the first method for a
description of the Bose condensed gas. gas with positives-wave scattering length: The ground-state
There are basically two ways to restrict the grand-wave function (Uo(r),vo(r)) satisfies Eq. (9) with
cano_nlcal_ ensemble and circumvent this .problem. The f|r§ﬁ2:[2n(;)_no(;)]-|-zs whereas the excited states have
one is to introduce a condensate expectation value accordlngst A3 =2n(7)T?. In addition, the condensate den-
to (bo) = VN,. Clearly, we then havéN2)=N2, and at zero '* . a e g
temperature we end up Witk =n T?® instead of Eq(16). S 0beys no(r)=No[|uo(r)|*+|vo(r)[*]+[ve(r)|* and
For nonzero temperatures the effect will be that thethe total density is given by n(r)=ny(r)
ground-state wave function satisfies Eq9) with  +3, o{N(fw))[|u;(r)|?+]|v;(r)|2]+]|v;(r)|?}. The change
i3 =(2n—ng)T?®, whereas the excited state wave functionsin expectation value(NjZ> for j=0 will of course also
obey the same equation except that molv=2nT?5. More-  change the free energy if the system is Bose condensed. Tak-
over, the free-energy density now contains the tefm ing this change into account, the grand-canonical potential
=1n2T2?8 instead of n3T?8 [cf. Eg. (18) and using Q turns out to be given by Eq18) except that the term
f=0Q/V+ un]. Thus from energy considerations, it is indeed j=0 must be excluded from the summation over states and
favorable to introduce a condensate expectation value if thg term 1fdrn2(r)T?® must be added. As a result, the free
s-wave scattering length is positivd{8>0), but this is not energy becomes
the case for negativa. As mentioned previously, it can be
shown that the thermodynamic potenti&({¢)) is a o
sombrero-shaped function with extremum |&bo)| = N, F=Mf drn(r)+Eg+kgT >, In(1—e )
which is, however, inverted with respect to tlie,) plane 170

when the scattering lengtin changes from positive to nega- ) o1 1 IAO(F)IZ
tive [8]. Therefore, the local minimum &b,) =N, that is —J drl | n(r)— =n3(r) | T?8— > ———|.
. 2 2V,
present fora>0 becomes a local maximum fer<0, and
the local minimum of the thermodynamic potential occurs at (22

(bo)=0 in the latter case. So, for a gas fi atoms, the use
of the order parametefb,) appears not to be the correct Note that the self-energy> for the ground state contains a
way to control the fluctuations in the number of condensatgerm no(F)TZB. According to Ref[12], the two-body scat-
particles. tering matrix in this term should again have been the many-
The second method to restrict the condensate fluctuationsody T matrix. However, at sufficiently high temperatures
is to mtroducg a different restricted grand-canonical en-ych thatnaAtzh<1, or even in the opposite regime if the
semble according to interaction energy between the atoms is smaller than the en-
ergy splitting of the one-particle states, i.eT?2<#%w, the
+ . i TMB i B
Zt=Tr[efﬁHt]=2 Tr[e,BEg,ﬁzj hjblb; 5bgb0’NO] many-bodyT matrix TM® can be approximated by?5.
No

C. Mechanical stability

= = BQ(11,Ng) . . L

_NEO e Ao, (21 For the homogeneous gas with effectively attractive inter-
actions, the free-energy density satisfidéon=u, and the
chemical potential © as a function of the density

where . .
n becomes multivaluedé€f/on? changes signfor smaller
densities than those needed for BEC. This is the instability
efﬁﬂt(u,No):e*BngﬁhwoNoH exd —In(1—e~#"i)]. criterium for the homogeneous system. A detailed analysis

j#0 shows that in this case the BEC transition is indeed preceded
by a BCS transition, but that both transitions occur in the
From these expressions it follows that unstable regime of the phase diagram.



54 STABILITY OF BOSE CONDENSED ATOMIC'Li 5059

~ However, in the Introduction we already mentioned thatwhere u(n.)= 5F/5n(F)|n(F-n y. If the central density is
in an inhomogeneous system a metastable condensate CA%naed sliahtly. we have’ ¢
exist if the number of condensate particles is sufficiently 9 gntly,

small, i.e.,Ny<0.573/|a| [6]. Qualitatively this can be un- an(Fong)
derstood from the fact that a collapse of the condensate ref[n(r;n .+ sn.)]=F| n(r:ng) + ———— dn.+ O( sn?)
quires that other harmonic oscillator states need to be mixed dng

into the wave function of the condensate. For this, energy is
neededVvirtually), which can be supplied by the interactions
provided that the densities in the system are sufficiently high.
As a result, when the density of the gas becomes so high that
the system will collapse, there must be some radial unstable +0(n). (24)
mode in the density fluctuations. ) )

Systems of compact objects such as white dwarfs an¥Ve thus conclude that ifJF/on.=0, then either
neutron star§17] can also be unstable for collapse underu(n.)=0 or fdron(r;n.)/dn.=0. The latter possibility is
certain conditions. Although a compact object consists ofn general the physically relevant one because it shows that
degenerate fermionglectrons, protons, and neutronand  the two density profiles(r;n,) andn(r;n.+ on.) have the
furthermore time and length scales for stellar systems cann@gme total number of particles, i.e.,
be compared with those of the Bose condensate, the physics
in both systems has interesting similarities. N -

Indeed, the final state of a star when it has burnt up all its N(Nct+ dn¢) = f drn(r;nc+ 5nc):f drn(r;nc) =N(n).
nuclear fuel is a white dwarf, neutron star, or black hole, (25)
depending on its mass. Such a compact object is formed
because in the final stages the star still radiates energy at tiée fact that two density profiles containing the same num-
expense of gravitational energy, i.e., the system contracter of particles have the same free energy up to first order
This cannot go on indefinitely, because at a certain point, théhdicates that there is a zero mode present. Roughly speak-
electrons and protons in the star become degenerate. THRg, it does not cost energy to deform the first density profile
causes an extra internal pressure and the star will come @Pntinuously into the second, which indicates the threshold
equilibrium. For a white dwarf, which has a maximum massfor instability. We therefore anticipate that the onset of in-
of 1.4 times the solar mass, this occurs at a radius of abotability occurs if the free energy has an extremum which
5000 km. In this stage the gradient of the pressure just carfonserves particle numbgice., u(n;) #0] as a function of
cels the gradient in potential energy. However, when théhe central density of the gas. So, although collapse in com-
mass of the original star is between 1.4 and 3 times the sold¥act objects and in a Bose condensate is caused by a differ-
mass, the gravitational force will be so strong that equilib-ent mechanism, the final criterion in both system may be,
rium can only be restored when almost all electrons and prosurprisingly enough, the same.
tons are squeezed together to neutrons by iny@mdecay: In
that case the star contracts to an even more compact neutron D. Hartree-Fock approximation
ﬁgi:nwﬂ]azsr:g"ﬁgfviﬁﬁgt dlveali;néﬁc?ot\rﬁz tggjﬁ:r?f'srtlgf 2;‘?;: i We have derived the equations that describe an inhomo-
support them’selves against gravitational collapse and thi eneous gas at nonzero temperatures. A convenient proce-

4 . ure to solve these equations numerically would be to start
can lead to black hole formation. To study the stability of ~ , R ) -
these systems, it is known that it is convenient to parametriz@"tr_‘ some suitable initial distribution of paruclena(r) and
all equilibrium density profiles(r;n.) by the central density &N initial BCS order parametery(r), and iterate the equa-
n. of the star and that at the point of instability the mass ofiions to self-consistency. It is, however, well knol/vn that it is
the object as a function of the central density of matterrather difficult to ensure the self-consistencygf(r) [11],

n. exhibits an extremum. and furthermore that Eq17) contains a divergence, because
In analogy, we thus expect that in the case of a trappethe interparticle potential was approximated by a
atomic gas, the onset of the instability is determined by thed-function potential. For a homogeneous gas, this divergence
condition 9F/dn.=0 and that there exists a zero mode incan easily be corrected for, but in this inhomogeneous case,

the density fluctuations at this point. To see this more explicit is nota priori clear how one has to deal with it properly,
itty, we consider the free energy function&[n], which  although it is not difficult to convince oneself that the diver-
gives the free energy of the equilibrium density profile gence can _be canceled by calcula_ting the molecular states of
n(F;nC). As a result we have two atoms in the trap. Fortunately it is not necessary to solvg
these problems here because we are primarily interested in

an(r;n
( c)5n

=F[n(F;nc>]+deu<nc> e

FIn(r;ny)+ on(r)] the .regim.enaAfh<1, where the average energyT of the
particles is much larger than the interaction energy and the
=F[n(r; nc)]+f dru(ng)on(r) effect of Ay(r) is very small. Therefore, we neglect in the
following the BCS order parameteXy(r), which in turn

means that the functiong(?)zo. So, for the uncondensed
sn(ryon(r’y+---, gas, the Bogoliubov—de Gennes equati®@nthen reduces to
the Schrdinger equation for a particle in an effective poten-

(23)  tial Veg(r) = Vex(r) +2n(r) T2,

°F

1 N
+ | drdr'————
2 sn(rysn(r’)

n(F;nC)
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h2V2 s s s .
(——+vext<r)+2n<r>TZB—M)qs,-(r):ﬁw,-(m(r) 20

2m
(26) T=0

and the free energy of the system is

M (in units ho)
s

F=Q+uN=kgT, In[1—exp(— Bhowj)]
i

05 |
- [ dine i1 [ din), (27)
_ o 0.0 . :
where the particle density is given by 0.0 500.0 . 1000.0 1500.0
0
n(F)=; |¢j(F)|2N(ﬁwj): (28 FIG. 1. Chemical potential as a function of total number of

condensate particles.

and the wave functiong;(r) are subject to the condition Eq. (26) and Eq.(30) self-consistently with the total particle

- - 5 densityn(F). The gas is assumed to be confined by an iso-
f dr|¢,—(r)| =1 (29 tropic harmonic oscillator potential
When the ground state is macroscopically occupied, the Vext(F)=%mw2f2,
noncondensed particles satisfy E@6) for j#0, and the

condensate wave function satisfies where we take forw the “average” (wxwywz)1/3 of the
4oy (nonisotropi¢ trap frequencies used in the Rice experiment

_ > S eop > [3]. This results in an energy splitting dfw/kg=7.1 nK.

( om Ve FL20() =No(r) T = a1 | o(T) Due to this simplification the density profile of the gas will

. depend only on the distance from the center of the trap.
=hwopo(r), (300 The s-wave scattering length ofLi is a= —27.3a,, where
ay is the Bohr radius[15]. We first consider the case

wheire the - condensafce density is glven_ byT=O and subsequently present results for nonzero tempera-
No(r)=No| ¢o(r)|? and N, is the total number of particles tyres.

in the condensate. The noncondensate density is

N’ (N =340l ¢;(N|?N(hw;), and the total density is A The T=0 case
n(r)=no(r)+n’(r). The free energy in this case, according
to Eq.(22), is given by

L1,
n%(r)— 3 ng(r)

In this section all particles are considered to be in the
condensate, which is the case at zero temperature. This has
already been subject to extensive research of several other

F=kBTE In[1—exp(— Bhw;)] papers, see for instance Ref§] and[16]. For a fixed num-
170 ber of condensate particlé, the lowest energy eigenvalue
| o and wave function of the Schdimger type equationi30) is
—f dr TZB+,uf drn(r). (32 solved by a numerical integration, and the density distribu-
tion n(r)=ny(r), the chemical potentigk, and the free en-
Note that forT=0, i.e., all particles in the ground state, Eq. €"9Y F are determined from this solution.
(30) corresponds to the nonlinear Sctimger equation In Fig. 1 we plot f!rst of-all,u as afunct|on.oN0. If there
(NLSE), studied, for example, by Rupreckt al. [6] and  are onlyaa fev_v particles in the condensaiejs seen to b_e
first derived by Goldmaet al.[14] in their pioneering work ~€qual tO_zf'lw, 1.e., the ground-state.energy of a part|cle_|n a
on spin-polarized atomic hydrogen. In addition, note thatharmo_nlc oscillator. However, a4, increases, the effective
Bergeman [13] in his analysis uses Eq(26) with  Potential Veg(r)=3mw’r®+n(r)T?® grows deeper and
T28 replaced byT28/2 for both the condensate and the ex- deeper in a small range around the center of the trap since
cited state wave functions, which corresponds to the Hartre& i negative, which pulls the particles more and more to
approximation. Although this gives correct results at zerothe center of the trap. This decreases the value of the ground-
temperature, this is no longer true for nonzero temperaturegate energy and consequently also the chemical potential. As
because it does not properly take into account the mean-fielgn be seen from the figure, fbi;>1241, a solution cannot

interactions due to the noncondensate part of the gas. ~ be found anymore, indicating that the condensate becomes
unstable. The maximum number &g ,,=1241 corre-
Il RESULTS sponds well with the conditioMg ,,.,=0.573/|a| found by

Ruprechtet al. for the appropriate trap parametéfs.
At this point we have all tools available to study the sta- The free energy given by E€31) is plotted as a function
bility of atomic ’Li for temperatures obeyinga_Atzh<1. As  of Ny and as a function of the central dengityof the gas in
mentioned previously, this is done numerically by solvingFigs. 2 and 3, respectively. Notice that the derivative of the
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FIG. 2. Free energy as a function of total number of condensate r (cm)
particles.

FIG. 4. Comparison between exact density and

free energy with respect to the number of condensate par,°ds({) above the critical temperature fél) u=—rfw, (2)

ticles exactly reproduces the chemical potential, i.e.u=—10khw, and(3) u=—-25w.

u=JFIJdN, showing the consistency of our calculations.

From Fig. 3 it follows that the free energy as a function of part with densityny(r) =No|#o(r)|?, as well as a noncon-

the central density approaches a constamximurm value.  densate part with densitry’(r)=EJ-¢ON(hwj)|q5j(r)|2. So,

This is also shown in the inset of this figure. So, as anticithe calculation of the chemical potential and the free energy

pated in Sec. Il C, the instability appears at an extremum ofow consists of two parts which correspond to the use of the

the free energy as a function of the central density of the gasgnrestricted and restricted grand-canonical ensemble, respec-

cloud. If the density increases further, the gas will collapse tdively. In the first part we increasg from —o to some

a dense state. With the theory presented above we cleartpaximum valueu,,,, above which there are no longer any

cannot describe the gas beyond this point, for we would neesdolutions. In the second part, on the other hand, we increase

a theory that can describe the system also at high densitieghe numbeN, of particles in the ground state and then de-

termine . from the ground-state energy of the trap using

thatf# wy=0. Note that in this second part the chemical po-

For nonzero temperatures the particles in the gas OCCuptential decreases again, because the increasing. density _of the

the harmonic oscillator states in E@6) according to the é’ondensat_e lowers the groundfstate energy. Th|s.behaV|.or of
o : : . the chemical potential explains why no solutions with

norma! Bosg d.|str|but|on at a given chemical potential. How- > tma COUI be found in the calculation with the unre-

Sver, It is increased from—c» to some value below pinaq grand-canonical ensemble. The two parts of the cal-

zfiw, the number of particles in the ground state starts Qulation join smoothly together within an error of the order

B. The T#0 case

increase dramatically, and we can only put more particles i 0 L
the system by forcing them into the ground state. At thisrg]c é;; al/emay Where the condensate fraction is of the order
point, Ziwo equals zero and the gas consists of a condensate At nonzero temperatures the density profiles of the gas are
determined by calculating all energy levels and correspond-
ing eigenfunctions up to I@T. Since the ideal 3D harmonic
oscillator energy levels are given by, ,=(2n+I
xio® b T=0 ] +3/2)hw, wheren and| are integers, this corresponds to
taking as many a$1/2(1kgT/hw)]? levels into account.
" 1500 Clearly, this number increases rap.idly as a function of tem-
' perature. When the number of particles in the ground state is
small (typically corresponding tu=< —%w), Eq. (26) was
1x10™ Z used to calculate all wave functions and Ezj}) to calculate
500 the free energy. For larger values @f the ground state was
o = determined by Eq(30) and the free energy by E31). To
0 210" ax10” check that our results are consistent, we first compare in Fig.
Contral density  (cm') 4 the density profile above the critical temperature with the
0 2x10" 4x10" prediction of the local-density approximation, i.e., with

Central density n, (cm”) 3 28
n(r)=UAngsp(expBlu—V(r)—2n(r)T1}).

Fik,(K)

5x10°

(1/ky) 9F/on_ (Kem')

FIG. 3. Free energy as a function of the central density. The
inset shows that the derivative of the free energy with respect to thd e agreement is good for large and negativebut for
central density approaches zero at the point of instability and that a¢t=—% w, a deviation becomes visible around the center of
this point the number of particles as a function of the central densitghe trap, indicating that the critical temperature is ap-

exhibits a maximum. proached.
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FIG. 5. Free energy as a function of the central density for
T=50 nK.

FIG. 7. Normal densityn’(0) in the center of the trap at the
point of instability of the systerfdashed ling The solid line shows
Ngec=2.612/A3, The inset shows the number of noncondensed

In Figs. 5 and 6 the free energy is plotted as a function oparticles as a function of temperature for the harmonic oscillator
the (total) central density of the gas af=50 nK and with (dashed and without(solid) interaction, which is given by
T=100 nK, respectively. We again checked thatN’=1.202ksT/fhw)>.
u=dF/dN as required. The inset in both figures shows a
magnification of the local minimum in the free energy curveacurately increases very rapidly and thus slows down the
wherey goes through zero. This is not a point of instability calculation considerably. To avoid this, for temperatures
of the system because small variations in the central densityigher than 150 nK we make use of the fact that only the
do not conserve the total number of particles. The point otowest wave functions of the harmonic oscillator states are
instability occurs again where the free energy approachesiafluenced by the interaction term ngr)T?® or
local maximum. Note that the maximum densities in the cenf2n(r)—ny(r)]JT2® for the ground state, and the wave func-
ter of the trap that can be obtained are orders of magnitudgons of the higher states are unaffected, although their occu-
higher then those for a homogeneous trap. In the homogegpation numbers change, due to the fact tpaequals the
neous case, collapse occurs already at densities smaller thground-state energy if there is a Bose condensate present.
Ngec={(3/2)/A3=2.612/A3, For T=50 nK this corre- In Fig. 7 we plot at the point of instability the normal
sponds tongec=1.07x 10 cm ™3, and forT=100 nK we  density of the gas in the center of the traj{0) as a func-
have ngec=3.04< 10! cm™3. Note, furthermore, that the tion of temperaturédashed ling and compare this with the
interaction term{ 2n(r) —noy(r)]T28 in the effective poten- density nBEC:Z.fSlZ/A?h (solid line required for BEC in
tial Vi(r) of the ground state becomes in the center of thehe homogeneous case. In the inset of the same figure, the
trap as large an . T?6=—5hw. number of noncondensed particles as a function of tempera-

Next we take a closer look at the point of instability of the ture is plotted(dashed ling and this is compared with the
system when the temperature increases. As was pointed ousual criterion for the onset of BEC in a noninteracting gas,
before, however, the number of harmonic oscillator statese., Ngec=(3)(kgT/hw)3=1.202KkgT/%w)? (solid line).
which have to be taken into account to calculate the densitAs expected, the consequence of the attractive interatomic
interaction is that the noncondensed particles are pulled to-
wards the center of the trap. The solid line in Fig. 8 shows
the maximum number of condensate particles as a function
of temperature. Clearly, the occupation of the condensate at
the point where the gas becomes unstable decreases when the
temperature increases. In RET] it was argued that an in-
crease in temperature woultbt lead to a decrease in the

15x10% | T=100nK

Flk, (K)

2.5x10" |

-3.0x10™

FIG. 6. Free energy as a function of the central density for

T=100 nK.

2.0x10" |

Flk, (K)

-3.1x10"
0

2.9x10*

_

5x10"

Central density n, (cm'j)

L

0

1x10"

2x10"

3x10"

Central density n, (em™)

ax10"

maximum number of condensate particles since the noncon-
densed density is approximately constant over the extent of
the condensate wave function and therefore only shifts the
effective potentiaM(r) by a constant. If this is true, the
observed decrease can only be explained by the noncon-
densed part of the gas becoming unstable before the conden-
sate holds the maximum number of particles. This might also
be physically reasonable because the contribution of the nor-
mal part of the gas to the total density increases everywhere
and especially around the center of the trap.

In view of this we want to try to answer the question
whether it is the condensate @s in the homogeneous case
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FIG. 8. Maximum number of condensate partic(eslid line). ¢ (cm)

The dots denote the maximum condensate at fixed normal part, and
the open circles give the maximum occupation of the condensate ris o cCondensate densifyight scal¢ and effective potential

that can be calculated from the effective oscillator strength due Qieft scalg for T=0 (solid lineg and T=300 nK (dashed lines
the presence of the noncondensed part of the gas.

the noncondensed part of the gas which causes instability. creases the' oscillator strgngth of the trap potential when the
mperature increases. Since the maximum condensate size

course, for zero temperature the condensate becomes urf- . ) . .
stable, and we expect the same for such low temperaturé\é0~ma><°c”|a|“1/‘/5' an increase in the effective oscillator

that the noncondensed part is only a small fraction of the gaStrength felt by the condensate causes a decrease in the maxi-
For higher temperatures this might change since the numb&Um condensate size. A measure for the deviation of the
of noncondensed particles increases very rapidly as a fun&ffective oscillator strength from the original strengahis

tion of temperature. To analyze this issue, we calculated i@iVEN by the expression

the temperature interval<9T<400 nK the density profiles

of the condensatey(r) and the normal part of the gas fdF{Vext(r)+2[n,(r)_n,(o)]TZB}n0(r)
n’(r) at the spinodal point. The condensate fraction 2 — 02

No/N decreases from 1 folT=0 to about 0.005 for eff dF '
T=400 nK. Subsequently, we try to add particles to the con- f Vex(F)No(T)

densate, and try to find a new solution to the nonlinear
Schralinger equatior(30) for the increased number of con- and for nonzero temperature we thus estimate that the maxi-
densate particlesyhile keeping the noncondensate densitymum number of condensate particles is given by
profile fixed.

The results are also plotted in Fig. 8: The dots in this [
figure denote the maximum number of particles that can be No,max T)=No ma{ ) wer(T)’
in the condensate given the noncondensate density at the
temperature of interest. For temperatufes50 nK, the sys-  For T=300 nK this amounts t® ;,,,(300)=1174.5, which
tem becomes already unstable if only one particle is added tgorresponds rather accurately with the value 1173 from our
the condensate, from which we draw the conclusion that afyll calculation. For some other temperatures the maximum
this temperature it is still the condensate which renders thgccupation of the condensate determined in this way is de-
instability. For higher temperatures, it is possible to add anoted in Fig. 8 by the open circles. We can conclude that the

few particles to the condensate, but this appears to be thgrowth of the normal part of the gas occurs at the expense of
result of numerical inaccuracies in our calculation. We thushe condensate when temperature increases.

conclude that the condensate is unstable at the point of in-
stability of the whole system.

Because of this result, we suspect that the simple argu-
ment that the maximum number of condensate particles re- We performed a numerical calculation to study the stabil-
mains constant because the noncondensed part of the gasitis of a Bose condensate in a trapped gas’bf atoms at
approximately constant over the extent of the condensateero and nonzero temperatures. This was done by determin-
wave function, may not be sufficiently accurate in this sys-ing all quantum states for particles in a harmonic oscillator
tem. The only difference in the condensate wave function afrap and interacting via two-body scattering. The proposed
different temperatures arises due to the contribution of theriterion that the gas becomes mechanically unstable when
term 2n'(r)T?® to the effective potential. In Fig. 9 we plot- the free energy of the system as a function of the central
ted forT=0 [and consequently’(r)=0] (solid lineg, and  density of the gas approaches a maximum value, is con-
for T=300 nK (dashed lines the effective potential firmed by the calculations.

Vei(r) = 1/2mw?r?+2n'(r)T?8 and the corresponding con- For zero temperature, the maximum number of conden-

densate densitiegg(r). When Vg4(r) for T=300 nK is  sate particles is in agreement with previous calculations, and
shifted upward such that the zeros of both potentials coinfor nonzero temperature this number decreases considerably.
cide, it is clear that the normal part of the gas effectivelyThis is due to the fact that the condensate experiences an

IV. CONCLUSION
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effective oscillator strength due to the presence of the non- y()
condensed part of the gas. This effective potential increase%—

as temperature increases and therefore results in a decrease
of the maximum occupation of the condensate. For the tem-
perature interval & T<400 nK the condensed part of the
gas renders the instability at the spinodal point, so in contrast
to the homogeneous case, the normal part of the gas remains
stable against density fluctuations.

Furthermore, from the results in Sec. Il B and the discus-
sion in Sec. Il B, it can be concluded that at low tempera-
tures it seems necessary to include also many-body effects
in, e.g., the scattering length, since the average interaction
nT?® becomes substantially larger than the energy splitting
fiw. To do so appears to be an important challenge for the
future which is not only difficult in practice but even in
principle due to the presence of infrared divergences in the
theory of the dilute Bose gdd8]. Closely related to this
issue is the effect of the BCS transition on the properties of
the gas, which still needs to be incorporated in the numerical
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calculations. Once the experiments enter into this low temgEquating the whole expression to zero, and grouping to-

2

perature regime wheneaA > 1, it should be interesting to gether the terms proportional to the derivative of an expec-
compare the experimental data with the mean-field analysigtion value with respect té63., the solution is seen to be
presented here, and to see if possible deviations can be ugiven by Eq.(16) and Eq.(17), if we can prove that

derstood by the above mentioned corrections. This is of
course not only true for'Li, but also for any other atomic §E

species with a negative scattering length suc®&b and 775

125Cs.

d

hw .
+ 3 Niho) T2 [ iy Puin-o. ()

This is most easily achieved by assuming that all func-
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Lohw; N J IR
-> [Jdrahzlujz(r)+hwjmf drvjz(r)].

| (A4)

The derivativedh w;/dh% can be calculated by perturbing

APPENDIX

To calculate the minimum of the grand-canonical poten-
tial Q of Eq. (4), it is convenient in the following to intro-
duce a compact notation for the inner product of two states.
From Eq.(8), it is found that the normalization can be re-
written as

1=J dr|u;()[2=[v;(N)]?]

the Hamiltonian according to

Sh3, 0 )

5H:( 0 —ohS

The energy shift iM w; is then, to first order, given by

5ﬁw;=(i|5H|j)=f drlu?(r) +v(r)]h3,

and therefore

. . (1 0} [y
=Jdr(u}*(r),—uf(r)) RETAES
j

=(j[1), (A1)

T
5h—“2”=f dr[u2(F) + v (). (A5)

Using furthermore thafdr[u?(r)—v?(r)]=1, it is found

that

which thus defines our convention for the inner product.

We start with the derivative di} with respect tdi 3. For
simplicity we consider here only homogeneous variations of
h3. Itis straightforward to generalize this to inhomogeneous
variations. The same will apply later on for variations in
Ay. The derivativedQ/dh2 is given by

1

> >, 5h(1)]
f drvj(r)=§

s ) (AB)

so Eq.(A4) can be rewritten as
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ahw] aﬁwj 1 azhwj At the same time the derivative of) with respect to
_aﬁE == —2 RS &hZ - 52 O ons? Ao must be zero. That this is also the case can be shown by
a similar calculation. Assumind, u;, andv; to be real,
|
=> fdrvjz(r)JrEZ [1—(
J ]

&ﬁwj>2 r?zhw,- the equatiorvQ)/9dA,=0 reduces to

ghs | TGRS
JE how; 1 1
A7 -} Nt R ity =
(A7) 7a, t 2 N o= 5 (=5 (v =0
The factor between brackets is zero. This can be seen by (A10)

first applying a Taylor expansion to show that the energy

5 Using Eq.(A6), the first term on the left-hand side is equal to
St = s+ = T s )2 (o3 )3
TS 2 grs2 (Oh2)"+ O((GR2)%).
9E, [ahwfd 2(F) J'd 2 )]
— = rof(r rof(r
Therefore, the last term between the brackets in(Ed) can AN dAg Ui “19A, U]
be identified with twice the second-order energy shift. Mak- )
ing use then of the standard expression for this second-order __ EE dhw; ((97“"1' ) b J ﬁ“’l
energy shift 29" | 9Ap | 9hX NS R
(J|5H|l)(l|5H|J N (ALD)

Sthw;=(j|oH|]j )+2 , (A8)

—h w;
' As in the previous calculation, the first and second deriva-

which still holds with our definition of the inner product, we fives of fiw; with respect toAo and#X can be calculated
obtain by perturbing the Hamiltonian according td=Hg+ oH,
with

>

J

ﬁﬁw] 2 ﬁ 52ha)j
“\ons ] TMCigRs?

ShY A,
oH= —6Ag — K3

‘9"'2 ’J) The energy levels then shift to second order according to
oh

-3 | a-[ifzl

[ aH [V ] oM | _hw; ﬁJ 1‘92h 2
IEED
—2h
e o hen o, ———L Sh35A 7ho J5A2 Al12
gH |2 2 aﬁEaA NPTy (A12)
=2[1—(J(—m) J|-o

Comparing this again with the perturbative expression for
where the third line follows from the completeness of thethe energy shift EqtA8), we find that
eigenstates of the Bogoliubov—de Gennes equation and from
the fact that if we write 2o0;=(fhoj—fo) oho;  (j|oH[}) _(_

+(hw;+hiw;) only the antisymmetric part contributes. Fi- AT A
nally, we also need that 0 0

M —2fd* Noi(r). (A13
I9Toj = ruj(rjvj(r). (AL3)
oH 1 0 Moreover, the second order derivative in E§11) can be
s o =1/ written as

Collecting all terms together we thus indeed find tfsete ﬁzﬁw].
Eq. (A3)] PINY IS

JE
aﬁ2+2Nh“’)aﬁ2 fdr(w (D40 ( oM )( oM ) ( oM
< Wane' ez )T s
=f dF; {02(N) +N(fw)[UA(r)+0v?(1)]} & hoj—ho;

Il

(A14)

_f dF(‘:”T(F)‘/’(F»t:O' (A9) Therefore Eq(Al11l) becomes
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JH JH which completes the proof.
&A { J dru; (r ( IA- j ( S ) To gain even more confidence in our expression(ioit
0 0 is useful to see whether
- ——X||jl=li|li| ==<1i .. -l 29
27 ho;—ho; A, Ih2, N= [ drn(r)= [ dr{( (") y(r)=——
I s AT g
o] 2L ) 2R (AL7)
ohz dAg _ - _ , :
is satisfied. To prove this, we first notice that
_s deu»(F) -(F)—EE | IH H | n2(r)= (A3 (r)/2T?®)2 and that according to the matrix
; ithv; 44 ] dAg R, ] form of the Hamiltoniar{cf. Eq. (9)]
| aH H | how;,  Jho; AlS
T s aa, | s (A19
_ - s Therefore, we can make use of our previous results in Eqgs.
—; f dru;(r)v;(r), (A15)  (A5) and(A7) to obtain
i Q) JE I w;
since o35 =—9+N(hwj) wj
H [0 1 H (10 lnzala, M "
ah, =1 o gz Tlo —1) [ N ) }
[OF
Combining all results, Eq/A10) becomes o " oR3,
7, =3 [ 4t O+ o (DI
_Z — gttt - i j
IV N(y) 7 M <wf>t <¢ % ]
o 1 XN(fhw;)+v;(r)]2}
=3 [ diuy (o (1 2NGhop1— 5 () o
] —f drn(r),
_ E<¢T¢T> =0 (Al16)
2 vt as desired.
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