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Condensate fluctuations of a trapped, ideal Bose gas

H. David Politzer
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(Received 11 June 1996

For a non-self-interacting Bose gas with a fixed, large number of particles confined to a trap, as the
ground-state occupation becomes macroscopic, the condensate number fluctuations remain microscopic. How-
ever, this is the only significant aspect in which the grand canonical description differs from canonical or
microcanonical in the thermodynamic limit. General arguments and estimates including some of the vanish-
ingly small quantities are compared to explicit, fixed-number calculations fof—10° particles.
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I. INTRODUCTION tion. In current experimental work on the trapping and cool-
ing of bosonic atoms, there is typically no diffusive particle
Large fluctuations are a salient feature of the thermal beer thermal energy reservo[d—6]. While the atoms most
havior of systems of bosons. For examplenifs the mean certainly interactN+«. Hence, one can ask about the sys-
number of noninteracting particles occupying a particularem as a whole rather than only describing densitieten-
one-particle state, then the mean-square occupation fluctugive quantitie which are really just subvolumes in diffusive
tion isn(n+1). This is easily derived in the grand canonical and thermal equilibrium with theiimuch larger surround-
picture by considering diffusive equilibrium with a particle ings. For subvolumes of an infinite systemandT give an
reservoir characterized by a chemical poterftid! If, how-  appropriate description. However, for a finite, isolated sys-
ever, the system hasfixedtotal number of particledl con-  tem taken as a whole, which has a greater impact on the
fined in space by a trapping potential or container, then atondensate fluctuations, the particle interactions or the con-
low enough temperatur& or fixed total energyE when a  straint of fixed totalN? The answer depends on the density
significant fraction ofN are in the ground state, such large realized in the particular situation. A practical distinction of
fluctuations are impossible. No matter how lafgethis as- a gas from a liquid is that the density can be easily varied
pect of the grand canonical description cannot be even amver many orders of magnitude. In the first successful experi-
proximately true. This paper addresses wiagshappen for ments[4], there are noticeable effects of interparticle repul-
fixed largeN asN— oo, sion; and many of the more detailed observations currently
A decades-old answer to this question is that any interacanderway require a mean-fielalbeit weal description of
tion between the particles would eliminate such large flucthe interparticle scattering length to reconcile theory with
tuations, even in the presence of a chemical potential. With abservations. Nevertheless, it is possible to imagine ap-
weak interparticle interaction and a chemical potential, flucproaching Bose condensation with a box or trap so large and
tuations in the occupations of various states are only weaklgdensity so low that the effects of a given interatomic inter-
correlated. Therefore, the fluctuation in the total number ofaction, characterized by a fixed scattering length, are negli-
particlesnot in the ground state is microscopic. Hence, agible, even for density fluctuations of the order of the equi-
macroscopic condensate fluctuation would mean a macrdibrium density.(An estimate of the requisite relation of the
scopic density fluctuation. Even if the particles interactscattering length, trap parameters, and density is given in
weakly, this would mean a macroscopic energy fluctuationAppendix B) Even though the Bose-Einstein transition tem-
The consequent macroscopic rise in free energy would supperature decreases with decreasing density, the total energy
press the fluctuation(See Appendix B for a more formal shift due to a weak fixed-strength interparticle interaction
sketch of this argumentThus, with interactions producing a decreases faster. Also, the actual interatomic interactions
finite compressibility, the equivalence of the three standardnay not serve to stabilize anything. Rather, the gaseous state
statistical ensembles is assured in the thermodynamic limitnay itself only be metastablgs]. In such situations, the
and the computationally convenient chemical potential carequilibrium statistics of the ideal gas are certainly a better
still be used for isolated, large systefit§. In the context of  starting approximation than the equilibrium statistics of the
Bose liquids, the ideal gas is a theoretical curiosity. Largdnteracting system.
condensate fluctuation is only one of several features for After a summary of a variety of potentially confusing is-
which ignoring interactions gives qualitatively incorrect re- sues(Sec. I), a thoroughly elementary analysis of the prob-
sults[3]. lem (Sec. ll) suggests that the condensate fractional fluctua-
This argument does not address the question of wbas  tions vanish with increasiny, but all other significant grand
happen to condensate fluctuations of the ideal Bose gas. Futanonical predictions have vanishing corrections. This is also
thermore, this is not a totally idle or purely theoretical ques-sufficient to establish the equivalence of using either fixed
T or fixed totalE to characterize the system for lariye The
proposed picture provides an explicit predicti@ec. IV) for
*Electronic address: politzer@theory.caltech.edu the condensate fluctuation as well as the values of observ-
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ables, e.g., two-level correlations, that are identically zero 1

with a chemical potential but are induced by fixiNg (With Ni=gm—mm—q- (1)

a natural normalization, such functions are vanishingly small

asN—.) The results of a numerical evaluation of the ca-wjith the chosen zero of energy,

nonical partition function and related functions fidr from

10% to 1P (Sec. V) confirm these predictions. Some obvious T 1

conclusions are offere@ec. V), while comments on details e =1+ N_Oz)‘ @

of the numerical work are left to Appendix A. Appendix B

outlines the simple estimate of the condensate fluctuatiofdefining the fugacityn, to be used latgr Once Ny>1

damping due to repulsive interactions, which allows a com{which may still be forNy<<N), the explicit fixedT N, de-

parison with the effect due to fixinly. pendence oN;-, is O(1/Ny). The expression for the ex-

pected total number of particles with>0, N, and how it

depends onu is determined by the density of states. For an

isotropic harmonic oscillator potential in three dimensions
It is only the noninteracting particles in the ground statewith level spacinge,

of a trap or confining potential that do not satisfy the hypoth-

eses of the standard demonstrati@hof the equivalence of Ne=(3)(T/e)® ()

the grand canonical and canonical ensembles in the thermo- .
dynamic limit. Hence, the questions raised here only arise iftS long atNe<N andT/e>1[8]. Under the latter condition,

the ground-state occupation is macroscopic. At ultralbw f[he asymptotic behavi(_)r of the. sum over states i.s given by an
when almost all particles are in the ground state, the conderﬂ'jtegr"i':[5(3)%1'202 IS the_ Riemann zeta functigfunder
sate serves as a particle reservoir for all the excited statefl€S€ circumstances, the fix@deorrections to Eq(3) are

and so some form of the grand canonical description for: (IMNo). Thg root-mean-square fluctuation of any occupa-
excited states should be valid in that domain. But what about®" number is precisely
intermediatel’s? |Is the inequivalence of chemical potential N YT TR
and fixedN limited to the size of the ground-state fluctua- AN;= VNi(N;+1).
tions? If the condensate manifested the boson propensity fqfo; the isotropic oscillator, this implies
large fluctuations and there wesay macroscopic fluctuation

in the condensate number, it would have to be accompanied T

by correlations between the various occupation numbers. ANe= ‘\IF(T/f)E’; )
(Such correlations are identically zero for the grand canoni-

cal ideal gag.There need not be any macroscopic fluctuationgy A N /N ~O(1/\/N—). The corrections to Ed5) for x not

in the average density because the total number is fixed. Yeéxactl§ 7610 are agaeiﬁ)(llNo).

larger than anticipated excited-state fluctuations and correla- 1.4 s ccess of using @ to characterize a system with a

tions might lead to larger fluctuations in the tolalat fixed 506 pyt fixed total number of particlés relies on the fact
T. And were this the case, the equivalence of fixB@Nd 4t each individual energy level is a system in diffusive

fixing T might be Iqst .in the.thermodynamic limit. . equilibrium with the much larger remainder of the total sys-
Chemical potential is not just a calculational conveniencegm This remainder acts as the single level’s particle reser-
There is really no practical alternative for analytic calcula-,q;, OnceN, is not much less thaN, the utility of 4 is no

tions because not much is known directly about the large bypnger clear. Certainly there exists no yet-much-larger par-
fixed N asymptotics of the canonical or microcanonical Par-iicle reservoir for the ground state.

tition functions, even for systems as simple as the ideal Bose Referring back to Eq(1), onceN, is large, the only role

gas. If this. analytic tool were Iost,'theory would be reduced ¢ (o particular value oft is to determineéN,. TheN-, are
almost entirely to numerical techniques.

insensitive tox or Ng. So, if we consider each individual

excited level withi>0 as a system in contact with the res-
ll. FIXED- N STATISTICS ervoir of all the other levels, we need not know exactly what
the chemical potential actually is, only that it is nearly zero.

The resolution of these conundrums lies in the observap, act. there need not be any precise meaningtonly that
tion that the grand canonical excited-state occupations in thg g n'early zero. It may be impossible to dis,entangle the

thermodynamic limit are independent of not only the con-gfacts of “4#0" from other 1N consequences of fixing

densate fluctuations but the condensate occupation itself.q totalN. From this perspectivé\, is determined not by a
Hence, if the behavior of the excited-state occupancies cay) ¢ by N andN,:
ot

be reliably estimated using the concept of a chemical poten-

tial, one can deduce the behavior of the condensate from the No=N-—N,. (6)

constraint of fixedN. This argument is really just a minor

extension of the traditional one used to compute the conderHowever, this is precisely the same valueNy that is de-

sate fractio{7,1]. In particular, it goes as follows. duced from Eq(1) whenN is interpreted as an expectation
Leti label the one-particl¢or trap states anad; be their  in the presence of an external

energies. Také=0 to be the lowest energy level, and take At the level of occupation expectations, the assignments

£;=0. In the presence of a chemical potentiglthe mean given by Eq.(1) for i>0 minimize the total free energy

occupation numberhl; for noninteracting bosons are (energy minud X entropy irrespective of the actual value of

Il. POTENTIAL ISSUES
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Ng or N as long as\, is fixed. This is because adding or AN, 1 (T/T,)3? a2 |12
removing particles from the=0 condensate changes neither — == 3< ) 11
the energy nor the entropy of the entire system. Hence, for No YN 1=(T/T)*164(3)

large Ng, the occupation numbers foe>0 are unchanged » _ . .

from their grand canonical values if, instead of being deter- A set of quantities that are of interest in the calculation of
mined by a diffusive equilibriumN is fixed at some value the angl:JLIglr depenﬁence 0{ I'grl]t scatterlqg off cold, trapped
and Ny is large. Once there is a condensate, the only thin§toms [10] are the two-level occupation expectations,

that can change as particles are added at fixesiN. _nini>' (I use_the hotatiom; for th_e actgai th level occupa-
tion number in a particular configuration of the thermal en-

The total expected enerd§e) at fixedT depends only on bleL In th d ical vsis of an ideal B
the i>0 occupations. Thus canonical and grand canonicaif’r?m € n ne gran par;omca analysis o elml ia 0S€ gas,
evaluations of the total energy must agreeNas . For the €se are given precisely UN'iNi.' In particular, there is no
isotropic harmonic trap, correlation k?etwegn the f_Iuctuatlons in one level and anpther.
However, withN fixed, this cannot be exactly true. A refine-
- 4 ment of the argument of the previous section allows one to
<E):%T4e’3=30 3 TNe. (7)  estimate the leading behavior of these correlations. As an
£(3) example consider the two states with the largest fluctuations,
i=0 andj=1, because their fixell induced correlation
must, therefore, be the largest.
At fixed N, if ng fluctuates down, say, them, must fluc-
H(E) tuate up by an equal_amount. The impact onnhg) can be
AE= /T2 =L (8) estimated by computing the particular expedigdjiven that
al N, is larger than its original equilibrium value by the nega-

] ) ) ) tive of thei=0 fluctuation. This implieqwriting An; for
the equivalence of the canonical and microcanonical enﬁi_<ni>)

sembles is assured as long abl,—> because

Since it is a canonical ensemble identity that the root-mean
square total energy fluctuation satisfies

AE/E~O(1/4J/N,). (This is true for any trapping potential, 5 8(ny) o[ dNp/dx
not just the explicit example given. (AngAng)=(Ang) 5(ng) =(An)| — gNCTdn NoJdx )

(12
IV. FLUCTUATION ESTIMATES
The fugacity\ is defined by Eq(2). For the isotropic, har-

. From the dlscus_smn above, it 1S expected that all OCCUPEonic trap in the thermodynamic limit, this can be evaluated
tions approach their grand canonical valueplasx, even if

) . to give (with the natural normalization factdd,N
either or bothN and E are fixed. One can go further and give ( oN1)
estimate the leading behavior of various quantities that van- (AnoAny)

ish in this limit. As examples | consider the condensate fluc- NN 72/3?/;')3 (371 13
tuations and the occupation correlations between levels. 01 ¢
As long asNg<<N, the root-mean-square fluctuation in the
condensate number,AN,, satisfies Eq. (4). Once V. NUMERICAL EVALUATION
No~O(N), Eq. (6) implies OF THE CANONICAL ENSEMBLE
ANg=AN,. 9) The canonical partition functio(N,T) of a trapped,

ideal Bose gas can be represented as

The crossover between these two behaviors is an example of o o

the .p_henomena th_at_ make a direct apalysis_of the fixed- Z(N,T)= if” dz dVz ][] 3 e Mmem/T-innz,
partition function difficult. It is appropriate to introduce the 2w ) m=0 np=0

“critical” temperature T, given by the point at whiciN, (14
reachesN or, rather, at whiciNy goes from macroscopic to

microscopic. For the isotropic harmonic potential, E8) wheren,, is the number of particles in the state labeled by

implies m with energye,,. The integral over implements the con-
straint N=2n,,. For the isotropic harmonic potential in
T.=NY3;(3) 3¢, (10)  three dimensions, it is convenient to etlabel the energy
levels e,=me, with the associated degeneracy &fm
As N increasesT . remains fixed in absolute, physical units +1)(m+2) form=0,1,2,. ... Theinfinite sums over occu-

only if the trap size is increased, e.g.decreased. The tran- pations can be done explicitly. Occupation expectations and
sition occurs when the central density in the trap reaches theorrelations can be represented similarly by simple modifi-
infinite volume critical valu¢9]. In terms of the natural tem- cations of the integrand, i.e., extra weight factorsnpfor
perature variable for the study of Bose-Einstein condensaan; . If one truncates the infinite product over energy levels
tion, T/T., the transition between E¢4) and Eq.(9) takes m at some finiteM ., this yields a form that can be evalu-
place in a vanishingly small interval &— oo. ated numerically. One can study the convergendd ito test

In the thermodynamic limit witiN, Ny, andN, all very  whether the asymptotic values of thermal expectations have
large, Egs(3), (5), (6), (9), and(10) can be combined to give plausibly been reachedUseful numerical strategies and
a simple estimate of the leading behavior: some details of the evaluations are provided in Appendjx A.
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FIG. 1. CanonicaNy/N for N=1C?, 10°, 1¢%, and 16 (solid Eb
lines), grand canonicaNy/N for N=10 (small dot3, the grand SUE
canonicalN—c limit (large dot$, and the normalized canonical Z.
condensate rms fluctuatioridashed linesfor N=1C?, 1%, and
10 vs T/T,.
. . I \ |
Figure 1 shows the results of calculationsNy. In par- 0-000010 /T L0
ticular, the solid lines are the numerically computed values ¢ ’

of Ng/N for N=10?, 10°, 10*, and 16, plotted versus _ _ _

T/T., whereT, is given by Eq.(10) appropriate to each FIG. 2. Comparison of the canonical and grand canonical values
N. El',he dottedc lines are grand canonical predictions fOIJ‘or No as fractional discrepancies on a logarithmic scale for
N=10? (small dot and theN—ss limit, 1— (T/T,)® (arge N~ 10 10% and 18 vs T/T.

dots. Note that the grand canonical predictions were comcanonical—canonical discrepancy decreases only very slowly
puted assumsover states using Egél) and(2) and involve  with N. The sign and shape of the difference are such that the
no approximations regardiny. The comparison of the two canonicalN, does not rise quite as sharply as the grand
statistical ensembles is made by identifying the value of theanonical, but the width of the relevant region®fT, van-
grand canonica(N) with the precise canonicl. The ca- jshes with increasingl. Above T, the distinction between
nonical numerical calculations clearly approach fte->>  fixing N and fixing « has rapidly vanishing consequences.
grand canonical form as a limiting value with increasMg The dashed lines in Fig. 1 are the results of a numerical
For intermediate values of/T., e.g., 0.6, thefractional  evaluation of the canonicalNy/[ Ng(No+ 1)]Y2 versus the
discrepancy between the canoniddlandN—c , i.e., dif-  sameT/T.'s for N=10?, 10°, and 16. For T=T,, this ratio
ference divided by value, appears to be decreasing roughly approaches 1, in agreement with the grand canonical4tq.
N~ However, forT<T_, it goes to zero, more dramatically with
The differences between canonical and grand canonicahcreasingN. These samé N, data are plotted again on a
values for N, are displayed in another way in Fig. 2. |ogarithmic scale as the solid lines in Fig. 3. The dotted lines
The fractional discrepancy between the two evaluations igre plots of Eq(11) for the same values dfl. As long as
plotted for N=10%, 10>, and 10 versus T/T.. Here, neitherN, nor N, is too small, Eq(11) clearly captures the
“fractional discrepancy” meansNg™" ®"Mea NG/ N and T dependence oAN,, and the agreement improves
Ngrand canonical At yery small T/T,, all evaluations give with increasingN. In particular, the fractional discrepancy
No/N very near to 1. So the ratio plotted in Fig. 2 plummets,between the canonical and E(@L1) values appears to go
but it is not an effective way to characterize the differenceroughly asN %25
between fixed\ and fixedw. (For that region, a more infor- The canonical, normalized, fluctuation correlation,
mative variable would béN;.) For intermediate values of —(AngAn;)/NgN;, is plotted(solid lineg on a logarithmic
T/T., the curves of Fig. 2 decrease roughlyds!'® So, scale versud/T, for N=10, 10°, and 10 in Fig. 4. The
not only does the canonical, approachN[1—(T/T,)®] as  overall minus sign is because the correlation is, indeed, nega-
N—oo, it does so approximately as predicted by the simpldive. The dotted lines are E¢l3) for the same three values
grand canonical calculation. It is the next correction, the dif-of N, and again the agreement improves withthis time the
ference between the two ensembles’ predictions at a givefiactional discrepancy appears to go roughlyNag33
N (as illustrated in Fig. Rthat reflects the residual difference  The discrepancies between the numerical evaluations and
in physics between the ensembles. This difference is particihe simple formulas are largest fofs such that eitheN, or
larly pronounced asN, makes the transition from micro- N, is not very large. These are vanishingly small intervals of
scopic to macroscopic just belowW.. There, the grand T/T. for N—oo.
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The particular computer code used for the results pre-
sented was checked against hand calculations for skhall
For large N, a criterion for validity was stability under
changes in the several parameters that should not effect the
final answers. Eventually, at high enough(different values
for different observablgshe ranges of stability in these pa-
rameters shrunk to zero. Typically, the practical limitation
was the digits of precision available for intermediate results.
The code was written to evalualt&, below T, and specifi-
cally for Ng plausible results were obtained for much higher
N than presented. No effort was made to modify the numeri-
cal strategy to facilitate calculation of the other quantities
discussed; presumably those calculations could be extended
to higherN with algorithmic improvements that avoided the
simultaneous evaluation of numbers of vastly different mag-
nitudes.

VI. DISCUSSION AND CONCLUSIONS

The general arguments presented here, while heuristic,
have an internal consistency. For example, to compute
AN, which is used implicitly in Eqs(12) and (13), one
assumes that the correlations between level occupations are

FIG. 3. A logarithmic plot of the canonical condensate rms fluc-negligible. One then deduces nonzero correlations that are

tuations(solid lines and the simple equatiofll) estimategdotted
lines for N=10%, 1¢°, and 10.

The expected=1 occupationN,, was evaluated to pre-
pare Fig. 4. The agreement with EG) with «=0 was such

induced by particle conservation. However, the induced cor-
relations are, indeed, small enough to be ignored in the cal-
culation of the leading behavior &N, and of the correla-
tions themselves.

This is nowhere near to a “theory” of the larg¢-asymp-
totics of the canonical ideal Bose gas. The leading behavior

that the leading fractional discrepancy was accounted for bpf some interesting observables was estimated and confirmed

just the leading M, correction already included in E¢l),
i.e., T/Ng.

1.0

- <AI10AH1 >/ NO Nl
g
[

0.0001 l \
0 T/ T, 1.0

FIG. 4. A logarithmic plot of— 1 times the normalized, canoni-
cal 0-1 level correlationgsolid lineg and the simple equatiofi3)
estimategdotted lines for N=10?, 1%, and 10.

numerically. But in these cases, the leading behavior either
was simply given by or could be deduced from the grand
canonical ensemble. The next level of approximation, e.g., to
account for Fig. 2, would require a detailed analysis of the
canonical or microcanonical partition function and may be
very difficult to determine analytically.

Starting with the grand canonical description wjithand
T as independent variables, one finds large fluctuations in
N below T, . Hence, fixingN may have been expected to be
of some consequence. However, the grand canonical total
energy fluctuations are always small and vanish relative to
the mean total energy in the thermodynamic limit. Nothing
special happens it at T.. So fixing E should have no
dramatic consequences. Overall, the switch frénto E
should be of even less consequence than the switch from
to N. A direct numerical evaluation of the microcanonical
partition function would be considerably more difficult.

However, from a practical standpoint, the modest results
here are useful. The largest consequence of going from a
chemical potential to fixetll for an ideal Bose gas is that the
ground-state number fluctuations are always microscopic;
the leading behavior of all expected level occupations is un-
changed. This is sufficient to further imply that fixing the
total E is no different from the analytically simpler fixing of
T in the thermodynamic limit. The leading behaviors of the
two-level expectationsin;n;) for i#j, are unchanged be-
cause the induced correlations vanishNas>~. For large,
fixed N, the corrections to these behaviors are unlikely to be
of any practical importance. As discussed in Appendix B, for
a gas with replusive interactions, the consequence of fixing
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N dominates over the interaction effects in damping theoverall shift before exponentiation and additi@ntegration
ground-state number fluctuations only if the pairwise energykeeps numbers from getting too big. Also, observables are

in the ground state is less th&(N~?%¢). independent of shifts of the whole energy spectrum by the
ground-state energy,. It is convenient to take this nonzero
ACKNOWLEDGMENTS to check the numerical independence. Takiger O can also

_ ) ~ dramatically alter the character of the integrand of Eq.
Werner Krauth of ENS, Paris, pointed out that an earliefa1)—note the(analytically integrable singularity atz=0
effort along these lines was in error and suggested the nyg, £0=0.
merical strategy followed here. Anton Kapustin patiently of- ¢ is, of course, sufficient to integrate onlyz< . With
fered suggestions and criticism. This work was supported i itable choice o, starting az=0 one can integrate out-

part by the U.S. Department of Energy under Grant No. DEy 51, test the convergence, and exit the integration long be-
FG03-92-ER40701. fore reachingz— .

APPENDIX A: NUMERICAL STRATEGIES APPENDIX B: INTERACTION DAMPING OF GRAND
For the isotropic harmonic potential in three dimensions CANONICAL OCCUPATION FLUCTUATIONS
alr)ol_ta; maximum energy levéll na,, Eq. (14) takes the ex- The effect of a weak repulsive interaction on condensate
plicit form

fluctuations can be estimated as follows. hgtrepresent the
number of particles in the ground state. The leading effect of

1 (= A o :
Z(N,T)= — dz &Nz a weak, pairwise repulsion at oW, when most of the par-
2m) & ticles are in the ground state, is to raise the energy of those
M max 1 (12)(m+1)(m+2) particles f_rom O(a_ convenienh-independentZnormaliza_tion
% H ( - |z) of the noninteracting ground-state energyAng, where\ is
m=o0 \1—e the positive two-particle interaction contribution to the

(A1) ground-state  energy. In natural oscillator units
(h=m=wy=1), \ is related to the conventionally defined
A rather primitive C program on a Sun SPARCI0 for inte- scattering lengtla by A=a/ /27, at least if the interaction
grating Eq.(A1) and related functions was sufficient to gen- effects are weak enough to be treated in mean-field theory.
erate the numerical results presented in the figures, with thEocus on the terms in the grand canonical partition function
size ofN limited by the use of double-precision arithmetic. A that refer only to the ground state:
few general observations may prove to be of some value in
any future effort to perform comparable calculations. %
Instead of simply truncating the product over energy lev- Qo e, T)= 2 e/mo/T*MS/T, (B1)
els m at some large valuéM ., one can use Maxwell- np=0
Boltzmann statistics for all levelmm>M ,, and derive an ,
approximate closed form for the contribution to the integrandJNlike theA=0 case, one can now get larg& (=(no))
of all levels aboveM . This vastly improves the rate of With #>0. Then, the sum can be considered as an integral
convergence irM ., because for modest's (e.g., 6T/€) over ny, whose _mtegrar_ld is a Gaussian peaked at
there are still quite a few particles at thator higher, butthe No=No=u/2\ _ with  width  ANy= T/, Hence,
occupations of individual states are rarely greater than 1. ANg/No=+T/(ANg), in contrast to thex=0 situation, in
By far the most rapid variation of the integrand for large which ANy/Ng is O(1). So grand canonical condensate
N comes from the factoe'N?. The integration algorithm number fluctuations are small if the interaction contribution
should reflect this knowledge. For example, one can dividdo the ground-state energy is large compared to the tempera-
z into intervals of7/4N and integrate each interval accord- ture.
ingly. (For the largest values of it proved sufficient to take If sufficiently strong, interatomic repulsion will certainly
a single point in each such interval. be effective at damping condensate fluctuations at fiXxed
An overall factor inZ has no effect on physical observ- giving ANy~ +T/X. This effect will dominate(i.e., enforce
ables. This can be used to considerable advantage. Here arémaller  fluctuationg ~ over  the  noninteracting
couple of examples: One can evaluate the products of verfiNy~ J(T/€)® estimated in Secs. Il and IV when
large numbers logarithmically, i.e., sum the phase and logax/e=(T/€) 2. (e is the trap level spacing, and
rithm of the modulus of the various complex factors. AnT./e~N3)
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