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The hyperspherical coupled-channel method is applied to the positron-helium scatterings in a low-energy
region below 54.4 eV. An independent electron model is used for the helium atom under the approximation
that the active electron is bound by a central model potential. All the hyperspherical adiabatic states associated
with Ps(n,l ; n51-4, l 50-2! and He(1snl ; n51-5, l 50-3! in the separated-atom limit are coupled for the
expansion of the scattering equation, which is solved by means of a hybrid procedure of the diabatic-by-sector
and the conventional adiabatic-basis-expansion methods. Excellent agreement is obtained with experiment for
the positronium formation.@S1050-2947~96!06612-7#

PACS number~s!: 34.70.1e, 36.10.Dr

I. INTRODUCTION

Scattering problems of few-body systems interacting
through Coulomb potentials have been a long-standing sub-
ject of atomic physics in both theoretical and experimental
research. Positronium formation is one of the most attractive
processes among them, since exotic-particle scattering shows
properties absent in ordinary particle scattering. The rapid
progress of positron sources in the last decade has made the
experimental study more and more feasible, and cooperative
development of theoretical study is urgently desired.

Recently Igarashi and Toshima@1# have demonstrated
that the hyperspherical coupled-channel method is a power-
ful theoretical approach to the study of positronium forma-
tion in positron-hydrogen collisions. Later the method was
successfully extended to the process of antihydrogen forma-
tion @2# and to muon transfer between hydrogen isotopes@3#.
Zhou and Lin@4# also studied positron-hydrogen scattering
using the hyperspherical approach in a different representa-
tion of the adiabatic states. One of the merits of the hyper-
spherical coordinate method is that the Jacobi coordinate
systems in the entrance and the rearranged channels can be
unified into a common six-dimensional coordinate space and
consequently the coupled scattering equations do not possess
a nonlocal potential, which appears in the ordinary coupled-
channel or close-coupling~CC! treatment of two-center rear-
rangement collisions and makes it very difficult to solve the
multichannel coupled-equations accurately.

The application of the hyperspherical coordinate approach
to scattering problems has been confined within three-body
systems so far. The next desirable extension of the method is

to the study of a two-electron atom target such as a helium
atom, for which we have to deal with four bodies at least.
Unfortunately solving the hyperspherical equations directly
for four-body systems is not easy for scattering problems at
present even if we use fast modern vector processors. An
independent-electron approximation has often been used suc-
cessfully for collision problems of two-electron systems.
Even for ion-atom collisions, for which the treatment can be
simplified by adoption of the impact-parameter method, the
implementation of direct two-electron code encounters some
difficulties @5#.

In this study we use a model potential representation for
the study of positronium formation from a helium atom.
Hewitt, Noble, and Bransden@6# recently studied the same
process using a model potential representation in the frame-
work of the conventional close-coupling approximation. Al-
though satisfactory agreement was obtained with measured
values for some of the processes, the basis set they used for
the expansion was not large enough to ensure that the expan-
sion was well converged. In the previous studies@1–3# we
showed that the hyperspherical coupled-channel method
achieves much better convergence for rearrangement colli-
sions than the conventional close-coupling method based on
the atomic-orbital expansion. It is interesting to see how well
the method can be extended to two-electron systems within
an independent-electron approximation. Atomic units are
used unless otherwise stated explicitly.

II. THEORY AND CALCULATIONS

We apply the hyperspherical coupled-channel method to
positron-helium scattering in a collision energy range below
54.4 eV. The helium atom is treated as a single-electron
atom in which the electron is moving under the influence of
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a central potential from the He1 core @7#.
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wherea51.0, b50.4143, andb52.499 @7#. This potential
gives satisfactorily accurate energies of the ground state and
singly excited states as shown in Table I. The accuracy of the
eigenenergies of bound states is a very important factor in
the calculation of collision processes, and the model poten-
tial method often gives better cross sections than the repre-
sentation by the Hartree-Fock wave functions, which always
give much worse eigenvalues. The interaction between the
positron and the He1 core is approximated by a static poten-
tial that is an average of the sum of the Coulomb potentials
from the passive electron and from the helium nucleus over a
simple hydrogenic distribution of an effective charge
Zef f527/16 @6#. In this quasi-three-particle system, the Ja-
cobi coordinates of the initial channel (RT ,rT) and of the
final channel (RP ,rP) can be defined similarly to those for
positron-hydrogen collisions@1#. The hyperradiusr is re-
lated to the Jacobi coordinates as follows:
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wheremT andmP are the reduced masses of the helium atom
and the positronium, andmT andmP the reduced masses for
the relative motion in the entrance and the positronium for-
mation channels, respectively.m is an arbitrary parameter
that has a dimension of mass and we setm51 hereafter for
simplicity. After separation of the center-of-mass motion of
the total system, the kinetic-energy operator of the quasi-
three particles is given by
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Here the five-dimensional grand-angular-momentum opera-
tor L is given explicitly by
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where the hyperanglefc is defined by

tanfc5Amcr c /AmcRc ~5!

andc denotes eitherT or P. The variableV represents the
set of five angular-variables,fc , r̂ c , and R̂c , and l Rc

and

l r c
are the angular-momentum operators in the ordinary

three-dimensional space for the coordinatesRc and r c , re-
spectively.

The following procedure is analogous to the treatments
used for the positron-hydrogen collisions@1# and for the
muon transfer@3#. We solve the scattering equation
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where

had5
L2

2r2
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and V(r,V) is the sum of the interaction potentials. The
adiabatic basis functions are constructed by diagonalizing
had variationally in terms of Slater-type orbitals. 16s, 11p,
9d, and 8f Slater orbitals are used on the helium side and
16s, 11p, and 9d Slater orbitals on the positronium side.
The energy eigenvalues of the adiabatic potentials show
good convergence for these Slater orbitals. The top three
digits of the eigenvalue of the highest level used for the
expansion mentioned below do not change for adding an-
other five Slater orbitals to each angular momentum and bet-
ter convergence is obtained for the lower levels.

The entire region ofr is divided into a large number of
small sectors, and the scattering wave function is expanded
as a linear combination of basis functions that are adiabatic
or diabatic locally in each sector. Namely, we have chosen a
series of points ofr in the range 0,r,rend, whererend is
the end point of integration. Then the boundaries of each
sector are fixed to be the midpoints of these points. An adia-
batic basis function at a point,rk for instance, is used as a
diabatic basis function throughout the sector if the corre-
sponding state has an avoided crossing with another potential
curve while the ordinary adiabatic representation is used if
the state has no avoided crossing in the sector.

f i
k~r,V!5H w i~r,V! if w i has no avoided crossing,

w i~rk ,V! otherwise.
~8!

The representation of each state is chosen independently in
each sector; adiabatic representation is used in some sectors
and diabatic representation is used in the other sectors for the
same level. Substitution of the expansion

Ck5(
i
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r5/2
f i
k~r,V! ~9!

into the scattering equation~12! gives a set of coupled equa-
tions in a matrix representation for each sector;
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with

TABLE I. Eigenenergies of the bound states obtained by the
model potential~1!.

n l Energy~a.u.!

1 0 -0.9047
2 0 -0.1574
2 1 -0.1277
3 0 -0.0644
3 1 -0.0564
3 2 -0.0555
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HereFk is a column vector whosei th component is the func-
tion Fi

k(r). The overlap matrixS is diagonal in the subspace
of the adiabatic statesw i(r,V) and in that of the diabatic
statesw i(rk ,V). Note that the coupled equations~10! are
exact except that the expansion of the wave function equa-
tion ~9! is truncated up to a finite number. The matrix ele-
ments~12! and~13! are zero when the ket statef j

k is diabatic
and the matrix~14! is diagonal when both the bra and ket
states are adiabatic. The solution in the interval aroundrk is
matched to the solution in the adjacent sector around the next
point rk11 at the boundaryrm5(rk1rk11)/2 by requiring
that the wave functions and their derivatives are smoothly
connected. It is evident that the transformation matrix for the
matching is diagonal among the components of the adiabatic
basis functions. The solution in each sector is propagated to
the next sector successively up to the outermost boundary
r5rend. The hyperspherical representation is projected onto
the Jacobi representation in the last sector before the reac-
tance matrixK is extracted from the asymptotic form of the
scattering wave function@1#.

III. RESULTS AND DISCUSSION

We setrend5420 and divided the interval@0,rend# into
1300 sectors, the widths of which were increased smoothly
from the smallest value 0.002 near the origin for going to
outer sectors. Therend value was large enough to get reliable
cross sections. Tentatively we enlargedrend to 470 and con-
firmed that most of the cross sections change less than 1%.
Only some small components corresponding to excitation to
highly excited states changed by 2–3%. To see the conver-
gence of the cross section for the number of the adiabatic
basis functions, we employed two types of basis function set
for comparison. The setA includes all the adiabatic states
associated with Ps(n51-3! and He(1snl ; n51-4! in the
separated-atom limit. In the other setB the states associated
with Ps(4s,4p,4d) and He(5s,5p,5d,5f ) are added to the
basis of the setA. For either set the same number of basis
functions are used for the expansion in all the sectors to
make the loss of the flux small even when high-lying states
become closed at larger. The partial-wave expansion of the
scattering wave is carried out up to the total angular momen-
tum J57. The maximum valueJ57 is large enough to get
converged cross sections in the energy rangeE<54.4 eV.
The unitarity of theS matrix is checked at each energy and
the inaccuracy is kept less than 0.1% at the highest collision
energy. The unitarity is maintained better as the collision
energy decreases. The formation and excitation cross sec-
tions are multiplied by a factor of 2 for the account of the

two electrons of the helium atom. Since the spin interaction
is not taken into account explicitly in this study, all the elec-
tronic states belong to the singlet state throughout the colli-
sion.

Figure 1 shows cross sections for positronium formation
into 1s, 2s, and 2p individual states. The basis setB is used
for the calculations in this figure. The present cross sections
for formation to the ground state are close to those of Khan,
Ghosh, and Mazumdar@8# and Mandal, Guha, and Sil@9#,
who both used the distorted-wave approximation. Since the
distorted-wave formalism is based on the perturbation theory
that is essentially a high-energy approximation, the agree-
ment between the two theoretical cross sections seems to be
fortuitous. In fact, the close-coupling calculations of Hewitt,
Noble, and Bransden, which can be regarded as more reliable
than the perturbative treatment in this low-energy region,
show poorer agreement with the present results, though the
relative energy dependences of the three cross section curves
are very similar. On the other hand, the cross sections for
formation of then52 excited states show rather large dis-
agreement with one another for both the energy dependence
and the absolute values. At the energy of 30 eV, the cross
sections of Hewitt, Noble, and Bransden are larger than ours
by one order of magnitude.

The dependence of the formation cross sections on the
basis functions is shown in Fig. 2. The formation cross sec-
tions for the ground state are almost identical for the two
choices of the setsA andB and we can conclude that the
values are well converged. On the other hand, the cross sec-
tions for the excited states are reduced considerably for go-
ing from setA to setB at high energies. It is not physically
sound that the cross sections forn53 are larger than those
for n52. Recently Erreaet al. @11# reported similar behavior
of the cross sections for the calculations of the electron cap-
ture in He211H collisions. According to their interpretation,
ionization flux, which becomes larger than the electron-

FIG. 1. Positronium formation cross sections inpa0
2. Solid

lines, the present hyperspherical coupled-channel method; dotted-
dashed lines, the close-coupling calculations of Hewitt, Noble, and
Bransden@6#; dashed lines, the distorted-wave calculations of Khan
and co-workers@8#; dotted line, the distorted-wave calculations of
Mandal, Guha, and Sil@9#. Curves connecting circles, squares, and
triangles are for the formation of the ground state, the 2s state, and
the 2p state, respectively.
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capture flux at high energies, is accumulated into the highest
bound states if nonadiabatic couplings with continuum states
are not properly taken into account, and, consequently, the
capture cross sections in high-lying bound states are overes-
timated. Since all the adiabatic states in our calculations are
connected with bound states of the positronium or the helium
atom in the separated-atom limit, we conceive that the same
enhancement of the population of the excited states has oc-
curred in the present calculations.

In Fig. 3 we present the total formation cross sections of
the two CC calculations and compare them with the mea-
surements of Frommeet al. @10#. The present total cross sec-

tions are summed over all the positronium bound states in-
cluded in the basis setB. The cross sections of Hewitt,
Noble, and Bransden are extrapolated from their sum over
1s, 2s, and 2p states assuming then23 distribution law. The
agreement of the present cross sections with the measure-
ments is satisfactory, while the cross sections of Hewitt,
Noble, and Bransden fail to reproduce them above 40 eV.
The unsatisfactory energy dependence of their cross sections
in this energy region is due to the large contribution of their
2s and 2p cross sections, which show a different energy
dependence from other theoretical curves. Since the present
cross sections for the formation of then54 excited states
may be overestimated as stated in the preceding paragraph,
we also present formation cross sections summed over
n51-3 states only. The agreement with the measured values
has become even better.

FIG. 2. The dependence of the formation cross sections on the
size of the basis functions. The dotted lines are for the basisA and
the dashed lines are for the basisB. Curves connecting circles,
squares, and triangles are for the formation of the ground state, the
n52 state, and then53 state, respectively.

FIG. 3. The total formation cross sections inpa0
2. Solid lines,

present hyperspherical coupled-channel calculations; dotted-dashed
line, close-coupling calculations by Hewitt, Noble, and Bransden.
The solid line connecting solid circles gives cross sections summed
over all the positronium bound states in the basis setB and the solid
line connecting triangles gives cross sections summed over
n51–3 states only. The dotted-dashed line connecting solid tri-
angles shows extrapolated cross sections of Hewitt, Noble, and
Bransden assuming then23 law for the estimate of contribution of
excited states withn>3.

FIG. 4. Cross sections for excitation of He~2 1S) in pa0
2. Solid

line, present hyperspherical coupled-channel calculations~base
B); dotted-dashed line, close-coupling calculations of Hewitt,
Noble, and Bransden@6#; dotted line, close-coupling calculations of
Willis and McDowell @14#; dashed line, the random-phase approxi-
mation of Varracchio@12#; long-dashed line, the distorted-wave ap-
proximation of Parcell, McEachran, and Stauffer@13#. The solid
line connecting crosses is the present calculation for the baseA.

FIG. 5. The same as Fig. 4 but for the excitation of He~2 1P).
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The 21S(1s2s) and 21P(1s2p) excitation cross sections
are shown in Figs. 4 and 5. We see that larger discrepancy
exists for the 21S excitation cross sections. Varracchio@12#
used the random-phase approximation in the framework of
the many-body perturbation theory. Parcell, McEachran, and
Stauffer @13# calculated the cross sections by a distorted-
wave approximation. Both theories are high-energy approxi-
mations and the reliability of these methods is not high in
this low-energy region. Willis and McDowell@14# employed
a single-center close-coupling method including pseudostates
for the account of the polarization effect of the target helium
atom. In the present calculations the polarizations of the tar-
get atom and the rearranged positronium are taken into ac-
count automatically by the adoption of the adiabatic basis
functions in the hyperspherical representation. Hewitt,
Noble, and Bransden@6# used a similar model potential to
ours, and thus the disagreement of the two calculations arises
from the difference of the theoretical description of the scat-
tering problem and of the employed basis functions. We
have used larger number of basis function for the expansion.
Although the two close-coupling calculations of Hewitt,
Noble, and Bransden and Willis and McDowell show mutual
agreement; this does not mean that their calculations have
achieved good convergence since both the methods are based
on a similar formalism in terms of the unperturbed-atomic-
orbital expansion. The polarization of the target helium atom
is only partly taken into consideration by inclusion of a few
pseudostates. The disagreement of the 21P excitation cross
sections in Fig. 5 is smaller but the differences are not small
enough to regard all the calculations as consistent. The
2 1S state is strongly coupled with the 21P state which has
larger excitation cross sections. The polarization effect mixes
these states easily and makes the 21S excitation cross sec-
tions more sensitive to the accuracy of employed approxima-
tions than the 21P excitation cross sections. Tables II and III
summarize the present formation and excitation cross sec-
tions.

The convergence for the size of the coupled equations
becomes worse for both the formation and the excitation as

the collision energy increases. The present description of the
scattering wave function is essentially based on the expan-
sion in terms of adiabatic channel functions regardless of
whether we use locally diabatic or adiabatic basis functions
in each sector. When the incident velocity of the projectile is
much larger than the average velocity of the target electron,
the distortion of the internal electronic state is generally
small and the representation by the atomic orbital is accept-
able. If we use the adiabatically distorted-wave functions at
such high energies, we need more basis functions to achieve
convergence than in using unperturbed atomic orbitals. The
interpretation of Erreaet al. @11# for the overpopulation of
high-lying states is another aspect of the same characteristics
of the adiabatic-base expansion in a high-energy region.
From these considerations we do not proceed to apply the
present hyperspherical CC method to high energies above
54.4 eV.

In Fig. 6 we present the summed 21S and 21P excitation
cross sections together with the measured values of Mori and

FIG. 6. The sum of 21S and 21P excitation cross sections. The
notations of the theoretical curves are the same as in Figs. 4 and 5.
Open circles are the measured values of Mori and Sueoka@15#.

TABLE II. Positronium formation cross sections (pa0
2) for e1

1 He~11S) collisions.A andB denote the basis sets for the coupled
equations~see the text! and the numbers in square brackets give the
powers of 10 to be multiplied.

Energy
~eV!

1s 2s 2p

A B A B A B

18.0 8.94@-3# 8.86@-3#

20.3 9.04@-2# 8.98@-2#

21.3 1.33@-1# 1.32@-1#

23.0 2.10@-1# 2.10@-1# 4.30@-4# 4.30@-4# 6.24@-4# 6.28@-4#

24.1 2.56@-1# 2.54@-1# 1.35@-3# 1.36@-3# 1.76@-3# 1.77@-3#

24.8 2.84@-1# 2.84@-1# 2.20@-3# 2.02@-3# 2.88@-3# 2.88@-3#

26.7 3.48@-1# 3.50@-1# 3.78@-3# 3.96@-3# 5.64@-3# 6.34@-3#

30.6 4.44@-1# 4.44@-1# 6.84@-3# 8.04@-3# 1.56@-2# 1.47@-2#

37.0 4.94@-1# 4.98@-1# 1.23@-2# 1.54@-2# 3.66@-2# 2.28@-2#

44.1 4.72@-1# 4.70@-1# 2.30@-2# 2.30@-2# 5.20@-2# 2.42@-2#

54.4 3.86@-1# 3.80@-1# 3.34@-2# 2.84@-2# 5.44@-2# 2.10@-2#

TABLE III. Excitation cross sections (pa0
2) for e1 1 He~1

1S) collisions.A andB denote the basis sets for the coupled equa-
tions ~see the text! and the numbers in square brackets give the
powers of 10 to be multiplied.

Energy
~eV!

2s 2p

A B A B

21.3 1.04@-2# 1.04@-2# 4.44@-3# 4.26@-3#

23.0 3.28@-2# 3.24@-2# 1.07@-2# 1.07@-2#

24.1 4.52@-2# 4.48@-2# 2.26@-2# 2.26@-2#

24.8 5.22@-2# 5.20@-2# 3.26@-2# 3.26@-2#

26.7 6.58@-2# 6.58@-2# 6.02@-2# 6.00@-2#

30.6 7.78@-2# 7.92@-2# 1.14@-1# 1.11@-1#

37.0 8.20@-2# 7.98@-2# 1.71@-1# 1.62@-1#

44.1 8.40@-2# 7.58@-2# 1.99@-1# 1.84@-1#

54.4 8.14@-2# 6.68@-2# 2.16@-1# 1.97@-1#
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Sueoka@15#. All of the theoretical cross sections are larger
than the experimental data. In the framework of the indepen-
dent electron model, little account is taken of thedynamical
correlation effect between the active and passive electrons,
which can not be discriminated distinctly from the static cor-
relation effect. The disagreement between the present results
and the measured values is partly due to the defect of the
independent-electron approximation. In the case of the for-
mation, the dynamical correlation can be considered to be
less important since it becomes small after the electron has
been captured by the positron.

IV. SUMMARY

We have applied the hyperspherical coupled-channel
method to two-electron systems within an independent-
electron approximation. The helium atom is approximated as
a quasi-one-electron atom with a central model potential.
Good agreement is obtained with the experiment for the pos-
itronium formation cross sections but the present excitation
cross sections to 21S and 21P states are larger than the
measurements by a factor of 2. A better treatment for the
two-electron atom is required to clarify the cause of the dis-
crepancy with the measurement.
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