PHYSICAL REVIEW A VOLUME 54, NUMBER 6 DECEMBER 1996

Hyperspherical coupled-channel calculations of positronium formation
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The hyperspherical coupled-channel method is applied to the positron-helium scatterings in a low-energy
region below 54.4 eV. An independent electron model is used for the helium atom under the approximation
that the active electron is bound by a central model potential. All the hyperspherical adiabatic states associated
with Ps(,/; n=1-4, /=0-2) and He(kn/; n=1-5, /=0-3) in the separated-atom limit are coupled for the
expansion of the scattering equation, which is solved by means of a hybrid procedure of the diabatic-by-sector
and the conventional adiabatic-basis-expansion methods. Excellent agreement is obtained with experiment for
the positronium formation.S1050-294®6)06612-7

PACS numbd(s): 34.70+e, 36.10.Dr

I. INTRODUCTION to the study of a two-electron atom target such as a helium
atom, for which we have to deal with four bodies at least.

Scattering problems of few-body systems interactingunfortunately solving the hyperspherical equations directly
through Coulomb potentials have been a long-standing sulfer four-body systems is not easy for scattering problems at
ject of atomic physics in both theoretical and experimentabresent even if we use fast modern vector processors. An
research. Positronium formation is one of the most attractivhdependent-electron approximation has often been used suc-
processes among them, since exotic-particle scattering showgssfully for collision problems of two-electron systems.
properties absent in ordinary particle scattering. The rapigtyen for ion-atom collisions, for which the treatment can be
progress of positron sources in the last decade has made thgnpiified by adoption of the impact-parameter method, the
experimental study more and more feasible, and cooperativigyplementation of direct two-electron code encounters some
development of theoretical study is urgently desired. difficulties [5].

Recently Igarashi and Toshimld] have demonstrated | this study we use a model potential representation for
that the hyperspherical coupled-channel method is a powetne study of positronium formation from a helium atom.
ful theoretical approach to the study of positronium forma-Hewitt, Noble, and Bransdef6] recently studied the same
tion in positron-hydrogen collisions. Later the method wasprocess using a model potential representation in the frame-
successfully extended to the process of antihydrogen formgygrk of the conventional close-coupling approximation. Al-
tion [2] and to muon transfer between hydrogen isotd8és  though satisfactory agreement was obtained with measured
Zhou and Lin[4] also studied positron-hydrogen scatteringyajues for some of the processes, the basis set they used for
using the hyperspherical approach in a different representane expansion was not large enough to ensure that the expan-
tion of the adiabatic states. One of the merits of the hypersjon was well converged. In the previous studigs3] we
spherical coordinate method is that the Jacobi coordinatghowed that the hyperspherical coupled-channel method
systems in the entrance and the rearranged channels can fgjeves much better convergence for rearrangement colli-
unified into a common six-dimensional coordinate space andions than the conventional close-coupling method based on
consequently the coupled scattering equations do not possegg atomic-orbital expansion. It is interesting to see how well
a nonlocal potential, which appears in the ordinary coupledihe method can be extended to two-electron systems within

channel or close-couplin@C) treatment of two-center rear- an independent-electron approximation. Atomic units are
rangement collisions and makes it very difficult to solve thesed unless otherwise stated explicitly.

multichannel coupled-equations accurately.

The application of the hyperspherical coordinate approach
to scattering problems has been confined within three-body
systems so far. The next desirable extension of the method is

We apply the hyperspherical coupled-channel method to

positron-helium scattering in a collision energy range below

“Present address: Institute of Physical and Chemical Resear®%.4 eV. The helium atom is treated as a single-electron
(RIKEN), Wako, Saitama 351-01, Japan. atom in which the electron is moving under the influence of
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TABLE |. Eigenenergies of the bound states obtained by theand ¢ denotes eithel or P. The variableQ) represents the
model potentiall). set of five angular-variabless, 7, andR;, and/_and
/rc are the angular-momentum operators in the ordinary

n / Energy(a.u) i
three-dimensional space for the coordina®gsandr, re-
1 0 -0.9047 spectively.
2 0 -0.1574 The following procedure is analogous to the treatments
2 1 -0.1277 used for the positron-hydrogen collisiof$] and for the
3 0 -0.0644 muon transfef3]. We solve the scattering equation
3 1 -0.0564 42 q
3 2 -0.0555 1 S
—=|l=—=+-=]+ - =
z(dpz 5 dp) T hasle. ) E}\If(p,m 0, (®
a central potential from the Hecore[7]. where
1 a+br A?
Ve(r)z—r— . exp(— Br), (1) had:2—p2+V(p,Q), (7)

wherea=1.0,b=0.4143, and3=2.499[7]. This potential and V(p,Q) is the sum of the interaction potentials. The
gives satisfactorily accurate energies of the ground state aratliabatic basis functions are constructed by diagonalizing
singly excited states as shown in Table I. The accuracy of thl,4 variationally in terms of Slater-type orbitals. 4,61 1p,
eigenenergies of bound states is a very important factor i®d, and & Slater orbitals are used on the helium side and
the calculation of collision processes, and the model potent6s, 11p, and 9 Slater orbitals on the positronium side.
tial method often gives better cross sections than the repréFhe energy eigenvalues of the adiabatic potentials show
sentation by the Hartree-Fock wave functions, which alwaygjood convergence for these Slater orbitals. The top three
give much worse eigenvalues. The interaction between thdigits of the eigenvalue of the highest level used for the
positron and the Hé core is approximated by a static poten- expansion mentioned below do not change for adding an-
tial that is an average of the sum of the Coulomb potentialsther five Slater orbitals to each angular momentum and bet-
from the passive electron and from the helium nucleus over &r convergence is obtained for the lower levels.

simple hydrogenic distribution of an effective charge The entire region op is divided into a large number of
Z.11=27/16[6]. In this quasi-three-particle system, the Ja-small sectors, and the scattering wave function is expanded
cobi coordinates of the initial channeR{,r) and of the as a linear combination of basis functions that are adiabatic
final channel Rp,rp) can be defined similarly to those for or diabatic locally in each sector. Namely, we have chosen a
positron-hydrogen collision§l]. The hyperradiug is re-  series of points op in the range & p<pgng, Wherepgnqis

lated to the Jacobi coordinates as follows: the end point of integration. Then the boundaries of each
) 5 5 5 ) sector are fixed to be the midpoints of these points. An adia-
pp®= purRTt M7= upRp+mprp, (2)  patic basis function at a poinp, for instance, is used as a

diabatic basis function throughout the sector if the corre-

wheremy andm, are the reduced masses of the helium atomy,onding state has an avoided crossing with another potential
and the positronium, andy and wp the reduced masses for ¢rye while the ordinary adiabatic representation is used if
the relative motion in the entrance and the positronium forspe state has no avoided crossing in the sector.

mation channels, respectively. is an arbitrary parameter

that has a dimension of mass and we getl hereafter for ¢i(p,Q) if ¢; has no avoided crossing,
simplicity. After separation of the center-of-mass motion of ~ ¢(p,Q)=
the total system, the kinetic-energy operator of the quasi- )
three patrticles is given by

The representation of each state is chosen independently in

ei(pk,Q) otherwise.

2 2
1 iz*‘ 54 A—z' _ (3)  each sector; adiabatic representation is used in some sectors
2\dp® pdp p and diabatic representation is used in the other sectors for the

, . . same level. Substitution of the expansion
Here the five-dimensional grand-angular-momentum opera-

tor A is given explicitly by FX(p)
VE=2 —a dl(p. Q) ©)
A%(Q) ! ( d i’ ¢.coS ¢ d ) -
=——= Si co —
Sir ccos e | b ‘ ‘dee into the scattering equatigii?) gives a set of coupled equa-
/2R /2 tions in a matrix representation for each sector;
/ /s
F—— ot =, (4) 2
co sir? 1d d 1
¢C ¢C (_Ed_Z_E)Fk:(Sk)_l(_Uk+Pkd_+EQk Fk,
where the hyperanglé.. is defined by P P (10)

tand.= Vmer o/ VecRe (5 with
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Si=(¢ilap), (12) 10—
pt = { ¢ L gt (12) &
ij =\ @i dp b/ <
B 10" F
k _ k d_2 k 13 .é
Qij=\ ¢i dp2¢j : (13 z
e 107 L
k k 15 k § 1
Uij =1\ ¢ had+8_pz o). (14) o
HereF¥ is a column vector whosigh component is the func- 10°
tion F!‘(p). The overlap matri>S is diagonal in the subspace 10
of the adiabatic stateg;(p,€)) and in that of the diabatic Energy(eV)

statesg;(pi,{2). Note that the coupled equatioi$0) are

exact except that the expansion of the wave function equa- FIG. 1. Positronium formation cross sections #ra3. Solid
tion (9) is truncated up to a finite number. The matrix ele-lines, the present hyperspherical coupled-channel method; dotted-
ments(12) and(13) are zero when the ket statt!v.%< is diabatic  dashed lines, the close-coupling calculations of Hewitt, Noble, and
and the matrix(14) is diagonal when both the bra and ket Bransderi6]; dashed lines, the distorted-wave calculations of Khan
states are adiabatic. The solution in the interval aropnis and co-workerg8]; dotted line, the distorted-wave calculations of
matched to the solution in the adjacent sector around the nefdandal, Guha, and Sjl]. Curves connecting circles, squares, and
point p, ; at the boundanp,,= (px+ pk.1)/2 by requiring triangles are for the formation of the ground state, teestate, and
that the wave functions and their derivatives are smoothlyhe 2p state, respectively.

connected. It is evident that the transformation matrix for the

matching is diagonal among the components of the adiabativo electrons of the helium atom. Since the spin interaction
basis functions. The solution in each sector is propagated tis not taken into account explicitly in this study, all the elec-
the next sector successively up to the outermost boundaryonic states belong to the singlet state throughout the colli-
p=pend- The hyperspherical representation is projected ontsion.

the Jacobi representation in the last sector before the reac- Figure 1 shows cross sections for positronium formation
tance matrixK is extracted from the asymptotic form of the into 1s, 2s, and 2 individual states. The basis dgtis used

scattering wave functiofil]. for the calculations in this figure. The present cross sections
for formation to the ground state are close to those of Khan,
IIl. RESULTS AND DISCUSSION Ghosh, and Mazumddg] and Mandal, Guha, and 9],

who both used the distorted-wave approximation. Since the

We setpeng=420 and divided the interval0,p.,q] into  distorted-wave formalism is based on the perturbation theory
1300 sectors, the widths of which were increased smoothlyhat is essentially a high-energy approximation, the agree-
from the smallest value 0.002 near the origin for going toment between the two theoretical cross sections seems to be
outer sectors. The.,qvalue was large enough to get reliable fortuitous. In fact, the close-coupling calculations of Hewitt,
cross sections. Tentatively we enlargeglto 470 and con-  Noble, and Bransden, which can be regarded as more reliable
firmed that most of the cross sections change less than 1%han the perturbative treatment in this low-energy region,
Only some small components corresponding to excitation t@how poorer agreement with the present results, though the
highly excited states changed by 2—-3%. To see the converelative energy dependences of the three cross section curves
gence of the cross section for the number of the adiabatiare very similar. On the other hand, the cross sections for
basis functions, we employed two types of basis function seformation of then=2 excited states show rather large dis-
for comparison. The seA includes all the adiabatic states agreement with one another for both the energy dependence
associated with PsE1-3) and He(kn/; n=1-4) in the and the absolute values. At the energy of 30 eV, the cross
separated-atom limit. In the other $tthe states associated sections of Hewitt, Noble, and Bransden are larger than ours
with Ps(4s,4p,4d) and He(%,5p,5d,5f) are added to the by one order of magnitude.
basis of the sef\. For either set the same number of basis The dependence of the formation cross sections on the
functions are used for the expansion in all the sectors tdasis functions is shown in Fig. 2. The formation cross sec-
make the loss of the flux small even when high-lying stategions for the ground state are almost identical for the two
become closed at large The partial-wave expansion of the choices of the seté and B and we can conclude that the
scattering wave is carried out up to the total angular momenvalues are well converged. On the other hand, the cross sec-
tum J=7. The maximum valud=7 is large enough to get tions for the excited states are reduced considerably for go-
converged cross sections in the energy raige54.4 eV. ing from setA to setB at high energies. It is not physically
The unitarity of theS matrix is checked at each energy and sound that the cross sections for3 are larger than those
the inaccuracy is kept less than 0.1% at the highest collisiofor n=2. Recently Erreat al.[11] reported similar behavior
energy. The unitarity is maintained better as the collisionof the cross sections for the calculations of the electron cap-
energy decreases. The formation and excitation cross seture in H&* +H collisions. According to their interpretation,
tions are multiplied by a factor of 2 for the account of theionization flux, which becomes larger than the electron-
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FIG. 2. The dependence of the formation cross sections on the
size of the basis functions. The dotted lines are for the basiad
the dashed lines are for the badfis Curves connecting circles,

FIG. 4. Cross sections for excitation of (2€'S) in 7aj3. Solid

line, present hyperspherical coupled-channel calculatithese
B); dotted-dashed line, close-coupling calculations of Hewitt,

squares, and triangles are for the formation of the ground state, ”ﬁoble, and Bransdef6]; dotted line, close-coupling calculations of

n=2 state, and the=3 state, respectively.

Willis and McDowell[14]; dashed line, the random-phase approxi-

) ) ) ) _ mation of Varracchid12]; long-dashed line, the distorted-wave ap-
capture flux at high energies, is accumulated into the highegjroximation of Parcell, McEachran, and Stauffés]. The solid
bound states if nonadiabatic couplings with continuum statefne connecting crosses is the present calculation for the Aase

are not properly taken into account, and, consequently, the

capture cross sections in high-lying bound states are overegons are summed over all the positronium bound states in-
timated. Since all the adiabatic states in our calculations argjyded in the basis saB. The cross sections of Hewitt,

atom in the separated-atom limit, we conceive that the sames 25 and 2 states assuming the 3 distribution law. The

enhancement of the population of the excited states has Oggyreement of the present cross sections with the measure-
curred in the present calculations.
In Fig. 3 we present the total formation cross sections of\gple, and Bransden fail to reproduce them above 40 eV.

the two CC calculations and compare them with the meaThe unsatisfactory energy dependence of their cross sections
surements of Frommet al.[10]. The present total cross sec- jp, this energy region is due to the large contribution of their

ments is satisfactory, while the cross sections of Hewitt,

2s and 2 cross sections, which show a different energy
dependence from other theoretical curves. Since the present

0.7 ' T ' cross sections for the formation of tlme=4 excited states
06 - i may be overestimated as stated in the preceding paragraph,
~ we also present formation cross sections summed over
0.5 | . n=1-3 states only. The agreement with the measured values
£ has become even better.
204 | s
S
203 .
§ 0.2 | E T T T
8}
o1 | =02
0.0 | L ! <
10 20 30 40 50 60 E
Energy(eV) H
5
FIG. 3. The total formation cross sections 3. Solid lines, f 0.1
present hyperspherical coupled-channel calculations; dotted-dashed 2
line, close-coupling calculations by Hewitt, Noble, and Bransden. 9]
The solid line connecting solid circles gives cross sections summed
over all the positronium bound states in the basidBsand the solid
0.0

line connecting triangles gives cross sections summed over
n=1-3 states only. The dotted-dashed line connecting solid tri-
angles shows extrapolated cross sections of Hewitt, Noble, and
Bransden assuming the 3 law for the estimate of contribution of
excited states witm=3.

Energy(eV)

FIG. 5. The same as Fig. 4 but for the excitation of H&P).
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TABLE Il. Positronium formation cross sections-ag) for e* TABLE IIl. Excitation cross sectionsdaé) for et + He(1
+ He(11S) collisions.A andB denote the basis sets for the coupled *S) collisions.A andB denote the basis sets for the coupled equa-
equationgsee the tejtand the numbers in square brackets give thetions (see the tejtand the numbers in square brackets give the

powers of 10 to be multiplied. powers of 10 to be multiplied.
Energy 1s 2s 2p Energy 2s 2p
(eV) (eV)

A B A B A B A B A B
18.0 8.94-3] 8.84-3] 213 1.04-2] 1.04-2] 4.44-3] 4.2¢4-3]
20.3 9.04-2] 8.94-2] 23.0 3.28-2] 3.24-2] 1.01-2] 1.07-2]
21.3 1.33-1] 1.33-1] 241 4.5%-2] 4.44-2] 2.24-2] 2.24-2]
23.0 2.10-1] 2.1d-1] 4.30-4] 4.30-4] 6.24-4] 6.24-4] 24.8 5.29-2] 5.20-2] 3.24-2] 3.24-2]
24.1 2.56-1] 2.54-1] 1.39-3] 1.34-3] 1.74-3] 1.71-3] 26.7 6.58-2] 6.54-2] 6.07-2] 6.0q-2]
24.8 2.84-1] 2.84-1] 2.24-3] 2.04-3] 2.84-3] 2.84-3] 30.6 7.78-2] 7.97-2] 1.14-1] 1.17-1]
26.7 3.48-1] 3.5(0-1] 3.74-3] 3.94-3] 5.64-3] 6.34-3] 37.0 8.20-2] 7.94-2] 1.71-1] 1.67-1]
30.6 4.44-1] 4.44-1] 6.84-3] 8.04-3] 1.54-2] 1.471-2] 44.1 8.40-2] 7.54-2] 1.99-1] 1.84-1]
37.0 4.94-1] 4.99-1] 1.23-2] 1.54-2] 3.64-2] 2.24-2] 54.4 8.14-2] 6.64-2] 2.14-1] 1.97-1]

441 4721 47q4-1] 2.30-2] 2.3q-2] 5.24-2] 2.49-2]
544  3.86-1] 3.80-1] 3.34-2] 2.84-2] 5.44-2] 2.14-2]

the collision energy increases. The present description of the
scattering wave function is essentially based on the expan-
The 2'S(1s2s) and 2'P(1s2p) excitation cross sections sion in terms of adiabatic channel functions regardless of
are shown in Figs. 4 and 5. We see that larger discrepanayhether we use locally diabatic or adiabatic basis functions
exists for the 2S excitation cross sections. Varracchit?] in each sector. When the incident velocity of the projectile is
used the random-phase approximation in the framework ofuch larger than the average velocity of the target electron,
the many-body perturbation theory. Parcell, McEachran, anthe distortion of the internal electronic state is generally
Stauffer [13] calculated the cross sections by a distorted-small and the representation by the atomic orbital is accept-
wave approximation. Both theories are high-energy approxiable. If we use the adiabatically distorted-wave functions at
mations and the reliability of these methods is not high insuch high energies, we need more basis functions to achieve
this low-energy region. Willis and McDoweflLl4] employed  convergence than in using unperturbed atomic orbitals. The
a single-center close-coupling method including pseudostatégterpretation of Erreat al. [11] for the overpopulation of
for the account of the polarization effect of the target heliumhigh-lying states is another aspect of the same characteristics
atom. In the present calculations the polarizations of the tarof the adiabatic-base expansion in a high-energy region.
get atom and the rearranged positronium are taken into agrom these considerations we do not proceed to apply the
count automatically by the adoption of the adiabatic baSiﬁaresent hyperspherical CC method to high energies above
functions in the hyperspherical representation. Hewittgg 4 oy
Noble, and Bransdef6] used a similar model potential to In Fig. 6 we present the summed-8 and 2P excitation

ours, and 'ghus the disagreement 9f the two_ca}lculatlons arNS&Soss sections together with the measured values of Mori and
from the difference of the theoretical description of the scat-

tering problem and of the employed basis functions. We
have used larger number of basis function for the expansion.
Although the two close-coupling calculations of Hewitt,
Noble, and Bransden and Willis and McDowell show mutual
agreement; this does not mean that their calculations have
achieved good convergence since both the methods are based
on a similar formalism in terms of the unperturbed-atomic-
orbital expansion. The polarization of the target helium atom
is only partly taken into consideration by inclusion of a few
pseudostates. The disagreement of tH® 2xcitation cross
sections in Fig. 5 is smaller but the differences are not small
enough to regard all the calculations as consistent. The
21S state is strongly coupled with the'R state which has
larger excitation cross sections. The polarization effect mixes
these states easily and makes th& 2xcitation cross sec-
tions more sensitive to the accuracy of employed approxima-

Cross sections (T a,?)

tions than the 2P excitation cross sections. Tables Il and IlI Energy(eV)
summarize the present formation and excitation cross sec-
tions. FIG. 6. The sum of 2S and 21P excitation cross sections. The

The convergence for the size of the coupled equationgotations of the theoretical curves are the same as in Figs. 4 and 5.
becomes worse for both the formation and the excitation a®pen circles are the measured values of Mori and Suftia
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Sueoka[15]. All of the theoretical cross sections are larger IV. SUMMARY

than the experimental_data. In the f_ramework of the in_depen- We have applied the hyperspherical coupled-channel
dent ele_ctron model, little account is taken of ﬂl}mamlcal method to two-electron systems within an independent-
correlation effect between the active and passive electrongyaciron approximation. The helium atom is approximated as
which can not be discriminated distinctly from the static cor-4 quasi-one-electron atom with a central model potential.
relation effect. The disagreement between the present resulsyod agreement is obtained with the experiment for the pos-
and the measured values is partly due to the defect of thgronjium formation cross sections but the present excitation
independent-electron approximation. In the case of the forgross sections to %5 and 2P states are larger than the

mation, the dynamical correlation can be considered to beneasurements by a factor of 2. A better treatment for the
less important since it becomes small after the electron hasvo-electron atom is required to clarify the cause of the dis-

been captured by the positron. crepancy with the measurement.
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