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A recent formulation provides an absolute definition of the zero-energy phase shiftd for multiparticle
single-channel scattering of a particle by a neutral compound target in a given partial wavel . This formulation,
along with the minimum principle for the scattering length, leads to a determination ofd that represents a
generalization of Levinson’s theorem. In its original form that theorem is applicable only to potential scattering
of a particle and relatesd /p to the number of bound states of thatl . The generalized Levinson theorem relates
d /p for scattering in a state of given angular momentum to the number of composite bound states of that
angular momentumplusa calculable number that, for a system described in the Hartree-Fock approximation,
is the number of states of that angular momentum excluded by the Pauli principle. Thus, for example, for
electron scattering by Na, with its (1s)2(2s)2(2p)63s configuration and with oneL50 singlet composite
bound state,d would bep12p for s-wave singlet scattering, 013p for s-wave triplet scattering, and 01p for
both triplet and singletp-wave scattering; the Pauli contribution has been listed first. The method is applicable
to a number ofe6-atom and nucleon-nucleus scattering processes, but only applications of the former type are
described here. We obtain the absolute zero-energy phase shifts fore2-H ande2-He scattering and, in the
Hartree-Fock approximation for the target, for atoms that include the noble gases, the alkali-metal atoms, and,
as examples, B, C, N, O, and F, which have one, two, three, four, and fivep electrons, respectively, outside of
closed shells. In all cases, the applications provide results in agreement with expectations.
@S1050-2947~96!03512-3#

PACS number~s!: 03.65.Nk, 34.80.Bm, 25.40.Dn

I. INTRODUCTION

The classic Levinson theorem relates the zero-energy
phase shiftd, for scattering of a particle of orbital angular
momentuml by a short-range potential, to the number of
bound states of thatl . To generalize the theorem to multipar-
ticle single-channel scattering, it is essential, as first pointed
out by Swan@1# in the context of an independent-particle
model, thatd be related to the actual number of composite
bound statesplus the number of composite bound states ex-
cluded by the Pauli principle.@For l50, for e2-He, for ex-
ample, there would be a (1s)3 bound state were it not for the
Pauli principle.# A recent generalization@2# of Levinson’s
theorem does exactly that, in a precise and model-
independent way. The argument, stripped of details irrel-
evant for our present purposes and of proofs, is as follows. A
zero-energy electron in thel th partial wave is incident on an
M21 electron target with an orbital angular momentumLT
and spinST . ~The validity of LS coupling is assumed here
for simplicity; generalizations are possible, as discussed in
Ref. @2#.! The normalized antisymmetrized target wave func-
tion is CT(x2 , . . . ,xM), wherexj represents the space and
spin coordinates of thej th target electron. We form
C(s1 ,V1 ;x2 , . . . ,xM), with s1 andV1 representing the spin
and angular coordinates, respectively, of particle 1, by cou-
pling the LT and ST of CT with the l and spin 1

2 of the
incident particle to form an initial state with total orbital and
spin angular momenta and projectionsL, Lz , S, andSz . @We
cite two examples. IfLT5ST50, as for targets with closed
subshells only, andl50, thenC is independent ofV1 and
assumes the simple form

C~s1 ;x2 , . . . ,xM !5CT~x2 , . . . ,xM !x1/2
61/2~1!, ~1.1!

where the one-particle spin functionx1/2
61/2 has a projection

6 1
2\ and C has L5Lz50, S51

2, and Sz561
2. ~We often

label coordinates by particle number to simplify notation.! If
LT50 and/or l50, andSTÞ0, the coupling would involve
only spins. Note that the exact scattering wave function does
not enter in this construction.# With Pi↔ j interchangingxi
andxj , with

A1[12(
j52

M

P1↔ j , ~1.2!

and assuming for simplicity thatLT50, we form the fully
antisymmetrized function

U~x1 ,x2 , . . . ,xM !5A1@C~s1 ;x2 , . . . ,xM !r 1
l Yl0~V1!#.

~1.3!

An effective one-particle wave function

F~r 1!5E dV1Yl0~V1!E dr2•••drMC†~s1 ;x2 , . . . ,xM !

3U~x1 , . . . ,xM !, ~1.4!

wherer is a spatial coordinate and where there is a summa-
tion over the spin coordinates of the target particles and the
incident particle, is the projection ofU first ontoC and then
onto thel th partial wave of the incident particle. WithNPauli
the number of nodes ofF(r 1), the phase shift associated with
F(r 1) is defined to beNPaulip. It is then proved that
d5~NPauli1N!p, whereN is the number of bound states of
angular momentuml and spinS. ~Here we assume that there
are no zero-energy bound states; the effect of such states,
when they exist, can be accounted for@2#.! The treatment of
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cases in whichLTÞ0 proceeds along similar lines. Circum-
stances under which only single-channel scattering is pos-
sible, so that a real-valued zero-energy phase shift exists,
were analyzed in Ref.@2#. Here we merely remark that for
l50, the case of greatest interest, the zero-energy phase shift
exists for any values of the remaining angular momentum
quantum numbers, whether or notLS coupling is valid. With
LS coupling assumed, the zero-energy phase shift exists for
LT50; it exists forLT51 if L50 or 1, but not ifL52, a
consequence of the existence of a long-range polarization
contribution to the effective scattering potential. We return to
this point in Sec. II C, below.

The function r 1
l in Eq. ~1.3! is the zero-energy free-

particle solution of the radial Schro¨dinger equation. This
form is appropriate for potentials of short range, but an elec-
tron scattering from an atom experiences a long-range polar-
ization potential and this requires that, forl>1, the function
r 1
l be replaced by a more accurate solution accounting for

the long-range interaction. The procedure for doing this was
developed in detail in Ref.@2#. In the applications below to
atoms withZ.2, CT will be replaced by its Hartree-Fock
approximation. With the true target Hamiltonian replaced by
its Hartree-Fock approximation, the results cited above can
be applied forl>1 as well as forl50. The formalism is
readily modified to include the effect of a long-range repul-
sive Coulomb interaction between projectile and target@2#.

Applications of the generalized Levinson theorem to
e2-atom scattering are described in Sec. II. Results obtained
for H are rigorous and for He they are essentially so: use of
more accurate He wave functions than those considered here
would be pointless. As mentioned, Hartree-Fock wave func-
tions were used as approximations to the wave functions of
the heavier target atoms, with explicit results obtained for the
noble gases, the alkali-metal atoms, and, as examples of at-
oms with one to fivep electrons outside closed subshells, B,
C, N, O, and F.

II. ELECTRON SCATTERING BY A NEUTRAL ATOM

A. e2-H

As a first application we considers-wave electron scatter-
ing from hydrogen in its ground state. In either the singlet or
triplet state the spin function can be factored out so that only
the spatial part of the wave function~symmetric in the sin-
glet and antisymmetric in the triplet state! needs to be con-
sidered in determiningNPauli. We first consider scattering in
the triplet state. While the 1s target function is of course
known in this case, we present the analysis in a manner that
requires less than complete knowledge of this function to
illustrate a procedure that will be used in our treatment of
e2-He scattering and may be of use in treating still more
complex atomic targets and even more so in the study of the
scattering of nucleons by nuclei, where the bound-state wave
functions are known only very poorly. All that needs to be
known of the spatial partc1s(r 2) of the target wave function
is that it has its maximum value at the origin, decreases
monotonically to zero, and satisfies the normalization condi-
tion *c1s

2(r )dr51. With the spins omitted, we find that
C~r2!5CT(r 2)5c1s(r 2), U5(4p)1/2[c1s(r 2)2c1s(r 1)],
and

F triplet~r 1!512I ~r 1!, ~2.1!

whereI (r )5c1s(r )*c1s(r 8)dr 8. One sees immediately that
F triplet has at least one node since it is orthogonal to the
nodeless functionc1s. More explicit information is obtained
by noting that the maximum value ofI (r ) satisfies

Imax5I ~0!5c1s~0!E c1s~r 8!dr 8.E c1s
2 ~r 8!dr 851.

~2.2!

We conclude thatF triplet(r 1)512I (r 1) is negative at the ori-
gin, increases monotonically, and approaches unity at great
distances; it therefore has a single node, so thatNPauli51.
Since no triplet bound state exists for the composite system it
follows thatdtriplet5p. It should be emphasized that we are
able to obtain the precise resultdtriplet5p for the s-wave
triplet phase shift by virtue of the fact that our procedure
does not require knowledge of the exact scattering wave
function; only its Born approximation enters the analysis. In
an alternative method proposed some time ago@3,4#, the
phase shift was defined~in principle! by applying the nodal
definition to the equivalent one-body wave function obtained
by projecting the exact zero-energy scattering wave function
onto the target ground-state function. Then, from the fact that
the triplete2-H wave function is spatially antisymmetric, it
follows directly that the equivalent one-body wave function
must have at least one node since it is orthogonal to the
hydrogenic ground-state function. One can conclude in this
way only that the phase shift so defined is at leastp.

A similar procedure applied in the case of singlets-wave
scattering leads to the formFsinglet(r 1)511I (r 1), with I (r 1)
defined as above, so that there are no nodes andNPauli50;
since one and only one singlet bound state exists we con-
clude immediately thatdsinglet5p. An extension of this
analysis shows that the zero-energy phase shift vanishes for
l.0 for both triplet and singlet states. Here one observes that
since the H ground state is ans wave, the analog of the
function I (r 1) appearing in Eq.~2.1! contains the projection
of c1s on to a higher partial wave and therefore vanishes.

B. e2-He

Turning now to thes-wavee2-He problem, we take the
normalization condition for the spatial part of the target
ground-state wave function to be*cHe

2 ~r2,r3!dr2dr351. The
phase shift is independent of the spin projection of the inci-
dent electron; we take the projection to be\/2 and find that

C~s1 ;x1 ,x2!5cHe~r2 ,r3!x0~2,3!a~1!,

wherex0~2,3! is the spin-zero function for the~2,3! pair,a~1!
is x1/2

1/2~1!, and

U~x1 ,x2 ,x3!5~4p!1/2~12P1↔22P1↔3!C~s1 ;x2 ,x3!.

In the evaluation of F(r 1), the unit term in
(12P1↔22P1↔3) gives unity andP1↔21P1↔3 can be re-
placed by 2P1↔2. The spin factor of the 2P1�2 term is 1

2 and
we findF(r 1)512I (r 1) for the effective one-particle wave
function, where, sincel50,
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I ~r 1!5E cHe~r2 ,r3!cHe~r1 ,r3!dr2dr3 . ~2.3!

In arriving at Eq.~2.3!, we were able to omit the average
~4p!21*dV1 that is formally required in Eq.~1.4! since this
overlap integral is independent of the direction ofr1. This
greatly simplifies the analysis, given immediately below, for
it enables one to work with the full target wave functioncHe,
and all that needs to be known ofcHe is the fact that it is
normalized to unity; one does not need to determine thes2

component ofcHe, that component for which each electron
is in an s state.@On the other hand, for the analysis of the
p-wave phase shift, for which the angular integration cannot
be avoided, we will see shortly that it will be necessary to
obtain an~approximate! analytic form of thep2 component
of cHe.# The direction ofr1 is assumed to have been fixed
arbitrarily in Eq.~2.3!. An explicit evaluation of this integral
using very accurate helium wave functions would allow one
to determine~with high confidence! the number of nodes in
F(r 1). This, coupled with the fact that there is no stable
negative helium ion, would provide us with the value of the
zero-energy phase shift. This value is almost certainlyp.
Thus it is known thatcHe~r1,r3! is nodeless@5,6#, for, the
spins having been eliminated and the spatial function being
symmetric, the electrons can be treated as bosons. If we
make the assumption~which is intuitively reasonable, but
thus far not rigorously proved, to our knowledge! that for
any fixed values ofr 3 and ur32r1u, the maximum value of
cHe~r1,r3! is achieved forr 150 and thatcHe~r1,r3! is a
monotonically decreasing function ofr 1, the argument given
in the discussion following Eq.~2.1!, showing ~for e2-H
triplet scattering! that F(r 1) has a single node, applies di-
rectly to this case, implying thatd5p @7#. We tested the
above monotonicity assumption on several variationally de-
termined approximations tocHe~r1,r3!, including Kinoshita’s
ten-parameter trial function@8#, and the assumption is veri-
fied in these tests@9#. More accurate helium wave functions
are available for more stringent tests that are rather simpler
to perform than would be an explicit evaluation of the inte-
gral appearing in Eq.~2.3!.

In the extension of these considerations ofe2-He scatter-
ing to an arbitrary partial wave it is convenient to introduce
the expansion

cHe~r2 ,r3!5 (
L50

`

cL~r 2 ,r 3! (
ML52L

L

YLML
~V2!YLML

* ~V3!.

~2.4!

The effective one-particle wave function for thel th partial
wave then takes the form

F~r 1!5r 1
l 2E

0

`

r 2
2dr2E

0

`

r 3
2dr3c l~r 2 ,r 3!c l~r 1 ,r 3!r 2

l .

~2.5!

To studyF(r 1) for l51, we evaluated thel51 componentc1
of the three-parameter Hylleraas trial function@8# and found
that F(r 1) is nodeless, a result that, as expected@10#, is
consistent with the vanishing of thel51 phase shift@11#.
The same result is expected for all higher partial waves, as
could now be verified by evaluation of the integral appearing

in Eq. ~2.5! using a sufficiently accurate trial function.~Pre-
sumably, as we have noted previously@2#, anexactdetermi-
nation of the target wave function is not required since the
result sought has a discrete rather than a continuous charac-
terization.!

C. Heavier targets in the Hartree-Fock approximation

1. Atoms with closed subshells

We now discuss several applications of this procedure to
electron scattering by heavier targets, with accurate analytic
representations@12# of solutions of the Hartree-Fock equa-
tions used to approximate the target ground-state wave func-
tions. We consider scattering in thel th partial wave and de-
note the target orbitals asRnl(r )Ylml

(V)x1/2
ms with

*0
`Rnl

2 (r )r 2dr51. It is then found, for targets with closed
subshells and therefore with vanishing total spin and orbital
angular momentum, that the effective one-body wave func-
tion is of the form~see Appendix A!

F~r !5r l2 (
n5 l11

l1n l

Rnl~r !E
0

`

Rnl~r 8!r 8 l r 82dr8

[ )
n5 l11

l1n l

~12Pnl!r
l . ~2.6!

Herenl is the number of closed subshells of angular momen-
tum l andPnl is the projection operatoruRnl&^Rnlu. Using the
data in Ref.@12# for the target atoms Be, Ne, Mg, Ar, and Kr
we calculated and then plottedF(r ) to determine the number
of nodes,NPauli, in this function and hence the contribution
to the zero-energy phase shift originating in the Pauli prin-
ciple. @As an illustration, we present in Fig. 1 a plot ofF(r )
for s-wave scattering by Ar.# We found in each case that
NPauli5nl , which determines the zero-energy phase shift as
d5~nl1N!p, where N, the number of composite bound
states of the givenl , is zero for anyl for Ne, Ar, and Kr;
their s-wave phase shifts are therefore 2p, 3p, and 4p, re-
spectively. It appears@13# that no composite Mg2 bound
state exists and that the2S state of Be2 is the only stable
state of this system, so thatd53p for the scattering of
s-wave electrons from both Mg and Be. Our results for the

FIG. 1. Plot of the functionF(r ) @see Eq.~2.6! of the text# for
s-wave scattering by argon. The appearance of three nodes~exclud-
ing the zero at the origin! shows that the Pauli contribution to the
zero-energy phase shift is 3p. An additional factor ofr was in-
cluded in this plot.
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s-wave scattering from rare-gas target atoms conform to a
prediction made by Swan@1#, but we decidedly disagree with
his statement that the effect of the Pauli principle may be
ignored forl.0. We note that the calculated valueNPauli5nl
is the expected one, as it corresponds to the number of states
excluded by the Pauli principle@6#. The zero-energyp-wave
phase shifts of Be, Ne, Ar, and Kr are therefore 0,p, 2p, and
3p, respectively. Kr has ad-wave phase shift ofp. It hardly
seems necessary, but if one wished to establish the above
results with even greater certainty one would have to show
that in each case the same number of nodes is obtained using
even more accurate approximations to the ground-state wave
function. No scattering calculations need to be performed.

We remark that fornl51 the presence of a single node
can be deduced without performing the integration indicated
in Eq. ~2.6!. It is sufficient to observe that for such a state the
Hartree-Fock functionRnl(r )/r

l has some of the same essen-
tial properties as the CoulombicRnl(r )/r

l , namely, it has its
maximum at the origin and decreases monotonically to zero.
~One verifies this immediately by noting that functions of
this type are represented, in the tables of Ref.@12#, as sums
of decaying exponentials with positive coefficients@14#.! We
expect that additional simplifications in the determination of
nodal structures could be obtained from an examination of
the general features of the radial wave functions. As an ex-
ample, suppose that each of the functionsRnl(r ) can be rep-
resented, to a good approximation, as the solution of a one-
body wave equation for a given potentialVl(r ). It can be
shown, with the aid of methods described in Ref.@2#, that the
zero-energy scattering functionP i51

N (12Pi)r
l , where Pi

projects onto thei th bound state, hasN nodes ifVl(r ) hasN
bound states of angular momentuml . Thus there exists a
very strongexpectationthat the function defined in Eq.~2.6!
hasnl nodes; this is consistent with numerically determined
results that we obtained for several particular cases.

2. Atoms with incomplete subshells

We also applied the procedure described above to the
scattering of electrons by atoms with incomplete subshells.
We first consider the problem ofs-wave scattering of elec-
trons by the alkali-metal atom Li in its ground state. The
effective one-body wave function for this system is found,
assuming the Hartree-Fock approximation for Li, to be

F~r !512R10~r !E
0

`

R10~r 8!r 82dr7R20~r !E
0

`

R20~r 8!r 82dr

512P1017P201, ~2.7!

where the minus~plus! sign before the second integral cor-
responds to scattering in the triplet~singlet! spin state. A
proof of Eq. ~2.7! is provided in Appendix B. We find two
nodes in this function for the triplet case and one node in the
singlet case. Since the only composite bound state is a sin-
glet, we conclude thatd52p for each spin state.~This is in
agreement with an earlier prediction@6# based on the central-
field approximation.! The generalization to heavier alkali-
metal targets follows immediately from the derivation of Eq.
~2.6! given in Appendix A and from Eq.~2.7!. If there aren0

closedl50 subshells and there is ones electron with princi-
pal quantum numbern011, F(r ) for s-wave scattering is
given by

F~r !512 (
n51

n0

Pn017P~n011!01. ~2.8!

ThusF(r ) for s-wave scattering by Na will have the struc-
ture appropriate to theF(r ) for Ne, with an additional term
corresponding to the 3s valence electron, the sign being
negative~positive! for triplet ~singlet! scattering. A plot of
this function shows, as expected, three nodes for the triplet
state and two for the singlet state. We conclude thatd53p
for each spin state since, as for Li, the only composite bound
state is a singlet. The functionF(r ) appropriate to singlet or
triplet p-wave scattering by Na has a single node. This con-
clusion follows from a cursory inspection of the parameters

TABLE I. Illustration of the generalized Levinson theorem for
s- and p-wave electron scattering by some of the lightest atoms.
~See the text for discussion of O, F, and Ne.! Only nonvanishing
zero-energy phase shifts are listed. The integer preceding2S11L in
the second column is the principal quantum number of the subshell
from which the projectile is excluded. The listing of the negative-
ion-states includes a labeling of the outer-shell configurations.

Target
Pauli excluded

states
Negative-ion

states d ~l50! d ~l51!

H 1 3S p
1s2 1S p

He 12S p
Li 1 3S, 2 3S 2p

1 1S 2s2 1S 2p
Be 12S, 2 2S 3s 2S 3p
B 1 3P, 2 3P 2p

1 1P, 2 1P 2p
2 3S p
2 1P p

2p2 3P p
C 14P, 2 4P 2p

1 2P, 2 2P 2p
2 2S p
2 4P p

2p3 4S p
N 1 5S, 2 5S 2p

1 3S, 2 3S 2p
2 5P p

2p4 3P p
Na 11S, 2 1S 3s2 1S 3p

1 3S, 2 3S, 3 3S 3p
2 1P p

Na 11S, 2 1S 3s2 1S 3p
1 3S, 2 3S, 3 3S 3p

2 1P p
2 3P p

Mg 1 2S, 2 2S, 3 2S 3p
2 2P p
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listed in Ref.@12# for thep-wave orbital of Na, which shows
that the orbital is a monotonically decreasing function; no
calculation is necessary.

To illustrate the application of the generalized Levinson
theorem, we present, in Table I, a compilation of zero-energy
phase shifts~only nonvanishing phases are listed! for elec-
tron scattering by several of the lightest atoms; the necessary
information, the number of composite bound states and states
excluded by the Pauli principle, is also included. In the ab-
sence of zero-energy resonances, the predicted phase shift is
d5~NPauli1N!p, where N is the number of negative-ion
bound states~zero or one in the cases considered! andNPauli
is the number of nodes in the effective one-body wave func-
tion F(r 1) defined in Eq.~1.4!. @The definition ofF(r 1)
given in Eq.~1.4! is valid only for LT50, but the extension
to LTÞ0 is trivial, demanding only the coupling of orbital
angular momenta.# The essence of the generalized Levinson
theorem is the statement thatNPauli thus defined is equal to
the number of bound states excluded by the Pauli principle.
By determining the number of nodes inF(r ) we are able to
confirm this property for the atomic targets listed in Table I.
Note thatd depends on the incident orbital angular momen-
tum l and the total orbital and spin angular momentaL andS
of the system.~The allowable values ofS andL depend upon
l , ST , andLT .! We have analyzed electron scattering by Li
and by atoms with closed subshells, which includes Be, and
so we go on to study, in turn, electron scattering by the
atoms from B to F, with one to fivep electrons.

Consider boron, with its (1s)2(2s)2(2p) 2P configura-
tion. For l50, the excluded 3P and 1P states are
(1s)3(2s)2(2p) 3,1P and ~1s)2(2s)32p 3,1P, while for l51
the excluded 3S and 1P states correspond to
(1s)2(2s)2(2p)2. ~A 3D state is excluded as well, but we
omit discussion ofp-wave scattering withL52 since, as
remarked in Sec. I and discussed in more detail in Ref.@2#,
the scattering is not restricted to a single channel in this
case.! We turn next to C, with its (1s)2(2s)2(2p)2 3P
ground-state configuration. The analysis ofd for l50 is
rather similar to that for B. Forl51, angular momentum
conservation allowsS, P, andD singlet and triplet states,
while the states that arise from threep electrons~with the
samen! are 4S, 2D, and 2P; 2S, 4D, and 4P states are ex-
cluded. Reference top-wave scattering withL52 is omitted
in Table I, for the reason mentioned above. Next on the list is
N, with its (1s)2(2s)2(2p)3 4S configuration; the angular
factor of the (2p)3 component, totally antisymmetric to
minimize the Coulomb repulsion, isr̂1•r̂23r̂3, with zero to-
tal orbital angular momentum. The analysis ofs-wave scat-
tering is similar to some of the cases considered above and
we considerp-wave scattering. A5P state is excluded, since
it would demand that fourp electrons be in a totally anti-
symmetric spatial state, but a3P state is allowed.~The listing
of this state in Table I is tentative since its existence is un-
certain @13#.! We find thatF(r 1)5(12P21)r 1 for the ex-
cluded5P state, so thatd5p for this state, while for the3P
state we haveF(r 1)5[11 1

3P21] r 1 ; there is, therefore, no
Pauli contribution to this state, consistent with the fact that it
is not excluded. The analysis of scattering by O with its four
2p electrons is identical to that for C with its two 2p elec-
trons, while the scattering by F with its five 2p electrons is
identical to that for B with its onep electron.

At this stage we know how to analyze target atoms with
closed subshells only and those with closed subshells plus
one electron in ans state or one to five electrons in the same
p state. This accounts for a large fraction of all of the atoms,
and the methodology could readily be extended to other at-
oms with closed subshells and with only one open subshell.

III. DISCUSSION

The analysis of the zero-energy scattering of positrons by
atoms along the lines developed above is particularly simple
since the projectile is distinguishable from the particles in the
target. The conclusion reached previously@6# that the zero-
energy phase shiftd vanishes in each partial wave fore1-H
ande1-He is confirmed. Since the present approach, unlike
that given earlier, does not depend on a knowledge of the
structure of the true scattering wave function, it is not only
simpler but, more significantly, is applicable to positron scat-
tering by any neutral or positively ionized atomic target.
There are some atoms with which ane1 can form one bound
state, with thee1 in ans state, and for such atoms one would
haved5p for l50 andd50 for l.0. There is a wide class of
problems, including the scattering of electrons by positive
ions, which cannot be treated by the present method owing to
the presence of an attractive Coulomb tail in the effective
projectile-target potential. It had been suggested earlier@15#
that it might be possible to establish a connection~involving
the quantum defect! between the phase shift generated by the
short-range component of the potential and the number of
additional bound states that it generates. Such a connection
has recently been established~using methods quite different
from those employed here! for the one-body potential scat-
tering problem@16#. Subsequently@17#, an extension appli-
cable to scattering by a compound target has been developed,
thus enlarging significantly the class of problems to which
generalized versions of Levinson’s theorem can be applied.

We once again emphasize that the results obtained are for
a functiond, which at zero energy has discrete rather than
continuous values. The results therefore tend to be rather
robust; the use of imprecise target wave functions and the
omission of small perturbations, such as spin-orbit interac-
tions, will not normally affect the value ofd @18#. These
remarks, and our continued efforts to provide arguments in-
dependent of details, may be of interest, but are not essential
in the atomic cases analyzed here since the interactions are
well known and Hartree-Fock wave functions are available.
However, they have been very useful in our studies~to be
reported on subsequently! of nucleon-nucleus scattering,
where the interactions and target wave functions are rela-
tively poorly known.
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APPENDIX A: FORMS FOR F „r 1… FOR CLOSED
SUBSHELLS ONLY

Rather than proving Eq.~2.6! for an atom with an arbi-
trary set of closed subshells, we will prove it for Ne, which
has all of the physical complexities of the general case and
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for which the notational details are less cumbersome. We let
Qn8 l 8 represent the normalized antisymmetric wave function
for the 2~2l 811! particles in the closedn8l 8 subshell. Thus,
for example, we have

Q1s~2,3!5~4p!21R1s~2!R1s~3!x0~2,3!. ~A1!

The symmetrized Ne target wave function is then

CNe~2, . . . ,11!5Â@Q1s~2,3!Q2s~4,5!Q2p~6, . . . ,11!#,
~A2!

where Â denotes antisymmetrization with respect to elec-
trons in different subshells; the inclusion of an overall nor-
malization factor forCNe will be seen shortly to be unnec-
essary. SinceLT5ST50 for Ne, the wave functionC in Eq.
~1.3! is given by

C5CNe~2, . . . ,11!a~1!, ~A3!

where, without loss of generality, we have taken the incident
particle to have spin up. The unit term in the operator
12(j P1↔ j appearing in Eqs.~1.2! and ~1.3! gives r 1

l and
Eq. ~1.4! becomes

F~r 1!5r 1
l 2(

j52

11 E dV1Y10~V1!E dr2•••dr11

3@CNe~2, . . . ,11!a~1!#†@CNe8 a~ j !r j
l Yl0~V j !#,

~A4!

where CNe8 [CNe(2, . . . ,j21,1,j11, . . .,11) reflects the
effect ofP1↔ j onC. The integration overVj vanishes unless
the j th electron inCNe~2, . . . ,11! has the quantum numberl
of the incident particle.@For the Ne atom under consideration
we therefore haveF(r 1)5r 1

l for l.1, so thatF(r 1) is node-
less forl.1 and there is no Pauli phase shift.# Furthermore,
by virtue of the orthogonality ofRnl andRn8 l for nÞn8, the
only nonvanishing contributions come from the same distri-
butions of electrons in the two sets of square brackets; if a
term in the first set of brackets contains electrons 2 and 7 in
the 1s state, the relevant terms in the second set of brackets
must also contain electrons 2 and 7 in the 1s state, andÂ in
Eq. ~A2! can be dropped; the particles in different subshells
are effectively distinguishable. The integral over the coordi-
nates in the subshells not containing thej th electron gives
unity and we arrive at Eq.~2.6!, with the subshells withl 85 l
contributing separately, with the contribution from a subshell
with l 85 l coming from the orbital with the quantum num-
bersml 8

8 , andms8 , the same as those of the incident electron,
namely,ml50 andms511

2.

APPENDIX B: FORMS FOR F „r 1…
FOR ALKALI-METAL ATOMS

We first considers-wave scattering by Li atoms; the ex-
tension to an arbitrary alkali-metal atom follows immedi-
ately. The spin projections6 and 0 for triplet scattering must
give the same result and we choose to consider the zero
projection, for the triplet and singlet scatterings can then be
treated together. The normalizedC that appears in Eq.~1.3!
is given by

C~1;2,3,4!5321/2~12P2↔42P3↔4!G~1;2;3;4!,
~B1!

where the coordinate 1 refers only to the spin and where,
with Q1s defined by Eq.~A1!,

G~1;2,3;4!5Q1s~2,3!c2s~4!x~1,4!, ~B2!

wherex~1,4! is x0~1,4! for the singlet case and the spin-1
state with zero projection for the triplet case. The 321/2 factor
reflects the orthonormality of the terms containing 1,P2↔4,
andP3↔4. In fact, we note for later purposes that each pair-
ing of two different terms of these three is orthogonal in each
of two variables.@The pairing 1G andP2↔4G, for example,
contains the factorsc1s(3)c2s(3) andc1s(4)c2s(4).# Since
l50, theU of Eq. ~1.3! is

U5S 12(
j52

4

P1↔ j D @C~1;2,3,4!Y00~V1!#. ~B3!

We can now write

F~r 1!5E dV1E dr Y00~V1!C
†~1;2,3,4!S 12(

j52

4

P1↔ j D
3@C~1;2,3,4!Y00~V1!#, ~B4!

wheredr[dr2dr3dr4. The unit term in 12(j P1↔ j makes a
contribution of one toF(r 1) and the integration overV1 is
trivial. Furthermore, sinceP1↔ j changes only one of thej
coordinates, the only nonvanishing contributions toF(r 1)
are those for which, for a given term inC†, proportional to 1,
P2↔4, or P3↔4, the corresponding term is taken inC. The
three terms 11,P2↔4P2↔4, andP3↔4P3↔4 make the same
contribution and we arrive at

F~r 1!51233~321/2!2E dr G†~1;2,3;4!~2P1↔21p1↔4!

3G~1;2,3;4!; ~B5!

we used the symmetry in 2 and 3 ofG~1;2,3;4! to replace
P1↔3 by P1↔2. The remainder of the calculation is now
trivial and gives Eq.~2.7!.
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