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Generalized Levinson theorem: Applications to electron-atom scattering
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A recent formulation provides an absolute definition of the zero-energy phasedstuft multiparticle
single-channel scattering of a particle by a neutral compound target in a given partidl. Wing formulation,
along with the minimum principle for the scattering length, leads to a determinatightiudit represents a
generalization of Levinson’s theorem. In its original form that theorem is applicable only to potential scattering
of a particle and relate®/ to the number of bound states of thafThe generalized Levinson theorem relates
6l for scattering in a state of given angular momentum to the number of composite bound states of that
angular momenturplus a calculable number that, for a system described in the Hartree-Fock approximation,
is the number of states of that angular momentum excluded by the Pauli principle. Thus, for example, for
electron scattering by Na, with its §1%(2s)%(2p)®3s configuration and with oné =0 singlet composite
bound state$ would ber+27 for s-wave singlet scattering, %3 for s-wave triplet scattering, ancHOrm for
both triplet and singlep-wave scattering; the Pauli contribution has been listed first. The method is applicable
to a number o™ -atom and nucleon-nucleus scattering processes, but only applications of the former type are
described here. We obtain the absolute zero-energy phase shiS-tdrand e -He scattering and, in the
Hartree-Fock approximation for the target, for atoms that include the noble gases, the alkali-metal atoms, and,
as examples, B, C, N, O, and F, which have one, two, three, four, ang Blectrons, respectively, outside of
closed shells. In all cases, the applications provide results in agreement with expectations.
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. INTRODUCTION where the one-particle spin functiop>2 has a projection
+ih and ¥ hasL=L,=0, S=3, andS,==+3. (We often
The classic Levinson theorem relates the zero-energiabel coordinates by particle number to simplify notatjdh.
phase shifts, for scattering of a particle of orbital angular L;=0 and/orl =0, and S;#0, the coupling would involve
momentuml by a short-range potential, to the number of only spins. Note that the exact scattering wave function does
bound states of that To generalize the theorem to multipar- not enter in this constructionWith P;_; interchangingx;
ticle single-channel scattering, it is essential, as first pointe@ndx;, with
out by Swan[1] in the context of an independent-particle
model, thaté be related to the actual number of composite
bound stateplus the number of composite bound states ex- AlEl_EZ P,
cluded by the Pauli principldFor | =0, for e -He, for ex-
ample, there would be a (513 bound state were it not for the and assuming for simplicity thdt-=0, we form the fully
Pauli principle] A recent generalizatiof2] of Levinson’s  antisymmetrized function
theorem does exactly that, in a precise and model-
independent way. The argument, stripped of details irrel- U(Xy,Xz, ... Xpm)=A [V (S1;Xz, ... ,xM)r'lY,O(Ql)].
evant for our present purposes and of proofs, is as follows. A 1.3
zero-energy electron in tH¢h partial wave is incident on an
M —1 electron target with an orbital angular momentum
and spinSy. (The validity of LS coupling is assumed here

M
(1.2

An effective one-particle wave function

for simplicity; generalizations are possible, as discussed in F(rl):f dQlYIO(Ql)f dro--dryWT(s;:Xs, ... Xu)
Ref.[2].) The normalized antisymmetrized target wave func-

tion is W(x,, . .. Xu), wherex; represents the space and XU(Xq, -+« X, (1.4

spin coordinates of thejth target electron. We form

W(s1,01:%,, ... Xy), With s; and (), representing the spin  wherer is a spatial coordinate and where there is a summa-

and angular coordinates, respectively, of particle 1, by coution over the spin coordinates of the target particles and the
pling the Ly and S; of Wy with the | and spin; of the incident particle, is the projection &f first onto¥ and then
incident particle to form an initial state with total orbital and onto thelth partial wave of the incident particle. Wit

spin angular momenta and projectidnsL,, S, andS,. [We  the number of nodes & (r,), the phase shift associated with
cite two examples. It t=S;=0, as for targets with closed F(r,) is defined to beNp,,m. It is then proved that
subshells only, and=0, then'¥ is independent of); and  §=(Np,,+N)m, whereN is the number of bound states of

assumes the simple form angular momenturh and spinS. (Here we assume that there
L1 are no zero-energy bound states; the effect of such states,
W(s1iXa, - - Xm)=¥(Xa2, ... Xm)x22 (1), (1.1)  when they exist, can be accounted fat.) The treatment of
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4986 LEONARD ROSENBERG AND LARRY SPRUCH 54
cases in which.+#0 proceeds along similar lines. Circum- Fuiple 1) =1—1(r1), (2.2
stances under which only single-channel scattering is pos-

sible, so that a real-valued zero-energy phase shift existgvherel (r)=y,4(r)f #,(r')dr’. One sees immediately that
were analyzed in Ref2]. Here we merely remark that for F,. .. has at least one node since it is orthogonal to the
I=0, the case of greatest interest, the zero-energy phase shiiddeless functions,;. More explicit information is obtained
exists for any values of the remaining angular momentunby noting that the maximum value &r) satisfies

guantum numbers, whether or ndb coupling is valid. With

LS coupling assumed, the zero-energy phase shift exists for - 2

L;=0; it exists forL;=1 if L=0 or 1, but not ifL=2, a |max:|(0):l/fls(0)f ys(r')dr >f Pig(r')dr’=1.
consequence of the existence of a long-range polarization (2.2
contribution to the effective scattering potential. We return to

this point in Sec. 1| C, below. We conclude thaf yier;) = 1—1(ry) is negative at the ori-

The functionr ' in Eqg. (1.3) is the zero-energy free- gin, increases monotonically, and approaches unity at great
partiCIe solution of the radial SChdmger equation. This distances; it therefore has a Sing|e node’ SO m”:l_
form is appropriate for potentials of short range, but an elecsjnce no triplet bound state exists for the composite system it
tron scattering from an atom experiences a long-range polafollows that §iye=1. It should be emphasized that we are
ization potential and this requires that, for1, the function  aple to obtain the precise resulfe= for the s-wave
r’; be replaced by a more accurate solution accounting fofriplet phase shift by virtue of the fact that our procedure
the long-range interaction. The procedure for doing this wagioes not require knowledge of the exact scattering wave
developed in detail in Ref2]. In the applications below to  function; only its Born approximation enters the analysis. In
atoms withZ>2, ‘PT will be replaced by its Hartree-Fock an alternative method proposed some time é@’d,]’ the
approximation. With the true target Hamiltonian replaced byphase shift was define@h principle) by applying the nodal
its Hartree-Fock approximation, the results cited above ca@efinition to the equivalent one-body wave function obtained
be applied forl=1 as well as forl=0. The formalism is py projecting the exact zero-energy scattering wave function
readily modified to include the effect of a long-range repul-onto the target ground-state function. Then, from the fact that
sive Coulomb interaction between projectile and taf@ét  the triplete™-H wave function is spatially antisymmetric, it

Applications of the generalized Levinson theorem tofollows directly that the equivalent one-body wave function
e -atom scattering are described in Sec. Il. Results obtaineghust have at least one node since it is orthogonal to the
for H are rigorous and for He they are essentially so: use ofydrogenic ground-state function. One can conclude in this
more accurate He wave functions than those considered heygay only that the phase shift so defined is at least
would be pOintleSS. As mentioned, Hartree-Fock wave func- A similar procedure app“ed in the case of Sin@%a\/e
tions were used as approximations to the wave functions odcattering leads to the forfgingie(r1) =1+1(r4), with 1(ry)
the heavier target atoms, with explicit results obtained for thejefined as above, so that there are no nodesNasg=0;
noble gases, the alkali-metal atoms, and, as examples of &ince one and only one singlet bound state exists we con-
oms with one to fivep electrons outside closed subshells, B, clude immediately thats,nge=m. An extension of this
C,N, O, and F. analysis shows that the zero-energy phase shift vanishes for

I >0 for both triplet and singlet states. Here one observes that
since the H ground state is aawave, the analog of the

Il. ELECTRON SCATTERING BY A NEUTRAL ATOM function|I(r,) appearing in Eq(2.1) contains the projection
A e--H of 45 on to a higher partial wave and therefore vanishes.

As a first application we considsrwave electron scatter-
ing from hydrogen in its ground state. In either the singlet or
triplet state the spin function can be factored out so that only Turning now to thes-wavee -He problem, we take the
the spatial part of the wave functideymmetric in the sin- normalization condition for the spatial part of the target
glet and antisymmetric in the triplet stateeeds to be con- ground-state wave function to Hejfie(r,,rz)dr,drz=1. The
sidered in determiningp,,;. We first consider scattering in phase shift is independent of the spin projection of the inci-
the triplet state. While the sl target function is of course dent electron; we take the projection to & and find that
known in this case, we present the analysis in a manner that
requires less than complete knowledge of this function to W(S1i%1,X2) = Phelr2.73) xo(2,9 (1),
illustrate a procedure that will be used in our treatment of ) _ ) )

e -He scattering and may be of use in treating still moreYVhelr/gXo(213) is the spin-zero function for th@,3) pair, (1)
complex atomic targets and even more so in the study of thi$ x12(1), and

scattering of nucleons by nuclei, where the bound-state wave

functions are known only very poorly. All that needs to be U (X1.X2,X3)=(4m) Y1 =Py 5~ Py 3)W(S;1;X2,X3).
known of the spatial parf;4(r,) of the target wave function

is that it has its maximum value at the origin, decreasesn the evaluation of F(r;), the unit term in
monotonically to zero, and satisfies the normalization condi{1—P,_,—P;.,3) gives unity andP,_,,+ P, 3 can be re-
tion [¢y2(r)dr=1. With the spins omitted, we find that placed by 2, ,. The spin factor of the R,_., term is3 and
W(r)=W(r))=i(rs), U=@Am) Yy (ro)—ias(r)],  we findF(r;)=1—1(r,) for the effective one-particle wave
and function, where, sincé=0,

B. e -He
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F(r)

|(r1):J rer2,13) hpe(rq,r3)drodrs. (2.3

In arriving at Eq.(2.3), we were able to omit the average
(4m)~1fdQ, that is formally required in Eq1.4) since this
overlap integral is independent of the directionref This 1
greatly simplifies the analysis, given immediately below, for /\
it enables one to work with the full target wave functigg,,

and all that needs to be known ¢f,, is the fact that it is o
normalized to unity; one does not need to determinesthe
component ofiyy., that component for which each electron -
is in ans state.[On the other hand, for the analysis of the
p-wave phase shift, for which the angular integration cannot
be avoided, we will see shortly that it will be necessary to FIG. 1. Plot of the functiorF(r) [see Eq(2.6) of the texd for
obtain an(approximatg analytic form of thep? component  s-wave scattering by argon. The appearance of three rieseid-
of ¥ie.] The direction ofr, is assumed to have been fixed ing the zero at the originshows that the Pauli contribution to the
arbitrarily in Eq.(2.3). An explicit evaluation of this integral zero-energy phase shift iss3 An additional factor ofr was in-
using very accurate helium wave functions would allow onecluded in this plot.

to determingwith high confidencgthe number of nodes in | ) o ] ]
F(r,). This, coupled with the fact that there is no stablein Ed. (2.5 using a sufficiently accurate trial functioPre-

negative helium ion, would provide us with the value of theSUMably, as we have noted previougd}, anexactdetermi-
zero-energy phase shift. This value is almost certaimly —Nation of the target wave function is not required since the
Thus it is known thaty(r;,rs) is nodelesg5,6], for, the result sought has a discrete rather than a continuous charac-
spins having been eliminated and the spatial function beinde"ization)

symmetric, the electrons can be treated as bosons. If we

r {a.u.)

make the assumptiofwhich is intuitively reasonable, but C. Heavier targets in the Hartree-Fock approximation

thus far not rigorously proved, to our kno_wledgdaat for 1. Atoms with closed subshells

any fixed values of ; and |r3—r,|, the maximum value of . o )

Yie(r1,T5) is achieved forr,=0 and thatyi(r,,rs) is a We now discuss several applications of this procedure to

monotonically decreasing function of, the argument given electron scgttering by hea\{ier targets, with accurate analytic
in the discussion following Eq(2.1), showing (for e -H rgpresentauonélZ] o]‘ solutions of the Hartree-Fock equa-
triplet scattering that F(r,) has a single node, applies di- tions used to approximate _the.target groqnd—state wave func-
rectly to this case, implying thaé= [7]. We tested the tions. We consider scattering in then partial wave and de-
above monotonicity assumption on several variationally denote the target orbitals asRy(r)Yim (Q)xps with
termined approximations t@(r,,r3), including Kinoshita’s ~ [gR2,(r)r2dr=1. It is then found, for targets with closed
ten-parameter trial functiof8], and the assumption is veri- subshells and therefore with vanishing total spin and orbital
fied in these testf9]. More accurate helium wave functions angular momentum, that the effective one-body wave func-
are available for more stringent tests that are rather simplaion is of the form(see Appendix A
to perform than would be an explicit evaluation of the inte-
ral appearing in Eq2.3). = Nty 2
’ In tﬁg extegsion (c:)(f these consideration®ofHe scatter- F(r)zr'—ngﬂ Rn'(r)fo Rui(r")r "' "2dr
ing to an arbitrary partial wave it is convenient to introduce

|+V|

the expansion 1+
=[] a-p,r". (2.6)
© A n=1+1
— *
l/lHe(rz’r3)_AE:o l/lA(rz'r3)MA2_A Yam, (22) Yy, (D). Herey, is the number of closed subshells of angular momen-

(2.4  tuml andP,, is the projection operatdR,)(R,|. Using the
data in Ref[12] for the target atoms Be, Ne, Mg, Ar, and Kr
The effective one-particle wave function for thh partial ~ we calculated and then plott&dr) to determine the number
wave then takes the form of nodes,Np,i, in this function and hence the contribution
to the zero-energy phase shift originating in the Pauli prin-
o “ 9 “ 2 | ciple.[As an illustration, we present in Fig a plot of F(r)
Fry)=ri- Jo fzder'O r3drai(ra,ra)d(re,rs)rs. for s-wave scattering by Af.We found in each case that
(2.5 Npaui=v » Which determines the zero-energy phase shift as
5=(y+N)m, where N, the number of composite bound
To studyF(r,) for | =1, we evaluated the=1 componeni);  states of the givem, is zero for anyl for Ne, Ar, and Kr;
of the three-parameter Hylleraas trial functi@j and found their s-wave phase shifts are thereforer, 23, and 4, re-
that F(r,) is nodeless, a result that, as expecf@@], is spectively. It appear$l3] that no composite Mg bound
consistent with the vanishing of tHe=1 phase shiff11]. state exists and that tHS state of BE is the only stable
The same result is expected for all higher partial waves, astate of this system, so thal=3w for the scattering of
could now be verified by evaluation of the integral appearings-wave electrons from both Mg and Be. Our results for the
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s-wave scattering from rare-gas target atoms conform to a TABLE . lllustration of the generalized Levinson theorem for
prediction made by Swai], but we decidedly disagree with s- and p-wave electron scattering by some of the lightest atoms.
his statement that the effect of the Pauli principle may beSee the text for discussion of O, F, and Nenly nonvanishing
ignored forl >0. We note that the calculated valg, —»  Zero-energy phase shifts are listed. The integer precéding. in

is the expected one, as it corresponds to the number of statd¥ second column is the principal quantum number of the subshell
excluded by the Pauli principl]. The zero-energp-wave from whlch the projectile is excluded. The listing of _the nggatlve-
phase shifts of Be, Ne, Ar, and Kr are thereforem)2a, and ion-states includes a labeling of the outer-shell configurations.

3, respectively. Kr has d-wave phase shift ofr. It hardly
seems necessary, but if one wished to establish the abo

Pauli excluded Negative-ion

results with even greater certainty one would have to sho arget states states 00=0 40=1)
that in each case the same number of nodes is obtained usipg 13s -
even more accurate approximations to the ground-state wave 152 1g o
function. No scattering calculations need to be performed. ye 125 -
We remark that fory=1 the presence of a single node |; 13s, 235 2
can be deduced without performing the integration indicated 115 2g? 1g o
in Eq. (2.6). Itis sufficient to observe that for such a state theg, 125 225 3s 25 3
Hartree-Fock functiorIRm(r)/r' has some of the same essen- 1 3P’ 23p o
tial properties as the CoulombR,,(r)/r', namely, it has its 11P, 21p o
maximum at the origin and decreases monotonically to zero. 3
e L . . . 2°S T
(One verifies this immediately by noting that functions of 1
. . 2°P ™
this type are represented, in the tables of RE2], as sums 2p2 %p
K

of decaying exponentials with positive coefficiefitd].) We

e e - o C 1%P, 2%p 2
expect that additional simplifications in the determination of o
nodal structures could be obtained from an examination of 1 P'22 P 2
the general features of the radial wave functions. As an ex- 245 ™
ample, suppose that each of the functi®g(r) can be rep- 2°P ™
resented, to a good approximation, as the solution of a one- 2p*s ™
body wave equation for a given potentid(r). It can be N 1°s, 2°s 27
shown, with the aid of methods described in Rél, that the 13s, 2% 2
zero-energy scattering functiol M. ,(1—P;)r', where P; 2°p T
projects onto theth bound state, has nodes ifV,(r) hasN 2p* 3p ™
bound states of angular momentumThus there exists a Na 11s,21s 3s? 1s 37
very strongexpectatiorthat the function defined in Eq@2.6) 13s, 235,335 37
hasy nodes; this is consistent with numerically determined 21p T
results that we obtained for several particular cases. Na 11s, 2 1s 352 1g 3
13s, 23, 33s 37
2. Atoms with incomplete subshells 21 T
3
We also applied the procedure described above to the ) 22P ) m
scattering of electrons by atoms with incomplete subshellsM9 17, §2§’ 3°s 3
an

We first consider the problem afwave scattering of elec-
trons by the alkali-metal atom Li in its ground state. The
effective one-body wave function for this system is found,

assuming the Hartree-Fock approximation for Li, to be closedl =0 subshells and there is oseelectron with princi-
pal quantum number,+1, F(r) for s-wave scattering is

given by

F(r)zl—RlO(r)J':Rlo(r’)r’zdrI Rzo(r)f:Rzo(r’)r’zdr

Yo

- PLlT P, 2.7 F(r)=1—nzl Prol T P+ 101 (2.9

where the minugplus) sign before the second integral cor- ThusF(r) for s-wave scattering by Na will have the struc-
responds to scattering in the tripl&ingled spin state. A ture appropriate to the(r) for Ne, with an additional term
proof of Eq.(2.7) is provided in Appendix B. We find two corresponding to the valence electron, the sign being
nodes in this function for the triplet case and one node in th@egative(positive for triplet (singled scattering. A plot of
singlet case. Since the only composite bound state is a sithis function shows, as expected, three nodes for the triplet
glet, we conclude thaf=27 for each spin statgThis is in  state and two for the singlet state. We conclude #a8m
agreement with an earlier predictif] based on the central- for each spin state since, as for Li, the only composite bound
field approximation. The generalization to heavier alkali- state is a singlet. The functidd(r) appropriate to singlet or
metal targets follows immediately from the derivation of Eq. triplet p-wave scattering by Na has a single node. This con-
(2.6) given in Appendix A and from Eq2.7). If there arey,  clusion follows from a cursory inspection of the parameters
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listed in Ref.[12] for the p-wave orbital of Na, which shows At this stage we know how to analyze target atoms with

that the orbital is a monotonically decreasing function; noclosed subshells only and those with closed subshells plus

calculation is necessary. one electron in as state or one to five electrons in the same
To illustrate the application of the generalized Levinsonp state. This accounts for a large fraction of all of the atoms,

theorem, we present, in Table I, a compilation of zero-energ@nd the methodology could readily be extended to other at-

phase Sh|ftion|y nonvanishing phases are ||Slédr elec- oms with closed subshells and with Only one open subshell.

tron scattering by several of the lightest atoms; the necessary

information, the number of composite bound states and states l1l. DISCUSSION

excluded by the Pauli principle, is also included. In the ab-

f h dicted oh hift The analysis of the zero-energy scattering of positrons by
sence of zero-energy resonances, the predicted phase shiftjg, 4 ajong the lines developed above is particularly simple
6=(NpauitN)7, where N is the number of negative-ion

) - since the projectile is distinguishable from the particles in the
bound stategzero or one in the cases consideraddNpayi  target. The conclusion reached previouy that the zero-

is the number of nodes in the effective one-body wave l‘unc:—energy phase shiff vanishes in each partial wave fef -H

tipn F.(rl) defineq in Eq.(l.4). [The definition OfF(rl,) ande”-He is confirmed. Since the present approach, unlike
given in Eq.(1.4) is valid only forLy=0, but the extension yhat given earlier, does not depend on a knowledge of the
to Ly#0 is trivial, demanding only the coupling of orbital gy ciyre of the true scattering wave function, it is not only
angular moment&The essence of the generalized Levinsongjmer hut, more significantly, is applicable to positron scat-
theorem is the statement thidp,,; thus defined is equal t0 taring by any neutral or positively ionized atomic target.
the numbgr _of bound states excluded by the Pauli principleryere are some atoms with which @ can form one bound

By determining the number of nodes i{(r) we are able 10 ga1e with thee* in ans state, and for such atoms one would
confirm this property for the atomic targets listed in Table |. ;5 e 5= for | =0 ands=0 for | >0. There is a wide class of
Note thaté depends on the incident orbital angular momen-,opiems, including the scattering of electrons by positive
tum| and the total orbital and spin angular momenandS  jong which cannot be treated by the present method owing to
of the system(The allowable values & andL depend upon e hresence of an attractive Coulomb tail in the effective
l, Sy, andLy.) We have analyzed electron scattering by Li pyo.ectile-target potential. It had been suggested edrlisy

and by atoms with Closeq subshells, which mcluo!es Be, andht it might be possible to establish a connectiowolving

SO we go on to study, in turn, electron scattering by thee quantum defepbetween the phase shift generated by the
atoms from B o F, with one 1o fivp electrons. short-range component of the potential and the number of
_ Consider boron, with its (9°(2s)(2p) “P configura-  5qgitional bound states that it generates. Such a connection
tion. For 1=0, the excluded”P and 'P states are pag recently been establishagsing methods quite different
(15)%(2s)"(2p) = P and(1s) (2s)"2p *'P, while for =1 oy those employed herdor the one-body potential scat-
the excluded °S and 'P states corespond 10 ering problem[16]. Subsequentlf17], an extension appli-
(15)%(29)(2p)”. (A °D state is excluded as well, but we cape 1 scattering by a compound target has been developed,
omit discussion ofp-wave scattering with. =2 since, as ;5 enlarging significantly the class of problems to which
remarked in Sec. | and discussed in more detail in R&f.  generalized versions of Levinson’s theorem can be applied.
the scattering is not restricted to a single channel in this™ e once again emphasize that the results obtained are for
case) We turn next to C, with its ($)°(25)%(2p)” "P 3 fynction &, which at zero energy has discrete rather than
ground-state configuration. The analysis &ffor 1=0 is  cqntinyous values. The results therefore tend to be rather
rather similar to that for B. Fof=1, angular momentum oot the use of imprecise target wave functions and the
conservation allowsS, P, andD singlet and triplet states, ,missjon of small perturbations, such as spin-orbit interac-
while the states that arise from threeelectrons(with the - iong “will not normally affect the value of [18]. These
samen) are”s, °D, and“P; °S, "D, and'P states are ex- yemarks, and our continued efforts to provide arguments in-
cluded. Reference tp-wave scattering with =2 is omitted  jonendent of details, may be of interest, but are not essential
in Table |, for the reason mentioned above. Next on the listisy, the atomic cases analyzed here since the interactions are
N, with its (15)%(2s)°(2p)” °S configuration; the angular \e| known and Hartree-Fock wave functions are available.
factor of the (D)° component, totally antisymmetric 0 oyever, they have been very useful in our studiesbe
minimize the Coulomb repulsion, 15:1,XT3, with zero to-  on4rteq on subsequentiyof nucleon-nucleus scattering,

tal orbital angular momentum. The analysissaivave scat- \here the interactions and target wave functions are rela-
tering is similar to some of the cases considered above a”ﬂ/ely poorly known.

we considep-wave scattering. AP state is excluded, since
it would demand that foup electrons be in a totally anti-
symmetric spatial state, bufR state is allowed(The listing

of this state in Table | is tentative since its existence is un- This work was supported in part by the National Science

certain[13].) We find thatF(r;)=(1—P,)r; for the ex-  Foundation under Grant No. PHY-9400673
cluded®P state, so that= for this state, while for théP
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state we haver(r,) =[1+3Py]r,; there is, therefore, o \ppENpIX A: FORMS FOR F(ry) FOR CLOSED
Pauli contribution to this state, consistent with the fact that it SUBSHELLS ONLY
is not excluded. The analysis of scattering by O with its four
2p electrons is identical to that for C with its twgp2elec- Rather than proving Eg2.6) for an atom with an arbi-

trons, while the scattering by F with its fivep2electrons is  trary set of closed subshells, we will prove it for Ne, which
identical to that for B with its ong electron. has all of the physical complexities of the general case and
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for which the notational details are less cumbersome. We let APPENDIX B: FORMS FOR F(r;)
0,/ represent the normalized antisymmetric wave function FOR ALKALI-METAL ATOMS
for the 221’ +1) particles in the closed’l’ subshell. Thus,

We first considers-wave scattering by Li atoms; the ex-
for example, we have

tension to an arbitrary alkali-metal atom follows immedi-

— -1 ately. The spin projections and O for triplet scattering must
014(2.9=(47) "Ris(2)R1s(3)x0(2.3.  (AD) give the same result and we choose to consider the zero

The symmetrized Ne target wave function is then projection, for the triplet and singlet scatterings can then be
treated together. The normalizddthat appears in Eq1.3)
Va2, ..., 10=A[014(2,30,4(4,50 (6, . . . ,13], is given by
(A2) W(1;2,34=3"Y(1-P, 4= Pa0)T(1;2;3;4),
where A denotes antisymmetrization with respect to elec- (B1)

trons in different subshells; the inclusion of an overall nor-where the coordinate 1 refers on|y to the Spin and where,
malization factor for¥, will be seen shortly to be unnec- with 0, defined by Eq(A1),

essary. Sincé=S;=0 for Ne, the wave functio’ in Eq.
(1.3 is given by ['(1;2,3;4=0142,3) ¢ho(4) x(1,4), (B2)

_ where x(1,4) is xo(1,4 for the singlet case and the spin-1
V=2, .. 1ha(l), A3 state with zero projection for the triplet case. Thé'3factor
where, without loss of generality, we have taken the incidentéflects the orthonormality of the terms containingPl, .4,
particle to have spin up. The unit term in the operator®"d F;3tH4' Idr?ﬁfact, ;Nte note ]f?rr] Iate;hpurppseir;that ea1|qh palr;]
b L : | ing of two different terms of these three is orthogonal in eac
é E(JlPi)HBeanFrf:Srlng in Egs(1.2) and (1.3 givesry and % Lo variables[The pairing T' and P, ,I', for example,
9. (& contains the factorgs;((3) ¢,(3) andy(4)¥,5(4).] Since
11 =0, theU of Eq. (1.3) is
F(rl):rll_]zz fdﬂlYlo(Ql)Jer"'drll 4
N U:(l—ZZ PlHj)[\If(l;ZBAYOO(Ql)]. (B3)
X[Wne(2, ..., 10 a(D)] W Gea(j)r]Yi0(2)], =
(Ad) We can now write

4
where ¥ =V\e(2,...,j—1,1j+1,...,11) reflects the E(r :f do f dr Yol QO (1:234] 1— P, .
effect of P,._,; on'P. The integration ovef); vanishes unless (") ! ool 22)¥7(1:2.3.4 122 Lol

the jth electron inW(2, . . . ,12 has the quantum numbkr _
of the incident particleFor the Ne atom under consideration X[V (1:2,3,9Y oo 21)], (B4)

we therefore havé (r;)=r' for|>1, so thafF (r;) is node-  \yheredr=dr,drdr,. The unit term in +3,P;.; makes a
less forl>1 and there is no Pauli phase sHifeurthermore,  contribution of one toF(r,) and the integration ovef), is
by virtue of the orthogonality oR,,; andR,, for n#n’, the  trivial. Furthermore, sincé,,; changes only one of thg
only nonvanishing contributions come from the same districoordinates, the only nonvanishing contributionsFr ;)

butions of electrons in the two sets of square brackets; if &re those for which, for a given term ', proportional to 1,
term in the first set of brackets contains electrons 2 and 7 ip,,_, or P54, the corresponding term is taken ¥. The

the 1s state, the relevant terms in the second set of bracketgree terms 11P,. ,P,..,, and Ps..4P3..4 make the same
must also contain electrons 2 and 7 in thestate, and4 in contribution and we arrive at

Eq. (A2) can be dropped; the particles in different subshells
are effectively distinguishable. The integral over the coordi-
nates in the subshells not containing thb electron gives
unity and we arrive at Eq2.6), with the subshells with’ = | e
contributing separately, with the contribution from a subshell xT'(1:2,3:4); (BS)
with I,:I Coming from the orbital with the quantum num- we used the Symmetry in 2 and 3 5(1,2,3,4 to replace
bersm/,, andm¢, the same as those of the incident electron,p, _, by P,..,. The remainder of the calculation is now
namely,m,=0 andmg=+3. trivial and gives Eq(2.7).

F(r1)=1—3><(3*1’2)2f dr T7(1;2,3;4(2P1.»+P1..4)
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