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Levinson’s theorem relates the zero-energy phase 8Fift potential scattering in a given partial walieby
a spherically symmetric potential that falls off sufficiently rapidly, to the number of bound states df that
supported by the potential. An extension of this theorem is presented that applies to single-channel scattering
by a compound system initially in its ground state. As suggested by $®rac. R. Soc. London Ser. 228,
10 (1959], the extended theorem differs from that derived for potential scattering; even in the absence of
composite bound statesmay differ from zero as a consequence of the Pauli principle. The derivation given
here is based on the introduction of a continuous auxiliary “length phagefefined modulor for | =0 by
expressing the scattering length As a coty, wherea is a characteristic length of the target. Application of
the minimum principle for the scattering length determines the branch of the cotangent curve omhbih
and, by relatingn to 8, an absolute determination éfis made. The theorem is applicable, in principle, to
single-channel scattering in any partial wave #r-atom and nucleon-nucleus systems. In addition to a
knowledge of the number of composite bound states, informéatitiich can be rather incomplgteoncerning
the structure of the target ground-state wave function is required for an explicit, absolute, determination of the
phase shifis. As for Levinson’s original theorem for potential scattering,additional information concerning
the scattering wave function or scattering dynamics is requif€d050-29476)03612-§

PACS numbgs): 03.65.Nk, 34.80.Bm, 25.40.Dn

[. INTRODUCTION cluded an attempt to obtain a generalized form of Levinson’s
theorem,was very suggestivdJsing an approximate anti-
While only a trigonometric function of the scattering Symmetrized wave function based on an independent-particle
phase shift is required in the evaluation of a single-channenodel, he derived an integro-differential equation and
cross section, it can be very useful to have an absolute defshowed that, in his model satisfied a modified form of
nition of the phase shift; it can, for example, provide infor- Levinson’s theorem[4]. Swan’s contribution, while re-
mation on the nodal structure of the scattering wave functiorstricted to a special model, served to call attention to the
[1]. (As opposed to the case for bosons, for which thedistinctive role played by the Pauli principle in dete_rmlnlng
ground-state wave function is known to be nodel2k 6. In the procedure followed here a formal generalized ver-

there are no general theorems on the nodal structure of th&°" _?_f LeV&nTOH S _tgegren& |s_tﬁ?[\r:elo?fedtw;t?h reFI)lanlt_:e on
ground state, or scattering states, of fermiph®vinson’s specilic models avoided and wi € efiect of the Faufi prin-

theorem([3] for scattering by a central potentisl(r), satis- ciple now formulated in a precise manner. The formal result

fying r3V(r) ~0 asr—e andr2V(r)~0 asr—0, is of inter- can be implemented in a few simple cases, Ieadl_ng to explicit
tin thi dsi it relates th ’ h &sh.ﬁresults fors [7]. In general, however, one must introduce a

estin this regard since It refates the zero-energy pnaseashi simplified model of thetarget (In contrast to Swan's

in a given partial wavethe orbital quantum numbdr is

method,no additional assumption concerning the scattering
suppressed heréo the number of bound states of that angu-gynamics is required If one describes the target wave func-

lar momentum supported by the potential. More preciselyjon as an antisymmetrized product of one-particle functions,
the phase shift is assumed to be a continuous function of thgg obtained, for example, by a Hartree-Fock analysis, the
energy and zero at infinite energy and the theorem is as folesyits follow with only minimal calculational effort and are
lows. Forl =0, the phase shift is=(N+¢)m, whereN is the  applicable both te™-atom scattering7] and to the scatter-
number of negative-energy bound states gng if there is  ing of neutrons and protons by heavy nuc[@ome readers

in addition a zero-energy bound state, whiteO if there is  may find it helpful, before proceeding to the formal proofs to
no such bound state; for-0 the phase shift is=N, where  follow, to read a nonrigorous but intuitive argument, based
N is the number of bound states, including, when present, an the existence of an effective central poteritgd(r), pre-
zero-energy bound state. This theorem allows one to detesented earlier. See Sec. Il of RE8]. The essential point is
mine the number of nodes of the zero-energy scattering wavihat a reasonably accuraté(r), which may bel depen-
function. Furthermore, since the theorem provides a fundadent, will support the same numbirof bound states of the
mental connection between scattering and bound states, gein-under consideration as actually exist in the target;
eralizations applicable to the more interesting case of scat-evinson’s theorem for potential scattering will therefore
tering by a target with internal degrees of freedom have longjive a contribution oN# to account for those statés.

been sought for. An early attempt was made by Syin The standard prodf3] of Levinson's theorem for poten-
Many serious objections can be raised with regard to higial scattering is based on the analyticity properties of the
analysis[5—7]. Nevertheless, his contribution, which in- partial-wave scattering amplitude. This method is not easily
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extended to the multiparticle case. An alternative approaciphase shift on an absolute scale since the addition of a mul-
[1], based on a count of the number of zeros of the zerotiple of 7 leaves the scattering amplitude unaltered. A useful
energy wave function, is difficult to generalize owing to the definition is one that allows one to extract information, or at
more complex nodal structure of multiparticle wave func-least some insight, concerning the dynamics of the scattering
tions [8]. The method proposed here is based on the miniprocess. As mentioned, one based on the nodal structure of
mum principle(a variational boungdfor the scattering length the wave function might appear to be a likely candidate, but
[9], a principle that is not restricted to potential scattering,a straightforward extension of such a definition from single-
along with a particular absolute definition 6ot requiring  particle to multiparticle scattering is difficult to implement.
that it exist at infinite energy. We apply the method to theMore generally, one may envision a sequence of approxima-
potential-scattering problem in Sec. Il. Our purpose here is téions for the zero-energy scattering wave function, starting
illustrate certain aspects of this approach in the context of avith one sufficiently simple to which the phase shift may be
familiar and relatively simple problem and to show that it assigned in an intuitively reasonable way. One would then
reproduces Levinson'’s theorem in its standard form, includtrace the evolution of the wave function, along with the cor-
ing an extensiof10] to allow for scattering by potentials responding phase shift, to its exact form. The resultant phase
with a repulsive Coulomb tail. The problem of electron scat-would then carry information concerning the evolution of the
tering by a neutral atom is taken up in Sec. lll, where thewave function that could be of physical interest.
more general statement of the theorem, taking into account A simple example, applicable to potential scattering, will
the effect of the Pauli principle, is provided. Restrictions onclarify this idea.(We emphasize that the approach used in
the applicability of the theorem arising from the existence ofthis example isnot directly applicable to the multiparticle
more than one open channel at zero energy are discussedsatattering problem. The example is included since it allows
the end of Sec. lll. The theorem has been used to obtain thés to introduce, in a familiar context, several concepts that
zero-energy phase shifts fer -He scattering and foe -H will be useful later or). With the wave function written as
scattering in triplet and singlet states. In addition, several(r)/r, the reduced Schdinger equation isHu(r)=0,
applications to electron scattering by heavier targets, includwhere
ing atoms containing only closed subshells, alkali-metal at-

N . . 2 2 2
oms, and atoms with opep-shell configurations, whose He_ ﬁ_d_+ ﬁ_ I(1+1) V() 2.1)
wave functions are given not by an independent-particle 2mdr?  2m 2 ' '
model but by the Hartree-Fock approximation, have been
made[7]. The results confirm and exterfend for|>0 cor-  The reduced wave function satisfie€)=0 and(for the case
rech those obtained by Swan in an independent-particle®f s-wave scattering by short-range potentials, falling off
model. In all cases studied we verify that the effect of thefaster than any power af, to which we confine our attention
antisymmetrization requirement on the wave function is tofemporarily has the asymptotic form(r)~r —A. The scat-
add to the zero-energy phase shift a multipleroéqual to ~ tering lengthA is related to the phase shif(k) for wave
the number of bound states excluded by the Pauli principlenumberk according to

tand(k)

A=—lim . 2.2
Il. POTENTIAL SCATTERING k=0 k

In its standard form, Levinson’s theorem relates the dif- g ; ;
ference between the phase shifts at zero energy and at infinipesaltISerS the identity11]
energy to the number of bound states. This is not a useful om (=
version for our present purposes since the infinite-energy A=At+ﬁf u(r)Hu(r)dr, 2.3
phase shift is not well defined when the target is a compound 0
system. Alternatively, an absolute definition may be adopteq ,are the trial functionu,(r) vanishes at the origin and be-
for scattering by a potentiaV by requiring the phase shift | e asymptotically asi(r)~r—A,. A variational ap-

() for the potentialAV to be a continuous function of, roximation for the scattering length is obtained by replacin
with §0)=0 and&(1)= 4. This definition is applicable to the E by u, in Eq. (2.3. g’end yrep g
study of the scattering of positrons by neutral atoms. How- ; is convenient at this point to introdu¢&2] an auxiliary

ever, adoption of this_ de_finition for _ele_ctron-atom O phasen, to be referred to as the “length phase,” by writing
nucleon-nucleus scattering is problematic since a modifica-

tion of the strength of the projectile-target interaction with- A=a coty, (2.9
out a corresponding rescaling of the interactions of the target
particles destroys the symmetry of the Hamiltonian undemwhere a is some arbitrarily chosen characteristic length,
interchange of particle labels. In the present consideration aivhich might be the Bohr radius for scattering by an atomic
potential scattering we confine our attention to proceduretarget—we will mostly be concerned with this case—or a
that we are able to generalize; we must therefore begin bfermi in the case of nuclear scattering. An absolute definition
introducing an appropriate absolute definition &f (Note  of Swill be obtained by setting up a correspondence between
that an absolute definition aof at zero energy provides, on & and » and providing an absolute definition @fby intro-
demanding continuity, an absolute definition ®iip to the  ducing a procedure for determining the branch of the cotan-
energy at which the scattering is no longer single-channeent curve on whichy lies. (A different choice fora leads to
scattering. different absolute values fop, but the branch of cat on
There is clearly an element of arbitrariness in defining thewhich # lies and the values ofy at which A is
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singular, the only relevant properties of the nonphysicabers of the sequence. Since the variational approximation for
function 7, are not affected by the choice af) It will then  the scattering length diverges when the Hylleraas-Undheim
be shown that this definition reproduces Levinson’s theorengonstruction provides zero value for one of the approximate
in its standard form. Toward this end we consider a sequencgnergy eigenvalues, it will be more convenient to trace the

of variational approximations for the scattering length incontinuous, steadily increasing evolution of the length phase.
which the accuracy of the trial function is steadily improved. on absolute definition of the length phase is determined by

The sequence of approximatioA$’, j=0,1,....,n, is gen-  choosing the largest integer containedif/ar to be equal to
erated from the variational principle based on B3 by 50/ \where s, to be referred to as the reference phase, is
introducing a sequence of trial functions here taken to be the phase shift associated with the free wave
i function ¢(r). Since this function is nodeless, it is natural to
uD(r)= )+ buy(r). (25  Setthe associated phase sl@fﬁ equal to zerg1]. (A modi-
<1 fication of this assignment is necessary when antisymmetry

. . is accounted for in the multiparticle case; see Sec. The
Corresponding to each"”), we introduce a length phasg?  corresponding length phasg® must then be chosen to lie
satisfying Al)=a coty". To satisfy the boundary condi- between zero and-. A divergence in the approximate scat-
tions we require thatp(0)=u;(0)=0, and that¢(r)~r and tering length corresponds tg passing from one branch of
u,(r)~—1 for r—o—Db, then plays the role of a trial scat- the coty curve to the adjacent one lying to its right as the
tering length, with the functions;(r) for i>1 taken to be trial function is improved. From the fact that the scattering
quadratically integrable. The simplest choice fois the free  length experiencel jumps in this process we may conclude
wave functiong(r)=r. For short-range potentials with>0  that the true value of; lies betweerN7 and (N+1)7; we
we will require thatg(r)~r'*1. (Greater flexibility is re-  suppose for the moment thatm is not an integer. Since we
quired in the treatment, given in the Appendix, of long-rangedefine the phase shift by equatiéfr to the largest integer
potentials) Theu;(r) in Eq. (2.5 are assumed to be linearly contained inz/w, the sought for resuld=N then follows.
independent and the linear parametétsare determined If in addition to N negative-energy bound states there is
variationally. The minimum principle for the scattering an s-wave bound state at zero energy, corresponding to a
length[9] may now be invoked to study the behavior of the scattering length that is infinite, the process of minimization
sequence of approximations for the scattering length and fosf the variationally determined scattering length will not ter-
the associated length phase. The first term in the sequencerisinate afterN jumps. This corresponds to the precise value
obtained by setting the; in Eq. (2.5 equal to zero. The trial »=(N+1)= for the length phase. We know from Levinson’s
function is theng(r)=r and the associated vanishes. Set- theorem thats is N for % just below(N+1)7. When the
ting u=u,= ¢(r) in Eq. (2.3, we then have inverse of the scattering length vanishes so doe§(kptin
) 5 the limit of vanishingk. This resultlfollows from effective-
o) M [ _em [, range theory, which, for=0 and A"~=0, givesk cots(k) =
A )_77 fo ¢(HG(dr= 27 JO rEv(rydr. irok?+--+, a result that remains valid even in the presence
(2.6)  of a(polarization potential falling off asr ~4[16]. (Long-
range potentials, relevant fef -atom scattering, are consid-
If there are no bound states, it folloy8] that A provides ered in greater detail in the Appendihe vanishing of cat
an upper bound on the true scattering length; each successia#lows us to conclude thai=(N+3)m when there exists an
term decreases the value of the approximation obtained at treewave bound state at zero energy in additioiNtoegative-
previous stage. More generally, suppose thdiound states energy s-wave bound states; we have thus rederived
exist; for the moment we assume that there is no zero-enerdyevinson’s theorem. The half-bound-state phenomenon is
bound state. TheA), j=N, provides a bound oA [9] if N peculiar tos-wave scattering. Application of effective-range
of the basis functions; are accurate enough to give binding, theory for |>0 shows that, as opposed to theO result,
that is, if there areN approximate bound-state energies— cots(k) diverges in the limit of vanishingk, either as
determined by the Hylleraas-Undheim procediii®] in k= ?'~Y for short-range potentialgl7] or, using modified
which theNx N Hamiltonian matrix is diagonalized in the effective-range theory, ds 2 for potentials falling off ag ~*
basis formed by the;,—that lie below zerd14]. Once this [16]. It follows for I>0 that 5=N= when N bound states
stage has been reached additional terms in the sequence leaxist even when one of them lies at zero energy. We have
to a steady decrease in the variational approximation for theeen considering potentials that vanish more rapidly than
scattering length, accompanied by a steady increase in tlesymptotically. A similar analysis may be applied to the case
associated length phase. A useful corollary to this theorerwhere the potential has a repulsive Coulomb tail. Levinson’s
was proved by Ohmurfl5]: after one verifiedN jumps in  theorem, in the form derived previoudl¥0], can be verified
the sequence of scattering length approximati&®s for  this way. (Half-bound states do not appear here, even for
j=0,1,...,n, wheren=N, the variational method is en- |=0, as may be verified by application of the appropriate
sured to give an upper bound on the scattering length. version of effective-range theojyThe absence of the half-
To obtain a more detailed description of the evolution ofbound-state phenomenon may also be traced, in the context
the approximate scattering length and its associated phase aka Jost-function analysis, to the normalizability of a zero-
the trial function is improved we may imagine that the func-energy bound-state wave function. For short-range poten-
tions u;(r) are distorted in such a way that the discrete setials, for example, the radial component of the wave function
quence of scattering-length approximations is replaced by hehaves as i/ asymptotically and/*r ~?'dr exists for all
continuous function that interpolates between adjacent mentut | =0.
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lll. ELECTRON SCATTERING BY A NEUTRAL ATOM ing ¢(r,)/rq, rather than the reduced function introduced in
Sec. Il. A subscript on ¢(r) is omitted to simplify nota-
tion.] ¥ includes a representation of the target ground-state
ave function, antisymmetrized in the space and spin coor-
dinates of the target particles; the target has &pirand is
S%oupled with the spin of the projectile to form a state of
definite total spirS and projectiorS, . (Thats, appears inV
but thatl does not is a consequence of our simplifying as-
sumption that the target has zero orbital angular momentum.

We turn now to scattering by a compound target, with
consideration here restricted to electron-atom scattering. F
the sake of orientation let us first consider a simple mode
based on the central-field approximation. Since the projectil
scatters in a central potential we expect, from Levinson’
theorem, that the zero-energy phase shift willNbg. Now,
however, not all of thé\ bound states are physically realiz-
able. Consider, fc_>r exa}mple, a helium target in thes)fl The functionU is made fully antisymmetric by the residual
ground-state configuration. THe=0 zero-energy scattering ; .

. . . antisymmetrizer
wave function has at least one node since it must be orthogo-
nal to the spatial part of theslbound-state wave function; a M
more detailed analys[4] shows that it has no more than one A=1-, Picj, (3.1b
node. Adopting the nodal definition of the phase shift we =2
conclude that thes-wave zero-energy phase shift4s This
reasoning may be extended, though still within the central
field model, to heavier target atoms, withrepresenting the
number of bound states for the valuel afnder consideration
plus the number for the givenexcluded by the Pauli prin-
ciple. In an attempt to derive a more general version of thi
theorem for any but the lightest targets, one is faced with th
fact that the target wave function is much less precisel
known than it is for helium. One can hope, nevertheless, t
represent the zero-energy phase shift in terms of the numb Y
of bound states for the givdralong with information(which
can be far from complejeconcerning the target structure. In
the spirit of Levinson’s theorem, an explicit analysis of the
scattering problem should not be necessary. We now derive
result of this form by extending the approach, based on th
minimum principle for the scattering length, described in
Sec. Il. We consider the single-channel scattering of an eled”
tron by an atom; the target is initially in its ground state,
which is assumed to be nondegenerate. Effects of target re-F(rl)zf dQlYm(Ql)f drye--dry¥i(syixs, ... Xy)
coil are ignored. In addition, it is assumed that the effects of
the spin-orbit interaction can be neglected, an excellent ap- XU(Xg, - Xm), (3.2
proximation for scattering by light atom$As discussed at
the conclusion of this section, this last assumption may b&vhere the second integration is over the spatial varialjles
relaxed in most cases of inter@sto simplify the presenta- Of the target and there is an inner product over the spin
tion we first consider scattering by target atoms with vanishcoordinates of the target particles and of the incident particle.
ing orbital angular momentum; more general cases are cod-et Np,,; represent the number of nodes in the function
sidered later on. F(r,). The notation reflects the fact that with(r) in Eq.

In the multiparticle generalization of ER.5) for a zero-  (3.13 a nodeless function, any nodes present must be Pauli
energy electron, in théth partial wave, incident on afM  principle effects. The phase shift associated wtfr,) is

whereP,_; interchanges the space and spin coordinates of
electrons 1 angl. If the spinS; of the target is nonvanishing
we consider separately scattering states \@thS;+ 3 and
S;—3; for S;=0 we have onlyS=3. In the one-body prob-
em studied in Sec. I, we assigned to the nodeless wave
iunction ¢(r) a phase shift—we referred to it as the refer-
nce phasef®—equal to zero. We wish to generalize this
ssignment in a natural way. Sintke a multiparticle wave
gnction, has no simple nodal structure, we consider instead
e one-particle wave functiofi(r,) obtained by projecting
U onto the functiort¥ and then onto the angular component
of thelth partial wave of the incident particl€t should be
%oted that there is no reason to assume that the funétion
gan be represented as a solution of a wave equation with a
well-defined effective one-body Hamiltonian and we make
o such assumptionWe have, explicitly,

—1)-electron target, we introduce the wave function identified as the reference phaﬁ) and is taken to be
Npaui- (In the central-field modeWp,,; may be identified as
d(rq) the number of bound states excluded by the Pauli principle;

U(Xy, - Xm) = Ay W(S1iXz, - - - Xm) Yio(Q4) |, this is in line with the heuristic remarks made at the begin-

(3.13 ning of this section and is verified in the applications that we
: have made to electron-atom scatterifig] based on a

wherex; refers to the space and spin variables of jiie  Hartree-Fock treatment of the target atom. While such an
target electron and; is the spin coordinate of the projectile. explicit characterization of this number is not possible under
We emphasize thad is not the exact wave function; rather it the more general circumstances now under consideration, it
corresponds to the wave function in the absence of a scatteis often helpful to keep in mind the physical picture provided
ing interaction and plays a role analogous to that of the firsby the central-field model.
term on the right-hand side of E@2.5). For an effective At this stage, the derivation given in Sec. I, based on the
projectile-target interaction of short range, the functig(m) minimum principle for the scattering length, can be extended
in Eq. (3.1a is chosen to be the free wave functidi®. As  without difficulty and we briefly outline the steps. The gen-
discussed in the Appendidy(r) differs fromr'** for I>0in  eralization of the minimum principle itself from potential
cases, such as that now under consideration, where the effegcattering to electron-atom scattering was accomplished
tive potential contains long-range components.is more  some time ag$9]. We recall that the variational identity that
convenient here to work with the full wave function, involv- generalizes Eq(2.3) takes the form

ry
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2m +
A:Aﬁ—FJu (X1 4oy Xm)(H—E)

XU(Xq, oo Xw)drq, ... dry, (3.3

whereE,,, is the target ground-state energyandu, are the
exact and trial zero-energy wave functions, respectively. A
variational approximation for the scattering length is ob-
tained by replacingi by u, in Eq. (3.3). Let A denote the 4"
scattering length obtained from the ident{®.3) by replac-
ing bothu andu, by the zeroth-order trial function, which n ]
we take to be the incident wavd; accordingly, the trial
scattering lengthA,; is set equal to zero. A zeroth-order
length phase, defined module, is introduced by writing
A®=acot/?. An absolute definition of this phase, and
hence the phase that evolves from it by subsequent improve-
ment in the trial function, is provided by setting the largest
integer contained %/ equal to 8%/, which has been
taken to beNp,,i, the number of nodes in the functiénof

Eqg. (3.2. The argument now follows closely that given in
Sec. Il for potential scattering. Thus we consider the zeroth-
order wave function to be supplemented by additional terms, interpolating wial fanction

a process that continues until convergence to the exact scat- exact wave function

tering length is reached. The length phase, now defined ab-

solutely, increases monotonically in this process, with the FIG. 1. Schematic plots illustrating the evolution of the scatter-
largest integer contained im/r increasing by unity each ing lengthA, the phase shif6, and the length phasg as the trial
time the variationally determined scattering length divergedunction in a variational-bound calculation &f evolves from an

as the trial function is made flexible enough to account forantisymmetrized incident wave of the form shown in £813 to

the existence of an additional bound state. Wjthow rep- the exact solution. The superscript zero denotes initial vaiii@ss
resenting the converged value of the length phase, the vali@ssumed to bez2and 7% must therefore lie betweerizand 37. A

of the zero-energy phase shift is obtained by multiplying bysmgle composite pound st:’.;\te is assumed to §X|st. The flgu.re illus-
7 the largest integer contained ip/m. The generalized tritgﬁ) the generalized Levinson theorem, which here predicts that
Levinson theorem for the zero-energy phase shift in a giverf’ .

partial wavel then takes the form

3~

-

6= (Npaur- N+ &) . 34 | _
tion of the existence of the zero-energy phase shift. The
For 1=0, N is the number of composite negative-energyquestion is whether, through a change in target orientation in
bound states of zero orbital angular momentum &iglzero  the course of the collision, the projectile, originally in a state
unless there is a composite bound state of zero energy, inith orbital quantum number, could emerge with quantum
which case¢é=3; for >0, N is the number of composite numberl|’#1; if so, this would violate the restriction to
bound states of orbital angular momentunincluding a  single-channel scattering if the transition were allowed. We
bound state of zero energy if one exists. neglect spin-orbit interactions, lét and L, represent the
As an illustration we indicate schematically in Fig. 1 the total and target orbital quantum numbers, andlleind |’
variation of the scattering length, the length phase, and theepresent the orbital quantum numbers of the projectile in its
phase shift as the trial function in a variational bound calcudnitial and final states. Considerations of angular momentum
lation of the scattering length is steadily improved, startingconservation are standard, as are considerations of parity, but
with an incident wave of the forni3.139 and evolving into  the treatment of centrifugal barrier effects requires some
the exact wave function. The reference phase sifffitiden-  care. For short-range potentials théo |’ transition ampli-
tified asNp,, 7, is given the value 2 and one composite tude for fixedL,, andL is proportional tak' ™! in the neigh-
bound state is assumed to exi§these values correspond to borhood ofk=0 [18]; transitions tol’>| are suppressed
s-wave scattering of an electron by Na with the compositerelative to thel to | transition and one has single-channel
system in &S state. Procedures for determiniNg,;, in the  scattering forl=0 or 1, cases of primary importance. For
Hartree-Fock approximation, for a wide class of atomic tar-l=2, however, transitions tb'=I1—2 are not ruled out by
gets are described in Réf7].) The largest integer contained centrifugal-barrier effects; if such transitions are not other-
in 7/ is 3, and sincexp/ is not an integer we conclude, wise forbidden, the restriction to single-channel scattering
using the prescription formulated in Sec. Il and summarizedvill be violated. We conclude that cases for which only
above, thats=3w. The same result follows from E@3.4),  single-channel reactions occur includg,=0 for anyl and,
with Np,,i=2, N=1, and§=0. for L, ~>0, =0 or 1. ForL.,>0 andl=2, single-channel
The preceding formalism is readily extended to allow forscattering will occur at threshold provideld=L,+| or

many target atoms that are not spherically symmetric. Rathdr=L,+|—1. As will be discussed elsewhere, the case for
than present the details we confine our remarks to the quesng-range potentials, behaving ag“for electron-atom
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rule outl’>0 for | =0, but do not rule out’ >1 for |>0. The Vi(r)=-— m (A1)

restriction to single-channel scattering will be satisfied for
Lia=0 for anyl. For I>0, the conditions that guarantee for r >R. The distance is chosen to be large enough so that
Single'Channel Scattering are more restrictive. For examplwl cannot Support a bound state even when all Components
supposel =1, =1, andL=2. A transition tol'=3 is al-  are attractive. If only a single long-range component were
lowed by parity and angular momentum conservation and thgresent in Eq(A1) it would be possible to obtain exactly, in
amplitude has the san{®) energy dependence near thresh-terms of Bessel functiorfd 9], the regular and irregular zero-
old as thep-wave top-wave transition, so that more than one energy solutions of the Schdimger equation for the poten-
channel is open. Fdry, =1, 1=1, andL=0 or 1, however, tja| V,. While analytic solutions are not available, to our
the transition tol’=3 is forbidden and the zero-energy knowledge, for a superposition of long-range components, an
p-wave phase shift exists. The argument is easily extendegypproximate solutioms(r) is easily developed in the form of
Thus, forL,=2, the zero-energp-wave phase shift exists an expansion in decreasing powers dér r >R, which may
for L=0, but not for highet, and similarly, forL,=1, the  then be continued smoothly in to the inner region, such that
zero-energyd-wave phase shift exists fdr=0, but not for it vanishes at the origin. Since we require only tigt) be
higherL. nodeless, that it contain no component that can give binding
[20], and thatH ¢(r) vanish sufficiently rapidly at great dis-
tances so that the variational approximation is well defined,
IV. SUMMARY we may assume that by taking sufficiently many terms in the

An absolute definition of the zero-energy phase shift foréxpansion ofé(r), these requirements may be met. A suffi-
multiparticle single-channel scattering has been introduce§i€ntly accurate approximatiof{r) to the irregular solution
that removes the ambiguity concerning multiplesmthat ~ Of the zero-energy Schdinger equation for the potentiah
would otherwise be present. With this as a starting point, &Y be constructed in a similar way; these functions behave
formal procedure, valid for each partial wave, was provided®S
for determining the phase shift. This procedure requires a

— =4
r4 6

scattering, is somewhat different. Centrifugal-barrier effects %2 (d4 dg
r

knowledge of the number of composite bound states that d(r)~r' I+ 1)1,
exist—the composite bound-state wave functions need not be
known—along with some information, not necessarily com- (O ~2l—/r!

plete, concerning the target wave function; knowledge of the

exact zero-energy scattering wave function is not required.

The result represents a generalization of Levinson’s theorem, (21+N=1X3X5X--X(21+1) (A2)
derived many years ago for potential scattering, that accounts

for the effect of the Pauli pl‘inCipIe in a well-defined way and asymptotica"y and have been normalized to give a unit

that is applicable to a wide variety of atomic and nucleanyronskian. The solution appropriate to the full potential
scattering problems. It was possible to arrive at this genery(r) has the asymptotic form

alization by basing the derivation not on the analytic proper-
ties of the wave function, which are difficult to determine for
multiparticle systems, but rather on the minimum principle
for the scattering length, which does apply to this more gen-
eral class of problems. In view of current interest in atomicwhere the paramet® plays the role of a modified scattering
scattering at very low energies, which is spurred by recentength. In analogy with the identit{2.3) we have, with the
developments in techniques for atomic cooling, the analysistamiltonian given by Eq(2.1),

given here of the behavior of the phase shift in the zero-

u(r)~e(r)—BZ(r), (A3)

energy limit—a problem of long standing in formal scatter- ’m (=
ing theory—may be particularly timely. B=Bi+ 5= fo u(r)Hu(r)dr; (A4)
ACKNOWLEDGMENT hereu; vanishes at the origin and has the asymptotic form

. . . : shown in Eq.(A3) with B replaced byB,. This identity
Fozg:jsarivc?r:ku\;]vggrsérp;)notrﬁg |gl_p|$tt9%$2$3Natlonal SCIenCeprovides the basis for the derivation of a minimum principle
' : for B [1,9]. At this point the discussion given earlier for
scattering by a short-range potential may be taken over,
tatis mutandis to provide a definition of the zero-energy
phase shift that satisfies Levinson’s theorem. In particular,
The analysis given in Sec. Il fos-wave scattering by the “length phase” is defined by settig=a? *'coty and
short-range potentials is easily extended to include highethe first term in the sequence of approximations Boiis
partial waves, but the necessary modifications are more sulgiven as B(°)=(2m/ﬁ2)f5°¢(r)H¢(r)dr. Note that for
stantial if the potential has a long-range component. Here we-wave scattering this integral is convergent if one makes the
consider potentials of the for(r)=Vg(r)+V,(r), where  choice ¢(r)=r. For |=1, the form ¢(r)=r?/3+d,/6 ac-
V¢, falls off faster than any power afandV, is a long-range counts for the effect of the long-range compon&htfor
component that vanishes forx R and is represented as r >R to sufficient accuracy. The smooth continuation of this

APPENDIX: LONG-RANGE POTENTIALS
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function into the regionr<R as (1+3d,/2R)r%3 d,=ala,, with a denoting the dipole polarizability of the

—(d4/3R®)r? defines¢(r) as a nodeless function far,>0, target) For d,<0, ¢(r) will be nodeless provided

the attractive case of greatest interest in applications t&>(—3d,/2)Y2 For higher partial waves more terms in the
e*-atom scattering.(In such applications one would set expansion of the functiog(r) must be included.
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