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Levinson’s theorem relates the zero-energy phase shiftd for potential scattering in a given partial wavel , by
a spherically symmetric potential that falls off sufficiently rapidly, to the number of bound states of thatl
supported by the potential. An extension of this theorem is presented that applies to single-channel scattering
by a compound system initially in its ground state. As suggested by Swan@Proc. R. Soc. London Ser. A228,
10 ~1955!#, the extended theorem differs from that derived for potential scattering; even in the absence of
composite bound statesd may differ from zero as a consequence of the Pauli principle. The derivation given
here is based on the introduction of a continuous auxiliary ‘‘length phase’’h, defined modulop for l50 by
expressing the scattering length asA5a coth, wherea is a characteristic length of the target. Application of
the minimum principle for the scattering length determines the branch of the cotangent curve on whichh lies
and, by relatingh to d, an absolute determination ofd is made. The theorem is applicable, in principle, to
single-channel scattering in any partial wave fore6-atom and nucleon-nucleus systems. In addition to a
knowledge of the number of composite bound states, information~which can be rather incomplete! concerning
the structure of the target ground-state wave function is required for an explicit, absolute, determination of the
phase shiftd. As for Levinson’s original theorem for potential scattering,no additional information concerning
the scattering wave function or scattering dynamics is required. @S1050-2947~96!03612-8#

PACS number~s!: 03.65.Nk, 34.80.Bm, 25.40.Dn

I. INTRODUCTION

While only a trigonometric function of the scattering
phase shift is required in the evaluation of a single-channel
cross section, it can be very useful to have an absolute defi-
nition of the phase shift; it can, for example, provide infor-
mation on the nodal structure of the scattering wave function
@1#. ~As opposed to the case for bosons, for which the
ground-state wave function is known to be nodeless@2#,
there are no general theorems on the nodal structure of the
ground state, or scattering states, of fermions.! Levinson’s
theorem@3# for scattering by a central potentialV(r ), satis-
fying r 3V(r );0 asr→` andr 2V(r );0 asr→0, is of inter-
est in this regard since it relates the zero-energy phase shiftd
in a given partial wave~the orbital quantum numberl is
suppressed here! to the number of bound states of that angu-
lar momentum supported by the potential. More precisely,
the phase shift is assumed to be a continuous function of the
energy and zero at infinite energy and the theorem is as fol-
lows. Forl50, the phase shift isd5~N1j!p, whereN is the
number of negative-energy bound states andj51

2 if there is
in addition a zero-energy bound state, whilej50 if there is
no such bound state; forl.0 the phase shift isd5Np, where
N is the number of bound states, including, when present, a
zero-energy bound state. This theorem allows one to deter-
mine the number of nodes of the zero-energy scattering wave
function. Furthermore, since the theorem provides a funda-
mental connection between scattering and bound states, gen-
eralizations applicable to the more interesting case of scat-
tering by a target with internal degrees of freedom have long
been sought for. An early attempt was made by Swan@4#.
Many serious objections can be raised with regard to his
analysis @5–7#. Nevertheless, his contribution, which in-

cluded an attempt to obtain a generalized form of Levinson’s
theorem,was very suggestive. Using an approximate anti-
symmetrized wave function based on an independent-particle
model, he derived an integro-differential equation and
showed that, in his model,d satisfied a modified form of
Levinson’s theorem@4#. Swan’s contribution, while re-
stricted to a special model, served to call attention to the
distinctive role played by the Pauli principle in determining
d. In the procedure followed here a formal generalized ver-
sion of Levinson’s theorem is developed with reliance on
specific models avoided and with the effect of the Pauli prin-
ciple now formulated in a precise manner. The formal result
can be implemented in a few simple cases, leading to explicit
results ford @7#. In general, however, one must introduce a
simplified model of the target. ~In contrast to Swan’s
method,no additional assumption concerning the scattering
dynamics is required.! If one describes the target wave func-
tion as an antisymmetrized product of one-particle functions,
as obtained, for example, by a Hartree-Fock analysis, the
results follow with only minimal calculational effort and are
applicable both toe6-atom scattering@7# and to the scatter-
ing of neutrons and protons by heavy nuclei.@Some readers
may find it helpful, before proceeding to the formal proofs to
follow, to read a nonrigorous but intuitive argument, based
on the existence of an effective central potentialVeff(r ), pre-
sented earlier. See Sec. III of Ref.@8#. The essential point is
that a reasonably accurateVeff(r ), which may bel depen-
dent, will support the same numberN of bound states of the
l under consideration as actually exist in the target;
Levinson’s theorem for potential scattering will therefore
give a contribution ofNp to account for those states.#

The standard proof@3# of Levinson’s theorem for poten-
tial scattering is based on the analyticity properties of the
partial-wave scattering amplitude. This method is not easily
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extended to the multiparticle case. An alternative approach
@1#, based on a count of the number of zeros of the zero-
energy wave function, is difficult to generalize owing to the
more complex nodal structure of multiparticle wave func-
tions @8#. The method proposed here is based on the mini-
mum principle~a variational bound! for the scattering length
@9#, a principle that is not restricted to potential scattering,
along with a particular absolute definition ofd not requiring
that it exist at infinite energy. We apply the method to the
potential-scattering problem in Sec. II. Our purpose here is to
illustrate certain aspects of this approach in the context of a
familiar and relatively simple problem and to show that it
reproduces Levinson’s theorem in its standard form, includ-
ing an extension@10# to allow for scattering by potentials
with a repulsive Coulomb tail. The problem of electron scat-
tering by a neutral atom is taken up in Sec. III, where the
more general statement of the theorem, taking into account
the effect of the Pauli principle, is provided. Restrictions on
the applicability of the theorem arising from the existence of
more than one open channel at zero energy are discussed at
the end of Sec. III. The theorem has been used to obtain the
zero-energy phase shifts fore2-He scattering and fore2-H
scattering in triplet and singlet states. In addition, several
applications to electron scattering by heavier targets, includ-
ing atoms containing only closed subshells, alkali-metal at-
oms, and atoms with openp-shell configurations, whose
wave functions are given not by an independent-particle
model but by the Hartree-Fock approximation, have been
made@7#. The results confirm and extend~and for l.0 cor-
rect! those obtained by Swan in an independent-particle
model. In all cases studied we verify that the effect of the
antisymmetrization requirement on the wave function is to
add to the zero-energy phase shift a multiple ofp equal to
the number of bound states excluded by the Pauli principle.

II. POTENTIAL SCATTERING

In its standard form, Levinson’s theorem relates the dif-
ference between the phase shifts at zero energy and at infinite
energy to the number of bound states. This is not a useful
version for our present purposes since the infinite-energy
phase shift is not well defined when the target is a compound
system. Alternatively, an absolute definition may be adopted
for scattering by a potentialV by requiring the phase shift
d~l! for the potentiallV to be a continuous function ofl,
with d~0!50 andd~1!5d. This definition is applicable to the
study of the scattering of positrons by neutral atoms. How-
ever, adoption of this definition for electron-atom or
nucleon-nucleus scattering is problematic since a modifica-
tion of the strength of the projectile-target interaction with-
out a corresponding rescaling of the interactions of the target
particles destroys the symmetry of the Hamiltonian under
interchange of particle labels. In the present consideration of
potential scattering we confine our attention to procedures
that we are able to generalize; we must therefore begin by
introducing an appropriate absolute definition ofd. ~Note
that an absolute definition ofd at zero energy provides, on
demanding continuity, an absolute definition ofd up to the
energy at which the scattering is no longer single-channel
scattering.!

There is clearly an element of arbitrariness in defining the

phase shift on an absolute scale since the addition of a mul-
tiple of p leaves the scattering amplitude unaltered. A useful
definition is one that allows one to extract information, or at
least some insight, concerning the dynamics of the scattering
process. As mentioned, one based on the nodal structure of
the wave function might appear to be a likely candidate, but
a straightforward extension of such a definition from single-
particle to multiparticle scattering is difficult to implement.
More generally, one may envision a sequence of approxima-
tions for the zero-energy scattering wave function, starting
with one sufficiently simple to which the phase shift may be
assigned in an intuitively reasonable way. One would then
trace the evolution of the wave function, along with the cor-
responding phase shift, to its exact form. The resultant phase
would then carry information concerning the evolution of the
wave function that could be of physical interest.

A simple example, applicable to potential scattering, will
clarify this idea.~We emphasize that the approach used in
this example isnot directly applicable to the multiparticle
scattering problem. The example is included since it allows
us to introduce, in a familiar context, several concepts that
will be useful later on.! With the wave function written as
u(r )/r , the reduced Schro¨dinger equation isHu(r )50,
where

H52
\2

2m

d2

dr2
1

\2

2m

l ~ l11!

r 2
1V~r !. ~2.1!

The reduced wave function satisfiesu~0!50 and~for the case
of s-wave scattering by short-range potentials, falling off
faster than any power ofr , to which we confine our attention
temporarily! has the asymptotic formu(r );r2A. The scat-
tering lengthA is related to the phase shiftd(k) for wave
numberk according to

A52 lim
k→0

tand~k!

k
. ~2.2!

It satisfies the identity@11#

A5At1
2m

\2 E
0

`

u~r !Hut~r !dr, ~2.3!

where the trial functionut(r ) vanishes at the origin and be-
haves asymptotically asut(r );r2At . A variational ap-
proximation for the scattering length is obtained by replacing
u by ut in Eq. ~2.3!.

It is convenient at this point to introduce@12# an auxiliary
phaseh, to be referred to as the ‘‘length phase,’’ by writing

A5a coth, ~2.4!

where a is some arbitrarily chosen characteristic length,
which might be the Bohr radius for scattering by an atomic
target—we will mostly be concerned with this case—or a
fermi in the case of nuclear scattering. An absolute definition
of d will be obtained by setting up a correspondence between
d andh and providing an absolute definition ofh by intro-
ducing a procedure for determining the branch of the cotan-
gent curve on whichh lies. ~A different choice fora leads to
different absolute values forh, but the branch of coth on
which h lies and the values ofh at which A is
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singular, the only relevant properties of the nonphysical
functionh, are not affected by the choice ofa.! It will then
be shown that this definition reproduces Levinson’s theorem
in its standard form. Toward this end we consider a sequence
of variational approximations for the scattering length in
which the accuracy of the trial function is steadily improved.
The sequence of approximationsA( j ), j50,1, . . . ,n, is gen-
erated from the variational principle based on Eq.~2.3! by
introducing a sequence of trial functions

u~ j !~r !5f~r !1(
i51

j

biui~r !. ~2.5!

Corresponding to eachA( j ), we introduce a length phaseh( j )

satisfying A( j )5a coth ( j ). To satisfy the boundary condi-
tions we require thatf~0!5ui~0!50, and thatf(r );r and
u1(r );21 for r→`—b1 then plays the role of a trial scat-
tering length, with the functionsui(r ) for i.1 taken to be
quadratically integrable. The simplest choice forf is the free
wave functionf(r )5r . For short-range potentials withl.0
we will require thatf(r );r l11. ~Greater flexibility is re-
quired in the treatment, given in the Appendix, of long-range
potentials.! Theui(r ) in Eq. ~2.5! are assumed to be linearly
independent and the linear parametersbi are determined
variationally. The minimum principle for the scattering
length @9# may now be invoked to study the behavior of the
sequence of approximations for the scattering length and for
the associated length phase. The first term in the sequence is
obtained by setting theui in Eq. ~2.5! equal to zero. The trial
function is thenf(r )5r and the associatedAt vanishes. Set-
ting u5ut5f(r ) in Eq. ~2.3!, we then have

A~0!5
2m

\2 E
0

`

f~r !Hf~r !dr5
2m

\2 E
0

`

r 2V~r !dr.

~2.6!

If there are no bound states, it follows@9# thatA~0! provides
an upper bound on the true scattering length; each successive
term decreases the value of the approximation obtained at the
previous stage. More generally, suppose thatN bound states
exist; for the moment we assume that there is no zero-energy
bound state. ThenA( j ), j>N, provides a bound onA @9# if N
of the basis functionsui are accurate enough to give binding,
that is, if there areN approximate bound-state energies—
determined by the Hylleraas-Undheim procedure@13# in
which theN3N Hamiltonian matrix is diagonalized in the
basis formed by theui—that lie below zero@14#. Once this
stage has been reached additional terms in the sequence lead
to a steady decrease in the variational approximation for the
scattering length, accompanied by a steady increase in the
associated length phase. A useful corollary to this theorem
was proved by Ohmura@15#: after one verifiesN jumps in
the sequence of scattering length approximationsA( j ) for
j50,1, . . . ,n, where n>N, the variational method is en-
sured to give an upper bound on the scattering length.

To obtain a more detailed description of the evolution of
the approximate scattering length and its associated phase as
the trial function is improved we may imagine that the func-
tions ui(r ) are distorted in such a way that the discrete se-
quence of scattering-length approximations is replaced by a
continuous function that interpolates between adjacent mem-

bers of the sequence. Since the variational approximation for
the scattering length diverges when the Hylleraas-Undheim
construction provides zero value for one of the approximate
energy eigenvalues, it will be more convenient to trace the
continuous, steadily increasing evolution of the length phase.
An absolute definition of the length phase is determined by
choosing the largest integer contained inh~0!/p to be equal to
d~0!/p, whered~0!, to be referred to as the reference phase, is
here taken to be the phase shift associated with the free wave
functionf(r ). Since this function is nodeless, it is natural to
set the associated phase shiftd~0! equal to zero@1#. ~A modi-
fication of this assignment is necessary when antisymmetry
is accounted for in the multiparticle case; see Sec. III.! The
corresponding length phaseh~0! must then be chosen to lie
between zero andp. A divergence in the approximate scat-
tering length corresponds toh passing from one branch of
the coth curve to the adjacent one lying to its right as the
trial function is improved. From the fact that the scattering
length experiencesN jumps in this process we may conclude
that the true value ofh lies betweenNp and ~N11!p; we
suppose for the moment thath/p is not an integer. Since we
define the phase shift by equatingd/p to the largest integer
contained inh/p, the sought for resultd5Np then follows.

If in addition toN negative-energy bound states there is
an s-wave bound state at zero energy, corresponding to a
scattering length that is infinite, the process of minimization
of the variationally determined scattering length will not ter-
minate afterN jumps. This corresponds to the precise value
h5~N11!p for the length phase. We know from Levinson’s
theorem thatd is Np for h just below ~N11!p. When the
inverse of the scattering length vanishes so does cotd(k) in
the limit of vanishingk. This result follows from effective-
range theory, which, forl50 and A2150, givesk cotd(k)5
1
2 r 0k

21••• , a result that remains valid even in the presence
of a ~polarization! potential falling off asr24 @16#. ~Long-
range potentials, relevant fore6-atom scattering, are consid-
ered in greater detail in the Appendix.! The vanishing of cotd
allows us to conclude thatd5~N1 1

2!p when there exists an
s-wave bound state at zero energy in addition toN negative-
energy s-wave bound states; we have thus rederived
Levinson’s theorem. The half-bound-state phenomenon is
peculiar tos-wave scattering. Application of effective-range
theory for l.0 shows that, as opposed to thel50 result,
cotd(k) diverges in the limit of vanishingk, either as
k2(2l21) for short-range potentials@17# or, using modified
effective-range theory, ask22 for potentials falling off asr24

@16#. It follows for l.0 that d5Np whenN bound states
exist even when one of them lies at zero energy. We have
been considering potentials that vanish more rapidly thanr23

asymptotically. A similar analysis may be applied to the case
where the potential has a repulsive Coulomb tail. Levinson’s
theorem, in the form derived previously@10#, can be verified
this way. ~Half-bound states do not appear here, even for
l50, as may be verified by application of the appropriate
version of effective-range theory.! The absence of the half-
bound-state phenomenon may also be traced, in the context
of a Jost-function analysis, to the normalizability of a zero-
energy bound-state wave function. For short-range poten-
tials, for example, the radial component of the wave function
behaves as 1/r l asymptotically and*`r22ldr exists for all
but l50.
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III. ELECTRON SCATTERING BY A NEUTRAL ATOM

We turn now to scattering by a compound target, with
consideration here restricted to electron-atom scattering. For
the sake of orientation let us first consider a simple model
based on the central-field approximation. Since the projectile
scatters in a central potential we expect, from Levinson’s
theorem, that the zero-energy phase shift will beNp. Now,
however, not all of theN bound states are physically realiz-
able. Consider, for example, a helium target in the (1s)2

ground-state configuration. Thel50 zero-energy scattering
wave function has at least one node since it must be orthogo-
nal to the spatial part of the 1s bound-state wave function; a
more detailed analysis@1# shows that it has no more than one
node. Adopting the nodal definition of the phase shift we
conclude that thes-wave zero-energy phase shift isp. This
reasoning may be extended, though still within the central-
field model, to heavier target atoms, withN representing the
number of bound states for the value ofl under consideration
plus the number for the givenl excluded by the Pauli prin-
ciple. In an attempt to derive a more general version of this
theorem for any but the lightest targets, one is faced with the
fact that the target wave function is much less precisely
known than it is for helium. One can hope, nevertheless, to
represent the zero-energy phase shift in terms of the number
of bound states for the givenl along with information~which
can be far from complete! concerning the target structure. In
the spirit of Levinson’s theorem, an explicit analysis of the
scattering problem should not be necessary. We now derive a
result of this form by extending the approach, based on the
minimum principle for the scattering length, described in
Sec. II. We consider the single-channel scattering of an elec-
tron by an atom; the target is initially in its ground state,
which is assumed to be nondegenerate. Effects of target re-
coil are ignored. In addition, it is assumed that the effects of
the spin-orbit interaction can be neglected, an excellent ap-
proximation for scattering by light atoms.~As discussed at
the conclusion of this section, this last assumption may be
relaxed in most cases of interest.! To simplify the presenta-
tion we first consider scattering by target atoms with vanish-
ing orbital angular momentum; more general cases are con-
sidered later on.

In the multiparticle generalization of Eq.~2.5! for a zero-
energy electron, in thel th partial wave, incident on an~M
21!-electron target, we introduce the wave function

U~x1 , . . . ,xM !5A1FC~s1 ;x2 , . . . ,xM !
f~r 1!

r 1
Yl0~V1!G ,

~3.1a!

where xj refers to the space and spin variables of thej th
target electron ands1 is the spin coordinate of the projectile.
We emphasize thatU is not the exact wave function; rather it
corresponds to the wave function in the absence of a scatter-
ing interaction and plays a role analogous to that of the first
term on the right-hand side of Eq.~2.5!. For an effective
projectile-target interaction of short range, the functionf(r )
in Eq. ~3.1a! is chosen to be the free wave functionr l11. As
discussed in the Appendix,f(r ) differs fromr l11 for l.0 in
cases, such as that now under consideration, where the effec-
tive potential contains long-range components.@It is more
convenient here to work with the full wave function, involv-

ing f(r 1)/r 1 , rather than the reduced function introduced in
Sec. II. A subscriptl on f(r ) is omitted to simplify nota-
tion.# C includes a representation of the target ground-state
wave function, antisymmetrized in the space and spin coor-
dinates of the target particles; the target has spinST and is
coupled with the spin of the projectile to form a state of
definite total spinS and projectionSz . ~Thats1 appears inC
but that l does not is a consequence of our simplifying as-
sumption that the target has zero orbital angular momentum.!
The functionU is made fully antisymmetric by the residual
antisymmetrizer

A1512(
j52

M

P1↔ j , ~3.1b!

whereP1↔ j interchanges the space and spin coordinates of
electrons 1 andj . If the spinST of the target is nonvanishing
we consider separately scattering states withS5ST1 1

2 and
ST21

2; for ST50 we have onlyS5 1
2. In the one-body prob-

lem studied in Sec. II, we assigned to the nodeless wave
function f(r ) a phase shift—we referred to it as the refer-
ence phased~0!—equal to zero. We wish to generalize this
assignment in a natural way. SinceU, a multiparticle wave
function, has no simple nodal structure, we consider instead
the one-particle wave functionF(r 1) obtained by projecting
U onto the functionC and then onto the angular component
of the l th partial wave of the incident particle.~It should be
noted that there is no reason to assume that the functionF
can be represented as a solution of a wave equation with a
well-defined effective one-body Hamiltonian and we make
no such assumption.! We have, explicitly,

F~r 1!5E dV1Yl0~V1!E dr2•••drMC†~s1 ;x2 , . . . ,xM !

3U~x1 , . . . ,xM !, ~3.2!

where the second integration is over the spatial variablesr j
of the target and there is an inner product over the spin
coordinates of the target particles and of the incident particle.
Let NPauli represent the number of nodes in the function
F(r 1). The notation reflects the fact that withf(r ) in Eq.
~3.1a! a nodeless function, any nodes present must be Pauli
principle effects. The phase shift associated withF(r 1) is
identified as the reference phased~0! and is taken to be
NPaulip. ~In the central-field modelNPaulimay be identified as
the number of bound states excluded by the Pauli principle;
this is in line with the heuristic remarks made at the begin-
ning of this section and is verified in the applications that we
have made to electron-atom scattering@7# based on a
Hartree-Fock treatment of the target atom. While such an
explicit characterization of this number is not possible under
the more general circumstances now under consideration, it
is often helpful to keep in mind the physical picture provided
by the central-field model.!

At this stage, the derivation given in Sec. II, based on the
minimum principle for the scattering length, can be extended
without difficulty and we briefly outline the steps. The gen-
eralization of the minimum principle itself from potential
scattering to electron-atom scattering was accomplished
some time ago@9#. We recall that the variational identity that
generalizes Eq.~2.3! takes the form
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A5At1
2m

\2 E u†~x1 ,..., xM !~H2Etar!

3ut~x1 , . . . ,xM !dr1 , . . . ,drM , ~3.3!

whereEtar is the target ground-state energy;u andut are the
exact and trial zero-energy wave functions, respectively. A
variational approximation for the scattering length is ob-
tained by replacingu by ut in Eq. ~3.3!. Let A~0! denote the
scattering length obtained from the identity~3.3! by replac-
ing bothu andut by the zeroth-order trial function, which
we take to be the incident waveU; accordingly, the trial
scattering lengthAt is set equal to zero. A zeroth-order
length phase, defined modulop, is introduced by writing
A(0)5a0coth

~0!. An absolute definition of this phase, and
hence the phase that evolves from it by subsequent improve-
ment in the trial function, is provided by setting the largest
integer contained inh~0!/p equal tod~0!/p, which has been
taken to beNPauli, the number of nodes in the functionF of
Eq. ~3.2!. The argument now follows closely that given in
Sec. II for potential scattering. Thus we consider the zeroth-
order wave function to be supplemented by additional terms,
a process that continues until convergence to the exact scat-
tering length is reached. The length phase, now defined ab-
solutely, increases monotonically in this process, with the
largest integer contained inh/p increasing by unity each
time the variationally determined scattering length diverges
as the trial function is made flexible enough to account for
the existence of an additional bound state. Withh now rep-
resenting the converged value of the length phase, the value
of the zero-energy phase shift is obtained by multiplying by
p the largest integer contained inh/p. The generalized
Levinson theorem for the zero-energy phase shift in a given
partial wavel then takes the form

d5~NPauli1N1j!p. ~3.4!

For l50, N is the number of composite negative-energy
bound states of zero orbital angular momentum andj is zero
unless there is a composite bound state of zero energy, in
which casej51

2; for l.0, N is the number of composite
bound states of orbital angular momentuml including a
bound state of zero energy if one exists.

As an illustration we indicate schematically in Fig. 1 the
variation of the scattering length, the length phase, and the
phase shift as the trial function in a variational bound calcu-
lation of the scattering length is steadily improved, starting
with an incident wave of the form~3.1a! and evolving into
the exact wave function. The reference phase shiftd~0!, iden-
tified asNPaulip, is given the value 2p and one composite
bound state is assumed to exist.~These values correspond to
s-wave scattering of an electron by Na with the composite
system in a1S state. Procedures for determiningNPauli, in the
Hartree-Fock approximation, for a wide class of atomic tar-
gets are described in Ref.@7#.! The largest integer contained
in h/p is 3, and sinceh/p is not an integer we conclude,
using the prescription formulated in Sec. II and summarized
above, thatd53p. The same result follows from Eq.~3.4!,
with NPauli52, N51, andj50.

The preceding formalism is readily extended to allow for
many target atoms that are not spherically symmetric. Rather
than present the details we confine our remarks to the ques-

tion of the existence of the zero-energy phase shift. The
question is whether, through a change in target orientation in
the course of the collision, the projectile, originally in a state
with orbital quantum numberl , could emerge with quantum
number l 8Þ l ; if so, this would violate the restriction to
single-channel scattering if the transition were allowed. We
neglect spin-orbit interactions, letL and L tar represent the
total and target orbital quantum numbers, and letl and l 8
represent the orbital quantum numbers of the projectile in its
initial and final states. Considerations of angular momentum
conservation are standard, as are considerations of parity, but
the treatment of centrifugal barrier effects requires some
care. For short-range potentials thel to l 8 transition ampli-
tude for fixedL tar andL is proportional tokl1 l 8 in the neigh-
borhood of k50 @18#; transitions tol 8. l are suppressed
relative to thel to l transition and one has single-channel
scattering forl50 or 1, cases of primary importance. For
l>2, however, transitions tol 85 l22 are not ruled out by
centrifugal-barrier effects; if such transitions are not other-
wise forbidden, the restriction to single-channel scattering
will be violated. We conclude that cases for which only
single-channel reactions occur includeL tar50 for any l and,
for L tar.0, l50 or 1. ForL tar.0 and l>2, single-channel
scattering will occur at threshold providedL5L tar1l or
L5L tar1l21. As will be discussed elsewhere, the case for
long-range potentials, behaving as 1/r 4 for electron-atom

FIG. 1. Schematic plots illustrating the evolution of the scatter-
ing lengthA, the phase shiftd, and the length phaseh as the trial
function in a variational-bound calculation ofA evolves from an
antisymmetrized incident wave of the form shown in Eq.~3.1a! to
the exact solution. The superscript zero denotes initial values.d~0! is
assumed to be 2p andh~0! must therefore lie between 2p and 3p. A
single composite bound state is assumed to exist. The figure illus-
trates the generalized Levinson theorem, which here predicts that
d5d~0!1p.
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scattering, is somewhat different. Centrifugal-barrier effects
rule outl 8.0 for l50, but do not rule outl 8. l for l.0. The
restriction to single-channel scattering will be satisfied for
L tar50 for any l . For l.0, the conditions that guarantee
single-channel scattering are more restrictive. For example,
supposeL tar51, l51, andL52. A transition tol 853 is al-
lowed by parity and angular momentum conservation and the
amplitude has the same~k2! energy dependence near thresh-
old as thep-wave top-wave transition, so that more than one
channel is open. ForL tar51, l51, andL50 or 1, however,
the transition to l 853 is forbidden and the zero-energy
p-wave phase shift exists. The argument is easily extended.
Thus, forL tar52, the zero-energyp-wave phase shift exists
for L50, but not for higherL, and similarly, forL tar51, the
zero-energyd-wave phase shift exists forL50, but not for
higherL.

IV. SUMMARY

An absolute definition of the zero-energy phase shift for
multiparticle single-channel scattering has been introduced
that removes the ambiguity concerning multiples ofp that
would otherwise be present. With this as a starting point, a
formal procedure, valid for each partial wave, was provided
for determining the phase shift. This procedure requires a
knowledge of the number of composite bound states that
exist—the composite bound-state wave functions need not be
known—along with some information, not necessarily com-
plete, concerning the target wave function; knowledge of the
exact zero-energy scattering wave function is not required.
The result represents a generalization of Levinson’s theorem,
derived many years ago for potential scattering, that accounts
for the effect of the Pauli principle in a well-defined way and
that is applicable to a wide variety of atomic and nuclear
scattering problems. It was possible to arrive at this gener-
alization by basing the derivation not on the analytic proper-
ties of the wave function, which are difficult to determine for
multiparticle systems, but rather on the minimum principle
for the scattering length, which does apply to this more gen-
eral class of problems. In view of current interest in atomic
scattering at very low energies, which is spurred by recent
developments in techniques for atomic cooling, the analysis
given here of the behavior of the phase shift in the zero-
energy limit—a problem of long standing in formal scatter-
ing theory—may be particularly timely.
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APPENDIX: LONG-RANGE POTENTIALS

The analysis given in Sec. II fors-wave scattering by
short-range potentials is easily extended to include higher
partial waves, but the necessary modifications are more sub-
stantial if the potential has a long-range component. Here we
consider potentials of the formV(r )5Vsh(r )1Vl(r ), where
Vsh falls off faster than any power ofr andVl is a long-range
component that vanishes forr,R and is represented as

Vl~r !52
\2

2m S d4r 4 1
d6
r 6

1••• D ~A1!

for r.R. The distanceR is chosen to be large enough so that
Vl cannot support a bound state even when all components
are attractive. If only a single long-range component were
present in Eq.~A1! it would be possible to obtain exactly, in
terms of Bessel functions@19#, the regular and irregular zero-
energy solutions of the Schro¨dinger equation for the poten-
tial Vl . While analytic solutions are not available, to our
knowledge, for a superposition of long-range components, an
approximate solutionf(r ) is easily developed in the form of
an expansion in decreasing powers ofr for r.R, which may
then be continued smoothly in to the inner region, such that
it vanishes at the origin. Since we require only thatf(r ) be
nodeless, that it contain no component that can give binding
@20#, and thatHf(r ) vanish sufficiently rapidly at great dis-
tances so that the variational approximation is well defined,
we may assume that by taking sufficiently many terms in the
expansion off(r ), these requirements may be met. A suffi-
ciently accurate approximationz(r ) to the irregular solution
of the zero-energy Schro¨dinger equation for the potentialVl
may be constructed in a similar way; these functions behave
as

f~r !;r l11/~2l11!!!,

z~r !;~2l21!!!/ r l ,

~2l11!!![133353•••3~2l11! ~A2!

asymptotically and have been normalized to give a unit
Wronskian. The solution appropriate to the full potential
V(r ) has the asymptotic form

u~r !;f~r !2Bz~r !, ~A3!

where the parameterB plays the role of a modified scattering
length. In analogy with the identity~2.3! we have, with the
Hamiltonian given by Eq.~2.1!,

B5Bt1
2m

\2 E
0

`

u~r !Hut~r !dr; ~A4!

hereut vanishes at the origin and has the asymptotic form
shown in Eq.~A3! with B replaced byBt . This identity
provides the basis for the derivation of a minimum principle
for B @1,9#. At this point the discussion given earlier for
scattering by a short-range potential may be taken over,mu-
tatis mutandis, to provide a definition of the zero-energy
phase shift that satisfies Levinson’s theorem. In particular,
the ‘‘length phase’’ is defined by settingB5a2l11coth and
the first term in the sequence of approximations forB is
given as B(0)5(2m/\2)* 0

`f(r )Hf(r )dr. Note that for
s-wave scattering this integral is convergent if one makes the
choicef(r )5r . For l51, the formf(r )5r 2/31d4/6 ac-
counts for the effect of the long-range componentVl for
r.R to sufficient accuracy. The smooth continuation of this
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function into the region r,R as (113d4/2R
2)r 2/3

2(d4/3R
3)r 3 definesf(r ) as a nodeless function ford4.0,

the attractive case of greatest interest in applications to
e6-atom scattering.~In such applications one would set

d45a/a0 , with a denoting the dipole polarizability of the
target.! For d4,0, f(r ) will be nodeless provided
R.(23d4/2)

1/2. For higher partial waves more terms in the
expansion of the functionf(r ) must be included.
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