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Corrections to O(a’mc?) fine-structure splittings in helium
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The times-order external-potential Bethe-Salpeter formalism is reformulated in adBajeolike equation
and in a form suitable for calculation of contributions arising from the relativistic momentum region.
O(a’mc®) corrections to the fine structure of helium arising from the relativistic momentum region due to
exchange diagrams are derived and presented. They are expressed in the form of expectation values of non-
relativistic operators. These off-leading-order contributions arising from the relativistic momentum region are
not sensitive to any experiment in hydrogen, positronium, or muonium but they are larger than experimental
errors in the measurements of fine structure in helium. Therefore, they provide a test of corrections of this kind,
which has not been carried out in any other bound-state sy$&050-2947®6)08512-5

PACS numbes): 31.30.Jv

[. INTRODUCTION tion of QED and relativistic corrections to the helium fine
structure splittings of ordes®mc®. These corrections were
Since the development of QED theory, helium has playedlerived by Douglas and Kro[#] in the 1970s, and expressed
an active role in testing the bound-state QED theory for twoin terms of expectation values of nonrelativistic operators.
electron systems. In fact, helium can provide some interesfFhis work puts helium in a leading position as a candidate
ing tests that cannot be carried out in other bound-state sy$er higher-order QED tests since a similar calculation for
tems such as hydrogen, positronium, and muonium, due tpositronium was done 20 years lafé&]. Furthermore, the
either unique features of helium or the fact that the tests arealculation of theO(a®mc?) positronium fine structure re-
not sensitive to the measurements in those systems currentlguires only the evaluation of expectation values of Douglas
For example, a unique higher-order cancellation of nonperand Kroll's nonrelativistic operators using the nonrelativistic
turbative Coulomb binding is found] to occur only in the  wave function for positronium as demonstrated in a previous
multielectron atoms. Another interesting test is on the off-paper[1]. For theO(a®mc?) fine structure, all corrections
leading-order corrections arising from the relativistic mo-come from one- and two-photon diagrams and arise only
mentum region, which will be the main focus of this paper.from the nonrelativistic momentum region. Therefore, these
One potential test is the test of three-body terms. This isorrections are of off-leading order. The absence of the rela-
particularly interesting because it is not clear whether anyivistic contributions simplifies the calculation significantly.
test so far in QED or QCD bound systems has tested truth Douglas and Kroll's work, a beautiful generalization of
three-body terms. Most many-body calculations are done othe Foldy-Wouthysen transformation was introduced. This
the interaction of any two particles out of many particles. Ingeneralization turned out to be a very helpful tool for higher-
other cases, the true three-body terms are not explicitly sererder QED analysis, including the calculation presented in
sitive to the experiments. However, the lowest-order threethis paper.
body terms in helium are found to be of ordefm?c?/M The development of a highly accurate nonrelativistic
and might give a correction of a few kHz to the helium finewave function for helium[6] and a recent high-precision
structure while the current experimental error in measuringneasurement of the helium fine struct{ifémade it possible
the fine structure is about 3 kHZ]. The calculation of these to test even higher-order QED and relativistic effects in he-
three-body corrections is completed within a three-body fordium. In previous paperfl,8], we derived nonrelativistic op-
malism recently developed. This development will be re-erators of ordera’mc? contributing to the fine structure
ported in a separate paper. splittings of helium. They arise from exchange and radiative
The first systematic calculation of helium energy levels ofdiagrams, and are obtained in a nonrelativistic approxima-
ordera®mc? was accomplished by ArakR] and by Sucher tion. The approximation is accurate for radiative corrections
[3] in the 1950s, which was considered a milestone. All thesince no QED correction is found from the relativistic mo-
corrections to th@(a°mc®) energy levels come from two- mentum region. This is confirmed by the absence af In
photon diagrams and arise from both relativistic and nonrelterms due to ultraviolet origifdetailed presentation of infra-
ativistic momentum regions. Both the relativistic and thered and ultraviolet logarithmic corrections is given in Ref.
nonrelativistic contributions are of leading order. In compari-[1] and all logarithmic terms of the two-electron type arise
son with hydrogen, positronium, and muonium, the majorfrom ultraviolet origin. However, there are exchange correc-
difference in this calculation is the separation of ultraviolettions arising from the relativistic momentum region. This is
logarithmic singularity from the finite corrections at the op- signaled by the appearance of logarithmic terms due to ultra-
erator level rather than the numerical level, and the derivaviolet singularity. Furthermore, these corrections are of off-
tion of the correct nonrelativistic operator for the correctionsleading order and appear only in bound states. Tests of these
since the nonrelativistic wave function of helium is un- corrections are interesting since to our knowledge there has
known. The second monumental endeavor was the calculdeen no similar calculation done in any one- or two-body
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bound-state system. In a bound system such as hydrogendes directly. In the Salpeter perturbation theory, the no-pair
under one-body approximation, no net correction of ordetadder kernels are obtained by the wave-function perturba-
a’'mc arises from pure Coulomb exchange. The only cor-tion relativistically or nonrelativistically depending on
rection of this order comes from radiative QED effects suchwhether the corrections arise from the relativistic or nonrel-
as se|f-energy modiﬁcation’ which is of nominal order ativistic momentum region. The times-order ladder kernels
«®mc and gives nonrelativistic contribution. The leading d0 not show up in nonrelativistic approximation. In our for-
order of corrections from the relativistic momentum region ismalism, the relativistic no-pair ladder kernels are derived
«®mc2. These corrections were obtained by Karpaisal. from the scattering theory and the nonrelativistic kernels are
[9] and by Barangeet al.[10]. The next-to-leading order of obtained by perturbation of the nonrelativistic wave function
the relativistic corrections ia®mc?, which would be nonrel- USing the Schrdinger nonrelativistic perturbation theory.
ativistic corrections of relative order? to the terms obtained '€ _t|me_s-order no-pair ladder kerne_ls In nonrelatlws_tlc ap-
by Karpluset al.[9] and by Barangeet al. [10]. Of course, proximation are sht7)wn to Cancell out_ in REL). For the fine

the three-potential contributions due to self-energy correcStructure of orde mc”, the main difference between our
tions from the relativistic momentum region are of Ieadingrelat'V'St'C kernels and those derived in the Salpeter pertur-

order a’mc2. The relativistic contributions of the next-to- bation theory is the no-pair_single transverge photor_l ladder
leading order are of orde’m¢c in positronium or order kernel. We found that ours is more convenient and instruc-

«’m?c2/M in hydrogen and muonium. In any case, the cor-tive for the calculation of the off-leading-order relativistic

rections are not sensitive to the current experiments in hyf_:ontrlbutlon. Our reformulation of the times-order formalism

drogen, positronium, or muonium. Therefore, no correctior‘fS_Similar to th_e_S-matrix the<_)ry. The id_ea is simply to sand-
of off-leading order from the relativistic momentum region W.'Ch a modified - scattering ampl_ltude betyveen four-
has ever been tested in any bound-state system. Howevép,mensmna_l bound-state wave functions. In .th|s reformula-
they are sensitive to the measurement of fine structure iffon of the Flmes_-order Bet'h('e-SaIpete_r formalism, ‘T’l" kernels
helium. The magnitude of order of these corrections is abouf’@/ P€ written in an explicitly covariant form at first. Dif-
10 kHz and larger than the current experimental error 3 kH eren_t methods may be us_ed for different calpl_JIa_tlons, o_Ie-
[7]. A test of these corrections is important in view of the pending on relativistic contributions or nonrelativistic contri-
fact that the correction of off-leading order is the character-b”t'onls'_ For thedor;e—pdhotozn Iéfmﬁl' (‘;"2” cgntg;buu%ns are
istic of bound-state systems. In this paper, we will presenfwnlr:e at';]"St'C anh 0 orkers( Im , “_g" >, a'mc, E;” 5% o
our analysis on these corrections to the fine structure spli2": FOr the two-photon kernel, contributions come from bot

tings of helium. Together with the corrections presented pre[elativistic and nonrelativistic momentum regions, and are of
' 5 6 7 .
viously [1,8], they consist of most corrections of order °rderse mc?, a®mc?, a’'mc?, and so on. In nonrelativistic

a’mc to the helium fine structure splittings. Corrections @PProximation, all the no-pair ladder kernels give contribu-

that have not been derived may partially arise from verteions by perturbation of the nonrelativistic wave function.

modification. The vertex correction was calculated in Ref.The on_ly exception Is the_ no-pair double tr_ansverse photon
[8] phenomenologically. A rigorous analysis may be re-corrections, which come in part from two diagrams that are

quired for a complete evaluation. The additional correction©t times-order ladder graphs, although they are parts of the
could be a few kHz. covariant ladder Feynman diagrams. There is a difference

Although the contributions presented in RéL] arise between the times-order ladder diagrams and covariant lad-
from the nonrelativistic momentum region, fully relativistic d€r diagrams. With our reformulation, the two-photon rela-

kernels due to single and double transverse photon exchangg'stIC cor_ltr|but|ons can be. calculated using a simple for-
were derived based on the times-order Bethe-Salpeter foflula as given by the following:

malism developed by Suchg8]. As we shall show, calcula-

tion of contributions arising from the relativistic momentum AE=
region is very complicated for no-pair Coulomb and no-pair

single transverse photon diagrams within the times-order for-
malism developed by Suchg8]. The main difficulty is due

@ |\? 1 4y, 44y ,
— ﬁfdkdeW(k)Daﬁ(k)

X(Y(P1,P2,.)] YIviS1(p1—K) ¥1vs

to the application of the Brillouin-Wigner perturbation X[ ¥Y3v5So(p2+K) yavE+ v3vES,(po+ k') ¥3y5]
theory, which is more suitable for calculation of contribu-
tions coming from the nonrelativistic momentum region. In X|p(P1,P2,)), @

this paper, we will reformulate the times-order formalism

and rederive these kernels in a form that is more suitable fowherep;,=p;,—k,—k, pz,=p..+k,+k,, andS, and
calculation of contributions arising from the relativistic mo- S, are the external-potential single-particle propagators de-
mentum region. Most of the derived kernels can also be obfined by

tained using the Salpetgt1] perturbation theory, which is 1

more convenient for the relativistic calculation in compari- Si(p1—k)= 2
son with the Brillouin-Wigner perturbation theory used in piE+e—o—H(p, k)

Sucher’s times-order formalisii8,4,1]. The difference be- and

tween our formulation and the Salpeter thephi] for the

current calculation is that the no-pair ladder kernels of Cou- Tk = 1 3
lomb exchange and single transverse photon exchange are S2P2tk)= wE—e+w—H(py+k) @

derived using the Salpeter perturbation theory in the Salpeter
formalism, while ours are obtained from scattering ampli-with



4884 TAO ZHANG AND G. W. F. DRAKE 54

m, self-energy and vacuum polarization propagators. The Dirac
M= m 4 gamma matrix is replaced by the modified vertex. For more
1re complicated radiative diagrams, the amplitudes are written
and according to the Feynman rules for the scattering problem.
The above formula is obtained as a combined extension of
H(pi—k)=ay-(p1—k)+miyd+Vy, (5)  the formalisms in Refd.1] and[16]. No overcounting occurs

since the ladder kernels in nonrelativistic approximation can-
and similarly foru, andH(p,+k). D,,, andD,z are cova-  cel out as demonstrated in REL].
riant propagators of photonsy is the four-dimensional The general idea for calculation of relativistic contribu-
bound-state wave functiofi1]. Seven-dimensional integra- tions is to let the momenta of exchanged photons be relativ-
tions overpy,=(e,p1) and py,=(e€,pz) are implied. The jstic. To be relativistic, at least two exchanged photons are
first term in Eq.(1) corresponds to a covariant ladder dia- required since the external observable or the variables in
gram and the second to a covariant crossed-ladder diagramenrelativistic wave functions must be nonrelativistic. That
Similarly, three- or four-photon relativistic contributions can s, the linear combination of photon momenta is nonrelativ-
be calculated by replacing the above amplitude by the modiistic. On the other hand, only two-photon exchange diagrams
fied three- or four-photon amplitude, respectively. The recontribute to the helium fine-structure splittings of order
vised times-order formalism is obtained by expressing they,’mc? from the relativistic momentum region. The contri-
photons’ propagators in terms of Coulomb and transversgution is a nonrelativistic expansion of ordef relative to
photon propagators corresponding to Coulomb-Coulombghe [owest-order relativistic energy corrections obtained by
Coulomb-transverse, and transverse-transverse photon diaraki [2] and by Suchef3]. To the order of interest, a fully
grams, and the single-particle propagators in terms oOfelativistic kernel for a given diagram must be derived. Such
positive- and negative-energy projection operators connectegl kernel contains both relativistic variables and nonrelativis-
with the no-pair, one-pair, and two-pair times-order dia-tic variables. To lowest ordex®mc?, only relativistic vari-
grams. Although Eq(1) is developed for calculation of rela- aples are retained while nonrelativistic variables are ne-
tivistic contributions, it also can be used to calculate theglected. To ordera’mc?, all nonrelativistic variables are
two-photon  contributions arising from the nonrelativistic expanded to ordee? relative to the lowest order. Three-
momentum region, which were calculated in Reff|. The  photon diagrams contribute to relativistic energy levels of

exception is the no-pair times-order ladder corrections|eading ordera®mc2. Their corrections to the fine structure
which arise from perturbation of nonrelativistic wave func- gre of ordera®md.

tions. This is conceivable since the only difference between a

bound state and a free particle system is that the former is a

nonrelativistic system and the latter is not. It is the nonrela- Il. COULOMB PHOTON EXCHANGE

tivistic wave function of a bound state that causes corrections Although no Coulomb exchange correction to

of infinite orders arising from a given diagram. In contrast, 5, ’me?) fine structure in helium is found in nonrelativistic
the plane wave function of a free particle system leads 1Q,5roximation, contributions arise from the relativistic mo-
corrections of one order due to a given diagram. The tWOmenwm region. These contributions come from the no-pair
photon energy formuldl) can be generalized to a formula coyjomb ladder corrections of first and second order in the
for infinite photon exchange diagrams. Summing all x-gyjjlouin-Wigner perturbation theory, and from one-pair and
changed photons, we get two-pair diagrams. To Iowistcgrder, they contribute to the

_ energy corrections of order’mc*, which were obtained by
E=(c(PiP2)[H(P1) + H(P2) [ $c(PiP2)) Araki [2] and by Suchef3]. Let us start with the no-pair

* a \" n-1 n Coulomb ladder equation. The no-pair Coulomb ladder
+ E (ﬁ) (T) (=" H d“kiD#iyi(ki) Hamiltonian that contributes to the energy levels of order
n=1\7 I =1 a®mc? from a relativistic momentum region was obtained by

Sucher, and is given by

0
Y17y"

n-1
iljl ’Y?’)’fisl(pl_ki)

" am? T E(py[E(py+m]  [E(py)+mP

H.=ml,

™ vy n-1
X{ > lZ €, ... l"[i[[l Y373Sa(py+K'i)

l1=vy n="1 1 E(pl)—m> 2}
- == |l¢, 7
o E{( 2E(py) ¢ @)
X7272n ll/(pi/ipé,u,) ’ (6)
where terms of ordea*mc? are subtracted. Heré, is the
where €, . =0 if 1,=1; or 1 otherwise.¢ is the Cou- interelectron Coulomb interaction operator, and
lomb ladder wave functiofB,4,1]. This is a Schrdinger-like
equation and reduces to the Sairger equation in the non- E(py) = Vm?+ p3.

relativistic limit. Forn photons, the number of terms iis

For example, there are one, two, and six terms for one, twdn addition, a correction of second order due to wave func-
and three photons, respectively. For radiative diagrams, thiton perturbation of first order was derived by Sucher, and is
fermion and photon propagators are replaced by the modifiediven by
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_ E(py)—m
2 C2[E(py) +m]

1 1 m—E(py) which was obtained by Such§g3].
E(py) E(p)+m + 4E2(py) } If we consider two distinct particles with massas and
Py ! ! (8) m,, and Z,=—-Z7Z,=1, the corresponding Hamiltonian of
first order due to the no-pair Coulomb ladder interaction be-
where the lower-order nonrelativistic corrections are subcomes
tracted. The total energy correction of ordetmc? arising
from the no-pair Coulomb ladder equation is

AE = (olHe ol o) = —aSme| 2+ 2| (ol (1) o) Hom ] 22 L 1
23 ¢ Tmy | 4mi (B, +my)?
€) !
obtained by SuchdiB]. Another correction due to a two-pair +2ﬁ 1 5 — 1 5| 1
diagram is given by m, | 4m; (Ep2+ m,) 2mg
N 1 1 N 1
EC C_<¢c||c( Dc) 1£77|C|¢C> Epl(Ep1+m1) 2m2 Epz(Epz+m2)
dk dk’ 2 1
~ 277 ) KT -2 le, (12
2 Ep (Ep tmy) Ep (Ep,+mp)
<¢ (p p) 1-(P1—K)Az_ (Pt k)
c\M1:M2
E+ E(p1—Kk)+E(pa+k) where
(pl—k—k’,p2+k+k’)>. (10
_ mmy
This two-pair Coulomb correction can also be derived from w= m; +m;,

Eq. (1). To lowest order, the correction becomes

is the reduced mass. The corresponding Hamiltonian of sec-
ond order reads

AECC— o mcz(———)<¢o|5<r>|¢o> (1

Ma(Ep, + Mp) (Ep, —mMy) +my(Ep +my)(Ep,—my)

Hy=2p2l
2R e mmy(E, +my) (Ep, + My) — wMp(Ep +Mp) (B, —my) — umy (B, +my) (Ep,— )
1 1 1 1
| - 2 " _ﬁ 4+
my (Ep +my)° 2B, (Ep +my)  my (Ep,+mp)° 2B, (Ep +mp)
2
1
- il I (13)
2E, (Ep +my) 2Ep (Ep,+my)
|

The no-pair Coulomb ladder correction is given by the ex- E,= VM2 K2, E,=Jmi+K2 (16)

pectation value of the above two Hamiltonians. To lowest
order, all nonrelativistic variables are dropped. The energyCombining the above two corrections and performing the

correction due to the two-pair diagram is found to be integration, we find
C-C_ 5 3.2 2 2 1 2
AEEE= a1 c?I (ol 8(r)| o), (14 AE +AESC=— 245,97 2 4 +_2}
3 mi  mgm, m;
where
X{ ol 3(r)| bo) 17
+ dk  (E.— £ which agrees witlAE, of Fulton and Martin(12]. As ob-
|=— J , (E1—my)(Eo—my) _ (15)  served, the above calculation is quite complicated due to the
o KE1E; Ej+Epx+mi+m; Brillouin-Wigner perturbation theory. The higher-order

terms are even more difficult to calculate. However, the cal-
Here culation is simplified significantly using either the Salpeter
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[11] perturbation theory or our reformulation equatitk).  for two electrons. Subtracting the Breit equation for Cou-
Since all theO(a’mc) relativistic contributions come from lomb exchange leads to
pure electron-electron interactions, external potentials are ne-
glected. The Bethe-Salpeter Coulomb lad@ecluding pair dk
ladder diagramsequation is given b a
gramsed en By AE=2—772f 2 (SePLPIA L (PLP2) T A (P1,P2)
[Ec—H(p1) —H(p2)]pc(P1,p2)

Cu +2A - _(p1,P2)| pe(p1—K,p2tK). (19
=[A++(p1,p2)—A,,(p1,p2)]ﬁ

Applying the Salpeter perturbation on the left wave function
v J %d) (Py—K.pptK) (18) (perturbation of the right wave function gives zero relativis-
k2 7c P1—K.P2 tic contribution to the order of intergstwe obtain

Ay _(p1—Kk,p2tk) N A_(p1—K,p2tKk)
E-E(p1—k)+E(p,+k) E+E(py—k)—E(p2+k)

a \2 [ dk dk’
AE=— pym IFF dc(P1,P2)

LA Pamkpetl) | i 20
E+E(p,— K+ E(pyt k) | PelPr P2tk ).
To lowest ordera®uc?, the nonrelativistic variableg; andp, may be dropped. Thus we get
a®u’c? dk 1 [(Ex+my)(Ex—my) (Ex—my)(Ex+my)  2(E;—my)(Ex—my)
2= "2 (dlonloo) [ 1 e e, e @
277 k E1E2 El E2 ml m2 E2 El ml m2 E1+ E2+ ml+ m2
Performing integration ovek gives

AE= 2 053¢ 2 + + 2 5 22
=3 2 m, T e (0l 8(r)| po)- (22

This calculation is much simpler than that derived from the Brillouin-Wigner perturbation theory since the Salpeter perturba-
tion is more suitable to relativistic calculation. This advantage of the Salpeter perturbation theory becomes more obvious in the
case of single transverse photon exchange, which will be discussed later.

For the helium fine structure of order'mc?, we need to calculate relativistic contributions of the next-to-leading order.
The relativistic momentk andk’ must be treated more accurately:

k+k' =k, (23

wherek” has to be nonrelativistic momentum as an external observable in the nonrelativistic wave fudctmexpanded
nonrelativistically in terms ok”, which makes the calculation more complicated and very singular.

In order to compare the Brillouin-Wigner perturbation theory with the Salpeter perturbation theory, we calculate the no-pair
Coulomb ladder corrections in two different ways. First, we employ the Brillouin-Wigner perturbation theory. The spin
dependent Hamiltonian of first order in the no-pair Coulomb ladder equation is

jo toepn [ 1 1f  pij[-m 1 -mlE(pptm 1 1/ 3pi)]  ovp
cT2 m CUPUEG)Tm 2ml T am?) | pZ et 27 pZ | 2E(p,) 2E(py) 2m|* am?/ |7 PreT

10'2~p2| 1 1 p3 -m 1 -m[E(p)+m 1 1 3p3

T2 Tm 2P Ep T m T 2m|\ T am? p_§°+icp_§ 2E(p;) 2E(p,) 2m\~ 4m?

% oo |0'2'p2 0'1'p10'2'p2| . . 1 B 1 _—ml

Oy Pole m om_ 2m c01°P102- P2 (E(p1)+m)2 am? pi c

-—m 1 1 O1:Py 02-P2
+IC312_|:4E_2_(p1)_W o'l'pla'Z'pZIcW om (29

Dropping off the spin-independent terms and those that give zero contribution to the fine structure, the energy correction due
to the above Hamiltonian becomes
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o1 P10k

" , a |2 dk dk’
AE=(dolHclb0)=| 52| | 1z 1oz | Po(P1.P2)

-1 1 lp1—K|? 1
Ipi—k[Z[2m\| ™ 4m? | E(p;—k)+m

1 1 3|p,—k|? E(p,+k)+m
~2lp—k[2lm{T 4m? | 2E(p;—K)E(p,+k)

[0 P10y K"+ 0p-Ko- (pr—K") ]

X

do(p1—K",po+ k")>: (25

where some higher-order corrections are dropped. After nortracted from the Hamiltonian until the final calculation is
relativistic expansion, we arrive at done. This is different from the subtraction in the leading-
order relativistic contributions. The energy correction of sec-

a \? . ond order is found to be
AE= o2 47TJ dk"(#o(P1,P2)|l sl oy - (P1XK")
X|po(p1—K",p2+K")), (26) AE? = ¢ho|Hy| o)
where -

{4 Ep,—m 2Ep2+m o1-py o1 Py
| _1f°°dk 4 1 1 /1+ m| 5k? % 2m 2E,, 2E, C°Ep tm
°6J)o K Exrm m 2E T E.)  4md

2 5 +0'1'pl 02 P2 O1-P1 02Dy
m c

2E, 2E E, +mE, +m

——l 1+ — p P P P

2E§ 1 E, (27) 1 2 1 2

E,,+m g, . o
This is the first-order correction to tf@(a’mc?) fine struc- +(2 2sz 21E Py E 1+p1
ture obtained in the Sucher’s formulati@®. P2 Py p, M

The Coulomb ladder Hamiltonian of second order is given
by +0'1-p1 02 P2 O1-P1 027

. 2E, 2E, °Ep +mEy,+m
—-2m —=2m |~
H,=AH 1- AH _ _ —m\?2
TR R Y (Epl+m){ - (Epl iy
2 = c
) —(m+ Pl) . 2p] Epl Epl+m 2Epl
=AH AHR, (29
¢ 2p§ ¢ +2Epz+m O1°P1 01-Pg
Cc
where ZEpz 2Ep1 Epl+m
m—E, p? 01°P1 2Pz O1-P1 027 J >
Py P1 o). (33
= i c 0
9 mTE,, m’ (29) 2E,, 2E,, °Ep +mEp +m
AHS=g+AHgp, 30 N _—
c—9d sP B9 The relativistic contribution comes from two Coulomb po-
and tentials while each term in the above equation contains one
Coulomb potential. The second Coulomb potential is ob-
o p? Ep,—m [E,—m 2 tained by repeatedly making use of the Sdlinger equation
AH;=g+ mE + 5E l.+AHgp. (3D on both the left and the right wave functions and keeping the
Py P terms of up to order’mc®. The relativistic variablek’,

E(p,—Kk), and E(p,+Kk) are expanded nonrelativistically.

The spin-dependent part is given by After some manipulation, we get

Epz+m o1:P1. 01°Pg

AHSD: 2
2E,, 2B, Ep,+m

a

2
AES= 2772) 4 f dk"{bo(Ps1.P2)|1sdl 01~ (P XK")

+0'1'p10'2'p2 o1°P1 022
2E, 2E, CElerm Ep2+m'

32 n n n
32 1oy p1os K bo(pr—K' oot K)),  (34)

This Hamiltonian is of nominal ordex*mc? nonrelativisti-
cally. The lowest-order nonrelativistic correction is not sub-where
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I_j»odk 1 1+2+1 1 1 I_jooolk E 42 1 L. m 2mk?
s o 24mEZ\m? " EZ) " 3mK| Ex+m| Eg+m so= |, amekz | (B m) 2K’E,\ T Ey  3ED
1 N Ex—m\| 5(Eg+m) 1 35 Exk—m m(E.+m) 1 N 1
E, 4EZ 16mE. | 8mKk? 39 3E; 3K2ES | 6mk 24m°
N 1 L m)
and Ex+m Ey
x| 1 + K (2+ 4m+ (39
| Jw Ec+m 1 dk a6 Ex 3E; Ex Extm
= Jo |~ amAeEZ " 2amie )¢ 36
and
The total contribution to th®©(a’mdc) fine-structure split- .= fx dk {i_ 1 (40)
tings of helium arising from the Coulomb ladder equation is 55 Jo 24mPE; M Ep+m|

given by Eqs(26) and(34). As observed, it is quite compli-

cated to

calculate the above corrections in the original timesthe first line in the above spin-orbit correction corresponds

order formalism because of difficult application of the to the no-pair diagram and agrees with the spin-orbit terms in
Brillouin-Wigner perturbation to relativistic calculation. Us- Egs. (26) and (34) obtained by using the Brillouin-Wigner
ing either our formuld1) or the Salpeter perturbation theory, perturbation. The second line is due to two-pair diagrams.
the calculation is simplified significantly. The first term and half of the second term in the above spin-
In the Salpeter perturbation theory, the no-pair Coulombspin correction come from the no-pair diagram and agree
effects may be calculated by using EQO), in which the  with that in Eq.(34) obtained in Sucher’s formulation of the
third term should be divided by 2 since half of the third termtimes-order formalism. The remaining part arises from two-
comes from the no-pair diagram and the other half is due t@air diagrams. Agreement between two quite different calcu-
the two-pair diagram. However, the result obtained in thisations of the no-pair Coulomb correction provides a good
way disagrees with that in the Brillouin-Wigner perturbation. check. As demonstrated above, the calculation of the no-pair
The subtraction of the Breit correction of lower order needsCoulomb effects using the Brillouin-Wigner perturbation

to be treated more carefully to higher order. Only exact termsheory is very difficult. On the other hand, the Salpeter per-

of lower order may be subtracted. The correct starting pointurbation method is more convenient and instructive for such
should be from the following formula: calculation. Another interesting check is to calculate the
Dirac energy of ordea’’'m¢? perturbatively. It is well known
that the Dirac energy for a particle bound by an external
cc [ a \?[dkdk’ Coulomb field is a function of even powers of fine-structure
AEY Y= 212 f K k'?2 constantx. In one-body approximation, the Coulomb ladder
A A correction is
X<¢’c = ++(Fil _1p2 ) C>, 37) ,
E—E(p1—k)—E(p2+k) c.c a Y . Y
AE~ ™= o2 477[ dk"(#o(P1,P2)|lsol oy - (P1XK")
which can be obtained from either the Salpeter perturbation +15ip1- K| po(p1—K”",po+ k")), (41

theory or our reformulation equatiail). The kernel in the
above equation is singular even to ordetmc® due to the  where
Breit corrections, in contrast to the finite kernel in Eg0).

After subtraction of singular terms 8m/k*+ 2/(mk?), the o dk ( 1 2m{ 1 1
previously obtained energy correction of ord@mc® due to lso= fo 8MPE(Ext M) Ext m + 3E, E—k+ Ecrm
the no-pair Coulomb diagram is reproduced. For the (42)
O(a’md?) fine structure of helium, the Coulomb ladder con-
tribution including the two-pair effects from Eq10) be- and
comes
AEC»C_ i>24 Jdkrr<¢( )ll i ( Xk") | = fw dk [ 2 1 m
2772 ™ 0(P1,P2)|Isot 01- (P21 si— 0 2k2(Ek+ m)l3Ek(Ek+ m) E_k
+15s01° P1072-K"| po(p1— K", p2+K")), (38) 1 m)\ 2m k2 k?
~ 4m Ey) 3E 6mEXE+m) 6mE|

where (43
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where we have retained the spin-independent terms for thiey Sucher[3] is the calculation of the no-pair Coulomb-
Dirac energy. The above Coulomb ladder correction is foundoulomb and Coulomb-transverse photon diagrams. The

to cancel a correction arising from one-pair crossed-laddelg

Coulomb diagrams to be presented in the following.

ernels due to pair diagrams derived from both formulations

The main difference between the reformulation equatiorf™® €xactly t_he same. In the. case of Coglomb exchange, en-
(1) and the times-order Bethe-Salpeter formalism developeérgy correction from one-pair diagrams is

a \2 [ dk dk’
AEC§C+AE$X°=(W) i <¢c(p1,pz)

A1 (P1—K")Az_(p2t+k)

A1_(p1— k") A (pa2tk)
E—E(py) —E(p1—k')—E(p;—k—k")—E(p,+k)

~ E—E(py—k’)—E(p2) —E(p,+k)—E(py+k+k')

derived by using our equatiofi). The same equation was AEC*C(q7)

also derived in Ref[1] using Sucher’s formulatiof3].

From the relativistic momentum region, the energy cor-

rection of lowest order is

AES*C=a®u3c®( ol 8(r)| ), 49
where
|=2fw dk [(Ey—my)(Ex+my)
o k2E1E2_ E,+E,+mi—m,
E;+my)(Ex;—m
( 1 1)( 2 2) . (46)
Ei+Ep—mp+my

On computation, we obtain

2

AECXC=§C¥5,LL3C2 2

m;  myms

(ol 8(r)| o),
(47)

L2
m3

which agrees witlAE}, of Fulton and Martin12] for two
distinct particles and that of Suchid] for helium.

For the helium fine structure of order’'mc?, using the
generalized Foldy-WouthuysdfW) transformatior{1]

(A1—(p1—K") Ao (p2tk))

=(A11(p1—K") Az (p2+k))
1 1 m?  2m2k?]
= Z{ - W[l_ E_E+ S—E,‘(‘}o-l'(ple")
k2 m? k?
- m(l— E—ﬁ)i(rl-(plxk”ﬂ— oniE?

H 1 H "
Xo'lp1|0'2k"+ﬁ|0'1(kxk )} (48)

de(p1—k—K',patK+K") (44)
|
o 2 i
:(ﬁ> 47TJ dk”{bo(P1,P2)|lsol 01+ (P1XK")
+ 155071 P10 K" [ dpo(p1— K", p2+K")), (49
where
o 1fwdk1m2 2k? o
0=~ gm? ), K%E, _E_§+3_Eﬁ (50
and
| 1 J’wdk 51
=242 | 3 (51)

For hydrogen, the above crossed-ladder Coulomb correction
becomes

@ 2
AEC*C= ﬁ) 47Tf dk”<¢0(p11p2)||soi0'1'(p1><k”)
+1sip1-K"[po(p1—K",p2+ k")), (52
where
. fm dk 1 2m | 1 1
0=~ |y BMPER(Ex+ M) Extm ' 3B | By | Extm
(53
and
| _fw dk [ 2 m
S Jo 2k%(Eg+m)| 3E((Ey+m) E,
1 1 m) 2m k2 k2
4m? E. 3E} 6mEXE +m) 6mE|
(54

which is seen to cancel exactly the Coulomb ladder correc-
tion in Eq. (41) term by term. Therefore, the zero Dirac

and expanding the denominators nonrelativistically, we obenergy of orde’mc? for non<S states is reproduced in our

tain

perturbative calculation. Th8-state correction due to rela-
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tivistic origin arises from four-photon diagrams. The corre-
sponding nonrelativistic operator is just t@efunction. The
reproduction of the Dirac zero energy provides a good check
for our Coulomb calculation.

The total contribution to thed(a’mc?) fine structure
splittings, arising from Coulomb photon exchange, is ob-
tained by combining corrections in Eg88) and (49). On

j dkoy-kos-kexpik-r)

:Zf de’l'pl(rz‘kquik‘r)

=47y Ty T[ks(3,) —ks(4,2)]

computation, we get

a

2
AEc:(zﬂ_z) 47Tf dk"{o(p1,P2)|lsol 1+ (P1XK")

+15s01- P10y K" po(p1— K", p2+K")), (59
where
ey L (56)
32 8
and
lss= 1z - (57)

r . .
=—1207r35(r)r—20'1-r0'2-r. (62)

In this section, we presented calculation of the no-pair
Coulomb effects in three different methods, namely, Such-
er's times-order approach, the Salpeter perturbation method,
and a direct application of th&-matrix method. The last two
are the same for Coulomb exchange. The first one is quite
complicated in relativistic approximation. Calculation of pair
effects is not different from one to another.

lll. SINGLE TRANSVERSE PHOTON EXCHANGE

Relativistic energy corrections due to the single transverse
photon exchange arise from no-pair, one-pair, and two-pair

The above finite result is consistent with the fact that nodiagrams. Formulas in closed form were derived on the basis
contribution arises from the nonrelativistic momentum re-Of the times-order Bethe-Salpeter formalism and presented in
gion since the appearance of logarithmic cutoff terms indi-0Ur previous papeil]. Here, we rederive them starting from
cates that contributions come from both relativistic and nonour Ed. (1). They all come from a transverse photon ex-
relativistic momentum regions. Upon Fourier transformationchange plus a Coulomb photon.

described in our previous papkt]|, we obtain

r
AEc:a7mC2<¢o ls00(r) 0y 2 %P1
1 A o
+I335(r)r—20'1-r02-l’ b0/, (58)
where
3
lso=— 7 +3 (59
and
lss=—5. (60)

Here we have used the following formulas:

Jdki0-1-(plxk)exmk-r)=4mrl~(p1><r)ks(3,1)

1
=24m°8(r) 01+ (rXpy)
(62)

and

A. No pair

In order to compare the Brillouin-Wigner perturbation
theory with the Salpeter perturbation method, we recalculate
the O(a®mc?) relativistic energy levels of helium using both
methods. In the Brillouin-Wigner perturbation method, en-
ergy corrections due to the no-pair single transverse photon
exchange arising from the relativistic momentum region
come from the Breit corrections of first order and second
order as well as recoil corrections. For two distinct particles,
the correction arising from the relativistic Breit operators is
given by

5 1
AEB—2< ¢o|Bo1-p102-p2 m
1 1
+2< ¢o|Bo1-p1o2-P2 =
1
T ‘“>' (63)

where the perturbed wave function of first order is
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-1
=2l 1o Epl—m1 e Epz_mZi Here
1= Ep,tmim; Ep +m, my )
Ei-—my n Ex—mp p 2 1
1 1 f=2pu1- —| |
M . E;+mym; Es+m, my m; (E{+m,)
T 2
my (Ep1+m1) 2Ep1(Ep1+m1) 1 M 1 1
+ — +
3 1 .\ 1 2E1(E;+my) my (Ex+my)? 2E,(Ex+my)
my (Ep,+mMp)” 2B, (Ep,+my) K2 1
) T 2E,(Ermy 2E2(E2+m2>} (©9
- b1 ledo  (64)
2E, (Ep, +my) 2E, (E, +my) | ¢7°
For m;=m,=m, we get
and the transverse integral operaBis defined as
a (dk AE5__2a5m (+2){ o 8(r) oy~ 05| o),  (69)
Bd’(pl,pz):ﬁ _—k2010'2¢(p1—k,p2+k). (65 BT 3 m bo o1 02| o),

After nonrelativistic expansion of the denominators and
some manipulation, we obtain which reproduces Sucher’s result.

Recoil corrections are separated from the Breit correc-

5 a \? ; tions explicitly in terms of the numbers of photons. The Breit
AEg= ﬁ) 47Tf dk"(#o(P1,p2)|l 01 0, corrections correspond to pure single transverse photon ex-
changed. In order to extract relativistic contributions, two
X| po(p1—K",p2+K")), (66) photons are required. A Coulomb photon comes in either
from repeatedly applying the Schiinger equation on both
where the left and the right wave functions or from the wave func-

tion perturbation. The relativistic recoil corrections arise ex-
plicitly from two-photon exchange. Therefore, no relativistic
recoil corrections of second order contribute to the order of
interest due to the perturbation of the wave function. One of

(67)  the corrections due to recoil effects arises from ladder dia-
grams and is given by

~dk| 8u
- [ 2

o k 3

4k 1 1
3 E;+m; Es+m,

1 N 1 1
E,+m; E,+m, 4mm,

{ . D¢ (p1—k,p2) L D¢ "(p1,patk) i}
o o o (04
DI (pr—kp)—k 2 2D T (py.pa—k)—k 1t

o a dk
AERlzﬁf K2 éc(P1.P2)

Lo (P1—K,p2+ KLy i (Pr—K,p2+K) + Lo (P1,P2) Ls +(P1,P2)

X —
Dy "(p1—k,pa+k) D¢ "(p1.P2)

. D{T(pi—k,pa) - D (p1,patk)
X| a} ° ayL+ a! : o —k,pst+k) ). (70
D7 (pr—k,po) k"2 *2D7 (p, py—k)—k "1 Pe(PrTIOP
After nonrelativistic reduction to lowest order, it becomes
@ 2
AE%F(EZ) 47Tf dk"(po(P1.P2)|l 1 05| po(P1— K", P2t K")), (71)
where
= dk 1 m;—E m,—E
- | moE , m—E | (72
0 6E;E, m+m,—E;—E,|m;—E;—k = m,—E,—k

Another recoil correction due to crossed-ladder diagrams is given by
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. 1 1 .
i _ _ \ !
alE_E(pl_k)_E(pz)_k£++(p1 k1p2)|C£++(pl krpZ/E_E(pl_k)_E(p2)_ka2

1 o dk
AERlzﬁf 2K bc(P1,P2)

, 1 i
1 1
+a2 E_E(pl)_E(p2+ k)_k£++(p1,p2+k)|c£++(p1,p2+k)E_E(pl)_E(p2+ k)_kal

¢c(p1—k,pz+k)>.

(73
Reduction yields
o \2
AE%F(W) 47Tf dk"(bo(p1,P2) |l o1 - 02| Po(P1— K", P2+ k")), (74
where
I—Jm kdk 1 1 75
N 0 6E1E2 E1+ k_ml E2+ k_mz. ( )
Combining the two recoil corrections, we get
@ 2
AERI:(EZ) 47Tf dk"(¢o(P1,P2)|l 01 - 05| po(p1— K", P+ K")), (76)
where
» dk 1 E,—m E,—m k 1
|=f | T . (77)
0 BE1Eomi+my—E;—E, | Eq+k—m;  Ep+k—m,/  E;+k—m; Ep+k—m,
For m;=m,, the correction becomes
2a°mc
AERF_T|n2<¢o|5(r)0'1'0'2|¢0>1 (78

which reproduces Sucher’s result. In the above calculation, it is quite difficult to track all the relevant terms in the Brillouin-
Wigner perturbation expansion. This makes it much more complicated to calculadé éfenc?) fine structure. The detailed
calculation of the fine structure using this method will not be presented here. In the following we use our formulation of the
times-order theory.

Similar to Coulomb ladder corrections, the ladder correction due to no-pair single transverse photon exchange is calculated
more conveniently using the formulation equatidn. The corresponding formula becomes

2 1 [ d*pydp,dikdik’ ~ . L1:(p1—K)
Tc_[| ¢ 19P2 i 1+(P1 i
AE++_(2772) —2wifk’2(w2—k2+i5) WPz oK) T e w162
L;4(pa+k) o, a\? 1 [ d*p,dp,d*kd*k’ ~
K E—eapp K —erwris VPPt 2 —27Tifk’2(w2—k2+i5) V(PruPz,)
Ly4(p1—k") i Loy (p2tk")

i ’ ’
X,U,]_E_Bl(pl_k,)"‘f_w,'f‘i5alM2E_£2(p2+ kl)_E+ 0),+i5a21/,(pl’u'p2’u). (79)

Performing integration over the energy variables and dropping the external potentials, it becomes

AETC_[ @ ZJ dk dk’ 1 1
= 52 | op | e(PaiP2) E k) —E(p; 7K | EEp—E(p 7 K=K
1 . .
1 _ i
- E—E(p;—k)—E(p,)—k a3A 14 (P1=K)apA g, (P2 k)

1 1 1
+
E-E(p1—k’)—E(p2+k’) [E—E(pl—k’)—E(szr ktk)—k E-E(pi—k—k')—E(p+k')—k

+

XApy(pr—K)aiAr (patKk)ah do(pr—k—kK',pytk+ k/)>- (80)
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To lowest ordera®mc, the above contribution to helium energy levels is

AETC=—

4a5m302f°° dk[2EZ+k(2E+m)]

3 o mE&(Ek‘Fm)(Ek‘i‘ k_m)<¢0|5(r)0-1'0-2|¢0>! (81)

which is the sum ofAE3 and AE2, in Sucher's calculatioi3]. This calculation is much simpler and more instructive,
especially for thed(a’md?) fine structure.

The recoil correctiom Ex, in Sucher’s times-order formalism corresponds to crossed-ladder diagrams and can be derived
from Eq. (1). The corresponding times-order formula becomes

i ol Ly1(p1—k) )
2 ) K= K2+is) VPP e Tl Fe—wti o

a\2 1 [ d*pdpyd*kdk’ ~
i

22

Lo (Pot k) et [ d°pydp,d k'K’ ~
X /.L2E_82(p2+k,)_6+w,+i5a21/l(plﬂp2’u)+ ﬁ —2mi k12(w2_k2+i5) lp(plp.pZ,u.)

El-%—(pl_k,) P £2+(p2+k) ;o
K E—ea(p—K )T e— @ 11612 e~ ey k) — et wris ) P1uP2u) ®2
Performing integration over the energy variables and neglecting the external potentials lead to
AgTxe_ (@ Zf dk dk’ 1 1
=\ 22) | 2k | PP ECE G T E(p, k) —k E—E(p;—K') —E(p, T kT K') =K
X Apy(pr—K')aiabA, (pt+k)+ ! :
l+(p1 )a1a2 2+(p2 ) E_E(pl_k)—E(pz)—k E_E(pl_k_kr)_E(p2+kr)_k
X @i A 14 (P1—K)A g (Pt k') ah| do(pr—K—K',pptk+ k’)>- (83
|
To lowest ordere®mc?, it becomes Aa®°mcE 1 T
AETC+AETC= (—1——In2——)
3 2 2
X{ ol 8(r) oy - 05| o)
Txc Aa’mic? (= kdk , :
AEV, = 3 fo EE(Ek+k_m)2\¢o|5(r)0'1'0'2|¢0>a =AEZ+AEg,, (85

(84) which reproduces that of Suchié] arising from the no-pair

single transverse photon diagrams.
For the helium fine structure of order mc?, the relativ-
istic contribution due to the no-pair crossed-ladder single
which reproduces\E}, The total correction due to no-pair transverse photon exchange is derived from B§) by ex-
single transverse photon exchange is given by E®f5.and  panding the denominators nonrelativistically and using the
(84) and becomes FW transformation,
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(Ags(pr=K')ahabA . (pptk))
_ 1 2 1 k//l 1 K" i 2 k i
=16\ 2 m " By P K | By | K By ke
1 k i K" 2 1 1 i 1 i K"
+Wpl_k,)0'1'plﬂ'1' o101 (p1—K") Eer P2t E(p, k)| 7272

2

) 1 .
I——— . - . | . . "
+ E(p,+K) 0,0, K+ 2m2E(p2+k)02 P20,0%-Kory- (P +K )}

=30+ 31+ 33+ 33+ 33+ 7,

where

Jg: =201 k0'2 k

4E;

1 1 1 1 ”

Ji= 4E,\m E oy [(2py—k") X K]
1 1 1 "
+—4Ek E—k—a o;-kKop- K,

1
Jéz—Ek"-kal.kaz.k,

11 1 k> . o
“olme &2 ameez) v (PR
1

1 1 2+ 2k?2 o
12 \m ™ B " mez| Tt P2

, K 1 2 .,
J5= 12E3 m E iop-(p1XK")

1 2 ,
E_E o1 P107-K

k4
J2=— - . K"
4 3OE(|20-1 P1o2-K".

In deriving the above result, one needs to keep all terms

(86)
[
- 1 1 1 k2
0~ Bk(Ext k—m)? | |m? B2 2m?E2
k21 2 1/1 1
k2
X 2+—Ek(Ek+k—m)” (89
and
L 1 /1 1\2 K2
ST Bk(E,+k—m)?|  2\E, m| mPEZ
+12+ k2 1 1 2K
EJ" EWEgtk-m)||E, m BE]
k2 /1 2 k4 1 4k?
2e\lm E, BEY S5E2 Ek(Ek+k m)
k4
.
Ex(Ex+k—m)? ] 90

The correction due to no-pair ladder single transverse photon
exchange is derived from E¢B0) and given by

T-C a \? *
AE+'+=<W> 4'7TJ'0 dk
(87 dek"<¢o(p1:P2)||soi o1 (P XK")

+ 155071 P10 K" po(p1— K", p2+ k")), (9D)

containing up to foulk’s and care is required. After some where

manipulation, we obtain

2 o
AET =5, 47Tf dk
++ 27T 0

X f dk"(po(P1,P2)|l s 071 (P1 X K")

+ 155071 P10 K" ho(p1—K",p2+K")), (88)

where

L 1 1 1 k2
50~ BK(E,— M) (Ex+ k—m) W‘Efrz 2E2

k(1 2 2 1 1
+EkEk 2E2m E,

+_ _—
2Ef\m  Ey

N
Ek_m Ek+k_m

(92

and
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L 1 [ 11 1\ K AeT ol sl s ‘L
SS_6k(Ek—m)(Ek+k—m)l 2B, m mPE2 t4p=ame dollsod(r) oy 2 %P1
1 . .
k(1 2\ 2(1 1| K (1 1 +I335(r)r—201'r02-r¢o>, (97
where
2
o 1 L Ak l)=5 —4INB+In2+ 1 7 98)
Ex—m E+k—m/ 5E;
and
1 K2 1 1 3
hll + lg=— 22— & 7— L —21nB. (99)
152 4t Ec|Exc—m Ek+k—m) } (93 5 e

At first glance, the logarithmic cutoff terms do not seem to
The total contribution due to the no-pair single transverseancel those in Eqe307)—(309 in Ref. [1], arising from
photon exchange is obtained by adding the corrections if0-pair single transverse photon exchange in nonrelativistic
Egs.(88) and(91). Upon calculation, we get approximation. A careful examination shows that they cancel
the logarithmic singular terms due to the no-pair single trans-
a ) verse photon exchange plus a Coulomb photon or the diver-
ﬁ) 47Tf dk"(bo(P1,P2)|lsol @1 (P1XK")  gent terms in Eqs(78) and (93) in Ref.[1]. This is under-
stood because the cancellation takes place between
+ 15401 P102- K| po(p1—K",p2+K")),  (94) relativistic and nonrelativistic contributions arising from the
same no-pair diagrams of one transverse and one Coulomb
photons. The other part of no-pair single transverse photon
exchange in Eq94) in Ref.[1] comes from the correction of
another transverse photon and is a pure transverse photon
correction. We will show that the singular terms in this cor-
rection cancel those in ladder double transverse photon ex-
and change in relativistic approximation.

AET++++:

where

-2 InB 1|2 L 95
ISO_7_2_En +—n +4—8’7T ()

1 69 17 1 B. One pair
+—xm+—+ —InB, 96 . . - -
ss 40In2 9607 " 240" 30 (96) Relativistic energy corrections arising from one-pair dia-
grams are due to a transverse photon plus a Coulomb photon
whereB is the cutoff. The logarithmic cutoff is supposed to exchanged. The formula derived from our reformulation

cancel that which arises from nonrelativistic contributions.equation(1) for calculation of one-pair single transverse pho-

Taking Fourier transform yields ton contribution is
e [ @ \? 1 (d*pydp,dkd'k’ ~ L1-(p1—K) Lo (p2t+k’)
AE ;= 52| 7o J' 2 2 l/f(plupzﬂ) 1 — —
T mi ] K'2(0?—Kk?+i6) uiE+e(pi—kK)+e—w—id usE—ey(prtk’)—€et+tw'+ié
1 f d*p1dp,d?kdk’ ~ L1-(p1—k")

X“zl//(plupz,)+ —2mi ) KA 0?—K2+i0) Y(P1,P2p) wE+e(p1—kK')+e—w' —id
P Lo (p2t+k)
I 1 ’ !

XalazﬂzE—Sz(pZ‘F k)_€+w+i5¢(pll’“p2”’). (100)

Performing integration over the energy variables and neglecting the external potentials lead to

a?\2d ! o . .
AETS=| o fEch(pl,pz)ml_(pl—k')a'la'zA2+<p2+k>l+a'1A1_<p1—k>A2+<p2+k')a'zl'
x| po(pr—k—K',po+k+k')), (101

where
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-1 1 -1
'= E—E(p1) —E(p1—k—k')—E(p1—k') —E(p2+k) E—E(pl)—E(p2+k)—k+ E(pl—k—k’)+E(pz+k)+k(102)
and
[ -1 [ 1 N -1
~ E—E(py)—E(p1—k—k')—E(p1—k)—E(p,+k') [E-E(p;—k—K')—E(p,+k’')—k E(p1)+E(p2+k’)+k(l'03)

The above correction agrees with that derived in R&f.using Sucher’s formulation. To lowest order, the crossed-ladder
correction becomes

o 2
AEK‘E(W) 4m f dK"($o(P1.P2)[1 01 02 bol(p1 = K", P2 k")), (104
where
B lfoo kdk 1 [ 1 1 10
T 6J)o EjE, EqtEpt m—my E;tk—m, | Ejt Kty (105

The energy correction due to ladder diagrams is derived from the reformulation eq(Btidrhe relevant times-order
formula is

( ol Ly-(p1—k)
K2(w?—K21i0) M PwP) oy e T e oo

Agteo| @)t fd“pldpzd“kd“ku
- — 2

i Lo+ (p2+k) o, a\? 1 fdApldp2d4kd4k’~
x az,qu—sz(pz-I—k)—e-l—w-l—i5¢(pl#pzﬂ)+ 222 Z2ni ku(wZ_k2+i5) 'ﬂ(pl#pzﬂ)

y Ly (p1—k") i Ly (patk’)
UiE+e1(pr—K ) Fe—w —i0 L uE—eyptK ) —etw +id"

b(P],P5,). (106)

Performing integration over the energy variables and dropping the external potentials give

rc_ [ @®\? [ dkdk’ i i
AE ;= e JﬂW<¢C(p1,p2)|a1/\1,(pl—k)a2A2+(p2+k)I
+ A1 (Pr—K)ayAp, (P k') abl | de(pr—k—k',py+k+k")), (107
[
where e [ @)?
1 1
' E(p) T E(pi- KTk E-E(py - E(p 7K~k [0y 02| do(pr—K",p k"), (110
(108
where
and
- 1foc kdk 1
i 1 " 6J)0 E;E, E;—Ep+my+m,
TE(py—k—k')+E(p;—k’)+k L L
y 1 (109 M Eyrk—m, Eitk+my (113
E—E(p,—k—K')—E(p,+k)—K"

Including the correction arising from the single pair dia-
To lowest order, it becomes grams in which a pair is on the second fermion line, we get
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AETC +AETC =| 2 24 Jdk” | ! ! + !
—i AR = o) AT (do(prp2)ll 0102 “|Erk—m; E,tkimy| E;fE,tmy—m,
X —k”,p,+k")), 11 1 1
| po(p1 po+K")) (112 « N . 113
Where E1+k—m1 E2+k+m2
1 (= kdk 1 For heliumm;=m,=m, we obtain
-
6Jo ElEJEl—E2+m1+m2 e e 4a’mc
AEL+AEZ= (1+1n2){ | 8(r) o1 - 02| o),
1 1 1 3
v _ i (114
E2+k_m2 E1+k+m1 E1+E2+m1—m2
1 1 1 which reproduces Sucher’s result.
% + + For the helium fine structure of order’mc?, we expand
Ex+tk—my  Ejtk+mg] E;—Ej+mi+m; nonrelativistically the spin dependent numerators and get
|
(A_(p1—K")alabA,.(p +k)>=i 2 ot (p,— k") + —+; o -k”a'i—#a' k'
1-\M1 1¢2432+(M2 16 m E(pl_k/) 1 m E(pl_k/) 1 1 E(pl_k/) 1 1
1 i "
—mﬂrplﬂrkclﬂr(prk )
2 1+ 1 i+ 1— 1 ) i K" -+ i k
VPl B )P "B | 27 KR 27
1 i "
“5m E(p2+k)0'2‘p2020'2'kﬂ'z'(Pz+k )
=39+ 33+ 31+ 32+ 92+ 22, (115
where
0 1
J2:i4_E§0'1'k0'2'k,
Jl—l +21 L k”><k+21+1' ><|<—2 ko,-K"
1_8_Ek =4“m E_k'ﬂ'l'[(Pl )X K] m~E, oy (P2 )+Ek0'1' Oy
1 _ 1
+a(1i1)|0’1(k”Xk)—i_a(lIl)a’lkUZk”)!
1_ — 1 ”
J3=+4_Ef(1(pl+p2_k )~k0’1-k0'2~k,
e (i 1)1 1) (1 1 1,1V K ke
"1 \m EJ\mTEJ \m EJ\m EJ m2E2 o1 (P xK")
1 1 1)(1_1) 2k? o
T T ImTE) \mTE) w2 v Pz K
J3= i ! 171 2 xK")+ <L 171 -2 K"
2_24E§ m( + )+Ek|0'1'(p1 ) 24E§ m( + )+Ek 01 P102-K7,
4
Ji= isTEEal. pLo,-K. (116

Similarly, the FW transformation for the other one- and two-pair crossed-ladder numerators is given by
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1

— — i .
m+E(p1—k) 0,07 k

_ 2
E(p1—k)

. . 1 1 1 . )
(a1A1-(p1=K)Age(patk')ay)= 1_6[ 2(5— m) p1— )0'101- K"+

1 )
1 — k" P —
2m E( k)o-l'pla-lo-l'ko-l'(pl k )][2<miE(p2+k’)

(Po+K")

2 ' 1

1 1
( + gy k,,UZI—(p2+k,)UI202k+_2—E(p +k )

T Im T E(p+K)

X0y P03 k0'i2‘72' (p2+K")

=L9+ L+ i+ L2+ 12+12, (117
2 1 3 0 2 4
|
where L 1 1 N 1
SO 12KE,|Ex+k—m  Eg+k+m
0_
L= ;g0 koo'k, Jrorook o3
L L ) m? EZ 2m’E; 2E;
1__— ) _ | = — +__|i A L
L1 8Ek[ [m(l-'-l)—EJlo'l [(2p1—K")xK] . K 1 . 1
1 5 242 (Ex+k—m)? * (E +k+m)?
6KEZ|Extk—m '~ E+k+m (120
1
L§=iﬁ(pﬁpﬁk")-kal-kaz.k, (118
v and
2 (1 1)1 1
0712 lm EJ\m"E,
+ E+E_k)(m+Ek> E2:||0-1 (p]_Xk") SS_lZ(Ek Ek+k_m Ek+k+m 2 m2 E7k
1 (1 1\/1 1) 2K LR L 1
1 ‘(WE—k)(aie—k)imz—eg}"fpﬂ’z*”’ e\ 267 267 | 2Ef| (Erk+m)?
k2 1 4 + ! Hl SkZ} !
Lg:zTEE[_m(lilﬁE_J“’l-(plxk") (Brk=m?|| ™" 587 30¢m’
k2 [1 4 X ! + !
+ i { (1F1)F | 01 P10y K, 30E | (Extk+m)®  (E+k—m)?
k k
N 1 1 N 1
k* Ex|\Eqrk—m ' E+k+m
Lizi_BOEE(Tl'plo'z'k”. K K K ,
N 1 1 N 1 2k
Using the above results and expanding the denominators 6kE§ Exktk—m  Eg+k+m SEE
nonrelativistically, we derive
2 ! + 1 121
T IKES |\ Egtk—m ' Etk+m) (123

2 oo
%) 4740 dkf dk”{ do(P1.P2)]

AETC=

Xlsol 01 (P1XK") + 15501 - p107- K The O(a’mc?) correction due to ladder diagrams is ob-

X | do(pr1—K",pa+ k")), (119 tained by expanding the numerators and denominators in Eq.
(107 nonrelativistically. Upon taking the FW transforma-
where tion, the numerators become
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1

) ) 1 1 ) ) 2
(A1—(p1— k") ajAy.(pptk’)ab)= 1_6[2<E_ m)(pk—k”%

E(p1—k’)

1

JE— . i
m+E(p1—k’) g, kO'l

i
)(Tl‘k o,

1

. 1 1 . :
_ . . i . L = i i
ZmZE(pl_kI)Gl P10, k0'10'1 (pl kK )Hz(miE(p2+k’) (p2+k )

1 1 ) 2 )
- - KWyt . |
(m+Emﬁ*U%hkch+Hm+thk%

1 .
- - A . i . "
+2m2E(p2+k,)0'2 p20'2 k0'20'2 (p2+k )

=9+ I3+ 33+ 35+ 35+ 33, (122

where

J°=+i ko, k
2 —4EEU'1 oK,

J1—1+21 L), k") x k 21+1' K" k+11—1—2
1786, | “\m E, oy [(pr— k") XK]— moE, o [(p1—K") XK] E( + )+E—k

X[|0’1(k>< k")+0‘1-k0'2- k”]] y

1
Ji= I4—H(1(pl—p2—2k”)-ko-l- ko,-k,

p (1 111
“m EllmE

1[/1 1 1_1)_ 2k o
T 12| lm " EJ\m TE) Tm2ez) T P2

J’_

1,1 1.1y K] i
m E)\mE +_m2Eﬁ|0'1'(p1 )

2

1 41
ngrﬁ[_ 5(11 1)iE_k [io1- (P XK")— 0oy proy-K'],

Ji=0. (123
Similarly,

1 1

— — I .
m+ E(p—K) o104k

. ) 1 1 1 )
<a|1A1—(p1_k)alezt(pz"'k)):1_6(2( —) pll_(

_ i LM
m E(pi—k) )qu+E

2
(p1—k)
1 i 11
+ 2mPE(p,—k) L P1o107- klfl'(pl—k")HZ(aim) P2

11
lm Btk

. 1
~2m2%E(p,+K)

aho,-K' aho,-K

-
E(p2+k)

X 0y P20y05 Koy (pot k")}

=Lo+LI+L3+L2+1L3+L3, (124
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where

L1=i i2(———)—2<£ti) oy (pyXK)
17 8E, m E, =

1+1 1 1
m Ey m+Ek

X[ioy- (kX k”)—al-ko-z-k”]],

1
L%: i4_Ef(1(p1_p2)'k0'1' ko,-K,

1[{1 1\/1 1
|_2:_ —_— — || —F =
" 12\m E\m E,

1 1)1 1) _ K| ck
+ mTE, +mz—EE'01'(p1 )

+__
m E,

11 1 1_1)\_ 2K o
12| |m " EJ\mTE) Tmegz) 71 Pro2 ¥
k2

L2= ! 171 L4
2= o483 T m ¥ g,

X[ioy-(p1XK")—0oy-proy-K'],

L3=0. (125

The above results also apply to the two-pair calculation to be
presented in the next section. Using the above results and

expanding the denominators nonrelativistically,

2 o
AETC= (L 477] dk
-+ 277.2 0

X f dk”{ho(P1,P2)|1sol 01+ (P1XK")

+155071-P102- K" po(p1— K", P2+ k")),

(126)

where
L 1 1 1 . 1 k2 . k2
SO Bk (E(tk)2-mim?  E2 2mPEZ  E}
. k? 1 . 1
2E2 | Eytk—m ' Egtk+m
1 1 1
" 3KEZ (Bt k2 m? (127

and

L 1 1 1 1 2Kk 2k
$ST12k (Eg+k)2-m?m? B2 m?E2 Ef
N k2 1 N 1
EX|Eytk—m " Ectk+m
1 1 2k?2
+ 2 — | 1l-==
3kEZ (E,+k)2—m =
k 1 [4 . 1 1
1562 (Ex+k)2—m?[k? " E,| Ex+k—m
+ ! 1 128
E,+k+m/| 30k%m3 (128

The pure singular spin-spin terms in Eq420 and (127)
correspond to the subtraction of nonrelativistic contributions
of lower ordera®m¢® or of the last term in Eq(5.15 in Ref.
[4].

The total contribution due to the one-pair single trans-
verse photon exchange is obtained by computing the two
corrections in Eqs(119 and(126), and is given by

2 0
2AETC = £ 4wf dk
-+ 2,”_2 0

X f dk”(ho(P1,P2)|1sol 1+ (P1XK")

+155071-P102- K" [ o(p1— K", P +K")), (129
where
lo=— & In2 (130

and

[N
o
w

lo=— 33 _ Ln2+ L InB. (131)

W
o

we obtain  Taking the Fourier transform, we get

1
AEI&+AE1C_=a7mc2< bo|1500(r) 501 (rXpy)

1 " oA
+|ss5(r)r—20'1-r0'2-l' ¢0>, (132)
where
lso=—21In2 (133
and
l¢=12 +5In2—2InB. (1349

The logarithmic cutoff term in the spin-spin correction can-
cels that from the nonrelativistic contribution in E§12) of
Ref.[1]. Although individual terms in the spin-orbit correc-
tion are logarithmic singular, the sum is not. This agrees with
a similar result from the nonrelativistic contribution in Eq.
(311 of Ref. [1]. These results provide a good check for
both relativistic and nonrelativistic contributions arising
from the one-pair single transverse photon exchange.
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C. Two pairs

Relativistic contribution to the helium fine-structure splittings of ordémc? also comes from two-pair single transverse
photon exchange. For two distinct particles, the energy correction due to crossed-ladder diagrams arising from a relativistic
momentum region may be calculated using the following four-dimensional formula deriving froifd)Eq.

( a )2 1 fd“pldp ,dkd*k’ ~ L1-(p1—k)

TXC _
ABS=152) Do) KRw2—kexis) VPP 1,ulE+sl(pl Kte—w—io

y Lo (pptk') o 2 1 fd4pldp2d4kd4k’~
BT eapat k) —eta 162 PuP) 22 ) o | 2wT— k2w i5) Y/ PuP2u)
L1-(p1—k") P Lo (p21K)

iEter(pi— k)T e — 1612 BT oy(pyr k) — et w15 PuP2): (139

Performing integration over the energy variables and ignor- e a\?2 1 d*p,dp,d*kd*k’ ~ i
ing the external potentials yield AE__=(ﬁ) _me K2 02— K2110) P(P1P2.) @y
dk dk’ L1 (p1—Kk) _
AET™C= ) J ) Aq(pr—K’ 1-(P1 :
2 2k _2_<¢C(p1 p2)| 1 (pl ) /.L1E+81(pl—k)+€—w—i5a2
X ayayAy (Pt K+ ajAq_(p—K) A,
’ iy ’ ’ % EZ—(p2+k) ( , , )
X (patk")ayl'|pe(pr—k—k',pa+k+k")), M2E+82(p2+k)—e+w—i5¢ P1.P2u
(136)
[ 2 1 fd“pldpzd“kd“k’
where 272 —2mi) K'Z(w?—KZ+id)

1 1 ~ Ly (p1—k") i
| = Xlzb(lepZ,u) E+ —Kk' )+ e— r_'5all
E(pi—k—k')+E(py—k’)+k E(p,) +E(po+k)+k mi1E+e (pr—k') +e—o' i

(137
Lr-(p2+k’) L,
and XILL2E+82(p2+ k’)_€+ w/_iaazl//(pl/_l,pZ,u,)'
(141

1 1

E(py)+E(p1—K) Tk E(p2+ k') +E(p2tk+k ()138) After integration over the energy variables and dropping the

external potentials, we arrive at

=

To lowest order, the energy correction reduces to 2\2 ¢ 4k dk’
Tc_[|“
AE == E) fzk k/2<¢c(p11p2)|a1A1 (pl k)
TXC a ? dk ” i AN ’
AE "= .2 ?dk (¢o(p1,p2)|l 01 0 XapAy (P2t k) + A (p1—kK") a3 Ay (patk')
x| do(p1 =K P k")), (139 Xl go(Pr=k=K' P+ kK1), (142
where
where
1 1
k 1 1 =
= SEE ET o m ETom (140 E+E(p1—k)+E(p2+K) [E(py) +E(p1—k)+k
1=2 =1 152 2
1
Y E(p) TE(R TR Tk (143

The energy correction formula due to ladder diagrams is
derived from Eq.(1). The relevant times-order formula be-
comes and
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e 1 L 1 11 k?
TE+E(p—K )+ E(py,+K') SO Bk(Ex+k+m)2|m? B2 2m2E2
o 1 . k2 1+ 2\ k2 1 1 1
E(p—K)+E(pi—k—K)+kK 263\ "m B EZEc+k+m|m E
1 1 1 1 1
+ 7 ; . 14 — - =
E(p,+K) 1 E(p ki k) 7k 149 3kEk(Ek+k+m)2(m Ek> (151
To lowest order, the ladder correction becomes and
2 ¢ i L 1 1[(1+ 1)2+ 2k?
AETC= %2-) f?—dk”<¢>0(p1,p2)|lo-1-o-2 *TBk(Etktm?| 2|lm" B/ " m?E}
k2(1 2\ 2k* k2
X —k”,p,+ k")), 14 - ==t =]+ —=|*+ —==—"——
where 1 . 1 2K? k*
X J— —_— —
m E, 5E)| BEf(E,+k+m)?
k 1 [ 1 1
= 6E.E E,+Eptmytmy Ejtktm,  E,+ktmy) Lt !
1=2 1 2 1 2L -1 1 2 2
(146) 3kEk (Ek+ k+ n’])2
o _ 1 1 2k*(1 1
Combining the crossed-ladder and ladder corrections of or- X E+ E. S_Eﬁ E—k+ E tktm

der a®mc?, we get

k 4 1
15E2(Ey+k+m)2| kK2 E(Ectk+m)|

TC @ 2 k "
AE = on2 J’Ezdk (¢o(p1,p2)|l 0y 0,
(152

X[ $o(P1=K".p2+k"), (147 as observed, nonlogarithmic singularity does not occur in
either spin-orbit or spin-spin correction. This is because there

where is no nonrelativistic contribution of lower order as the nomi-
nal order of two-pair single transverse photon corrections is

k 1 1 a’m¢ in nonrelativistic approximation. Furthermore, there

I= 6E,E,| E;+ K+ m; E,+k+m, is no ir_1dividu:_:1l Iogarithm!c singular term in the spin-orbit
correction. This agrees with the result from the correspond-

1 / 1 1

The ladder correction t®(a’mdc®) fine-structure split-
tings in helium, given in Eq(142), becomes

ing nonrelativistic contribution.
+ + .
E,+E,+mi+my\ E;+k+m; ~ E,+k+m,

(149
AETC=| 2 zf K i | oo %
For helium, the above energy correction of lowest order re- -\ 27 k? (@o(P1.P2)lsd 01 (P XK")
duces to , , ;
+15501- P10 K" po(p1—K",p+K")), (153
4aSmeE[ 1
AETC =— [E—l—zlnz (ol 8(1) ary- 2] o). where
(149 | 1 1 1
S0 6k Eg+m E+k+m
which reproduces that of Sucher. 1 1 K2 K21 2
For theO(a'mc) fine structure of helium, the crossed- X[_z_ —+ ——— _3<_+ _>
ladder correction in Eq(136) becomes m* E 2mE, 2E\m  E
, k? ( 1 . 1) 1 . 1
a dk ) - —TE
AETXC= ﬁ) fgdk"wo(pl,pz)llsol a1 (prXK") 2Bim - E1Bctm - Bcrktm
1 1 1 1 1 15
+ 15501 P10k |¢O(pl_k P2+K")), (150 3kE  E,+m E+k+mlm  E, (154

where and
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ot 1 1 lo=— 2k+ 2% 1n2— 4InB— & 7. (158
$$ 12k E,+m E+k+m

Taking Fourier transform, we get

" 1+12+2k2 k21+2
m EJ  m2E2 Elm Eq 1
“ ko T “ AETE =a’me?( ¢o|1508(r) 501+ (r X py)
k(1 1 1 1
“E2lnTE/ Erm  Erkrm 1, .
k +|555(r)r_20'1'r0'2'r ¢0 , (159)
. 1 1 1 1 . 1 2k?
3KE, Ex+mEtk+m\m ' E, 5E} where
o k1 1 r 1 l o= — & m—3In2+ & (160
157 Ex+m E+k+m{ Eg+m E+k+m
and
k 1 1
15E; Ex+m Ey+k+m le=4 — ©|n2+2InB+ 2 7. (162)
X iz T I + 1 _ (155  No logarithmic cutoff term in spin-orbit correction is consis-
k= 2E¢| Extm  Egt+k+m tent with the absence of singular terms in nonrelativistic con-

) ) o o _ tribution in Eq.(313) of Ref.[1]. The logarithmic cutoff term
Again, there is no nonlogarithmic singularity in both spin- i, snin_spin correction cancels that of nonrelativistic contri-
orbit and spin-spin corrections. No logarithmic singular termp tion in Eq.(314) of Ref.[1]. These results provide a good

appears in the spin-orbit correction. Equatiol$0 and  .heck for both relativistic and nonrelativistic contributions
(153 give the relativistic contribution due to the two-pair §,e to the two-pair diagrams.

diagrams. On computation, we obtain

IV. DOUBLE TRANSVERSE PHOTON EXCHANGE

TC @ ? dk ” H "
AE - = 5.2 f?dk (o(P1,P2)|s0l 1+ (P1XK")

Like single transverse photon exchange, relativistic con-
" L " tributions to the helium fine structure splittings of order
e Paoy Kl po(pr=K", 2t K"), - (156 a’'mc due to double transverse photon exchange arise from
where no-pair, one-pair, and two-pair diagrams. Since all numera-
tors in the energy corrections of double transverse photon
=—La-1in2+ 4 (157 exchange have a similar structure in terms of ladder and
crossed-ladder diagrams, we derive them in some common
and form. For crossed-ladder diagrams, we have

. o ) 1 m - 1 m o
<a’1A1t(p1—k’)a'1a'zAz+(pz+k)a‘z>=Z[(lim)giv'ﬁW(11m)vl-r)10’10'101-(m—k”)
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1 .
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where
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Similarly, we obtain
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R k=R = B LU (169

For ladder diagrams, all spin dependent numerators have the following structure:

. o : 1 m o 1 m S
<aIlAl+(pl_k)aJ1al2A2+(p2+k)a12>:Z(( + oo+ 4m2(1IE(pl_k))01'p1<7|10']10'1'(p1_k”)

1 [
TE(p—K)

S ImEp k)L 020k ol +2pL (2pl— sl oy - K") — - Py - Koo

+ 0y kool (p1—k")]

o 1 1- m
72927 gm? E(p,+ k)

R,
E(p2+k)
. 1
X 05 P2050h05- (P +K") + m[ piohah+2py(2ph+ ohay-k”)

where
QTR P T L B S
O—_2 +E_k _E_k 01" KOy K,
J _1 1 m 1 m . lz k” lz k” k.kﬂ lz m _ 1 m k
1—2 +E—k _E—k —10q- X? +0’1~ 0'2'?_?0'[ _Z_E‘E -+ —E—k P1-
150, k| oy ke ke 150 (kX K" Koy (2py+K” L[
+E—k po-K|o-Ko: 4mEk ['0'1 XK")— o kay- (2p, )]+4mEk =
X[i(rl-(ka")-f—a'l-k0'2~(2p1—k")],
1 —_ k2 n n
Jo=— B2 1+ E, 1__ [2ioy- (p1XK") = 07-pro5-K” ]+ 2E2['0'1'(p1><k )—201-p105-K"]
! 1_m F(1 m 3i k” k” ! 1_m 1 m k”
+12T1Ek e E [3ioy- (P XK") =071 p10y ]_S_kz BT E Oy P10
! m* 1 m l_m 1+ m 1 m i k” k”
6mE, | E = + | +E—k TE [io1-(p1XK") =01 proy-K']
+ K 1_2m F|1 2m) | X k" k"
2mE BT e [ioy-(p1XK") =0y proy-K']
2 1 m 1_m . m 1 m m 1_m " 16
Heel g\ e e e T TR [ e K 167

Similarly, we have



4906 TAO ZHANG AND G. W. F. DRAKE 54

. o ) 1 m S 1 m S
(ajAq1-(p1—K)adayAy_(patk)ab)= Z{(ll——k)> oo+ 4m2(1IE(pl_k))0'1'p10|10]10'1'(P1_k")

E(ps
i;[—pzai ol +2pi(2pl—olay-K") — oy - proy ka0
2mE(p;—k) 101071 1\eP17 01 171
toy-kaholay (pr—k)H [ 1+ = +—( 1+ m
o1-kKoyaho-(py E(p,+K) 050 4am?\ = E(pyt+k)

Sahab+2pL(2ph+ ahoy k")

o 1
X 05 P2050505- (Po+K") — m[ p

— 2P0 Kpoh— 0y kogohory: (P K]

:J0+Jl+\]2, (168)
where
Jo=— 1= (1 ko, k
O——2 +E—k +E_k J1° KO K,
Jllmlm ks oA S SO 1 | BRI O ) P L) PO
5 +E—k "r‘E—k —loy- X? +0q- 0'2~?—v0'2- _Z_EE + +E—k P1-K— +E_k Po-
m H " "
X oy k0'2 k+4 mE, E_k [ioy- (KXK") =01 Koy (2p,+K")]
— m . " "
+m 1+E—k [l(fl'(ka )+0‘1'k0'2'(2p1—k )],
1( m m\ k? "
J; o2 1+E_k +E—k [2ioy- (p1XK") = 07-pro5-K' ]— E2[|0'1 (p1XK")—20-p1o,-K"]
P | PR F PP K" I P [ P K"
12mE, +E—k + E, [3ioy- (p1XK") =071 p10y- ]_W + . E 1 P10
1 m2 L 1= m 1_m 1 m K" K"
+ﬁ E_i 1+ — Ek +Ek + +E—k + [ioy-(p1XK") =01 pros-K']
k2 [ m\ m\] , ,
12mE? 1+—k * 1+E_k [ioy-(p1XK") =0y proy-K"]
2 1 m 1_m m 1 m m 1_m k” 169
el e\ VR T EE Y e T mE TR | K (169

The above FW transformation for the double transverse photon corrections requires great care. The presentation of these
results provides a very good check for any other independent calculation in case of disagreement.

A. No pair

Again, we start from the relativistic energy corrections of lowest order. For two distinct particles, the four-dimensional
formula to derive the energy correction due to no-pair crossed-ladder double transverse photon exchange is

2 4 41, AL’
per [ @)1 d*p,dp,d*kd*k
AE++ —(ﬁ) _27T|J ( 2_ k2+|5)( 12 _ k’2+|5) w(pl,upZM)al

% L1:(p1—K) | Lo (p2+K")
uE—eq(p1—Kk)+e— w+i5a1a2M2E—82(p2+ k')—et+w

5 W(P1uP5,). (170
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Integrating over the energy variables and neglecting the external potentials give

T>T a 2 dk dk’ j AN i " "
AEV =52 ok 2i (Pe(PL.P2)|@iA i (pr—K") dhadA g (P +K)asl [ de(pr—K",p2+K"), (171
where
= [ 1 N 1 } 1
~ |E-E(p1—k')—E(py)—k'  E—E(p;) —E(po+k)—K|E(py—k')+E(p,+k)+k+k'—E
1 N 1
X EZE(p;—K)—E(ppt K+ K )—K  E—E(p;—Kk—K)—E(p+ k) —K
1 1 1
+ E—E(py)—E(p,+k+k')—k—k" E-E(p;—k’)—E(p,+k+k')—k E-E(p;) —E(p,+k)—k
1 1 1

+ ’ ’ ’ ’ 7 7 172
E—E(p,—K—K')—E(py)—k—K E—E(p1—K')—E(ps)—K E—E(p1—k—K)—E(pprk—k ' 172

which reproduced that obtained in R1] using Sucher’s times-order formulation. To lowest order, the relativistic energy
correction from two no-pair crossed-ladder transverse photons exchanged is

AEDT=a®u%c%( o/l 8(r)(1+ 3071- 02)| o), (173
where
I_foodklmllm2 1 1 R 1 2 1 1
“Jo E, E,/|m;+m,—2k—E;—E, | E;+k—m;  E,+k—m,/  k (E;+k—my)(Ey+k—m,)|’
(174

The energy correction arising from the no-pair ladder double transverse photon exchange may be derived using the
following four-dimensional formula:

AET.T: i 2 1 j d4pldp2d4kd4k, ’lz(p p )ai £l+(pl_k) aja'i
242 =27 ) (0P—KPHid)(w'P—Kk'2+is) T AT E—ei(p—K)te—w+id 12
Lo+ (p2+k) R
X,qu—82(I02+k)—e+w+i5a2d’(plﬂpzﬂ)' (79

Integrating over the energy variables and dropping the external potentials lead to

T.T o 2 dk dk, i i j n ”
AE (= 22 fﬂm<¢c(plvpz)|alAl+(pl_k)a1a2A2+(p2+k)a2||¢c(p1_k P2 +K")), (179
where
I 1 N 1 1 1
E—E(p1—k)—E(p2)—k E—E(p1) —E(p2+k)—k|E(p1—K)+E(p,+k)—E|[E(p;—k)+k'—m
N 1 }_{_ 1 1 1
E(pot+k)+k'—=m|  E—-E(p;—k—k')—E(p2) —k—k" E=E(py—k)—E(p2) —k E-E(p;—k—Kk")—E(p,+k)—k’
1 1 1
+ li li li ! 1 (177)
E—E(py)—E(p,+k+k’')—k—k" E-E(p;—k)—E(p,+k+k'")—k" E-E(p;) —E(p,+k)—k

which reproduced that in Reff1], derived in Sucher’s times-order formalism. To lowest order, the above correction becomes

AEL T= 053X hol1 8(r) (1~ 301 0)| o), (179
where

o8-8

1 1 1 2 1 1
my+mMy,—E,;—E, | E;+k—m;  E,+k—m,) K (Eg+k—my)(Ex+k—my) |

(179
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For helium, the two corrections in EgEl73) and (178 reduce to

1
AET T=0a’mc — g+1+ 5In2 (ol 8(r)(1+ 0r1- 0)| o) (180
and
AEII=—gOZSmCZ<¢0|5(r)(1_ 301 0))| o), (181

which reproduce Sucher’s results.
For the helium fine structure of ordet’mc?, the relativistic correction due to the no-pair double crossed-ladder transverse
photon exchange is given by

TXT a 2 dk dk/ i ’ i j ” ”
AE = 272 ﬂm<¢c(pl1p2)|alj\l+(pl_k )ajayAg, (potK)ajl|de(pr—K",p2+K")), (182
where
| 1 N 1 1
~|E(pi—Kk')+k —m  E(pytk)+k—m|E(p;—k')+E(p,+k)+k+k —2m
1 1
X Elpi—K )+ k—m  E(p,tK)+k —m
1 [ 1 1 1 1
- 7 ’ + ’ ’ ’ . (183)
k+k [E(pl—k )tk—mE(p,t+k)+k—m E(p;—k')+k'—m E(p,+k)+k'—m
After nonrelativistic expansion of the denominators, we get
|:|0+|1+|2, (184)
where
| 1 1 2
0= T Erk—mZ|k  Ecrk—m|
(pat+pa—k) k|1 3 3k-k” k-K” 1,2
BBt k—m3|K T Erk—m| KB rk—m)®  2K%(E rk—m)Z|K  Ectk—m|
p;-kk-k” [1 4 3(k-k")? 1 1 1
lo=— = v i e —4|z T — T
(k-k")2 1 1 2 N 1 9(k-k")2
K2t k—m)2| 2% T EQEt k—m)2 " KAErr ki m)  K(Extk—m)2|  2KE(E+k—m)®
(k-k")? 1 2 18
T 2KE(Ectk—m)3 |k T Erk—m|’ (185

Combining with the nonrelativistic expansion of the numerator presented at the beginning of this section, we obtain

2 rdk _
AET = 22 fde”((ﬁo(pl,pz)llsola'1~(p1><k")+Iss(rl-plo'z-k”|¢0(p1—k”,p2+k")), (186
where
o 1 1 (1 2 L m L 2m  k? 18
S°‘24m2(Ek+k—m)2[E+Ek+k—m CEJ|T E¢ E2 (187

and



CORRECTIONS TOO(a’mc®) FINE-STRUCTUFE . .. 4909

g
I_1 1 1+ 2 1m +2m 2m3|  2m? m2|<21m12m3
$S”24m? (E,+k—m)2|k ' Ey+k—m|| |~ Ey E. E) K \7 EJ E2|” E\” 5E
1 L m L m 2mk 1 1 1 1] 1 1
T aEFkm2| | E T BES || BBt k—m) |3k T Exrk—m) k|22 k(ExFk—m)
1 1 (1 2 m\[ 1 L m m 1 1 m) 2
TEAem? [ T 2E ke mA kT Earem/ | T E |5\ T E) T 1ee8] Teol T
k2 1 4 k 10 12 3
TENErk—m) |k Ectk-m| (Erk—m)?| K2 EExtk-m)  K(Ex+k—m)
1 (2 5 1 8 16 5
T Erk—mA Kk T Erk—m) (Erk—mZ| K K(Erk-m)  KE(Eq+k—m)

15 6
+ + .
Ek(Ek+ k_m)2 k(Ek+ k_m)ZH (188)
It is seen that no nonlogarithmic cutoff term appears since nonrelativistic contributions are of nominat ara@r
The ladder diagrams contribute

I,=

a \?( dk dk’ : o .
ABL = ﬁ) f 7k a7 (Be(PLP2) 1A 1 (Pr—K) @l abA g (po+K) @bl ¢e(py—K",po "), (189
where
o 1 1 1 1 1
T T E(pi—K)Tk—m ' E(pp+ k)T k—m|E(p;—K) + E(p,+K)—2m|E(p;—K)TK —m ' E(pp+tk) Tk —m
1] 1 1 1 1
- - - + - . (190
k+k'| E(p1—k)+k—m E(p,+k)+k'—m ~ E(p;—k)+k’—m E(p,+k)+k—m
After nonrelativistic expansion, we get
I=lg+ 1,415, (191
where
1 1 2
lo=— 2l T ;
(Ek+k_m) [k Ek_m}
. (p1—po) -k 1 1 2 1 k-K" 1 1 2 1
l__Ek(Ek+k_m)2 Ek+k_m E—’_Ek_m +(Ek_m)2 _k(Ek+k_m)2 Ek+k_m E—’_Ek_m +W1
_ (pipa)-Kk-K” 1 2 11 1 [ (ampk kk7f1 1
KE(E,—m)(Ex+k—m)3|E,—m ~ Ey+k—m| Kk (Ex+k—m)? E(Ex+k—m) k |2k  E+k—m

(P1—p2) kk K" (k-k")?

(k-kM?( 1 1 1 1 2 102
K3 |2k T Eprk—m) | 2k(Erk—m)3| Kk T Eemm|| BBt k—m) T KZ |’ (192
Reducing the numerator and denominators leads to
TT @ ? dk " : ” " " "
AE, = 272 Ez'dk (do(P1,P2) 150l 01 - (P1XK") + 155071 - P10 K| ho(p1— K", P2+ K")), (193

where
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I_1 1 {1+ 2 o1 m +3ml m+2m1 m21+m+k21+m1 2m
07 24m? (Ex+k—m)2 Kk~ Eg—m E.  Ex|” E¢ Ec|” Eq E EZ" ExlT E¢
+ ! - ! / 1 + 2 + 1 m 1 m + —kz ! 19
12E(Ex+k—m)2| Ex+k—mlk ~ E(—m/ " (E,—m)? E, E, mME]| 2k’m? (194
and
L 1 1 '1Jr 2 L m L 2m m? 2m? m 2+ 2k>? 14 m L 2m
ST 24m? (Ec+k—m)2 k- Ey—m Ex Ex EZ k2 Ex EZ 2E, Ex
1 1 /1 2

 12E(E +k—m)2

1

1 (1 2
 12K(Ep+k—m)?

Ek+ k_m\E+ Ek_m

1 1 2 1 m 1
T2 Edk—mZ\k  Ee—m||\ T E /| 5K

E .+ k—m\EjL Ex—m

+
(By—

3

+ +—2 1 i 1 m, me
2k2 " k(Ex—m) [ E, 5E;

(1_

m
Ey

m m  Kk?
gl E v

2mk2}

m 1 L m\2[1/4 5
"B 3k(Erk-m2| T E |k|k Eeem

+12+5+1+ lm225+2+2
Ec+tk—-mlk Ec—m/) Kk(Eg+k—m)| 30E(E.+k—m)? E. |Exrk—m\4k  E,—m|  (E,—m)?
N Ex 1 N 2 N k 3 N 1 N 3 N 31 19
(Ex+rk—m)2lk  E,—m|  (Ex—m)(Ex+k—m)\E+k—m  E,—m|  2(E+k—m)2| " 60k2m®" (199
|
Here, the lower-order nonrelativistic contributions are sub- 1
' - 8 l¢o=—7—2In2+6InB— 3 200
tracted. Combining Eq$186) and(193 on computation, we S0 27 (200
obtain the total relativistic contribution due to the no-pair
diagrams. The contribution is and
T a 2 dk " . " 71 1 113 39
AELL=|52] | 1@dK (¢o(P1P2)[lsd 1- (P1XK") lse=— 7 — fem+ ¥ InB— FIn2. (20D
+l501- P10 K| po(pr— K", p2+K")), (196 . o .
Again the logarithmic terms above do not cancel those in
where Egs.(315—(317) in Ref.[1]. Separating out ladder terms of
nonrelativistic nominal ordes®m¢® or the first two lines in
. L . Eqg. (190 as pure ladder correction, the remaining logarith-
lso= =22 — 1z IN2+ zINB— 55 7 (197 mic terms cancel those in Eq&16) and (317) in Ref. [1].
The singular terms in the pure ladder correction cancel those
and arising from Eq.(94) in Ref. [1] as we indicated earlier.
Combining with corrections from no-pair single transverse
_ 711 1 113 39
lss= zi0 3607~ 2a0INB+ 25 I2. (198 photon diagrams, the logarithmic cutoff terms are seen to
cancel the logarithmic singular terms in Eq807)—(309
Taking Fourier transform, we get and(315—-(317). The cancellation provides a good check on
1 both nonrelativistic and relativistic calculations due to the
AETJ+: a7m02<¢o||so5(r)r—zo'l-(rxpl) no-pair single and double transverse photon exchange.
. B. One pair
+|ss5(f)r_20'1"’0'2‘r|¢0>’ (199

where

For two distinct particles, the one-pair energy correction
due to the times-order crossed-ladder diagrams can be de-
rived from Eq.(1). The corresponding times-order formula is
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TXT_ @ d*p,dp,d*kd*k’ 1-(p1—Kk) P
AE- ( 172) —ZWIJ((» 2—K+id)(w'’—Kk'°+i6) l'//(pl“pz“) 1,u E+81(p1 K)+e— w—ioM1%2
L4 (p2t+k")
2E 82(p2+k )_E+wr+|5a2¢(plﬂp2ﬂ) (202)
Integrating over the energy variables and neglecting the external potentials give
dk dk’ o .
AETXT (2772) ka 2kr<¢c(p1-p2)|a’1A1 (p1— k") ajasAy . (Pt k) abl|d(pr—K”,pa+k")), (203
where
I—{ -1 . 1 } 1
(p1—k")+E(py—k—k")+k E—E(p1)—E(p2+k)—K|E(py) +E(py—k—K")+E(py—k’) +E(py+k)—E
S
E(p) +E(pi—k")+k" = E-E(py—k—k')—E(pa+k)—k’
1 1 1
* E—E(p;—k—k')—E(py)—k—k" E(p1—k')+E(p;—k—k")+k E-E(p;—k—k')—E(ps+k)+k’
1 1 1

+ ! ! 1 ! ) 204
E—E(py)—E(pp+k+ k') —K—K E(py)+E(p—k) +K +m E—E(p)—E(psrk)—K (204

which reproduces that in Ref1], derived in Sucher’s times-order formalism. To lowest order, the crossed-ladder correction
becomes

AETT=a®u3c?( |l 8(r)(1+ 3071~ 03) | o), (205
where
f dk| 1+ = (1— Mz 1 1 1 2+E ! . (206)
E; E,/|E;+E\Ej+k+my Ex+k—m, k (E;+k+my)(E,+k—my)
The ladder energy correction may be derived using the following formula:
4 41, 441,
AET= (2?7 ) 271 ) (2 —SZETZ?(Z'Ed :'2+|5) W(P1P2,) 1 1 E+slﬁ(:>1(p|i)+k2—w—i5“j1“i2
L +k
T e e e D) (207
Integrating over the energy variables and neglecting the external field, we get
AETT =(—2) f e (belPrP a1 (Py—K) kb (P +K) [ Py~ K",p ), (208
2 2k 2k
where
1 1 -1 1
B E(p1) +E(p1—K)+k E-E(p1—k—k")—E(p2+k)—k' | E(p1—K) + E(p1—k—Kk") + Kk’ N E—E(py) —E(p2+k)—k
N 1 1 1
E—E(p1—k—k')—E(p2) —k—k’" E(p1—K) +E(p;—k—k")+k" E-E(py—k—k’) —E(p2+k) =k’
v I - = . (209
E—E(p1) —E(patk+k')—k=k" E(py) + E(py—k) +k E=E(py) —E(p2t k) +k
which reproduces that in Rdfl]. To lowest order, the ladder correction becomes
AETT=a%u%cX(¢oll 8(r) (1= 5071- 0)[ o), (210

where

1 1 1 1 1 1
IZJ dk

E,+ktm; Ep+k—my | E;tktm,  Eptk—my K (Eq+ktmy)(Extk—my)|
(211)

my my
“E—l)(l‘e—z)
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For helium, the two corrections in Eg05 and (210 reduce to

AE™T=1 (1+1In2)a®mcX(¢o| 8(r)(1+ Loy 0)| o)

and

AETT=In2a°mc(¢o| 8(r)(1— Loy 0)| o),

which reproduce Sucher’s results.
For the helium fine structure of order'mc?, the crossed-ladder correction reads

R

2 ’
AEIX«FT: (TZ) J 5K W(d’c(pl,pz”“i/\k(pl_k’)“‘lalem(pz“' k)bl d(pr—k”,pa+k")),

r
where

1 1 1 1 1

IZ[E(pl—k’)+k+m+ E(p,+ K) - Kk—m|E(py—K )+ E(p,+ K) | E(pp—K )+ K +m  E(pyt k) +k —

1 1 1 1 1
T KTK|E(m—K)Tkrm E(p+K) +k —m  E(p;—K)TK +m E(p2+k)+k—m}'

After nonrelativistic expansion, we get

|

|:|0+|1+|2,
where
o 1 1 1 21 1
0T 2E, | Ecrk—m ' Exrkim| K (ExrK)Z—m?’
= 1 1 N 1 1 + 1 (p1—pP2—k")-k  (p1—k")-Kk P2-K
Y B2\ Ectktm  Egtk—m/|[|Ejtk+m T Ectk—m 4E, (Ex+k+m)2 " (Eg+k—m)?
1 1 [(p1—K")-k [ k-K” 1 1 1 1
KE, (ExtK)2—1? Extktm | Ejtk—m| 2K (ExtK?—ml|k Extktm  Etk—m
k-k” 1 1 1 1
+ + >+ >
2kEk Ek+k+m Ek+k_m (Ek+k+m) (Ek+k_m)
1 1 1 1 1 1 1 1
l,=1 ==z + — + + S+ >
2E, \ Extk—m  Ey+k+m/| 2B\ Exk+k—m = Eg+k+m (Ex+k—m)*  (Etk+m)
1 1 ek (k-k")? 1 1
TE I ET—m Pk T E) (PN TE | (B k—m)2 T (Bt ktm)?
1 1 1 1 1 (k-k")? 1 1
Ex\ Ex+tk—m  Eg+k+m/  (Eg+k—m)c  (Eg+k+m) 4KE, \Ex+k—m  Eg+k+m
1 1 2 1 1 2
(Bt ktm)2| i@ EqErr kit m) (Bt k—m)2| K EExtk—m)
(k-k")? 1 1+ 1 1+ 1 . 1 1+ 1
42 (Ex+k)2—m?| K Eg(Eg+k+m)\k  Eytk—m|  E(Ex+rk—m)lk  Egtrk+m
2 1 1 2 1 1
TEkim K E Bt krm) | Eprk—m| K T EqErk—m)|["

(212

(213

(214

(215

(216)

(217)
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Combining with the nonrelativistic expansion of the numerator, we obtain

TXT @ 21 d " : ” 1 2 " " "
AE = 52 2 de (@o(P1.P2) sl 1 (P1XK") + (IssH 159 01 - Pro2- K| po(p1— K", p2+K)), (219

where
1 1 1 21 2E, 1 k? kK [ 1 1
lso=ce" + T 72| o2\ 1t 22| T 22| 3 +
6E,|\Extk—m ' E tk+m)  k (E,+k)>—m 2m E2) " E2] 6mE.| E(+k—m  E+k+m
y 1 1 k 1 [ 1 1 1 910
(Ex+k—m)?  (Ec+k+m)?| 6mE: (Ex+k)>—m?| E,2+k—m  E+k+m/  6k*m® (219
and
P r 1 2+1 2E, 1 1+k2 AT m?\  m’k?
$STBE,| | Extk—m  Egtk+m) Kk (Egtk)Z-m?|| 2m?\ T EZ) T\ B2 EZ] SES
1 1 . 1 2 L m2+2m2k2 1 1
12E2 | Eytk—m ' Egtk+m E2" 5Ef | 6Ey (Extk+m)?
" 1 1 . 1 +1 1 L m? k2+2mk2 L
El|Exrk—m  E+k+m| K Ec+k—m EZ mE 5E. Ex
1 1 (1 1 . 1 +1 1 m2+ k2 2mk m
 6E (Extk—m)? Ey|\Extk—m  Etk+m) kEct+k+m||” EZ mE 5E:|” E
1 m?  2m?k?]( 1 1 3 1 1
el et = | pampey, Ry +
6k EZ 5Ep || k (Ex+k)?—m?k  Eg+k+m  Ec+k—m
. 1 1 . 1 2+ 1 1 . 1 1 . 1
KE | Extk—m  Eprk+m|  ElEgrk—m  Etk+ml||(Ex+k—m)Z " (E +k+m)2
N m?\ [ k? 1 1 1 1 1 SR S I 1
15 E2)|E2\K? " 2E2)|Ex+k—m  Egtk+m||2E | Ex+k—m  Etk+m/  (Ec+k—m)?
. 1 . k? 1+ 1 1 . 3 1 . 1 2+ 1 1
(Extk+m)?| " B2\ k  Ey)(Ex+k)>—m? " 2Kk’E | Extk—m  Eg+k+m|  k (Ept+k)Z—m?
" 4 . 1+ 1 1 . 1 . k 1 . 1
K2k E)\Exrk—m ' Egtk+m/| E|(Exrk—m)Z " (E +k+m)?
" 1 1 1 1 1 1 1
K27 2E2) [ Eerk=m  Erkrm| | 2Ec| (Extk-m)2  (Ex+k+m)?
k 1 1 1 1 2 1 1 2
+— + 5|5+ + S|yt ———————
2Ey Ek+k_m Ek+k+m (Ek+k+m) k Ek(Ek+k+m) (Ek+k_m) k Ek(Ek+k_m)
1 1 {2 1 1 1 2 1 2 1 1
T TE o=l ke T E + = 2t 2T EE skem
2 (Extk)*—m7| k| k* E\Egt+k—m  E+k+m Ey (Ex+k)*—m~ E+k+m|ks E(Et+k+m)
. 2 1 . 1 . 1 1 . 1 1 . 1
Ectk—m|kZ " E(E+k—m)|| El\Exrk+m Eg+tk—m/|(Exrk+m)3 " (E+k—m)3
+1 ! ! + ! + 1+ < ! + ! i 220)
k (Ex+k)2—m?| (Ey+k+m)2 " (E,+k—m)?|| = 15E3 2E2) | Ectk+m  Ectk—m (220

and
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1 . 1 2+ 1 . 1 [k 1+k 1 1
Extk+m' Ectk—m) ' K[(Extk)2—m?]] 15E2| Ex| = Ey)|Eqtk+m ' Egtk—m
1 3 k

T Eawm kI E,

= 1+ m’ !
===~ 52| 1" 387 | 2,

X

(Bt ktm)Z2 " (B rk—m)2

1 1
Ek+k+m+ Eﬁk—m)“' (221

The inverse linear singularity in the spin-orbit correction corresponds to the subtraction of the lower-order nonrelativistic

contribution. However, the inverse linear singularity in the spin-spin correction cancels that from the ladder diagrams to be

analyzed in the following. Such cancellation shows that there is no lower-order nonrelativistic contribution of spin-spin type.
The ladder diagrams contribute to the helium fine structure with

a \? [ dk dk’ . o .
AET = 2_77_2) fﬂm<¢c(p17p2)|a|1f\1—(p1_k)allale2+(p2+k)a12||¢c(p1_k"’p2+k")>v (222
where
i 1 1 1 1
T E(p—K) T ktm E(pytK) T K —m|E(p;—K)+k +m ' E(pprK) +k—m
1] 1 1 1 1 993
T KFK|E(m—K)TK +m E(p,+K) +k —m  E(p1—K)Tk+m E(pp+K) +k—m|’ (223
After nonrelativistic expansion, we get
|:|0+|1+|2, (224)
where
o 1 1 11
T Bt K)Z—m2|k B fk—m  Exrkim|’
. 1 1/1 1 1 pi-k p,- k p;-k ps-k
T Bt KZ—m Ec\K T Exrk—m Bt kim/|\Exrktm Extk—m)  EfEptktm?2  Ex(Extk—m)2
k-K" 1 1 1 1 1 1 1
pampev, o Rl Tpis + + 2|
k (Ext+k)>-m?2k? " \2k  Et+k—m/\Ex+k—m  E+k+m/  (E+k+m)
| (k-k")? 1 (1 1 1 1 1 1 1
27 2k (Eg+tk)2—m?| E¢ Ectrk—m  Exrkim)|Exrk—m|Exrk—m  Erktm)  (Eprktm)?
1/(1 1 1 1 1 1
2k\k  Egtk—m  E+k+m Ev(Ext+k—m)(Ex+k+m)c E(Ec+k—m)°  E(E+k+m)
(k-k)? 1 ( 1 1 1 1 1
(Ext K) 2= | 2K(Ext k—m)| Ext k—m | Eprktm) |I2 T EqExt k—m)| " KBt k+t m)2(Ext k—m)
1 1 1 1 1 1 1 1 1
+ vl TR 22 21 +
2K(Ect k+m)2| K2 Ef(Ecrk+m)| " 2k3 " 2K (Ex+K)2—m? " 4k*\Ex+k—m ' E+k+m

N 1
4K2 Eg+k+m

L 1
k2 " E(E+k+m)

N 1 L, 1
4k2 Ex+k—m| k2 " E(E+k—m)

: (225

Reducing the numerator and denominators leads to

a \%1 )
AEI'I=(W) 7 f 1@ 9K (bo(pr.P2)|lsd o1+ (PLXK") + (Iss+ 15) 01 P10 K[ Go(Pa—K",p2+ k")), (226

where
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1 1+1
3mteE

| 1 1+ 1 N 1
SO (B +k)Z—m?|k  Egtk—m ' Eptk+m

m? 1 . k2 [ 1 1
Ei) 2E; 3E:;\2m* Ef
1 . 1 +1
E,+k+m Eg+rk—m  k

1 N 1
Ex+tk—m  E+k+m

+1 1 1 1m2+k2
2k2m® 6E, (E(+k)?-m?|~ EZ EZ

e

* (Ek+k—m)2+ (Ex+k+m)? (227

and

(1 m2)+ 1 k2 ( 1 1”
=2 A2 a2l 2 =2
Ex) 6Er 3Ef\m* Eg

1 1 1+ 1 . 1
$S (Ex+k)?>—m?|k  E+tk—m  E+k+m

1
k2

1 1+1
§2mZEE
1

1
4
Ek+ k+m Ek+ k—m

[

1 N 1
Ek+k_m Ek+ k+m

1

* (Ext k—m)?

1 1 [ m? kz}
+

e B B E
. 1 }Jri 1 [1_m_2+2m2k2
(Extk+m)?| " 3k (Ex+k)>-m? ™ E;  5E;
1 1 1

K Erkem  Erkam

k
1 / 1 N 1
Ectk—m|Eg+k—m  Eg+k+m

1
T Erkim)?

L3
2k

3

N S

k  Extk—m  Eg+tk+m
1 1

(Extk—m)Z " (Bt ktm)?

1 1 L 2\ (4
C15(Eetk)2-m?| T EZ)| K2

L3
2E,

1 1
Ek+ k—m+ Ek+ k+m

1 1 1
K Erk—m  Etkim
2 1 / 1 1
+o +
k Extk—m| E,+k—m  Eg+k+m

1

=

2 k
K(Ex+k+ m)2+ (Ext+k+m)?(E+ k—m)Jr (Ext+k+m)?

1 1

k 1 1
2t /
k Ek(Ek+ k+ m)

X + +
Ectk—ml{Ec+k—m " E+k+m

k? * Ek(Ek+ k_m)

1 1 1 1 1
i TR K Er=—m?

1
o2

1 1

N 1 1 [1 1
Ex+k—m  Eg+k+m

T Erks m[P+ Ey(E+Kk+m)

T2 Erk—m K2 EErk—m)

1 1 [1 1 }

L
=

1 N 1
Ex+k—m  E+k+m

1
Ek_m

1 N 1
Exktk—m  Eg+k+m

1
* (Ek+k+m)2}
K K ) K 2 2
Ex(Ext k—m)(Ext kKt m)2  Ex(Ext k+m)3  Ex(Eptk—m)3 (Bt ktm)3  (Eptk—m)2
1 1 1
Ectk—m  Erkim| K

+

X

1 1
(Etk—m)? " (Ek+k+m)2H (229

and

S S
E,+k+m Eg+k—m K

1 1 1
(Ext+k)*>—m?  15EZ (E(+k)°—m?

1 N 1 1+ 1 N 1 N 2k
E,+k+m Egrk—m/|\k  Egrk+m Ec+k—m/ (E+k)Z—m?

2 __
ISS_+5E§

1m2
T

kZ

3+ —

X
(=

+k

k 1 1
2+E_k) (Ek+k+m)2+(Ek+k—m)2 ' (229
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The pure singular spin-orbit terms 1K2) — 1/(6k?) in Egs. 1

(218 and (226) correspond to the subtraction of the lower- AET, +AELT = a7m02<¢o||so5(r)r—zﬂl'(fxpl)
order terms in Eq(6.8) of Ref.[4]. In Eq. (6.8) of Ref. [4],

the first term gives 1/(%) and the second term gives 1 ..

—1/(3k?). The total becomes 1/iB) which is (1) 201 Top-Tldo), (233
2%(1/2k?)—1/6k?). All the logarithmic singular spin-spin

terms in Eqs(219 and (227) cancel out. The cancellation \here

indicates that there is no nonrelativistic spin-spin contribu-

tion of ordera®mc?, which agrees with the absence of spin- lo=2In2+4InB+3 (234
spin terms in Eq(6.8) of Ref.[4]. Doubling the corrections

in Egs.(218 and(226), we obtain the total contribution due and

to the one pair. On computation, we get

lss=— 5 —8INB+101In2. 23
AEITJF-FAEIT, ss 2 (239
o \21 ¢ dk Both logarithmic cutoff terms here cancel those from nonrel-
= 27) —f 1@ 9K (@o(p1,p2)|lsd 1- (P1XK") ativistic contributiondEqs. (319 and (320 in Ref.[1]] due
w4 to the one-pair double transverse photon exchange, although
+ 1501 P107- K| po(pr— K", pat k")), (230 there are a great many individual terms contributing to the
5° logarithmic cutoff. In fact, all terms in the nonrelativistic
where contribution in Eqs(242) and(244) of Ref.[1] contribute to
logarithmic singularity. The cancellation of the singularities
leo=13IN2+ :InB+ 3 (231)  provides an excellent check.
and C. Two pairs
l= 15 + & INB— % In2. (232 For two distinct particles, the energy correction due to
crossed-ladder diagrams is derived also from #g. The
Performing Fourier transform, we obtain corresponding times-order formula becomes
|
2 4 41, 44!
serTo (L[ Gl g e L1 (k) i
=\ 27?) =27 ) (0P—KPHi)(w'P—k'?+is) T T2l Bt e (pi—K)te—w—id L2

v Lo (p2+k’)
/.L2E+82(p2+ k,)_6+ (1)’

—5@oU(P,Ps,)- (236)

Integration over the energy variables and neglecting the external potentials, we obtain

T [2% 2 dk dk’ i AN j " "
AE " = o2 ﬂﬁ(d’c(plapz)mlf\k(pl—k )alazAz,(pz-}—k)azl|¢c(p1—k P2+K")), (237
where
o 1 1 1
B E(p1)+E(p1—k’)+k’+m+ E(ps) +E(py+k)+k+m|E(p;—k’)+E(p,+k)+k+k'+E
1 1 1
X E(pi—K )T E(p;—K—K)TK ' E(pyt K) T E(ppt K+ K)+K | E—E(py)—E(pt k+k')—K—K'
« 1 1 N 1
E(p1—k')+E(py—k—k')+k E(p2) +E(p,+k)+k E—-E(py—k—k’')—E(py) —k—kK’
! ! 238
X E(p) +E(pi—K )T K E(pptK) T E(pyr kI K) 1K * (239
which reproduces that in Refl]. To lowest order, the relativistic energy correction
AETT = a®u3c®(holl (1) (1+ 301 02)| o), (239

where



54 CORRECTIONS TOO(a’mc®) FINE-STRUCTUFE . .. 4917

1 1 1 2 1 1
1= J’ dk 1+E_1 1+E_2 M+ mMy+2k+E;+E, | E;+k+my  Ex+k+my +E(El+k+ml)(E2+k+m2) '
(240
The times-order formula for the ladder energy correction is
21 d*p,dp,d*kd*k’
R
AE--‘(z#) “2mi) K150 Pk ErT5) MPuPa)
i Ly (p1—k) D Ly (p2tk) ;
! ] A j ’ '
Performing integration over the energy variables and ignoring the external potentials, we obtain
T.T dk dk, ] i J " ”n
AE = Ez 2K 2K S (be(P1.p2)| @y A 1 (Pr—K)edabA,_ (ot K)adl | de(p1—K",pa+K")), (242
where
I [ 1 N 1 1
E(p1) +E(p1—k)+k = E+(p2) +E(p,+k)+K|E(p1—K)+E(p,+k)+E
1 N 1 N 1
x E(p;—k)+E(p;—k—Kk’)+k’" = E(py+k)+E(p,+k+k’)+k’'"+m| E—-E(p;)—E(p,+k+k’)—k—k’
1 1 1
X E(p1)+E(p1—k)+k E(p,+k)+E(p,+k+k')+k’ * E—E(p;—k—k’)—E(p,)—k—k’
X ! ! (243
E(p1—Kk)+E(py—k—k")+k" E(p2) +E(p2+k)+k’
which reproduces that in Reffl]. To lowest order, the ladder correction becomes
AETT= 053X ol 8(r) (1~ 301- 02)| bo), (244
where
f dk| 1 14 T2 ! t 1 1 ! 24
+E_1 B, Mt Myt By B, \Ey ki my  Eptktmy) K (Ejt Kt my)(Eptktmy)|’ (249
In the case of helium, the two-pair corrections in E@L0 and (245 reduce to
TXT_ 5 77 1 B 1
AET T=amc? 5 1= 3In2+In_ (ol 8(r)(1+ 301- 0)| o) (246
and
TT_ 5 ™ B 1
AET T=0a°mc? 7 ~n2+in— (¢o| 8(r)(1— 301- 02)| bo), (247
which reproduce Sucher’s results.
For the helium fine structure of ordermc?, the crossed-ladder correction becomes
TXT d d k’ i j n 4
AE " = ﬁ K 2k,<¢c(p1.pg)|a1/\1 (p1— k") ajasA,_(pat+k)abl|d(pr—K”,pa+k")), (248

where
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54
I 1 N 1 1
T E(p—K) Kk +m  E(p,+k)+k+m|E(p;—k')+E(p,+K)+k+k' +2m
1 1 1 [ 1 1
x E(pl—k’)Jrker+ E(p,+k)+k'+m B k+k’[E(p1—k’)+k+m E(p,+k)+k+m
! ! 249
T E(p—K)+K +mE(pr K+ K +m| (249
After nonrelativistic expansion, we get
|:|0+|1+|2, (250)
where
| 1 1 2
0T T B rkrmZ| Kk Ecrkim|
| _(p1+p2—K")-k|1 3 3k-k” k-Kk” 1 2
BBt krm3 |k T Bk m| T KB rkrm)?®  2K(E rktmZ|k T Ecrkim|
" py-kk-k”  [1 4 (k-k")? 1 1 1 3(k-k")?
27 EXEtrk+m)? KT Ecrkim|  KE, (EctrkimB| 2k  Ecrktm/  2K(Ect ktm)?
1 (1 1 1 9(k-k")? 1 (k-k")?
Xt te - 57 512 2
k k  Ey Ect+k+m 2kE, (E+k+m)° 2k4(Eg+k+m)
o 1 2 1 1 1 -
2 KEdkim) kT E Exrkrm)?|’ (25D
Combining with nonrelativistic expansion of the numerator, we obtain
TXT @ 21 " H " ” " ”
AE " = 272 ZJ p‘dk (bo(P1,P2)|l ol 01+ (P1XK") + 15501 P12 K" | po(p1— K", P2 +K")), (252
where
L 1 1 1 LU 2m  k? 053
0~ 6m? (Ecrkrm? k T Berkrm|| LT EJ| VT E B (253
and
L 1 1 1 2 1m 12m2m3 2m21m2k21m12m3
=t (Ecrkrm? |k Erkrm)|TEN TR E) TR TR "B R 5
. LM, m 2mK 1 [1 . 1
(Ex+k+m)2 E, E, 5E] || Ex(Ex+k+m)| 3k~ E +k+m
1/ 1 1 5 1 1 m\/ 1l 2 1 1 m m
k2 T ke krm) T EerkrmZ| [ TAEakrmZ T E KT Erkam/| B2l 1T E) T 15E3
1 2 k2 1 4 K 1/10 15
——— | 1+ =— = 5| =+ + S| =| —+—=—
15(Ek+k+m) Ek Ek(Ek+k+m) k Ek+k+m (Ek+k+m) k\ k Ek
1 4 3 8 1/16 5 1 1 8 5 o4
KT E)Eakim| i@ K\ K TEJErkam| T Eerkrm2lk T Erkam) [ (254

It is interesting to note that the inverse square and inverse linear singularities in the spin-spin correction imply nonrelativistic
contributions of ordersr®mc® and a®mc. On the other hand, we know that no spin-dependent nonrelativistic correction

appears to ordes®mc? or a®m¢ arising from the two-pair diagrams. Indeed, these singularities cancel out those from the
ladder diagrams to be discussed in the following.

The ladder diagrams contribute to the fine structure with
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T.T a 2 dk dk’ i i j ” ”
AE "= 572 ﬂW<¢c(p11p2)|alA17(p1_k)alazAzf(pz"‘k)azl|¢c(p1_k P2tK")), (259
where
I 1 1 1 1 1
= T E(pi—K)+k+tm  E(pytK) +Kktm|E(p,—K)+E(pp+k)+2m|E(p;—K)+k +m  E(pprK) +K +m
1 [ 1 1 1 1
o 4 ! + ! . (256)
k+k [E(pl—k)+k+m E(p,+k)+k'+m  E(p;—k)+k'+m E(p,+k)+k+m
After nonrelativistic expansion, we get
|:|0+|1+|2, (257)

where

| 1 1 2
0T T ErkrmZ|k T Egrm

1
Ex+k+m

1+ 2
k Eg+m

1
Ex+k+m

1 2

B (P1—P2)-k it
k Eg+m

hh= Ex(E+k+m)?

1 KK
T B2 K(Eer k+m)?

1
o)

" (k-k”)2
27 K3(Eg+k+m)d

1+ 1
k E,tm

(k-k")? (k-k")? 1 3 1 1
T ASE rktm)?  KE(Erk+rm)3| 2k T Exrkim| 2k Erm

1
T Eerm?)
(258)

Reducing the numerator and denominators leads to

a \21 [ dk )
AET'T=(F) Zf de"<¢o(p11p2)||so|0'1'(p1><k")+|5301'p10'2'k"|¢0(p1_k"1p2+k”)>v (259

where
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5K2\ 7 E) 15E3| 15K(Ey+k+m)?
20 2
Ex
3 1
+
Ex+tk+m  Eg+m

m

1 (1 2
=

E+k+ m\EjL E,+m
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Ek+ k+m

m

X —_
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2
+
15E,(E,+ k+m)? 1
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Ex+k+m

5 N 2
4k ' E+m

L2
(Ex+m)?

K
T E M) (Bt ktm)

3
Tkt m)Z}' (261
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As we noted earlier, nonlogarithmic singularities in the <o 15/ Ry
above spin-spin correction cancel those from the crossed- AE=a'mc 9(E+Lso) _?(E_H-ss)
ladder diagrams. Computing and combining the corrections
in Egs. (252 and(259), we obtain + a’'MmcX ¢o| Ogot+ Osd o), (271
a \? [ dk , where
AETT = 5 2 f_zdk"<¢o(p11p2)||so| oy (p1XK")
27 k 1
+1ge01-Proy- K" do(p1—K", P+ k")), (262 Oso=—ZZIn(Za)‘zé(rl)r—zal-(rlx P1)
1
where 221 1
+( —9Ilna—3INB+9In2— E) 8(r)—o- (rXpyq)
leo=— 31— LINB+ & 7+ 4 In2 (263 '
8i A
and + g5 0N ey [TX(T-p1)p,] (272
lss= 25 — 5o5 T+ 255 INB— %5 In2. (269 4

Taking Fourier transform, we get 15 35 9 155

T
1 OSS=(?Ina—7InB—EInZ—Ws)é(r)r—gal-ro-zor
AETT =a’mcX(¢o|l568(r) 20+ (X py) .
r 2i 8(ry . o
1 Er_zﬂ'l'r(ﬂ'z_sﬂ'z'rr)'pl. (273)
+|555(r)r—201'F0'2'F|¢o>, (265
The logarithmic cutoff terms are seen to cancel out between
the relativistic and nonrelativistic contributions as they must.
In fact, there are 14 individual cancellations as we demon-
o 1 strated earlier. These cancellations provide a good check for
so=~8-3INB+ 3 m+7In2 (266 the calculation. In addition, nonlogarithmic singularities are
and shown to cancel out the corresponding nonrelativistic contri-
butions of lower order. Such systematic cancellations of sin-
le=— 2+ 47— 2InB+ Z In2. (267 gularities at operator leveghot numerical levglhave never
been demonstrated explicitly in a high-order calculation for
The logarithmic cutoff term in the spin-orbit correction can- @ny bound-state system. This is an important procedure for
cels that in Eq(322 of Ref.[1] due to nonrelativistic ap- Minimizing the calculational error in increasingly sophisti-
proximation. The spin-spin logarithmic cutoff term cancelscated higher- and higher-order QED calculations.
that from the nonrelativistic contribution in E823 in Ref. ~ Combining the relativistic contributions with the nonrela-
[1]. An additional check is provided between the no-pair andivistic contributions, we obtain
two-pair double transverse photon corrections. Replaning
by —m in the no-pair kernel reproduces the correct result for AE=a’mc 9(&’4_ Lso) — 1_5(R_55+ Lss”
41 2 \4m
+ a7mC2< ¢O| Oso+ Oss| ¢0>v (274)

where

the two-pair diagrams andce versa

V. RESULTS AND CONCLUSIONS

Summing all the corrections given in Eq&8), (97), where

(132, (159, (199, (233, and(265), we obtain 1

Oso:_ZZ|”(Za)_25(r1)r_20'1'(r1X P1)
1

1
AE:a7mC2<¢o||so5(r)r—201-(r><p1)

[ —omna+12in2- 2223 s 2 X
. na 2= 5 = 7| 8(r) 20 (rXpy)
+1550(1) 01 Fory- Tl o), (268 "
| ~ ~
+—8(r) oy [FX(F-py)pa] (279
where 9
loo= — 3 m— 4 +3InB+3In2 (269 ~and
- 15 5 411 1. .
O.= 7|na—§77+9|n2—¥ 5(r)r_20'1'r0'2’r
le=— 27— L+ 2 In2+ £ InB. (270

+ 2 ar) r 3 rr 276
The nonrelativistic contribution presented in Rigf] is g 72 o1 1(027305:11) Py (276
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The first two spin-orbit and first spin-spin operators aboveformalism to derive both nonrelativistic and relativistic ker-
have been calculated by Drake and Y@bh3,14. The nels. In order to compare the Brillouin-Wigner perturbation
electron-electron part gives,;=40.6 kHz andv,,=—16.3  theory with our method, we recalculated the helium energy
kHz. The revised helium fine structure splittings a§2p  levels of ordera®m¢c? as well as th@©(a'mc?) no-pair Cou-
state [13,14 then becomery;=296 169 74.1 kHz and lomb correction to helium fine structure. The calculation
v1,=229 117 9.9 kHz. Calculation of the other nonrelativis- ShOws that the current method is much more convenient for
tic operators is in progress. However, the additional contrih€ calculation of corrections arising from the relativistic
bution is expected to be small. For the spin-orbit part, the lasf?omentum region. The calculation is carried out in times
correction in Eq.(275 would be less than 0.5 kHz if the order. An EXP"C'“V_ qovarlant calculat_lo_n .Of the leading-
expectation value of its operator were the same as that of th%_rder_ corrchons_ansmg from the re_zlatlwstlc mo mentum re-
second operator. For the spin-spin terms, the last two corre@iON iS @lso possible as presented in Rab]. This formal-

tions in Eq.(276) would be no more than 0.2 kHz assuming ism is similar to the one presented here since all kernels are
their operators are identical to the first one in E2j76). A qbtalned directly frqm the scaj[terlng amplitudes for free par-
recent experiment by Shiners group[7] gives ticle systems. In this calculation, the explicit covariance of

Voy=296 169 62(3) kHz andr;,=229 117 4(3) kHz. Rea- all propagators is kept throughout the calculation. Coulomb

sonable good agreement between theory and experiment d transverse photons are trea’Fed on equal _footing. In _the
found, given the magnitude of order for uncalculated correcC@lculation, one needs to sandwich the covariant scattering

tions to the order of interest. A precise comparison with ex.amplitudes between the three-dimensional wave functions.

periments cannot be made until all corrections are incIuded-I._he wave function may be written as
First, nonlogarithmic terms of second order also need to be H(p)=u(p)Tv(p)f(p), 277

included. Second, nonlogarithmic terms in radiative correc-

tions [8] need to be calculated numerically, which are ex-whereu andv are the Dirac spinors arfd corresponds to the
pected to be around 10 kHz. Finally, effects of the nucleagnguylar part of the wave functiori(p) is the radial wave
motion corrections need to be included. The two-body partynction. Note that in either the Brillouin-Wigner or the Sal-
of the nuclear motion effects was derived and presented ifeter perturbation theory, the Breit corrections have to be
Ref. [1]. However, our analysis indicates that some threesyptracted in order to prevent singularity. On the other hand,
body terms of order:°m?c?/M might give a contribution of  the O(a°mc?) corrections to the hyperfine structure in pos-
a few kHz. These three-body terms cannot be calculated ifronium due to two covariant photons exchanged were cal-

the current two-body external-field formalism. Recently, acylated in the explicitly covariant approach in Ref6] with-
three-body formalism has been developed as an extension gfjt suptracting the Breit corrections. The result is

the two-body Bethe-Salpeter formalism with which three-

body corrections of lowest order are derived. The details of 1602
this three-body formalism and the calculation of the trueAE=— N
three-body corrections will be presented elsewhere, along

with recalculation of the two-body-plus-Coulomb-field cor- Thjs result is reproduced by summing all the relevant correc-

rections evaluated previous|§] using the external-potential tjons calculated by Karplus and Klefit7] and by Fulton and
Bethe-Salpeter two-body formalism. This recalculation not\jartin [12], and is given by

only verifies the correctness of our three-body formalism and
of the external-potential two-body formalism to the order of AE=—a®mc¥(¢y| 8(r) o1 05| o), (279
interest, but also provides a beautiful physical picture or in-
terpretation for those two-body-plus-Coulomb-field terms,which is the same as that in EQ78) for hyperfine structure.
which is totally unclear within the external-potential two- In deriving the above result by Suchi@] as shown in this
body formalism. paper, photon propagators are expressed in Coulomb gauge

In this paper, we presented the calculation of the off-and fermion propagators are expressed in terms of positive-
leading-order relativistic contributions in helium. Such cal-and negative-energy projection operators. This times-order
culation has not been carried out in any other bound-statealculation is the least covariant one. The more covariant
system. A test of these corrections is very important becausaethod is the one used by Karplus and KIgid], by Fulton
the off-leading-order effects are characteristic of bound-statand Martin[12], and by Araki[2], in which the fermion
physics in comparison with free particle systems. It is everpropagators are kept covariant instead of times order. The
more interesting that such tests can only be provided by heesult in Eq.(278) is obtained without breaking explicit co-
lium at the moment. Tests of the off-leading-order correc-variance of both fermion and photon propagators. This most
tions arising from the relativistic momentum region cannotexplicitly covariant method may only be applied to the cal-
be carried out in hydrogen, positronium, or muonium due toculation of the leading-order relativistic contributions such as
the lack of experimental accuracy. contributions of orders:®mc?, a®mdc?, and a’'mc?, arising

We have reformulated the times-order external-potentiafrom two-, three-, and four-photon exchange diagrams, re-
Bethe-Salpeter formalism in a form more suitable for calcu-spectively, when all nonrelativistic variables can be ne-
lation of energy corrections arising from the relativistic mo- glected. So far, the two-photon diagrams are best understood
mentum region. The essential difference between the currein two-body bound-state study beyond tree level. This is be-
formalism and Sucher’s formalism is that we obtain all rela-cause the two-photon corrections are the only ones that have
tivistic kernels directly from the scattering theory and thebeen calculated in all three possible approaches. Since non-
Brillouin-Wigner perturbation method is used in Sucher’'srelativistic contributions are calculated in times order within

0 2
fo pzf(p)dp} =—4a°mc$3(0). (279
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any two-body formalism, the difference between various for-relativistic variables. In addition, there are two overall spin-
malisms is the calculation of relativistic contributions. The orbit and spin-spin cancellations of logarithmic singularity to
calculation of the leading-order relativistic contributions check the correctness of the calculation. In the times-order
from two-photon diagrams has been carried out, as showoalculation, there are 14 additional individual cancellations
above, in all three possible ways from the most covariant oné pinpoint possible missing terms in terms of the times-
to the least covariant times-order form. The next-to-leadingorder diagrams for no-pair pure single transverse photon ex-
order relativistic contributions from two-photon diagrams arechange; no-pair, one-pair, and two-pair single transverse
calculated in the times-order manner as presented in this pghoton exchange plus a Coulomb photon; and no-pair, one-
per. It would be interesting to calculate these contributiongair, and two-pair double transverse photon exchange.
using the other two methods. However, such calculation
could be difficult since the fermion propagators are ex-
pressed covariantly while the four-dimensional wave func-
tions are expressed in terms of positive or negative poles. To One of us(T.Z.) would like to thank Dr. Lixin Xiao for
leading order, such calculation is relatively easy since alhelpful discussions and Professor T. Fulton for useful com-
nonrelativistic variables are neglected. To higher order, onenents. The Natural Sciences and Engineering Research
needs to separate effectively relativistic variables from nonCouncil of Canada is acknowledged for financial support.
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