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The times-order external-potential Bethe-Salpeter formalism is reformulated in a Schro¨dinger-like equation
and in a form suitable for calculation of contributions arising from the relativistic momentum region.
O(a7mc2) corrections to the fine structure of helium arising from the relativistic momentum region due to
exchange diagrams are derived and presented. They are expressed in the form of expectation values of non-
relativistic operators. These off-leading-order contributions arising from the relativistic momentum region are
not sensitive to any experiment in hydrogen, positronium, or muonium but they are larger than experimental
errors in the measurements of fine structure in helium. Therefore, they provide a test of corrections of this kind,
which has not been carried out in any other bound-state system.@S1050-2947~96!08512-5#

PACS number~s!: 31.30.Jv

I. INTRODUCTION

Since the development of QED theory, helium has played
an active role in testing the bound-state QED theory for two-
electron systems. In fact, helium can provide some interest-
ing tests that cannot be carried out in other bound-state sys-
tems such as hydrogen, positronium, and muonium, due to
either unique features of helium or the fact that the tests are
not sensitive to the measurements in those systems currently.
For example, a unique higher-order cancellation of nonper-
turbative Coulomb binding is found@1# to occur only in the
multielectron atoms. Another interesting test is on the off-
leading-order corrections arising from the relativistic mo-
mentum region, which will be the main focus of this paper.
One potential test is the test of three-body terms. This is
particularly interesting because it is not clear whether any
test so far in QED or QCD bound systems has tested true
three-body terms. Most many-body calculations are done on
the interaction of any two particles out of many particles. In
other cases, the true three-body terms are not explicitly sen-
sitive to the experiments. However, the lowest-order three-
body terms in helium are found to be of ordera6m2c2/M
and might give a correction of a few kHz to the helium fine
structure while the current experimental error in measuring
the fine structure is about 3 kHz@7#. The calculation of these
three-body corrections is completed within a three-body for-
malism recently developed. This development will be re-
ported in a separate paper.

The first systematic calculation of helium energy levels of
ordera5mc2 was accomplished by Araki@2# and by Sucher
@3# in the 1950s, which was considered a milestone. All the
corrections to theO(a5mc2) energy levels come from two-
photon diagrams and arise from both relativistic and nonrel-
ativistic momentum regions. Both the relativistic and the
nonrelativistic contributions are of leading order. In compari-
son with hydrogen, positronium, and muonium, the major
difference in this calculation is the separation of ultraviolet
logarithmic singularity from the finite corrections at the op-
erator level rather than the numerical level, and the deriva-
tion of the correct nonrelativistic operator for the corrections
since the nonrelativistic wave function of helium is un-
known. The second monumental endeavor was the calcula-

tion of QED and relativistic corrections to the helium fine
structure splittings of ordera6mc2. These corrections were
derived by Douglas and Kroll@4# in the 1970s, and expressed
in terms of expectation values of nonrelativistic operators.
This work puts helium in a leading position as a candidate
for higher-order QED tests since a similar calculation for
positronium was done 20 years later@5#. Furthermore, the
calculation of theO(a6mc2) positronium fine structure re-
quires only the evaluation of expectation values of Douglas
and Kroll’s nonrelativistic operators using the nonrelativistic
wave function for positronium as demonstrated in a previous
paper@1#. For theO(a6mc2) fine structure, all corrections
come from one- and two-photon diagrams and arise only
from the nonrelativistic momentum region. Therefore, these
corrections are of off-leading order. The absence of the rela-
tivistic contributions simplifies the calculation significantly.
In Douglas and Kroll’s work, a beautiful generalization of
the Foldy-Wouthysen transformation was introduced. This
generalization turned out to be a very helpful tool for higher-
order QED analysis, including the calculation presented in
this paper.

The development of a highly accurate nonrelativistic
wave function for helium@6# and a recent high-precision
measurement of the helium fine structure@7# made it possible
to test even higher-order QED and relativistic effects in he-
lium. In previous papers@1,8#, we derived nonrelativistic op-
erators of ordera7mc2 contributing to the fine structure
splittings of helium. They arise from exchange and radiative
diagrams, and are obtained in a nonrelativistic approxima-
tion. The approximation is accurate for radiative corrections
since no QED correction is found from the relativistic mo-
mentum region. This is confirmed by the absence of lna
terms due to ultraviolet origin~detailed presentation of infra-
red and ultraviolet logarithmic corrections is given in Ref.
@1# and all logarithmic terms of the two-electron type arise
from ultraviolet origin!. However, there are exchange correc-
tions arising from the relativistic momentum region. This is
signaled by the appearance of logarithmic terms due to ultra-
violet singularity. Furthermore, these corrections are of off-
leading order and appear only in bound states. Tests of these
corrections are interesting since to our knowledge there has
been no similar calculation done in any one- or two-body
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bound-state system. In a bound system such as hydrogen
under one-body approximation, no net correction of order
a7mc2 arises from pure Coulomb exchange. The only cor-
rection of this order comes from radiative QED effects such
as self-energy modification, which is of nominal order
a5mc2 and gives nonrelativistic contribution. The leading
order of corrections from the relativistic momentum region is
a6mc2. These corrections were obtained by Karpluset al.
@9# and by Barangeret al. @10#. The next-to-leading order of
the relativistic corrections isa8mc2, which would be nonrel-
ativistic corrections of relative ordera2 to the terms obtained
by Karpluset al. @9# and by Barangeret al. @10#. Of course,
the three-potential contributions due to self-energy correc-
tions from the relativistic momentum region are of leading
order a7mc2. The relativistic contributions of the next-to-
leading order are of ordera7mc2 in positronium or order
a7m2c2/M in hydrogen and muonium. In any case, the cor-
rections are not sensitive to the current experiments in hy-
drogen, positronium, or muonium. Therefore, no correction
of off-leading order from the relativistic momentum region
has ever been tested in any bound-state system. However,
they are sensitive to the measurement of fine structure in
helium. The magnitude of order of these corrections is about
10 kHz and larger than the current experimental error 3 kHz
@7#. A test of these corrections is important in view of the
fact that the correction of off-leading order is the character-
istic of bound-state systems. In this paper, we will present
our analysis on these corrections to the fine structure split-
tings of helium. Together with the corrections presented pre-
viously @1,8#, they consist of most corrections of order
a7mc2 to the helium fine structure splittings. Corrections
that have not been derived may partially arise from vertex
modification. The vertex correction was calculated in Ref.
@8# phenomenologically. A rigorous analysis may be re-
quired for a complete evaluation. The additional correction
could be a few kHz.

Although the contributions presented in Ref.@1# arise
from the nonrelativistic momentum region, fully relativistic
kernels due to single and double transverse photon exchange
were derived based on the times-order Bethe-Salpeter for-
malism developed by Sucher@3#. As we shall show, calcula-
tion of contributions arising from the relativistic momentum
region is very complicated for no-pair Coulomb and no-pair
single transverse photon diagrams within the times-order for-
malism developed by Sucher@3#. The main difficulty is due
to the application of the Brillouin-Wigner perturbation
theory, which is more suitable for calculation of contribu-
tions coming from the nonrelativistic momentum region. In
this paper, we will reformulate the times-order formalism
and rederive these kernels in a form that is more suitable for
calculation of contributions arising from the relativistic mo-
mentum region. Most of the derived kernels can also be ob-
tained using the Salpeter@11# perturbation theory, which is
more convenient for the relativistic calculation in compari-
son with the Brillouin-Wigner perturbation theory used in
Sucher’s times-order formalism@3,4,1#. The difference be-
tween our formulation and the Salpeter theory@11# for the
current calculation is that the no-pair ladder kernels of Cou-
lomb exchange and single transverse photon exchange are
derived using the Salpeter perturbation theory in the Salpeter
formalism, while ours are obtained from scattering ampli-

tudes directly. In the Salpeter perturbation theory, the no-pair
ladder kernels are obtained by the wave-function perturba-
tion relativistically or nonrelativistically depending on
whether the corrections arise from the relativistic or nonrel-
ativistic momentum region. The times-order ladder kernels
do not show up in nonrelativistic approximation. In our for-
malism, the relativistic no-pair ladder kernels are derived
from the scattering theory and the nonrelativistic kernels are
obtained by perturbation of the nonrelativistic wave function
using the Schro¨dinger nonrelativistic perturbation theory.
The times-order no-pair ladder kernels in nonrelativistic ap-
proximation are shown to cancel out in Ref.@1#. For the fine
structure of ordera7mc2, the main difference between our
relativistic kernels and those derived in the Salpeter pertur-
bation theory is the no-pair single transverse photon ladder
kernel. We found that ours is more convenient and instruc-
tive for the calculation of the off-leading-order relativistic
contribution. Our reformulation of the times-order formalism
is similar to theS-matrix theory. The idea is simply to sand-
wich a modified scattering amplitude between four-
dimensional bound-state wave functions. In this reformula-
tion of the times-order Bethe-Salpeter formalism, all kernels
may be written in an explicitly covariant form at first. Dif-
ferent methods may be used for different calculations, de-
pending on relativistic contributions or nonrelativistic contri-
butions. For the one-photon kernel, all contributions are
nonrelativistic and of ordersa2mc2, a4mc2, a6mc2, and so
on. For the two-photon kernel, contributions come from both
relativistic and nonrelativistic momentum regions, and are of
ordersa5mc2, a6mc2, a7mc2, and so on. In nonrelativistic
approximation, all the no-pair ladder kernels give contribu-
tions by perturbation of the nonrelativistic wave function.
The only exception is the no-pair double transverse photon
corrections, which come in part from two diagrams that are
not times-order ladder graphs, although they are parts of the
covariant ladder Feynman diagrams. There is a difference
between the times-order ladder diagrams and covariant lad-
der diagrams. With our reformulation, the two-photon rela-
tivistic contributions can be calculated using a simple for-
mula as given by the following:

DE5S a

2p2D 2 1

22p i E d4kd4k8Dmn~k!Dab~k8!

3^c~p1mp2m!ug1
0g1

mS1~p12k!g1
0g1

a

3@g2
0g2

nS2~p21k!g2
0g2

b1g2
0g2

bS2~p21k8!g2
0g2

n#

3uc~p1m8 p2m8 !&, ~1!

wherep1m8 5p1m2km2km8 p2m8 5p2m1km1km8 , andS1 and
S2 are the external-potential single-particle propagators de-
fined by

S1~p12k!5
1

m1E1e2v2H~p12k!
~2!

and

S2~p21k!5
1

m2E2e1v2H~p21k!
~3!

with
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m15
m1

m11m2
~4!

and

H~p12k!5a1•~p12k!1m1g1
01V1 , ~5!

and similarly form2 andH(p21k). Dmn andDab are cova-
riant propagators of photons.c is the four-dimensional
bound-state wave function@11#. Seven-dimensional integra-
tions overp1m5(e,p1) and p2m5(e,p2) are implied. The
first term in Eq.~1! corresponds to a covariant ladder dia-
gram and the second to a covariant crossed-ladder diagram.
Similarly, three- or four-photon relativistic contributions can
be calculated by replacing the above amplitude by the modi-
fied three- or four-photon amplitude, respectively. The re-
vised times-order formalism is obtained by expressing the
photons’ propagators in terms of Coulomb and transverse
photon propagators corresponding to Coulomb-Coulomb,
Coulomb-transverse, and transverse-transverse photon dia-
grams, and the single-particle propagators in terms of
positive- and negative-energy projection operators connected
with the no-pair, one-pair, and two-pair times-order dia-
grams. Although Eq.~1! is developed for calculation of rela-
tivistic contributions, it also can be used to calculate the
two-photon contributions arising from the nonrelativistic
momentum region, which were calculated in Ref.@1#. The
exception is the no-pair times-order ladder corrections,
which arise from perturbation of nonrelativistic wave func-
tions. This is conceivable since the only difference between a
bound state and a free particle system is that the former is a
nonrelativistic system and the latter is not. It is the nonrela-
tivistic wave function of a bound state that causes corrections
of infinite orders arising from a given diagram. In contrast,
the plane wave function of a free particle system leads to
corrections of one order due to a given diagram. The two-
photon energy formula~1! can be generalized to a formula
for infinite photon exchange diagrams. Summing all ex-
changed photons, we get

E5^fc~p1p2!uH~p1!1H~p2!ufc~p1p2!&

1 (
n51

` S a

2p2D nS 1

22p i D n21

~21!nE )
i51

n

d4kiDm in i
~ki !

3K c~p1mp2m!UF )
i51

n21

g1
0g1

m iS1~p12ki !Gg1
0g1

mn

3H (
l15n1

nn

••• (
l n5n1

nn

e l1 , . . . ,l nF )i51

n21

g2
0g2

l iS2~p21kl i !G
3g2

0g2
l nJ Uc~p1m8 p2m8 !L , ~6!

wheree l1 , . . . ,l n50 if l i5 l j or 1 otherwise.fc is the Cou-
lomb ladder wave function@3,4,1#. This is a Schro¨dinger-like
equation and reduces to the Schro¨dinger equation in the non-
relativistic limit. For n photons, the number of terms isn.
For example, there are one, two, and six terms for one, two,
and three photons, respectively. For radiative diagrams, the
fermion and photon propagators are replaced by the modified

self-energy and vacuum polarization propagators. The Dirac
gamma matrix is replaced by the modified vertex. For more
complicated radiative diagrams, the amplitudes are written
according to the Feynman rules for the scattering problem.
The above formula is obtained as a combined extension of
the formalisms in Refs.@1# and@16#. No overcounting occurs
since the ladder kernels in nonrelativistic approximation can-
cel out as demonstrated in Ref.@1#.

The general idea for calculation of relativistic contribu-
tions is to let the momenta of exchanged photons be relativ-
istic. To be relativistic, at least two exchanged photons are
required since the external observable or the variables in
nonrelativistic wave functions must be nonrelativistic. That
is, the linear combination of photon momenta is nonrelativ-
istic. On the other hand, only two-photon exchange diagrams
contribute to the helium fine-structure splittings of order
a7mc2 from the relativistic momentum region. The contri-
bution is a nonrelativistic expansion of ordera2 relative to
the lowest-order relativistic energy corrections obtained by
Araki @2# and by Sucher@3#. To the order of interest, a fully
relativistic kernel for a given diagram must be derived. Such
a kernel contains both relativistic variables and nonrelativis-
tic variables. To lowest ordera5mc2, only relativistic vari-
ables are retained while nonrelativistic variables are ne-
glected. To ordera7mc2, all nonrelativistic variables are
expanded to ordera2 relative to the lowest order. Three-
photon diagrams contribute to relativistic energy levels of
leading ordera6mc2. Their corrections to the fine structure
are of ordera8mc2.

II. COULOMB PHOTON EXCHANGE

Although no Coulomb exchange correction to
O(a7mc2) fine structure in helium is found in nonrelativistic
approximation, contributions arise from the relativistic mo-
mentum region. These contributions come from the no-pair
Coulomb ladder corrections of first and second order in the
Brillouin-Wigner perturbation theory, and from one-pair and
two-pair diagrams. To lowest order, they contribute to the
energy corrections of ordera5mc2, which were obtained by
Araki @2# and by Sucher@3#. Let us start with the no-pair
Coulomb ladder equation. The no-pair Coulomb ladder
Hamiltonian that contributes to the energy levels of order
a5mc2 from a relativistic momentum region was obtained by
Sucher, and is given by

Hc5mIcF2
1

4m2 1
1

E~p1!@E~p1!1m#
2

1

@E~p1!1m#2

2
1

p1
2SE~p1!2m

2E~p1!
D 2G I c , ~7!

where terms of ordera4mc2 are subtracted. Here,I c is the
interelectron Coulomb interaction operator, and

E~p1!5Am21p1
2.

In addition, a correction of second order due to wave func-
tion perturbation of first order was derived by Sucher, and is
given by
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H25I c
E~p1!2m

2@E~p1!1m# F 1

E~p1!
2

1

E~p1!1m
1
m2E~p1!

4E2~p1!
G I c ,

~8!

where the lower-order nonrelativistic corrections are sub-
tracted. The total energy correction of ordera5mc2 arising
from the no-pair Coulomb ladder equation is

DEcle5^f0uHc1H2uf0&52a5mc2S p

2
1
5

3D ^f0ud~r !uf0&

~9!

obtained by Sucher@3#. Another correction due to a two-pair
diagram is given by

DE22
C•C5^fcuI c~2Dc!

21L22I cufc&

52S a

2p2D 2E dk

k2
dk8

k82

3 K fc~p1 ,p2!UL12~p12k!L22~p21k!

E1E~p12k!1E~p21k!

3Ufc~p12k2k8,p21k1k8!L . ~10!

This two-pair Coulomb correction can also be derived from
Eq. ~1!. To lowest order, the correction becomes

DE22
C•C5a5mc2S p

2
2
5

3D ^f0ud~r !uf0&, ~11!

which was obtained by Sucher@3#.
If we consider two distinct particles with massesm1 and

m2, and Z152Z251, the corresponding Hamiltonian of
first order due to the no-pair Coulomb ladder interaction be-
comes

Hc5mI cH 2 m

m1
F 1

4m1
2 2

1

~Ep1
1m1!

2G
12

m

m2
F 1

4m2
2 2

1

~Ep2
1m2!

2G2
1

2m1

1
1

Ep1
~Ep1

1m1!
2

1

2m2
1

1

Ep2
~Ep2

1m2!

2
p1
2

2

1

Ep1
~Ep1

1m1!

1

Ep2
~Ep2

1m2!
J I c , ~12!

where

m5
m1m2

m11m2

is the reduced mass. The corresponding Hamiltonian of sec-
ond order reads

H252m2I c
m2~Ep2

1m2!~Ep1
2m1!1m1~Ep1

1m1!~Ep2
2m2!

m1m2~Ep1
1m1!~Ep2

1m2!2mm2~Ep2
1m2!~Ep1

2m1!2mm1~Ep1
1m1!~Ep2

2m2!

3F2
m

m1

1

~Ep1
1m1!

2 1
1

2Ep1
~Ep1

1m1!
2

m

m2

1

~Ep2
1m2!

2 1
1

2Ep2
~Ep2

1m2!

2
p1
2

2Ep1
~Ep1

1m1!

1

2Ep2
~Ep2

1m2!
G I c . ~13!

The no-pair Coulomb ladder correction is given by the ex-
pectation value of the above two Hamiltonians. To lowest
order, all nonrelativistic variables are dropped. The energy
correction due to the two-pair diagram is found to be

DE22
C•C5a5m3c2I ^f0ud~r !uf0&, ~14!

where

I522E
0

` dk

k2E1E2

~E12m1!~E22m2!

E11E21m11m2
. ~15!

Here

E15Am1
21k2, E25Am2

21k2. ~16!

Combining the above two corrections and performing the
integration, we find

DEcle1DE22
C•C52

2

3
a5m3c2F 2m1

2 1
1

m1m2
1

2

m2
2G

3^f0ud~r !uf0& ~17!

which agrees withDECa of Fulton and Martin@12#. As ob-
served, the above calculation is quite complicated due to the
Brillouin-Wigner perturbation theory. The higher-order
terms are even more difficult to calculate. However, the cal-
culation is simplified significantly using either the Salpeter
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@11# perturbation theory or our reformulation equation~1!.
Since all theO(a7mc) relativistic contributions come from
pure electron-electron interactions, external potentials are ne-
glected. The Bethe-Salpeter Coulomb ladder~including pair
ladder diagrams! equation is given by

@Ec2H~p1!2H~p2!#fc~p1 ,p2!

5@L11~p1 ,p2!2L22~p1 ,p2!#
2a

2p2

3E dk

k2
fc~p12k,p21k! ~18!

for two electrons. Subtracting the Breit equation for Cou-
lomb exchange leads to

DE5
a

2p2E dk

k2
^fc~p1 ,p2!uL12~p1 ,p2!1L21~p1 ,p2!

12L22~p1 ,p2!ufc~p12k,p21k&. ~19!

Applying the Salpeter perturbation on the left wave function
~perturbation of the right wave function gives zero relativis-
tic contribution to the order of interest!, we obtain

DE52S a

2p D 2E dk

k2
dk8

k82 K fc~p1 ,p2!U L12~p12k,p21k!

E2E~p12k!1E~p21k!
1

L21~p12k,p21k!

E1E~p12k!2E~p21k!

1
2L22~p12k,p21k!

E1E~p12k!1E~p21k!
Ufc~p12k,p21k!L . ~20!

To lowest ordera5mc2, the nonrelativistic variablesp1 andp2 may be dropped. Thus we get

DE5
a5m3c2

2p
^f0ud~r !uf0&E dk

k4
1

E1E2
F ~E11m1!~E22m2!

E12E22m12m2
1

~E12m1!~E21m2!

E22E12m12m2
2
2~E12m1!~E22m2!

E11E21m11m2
G . ~21!

Performing integration overk gives

DE52
2

3
a5m3c2S 2

m1
2 1

1

m1m2
1

2

m2
2D ^f0ud~r !uf0&. ~22!

This calculation is much simpler than that derived from the Brillouin-Wigner perturbation theory since the Salpeter perturba-
tion is more suitable to relativistic calculation. This advantage of the Salpeter perturbation theory becomes more obvious in the
case of single transverse photon exchange, which will be discussed later.

For the helium fine structure of ordera7mc2, we need to calculate relativistic contributions of the next-to-leading order.
The relativistic momentak andk8 must be treated more accurately:

k1k85k9, ~23!

wherek9 has to be nonrelativistic momentum as an external observable in the nonrelativistic wave function.k8 is expanded
nonrelativistically in terms ofk9, which makes the calculation more complicated and very singular.

In order to compare the Brillouin-Wigner perturbation theory with the Salpeter perturbation theory, we calculate the no-pair
Coulomb ladder corrections in two different ways. First, we employ the Brillouin-Wigner perturbation theory. The spin
dependent Hamiltonian of first order in the no-pair Coulomb ladder equation is

Hc
75

1

2

s1•p1
m

Ics1•p1F 1

E~p1!1m
2

1

2mS 12
p1
2

4m2D G2m

p1
2 I c1

1

2
I c

2m

p1
2 FE~p2!1m

2E~p2!

1

2E~p1!
2

1

2m S 12
3p1

2

4m2D Gs1•p1I c
s1•p1
m

1
1

2

s2•p2
m

Ics2•p2F 1

E~p2!1m
2

1

2mS 12
p2
2

4m2D G2m

p2
2 I c1

1

2
I c

2m

p2
2 FE~p1!1m

2E~p1!

1

2E~p2!
2

1

2m S 12
3p2

2

4m2D G
3s2•p2I c

s2•p2
m

1
s1•p1
2m

s2•p2
2m

Ics1•p1s2•p2F 1

~E~p1!1m!2
2

1

4m2G2m

p1
2 I c

1I c
2m

p1
2 F 1

4E2~p1!
2

1

4m2Gs1•p1s2•p2I c
s1•p1
2m

s2•p2
2m

. ~24!

Dropping off the spin-independent terms and those that give zero contribution to the fine structure, the energy correction due
to the above Hamiltonian becomes
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DEc
~1!5^f0uHc

7uf0&5S a

2p2D 2E dk

k2
dk8

k82 K f0~p1 ,p2!U 21

up12ku2 F 1

2m S 12
up12ku2

4m2 D2
1

E~p12k!1mGs1•p1s1•k

2
1

2up12ku2 F 1m S 12
3up12ku2

4m2 D2
E~p21k!1m

2E~p12k!E~p21k!G@s1•p1s1•k91s1•ks1•~p12k9!#

3Uf0~p12k9,p21k9!L , ~25!

where some higher-order corrections are dropped. After non-
relativistic expansion, we arrive at

DEc
75S a

2p2D 24pE dk9^f0~p1 ,p2!uI sois1•~p13k9!

3uf0~p12k9,p21k9!&, ~26!

where

I so5
1

6E0
`dk

k4F 4

Ek1m
2

1

m
2

1

2Ek
S 11

m

Ek
D 1

5k2

4m3

2
k2

2Ek
3S 11

2m

Ek
D G . ~27!

This is the first-order correction to theO(a7mc2) fine struc-
ture obtained in the Sucher’s formulation@3#.

The Coulomb ladder Hamiltonian of second order is given
by

H25DH
22m

p1
21p2

2F12g
22m

p1
21p2

2G21

DH

5DHc
L

2~m1Ep1
!

2p1
2 DHc

R , ~28!

where

g5
m2Ep1

m1Ep1

p1
2

m
, ~29!

DHc
L5g1DHSD , ~30!

and

DHc
R5g1

p1
2

m

Ep1
2m

Ep1

1S Ep1
2m

2Ep1
D 2I c1DHSD . ~31!

The spin-dependent part is given by

DHSD52
Ep2

1m

2Ep2

s1•p1
2Ep1

I c
s1•p1
Ep1

1m

1
s1•p1
2Ep1

s2•p2
2Ep2

I c
s1•p1
Ep1

1m

s2•p2
Ep2

1m
. ~32!

This Hamiltonian is of nominal ordera4mc2 nonrelativisti-
cally. The lowest-order nonrelativistic correction is not sub-

tracted from the Hamiltonian until the final calculation is
done. This is different from the subtraction in the leading-
order relativistic contributions. The energy correction of sec-
ond order is found to be

DEc
~2!5^f0uH2uf0&

5K f0U Ep1
2m

2m F2Ep2
1m

2Ep2

s1•p1
2Ep1

I c
s1•p1
Ep1

1m

1
s1•p1
2Ep1

s2•p2
2Ep2

I c
s1•p1
Ep1

1m

s2•p2
Ep2

1mG
1F2Ep2

1m

2Ep2

s1•p1
2Ep1

I c
s1•p1
Ep1

1m

1
s1•p1
2Ep1

s2•p2
2Ep2

I c
s1•p1
Ep1

1m

s2•p2
Ep2

1mG
3

2~Ep1
1m!

2p1
2 H p1

2

Ep1

Ep1
2m

Ep1
1m

1S Ep1
2m

2Ep1
D 2I c

12
Ep2

1m

2Ep2

s1•p1
2Ep1

I c
s1•p1
Ep1

1m

1
s1•p1
2Ep1

s2•p2
2Ep2

I c
s1•p1
Ep1

1m

s2•p2
Ep2

1m J Uf0L . ~33!

The relativistic contribution comes from two Coulomb po-
tentials while each term in the above equation contains one
Coulomb potential. The second Coulomb potential is ob-
tained by repeatedly making use of the Schro¨dinger equation
on both the left and the right wave functions and keeping the
terms of up to ordera7mc2. The relativistic variablesk8,
E(p12k), and E(p21k) are expanded nonrelativistically.
After some manipulation, we get

DEc
~2!5S a

2p2D 24pE dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~34!

where
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I so5E
0

`

dkH 2
1

24mEk
2 S 1

m2 1
2

Ek
2D 1

1

3mk2 F 1

Ek1m S 1

Ek1m

2
1

Ek
1
Ek2m

4Ek
2 D 1

5~Ek1m!

16mEk
2 G2

1

8m3k2J ~35!

and

I ss5E
0

`F2
Ek1m

48m2k2Ek
2 1

1

24m3k2Gdk. ~36!

The total contribution to theO(a7mc2) fine-structure split-
tings of helium arising from the Coulomb ladder equation is
given by Eqs.~26! and~34!. As observed, it is quite compli-
cated to calculate the above corrections in the original times-
order formalism because of difficult application of the
Brillouin-Wigner perturbation to relativistic calculation. Us-
ing either our formula~1! or the Salpeter perturbation theory,
the calculation is simplified significantly.

In the Salpeter perturbation theory, the no-pair Coulomb
effects may be calculated by using Eq.~20!, in which the
third term should be divided by 2 since half of the third term
comes from the no-pair diagram and the other half is due to
the two-pair diagram. However, the result obtained in this
way disagrees with that in the Brillouin-Wigner perturbation.
The subtraction of the Breit correction of lower order needs
to be treated more carefully to higher order. Only exact terms
of lower order may be subtracted. The correct starting point
should be from the following formula:

DE11
C•C5S a

2p2D 2E dk

k2
dk8

k82

3 K fcU L11~p12k,p21k!

E2E~p12k!2E~p21k!
UfcL , ~37!

which can be obtained from either the Salpeter perturbation
theory or our reformulation equation~1!. The kernel in the
above equation is singular even to ordera5mc2 due to the
Breit corrections, in contrast to the finite kernel in Eq.~20!.
After subtraction of singular terms28m/k412/(mk2), the
previously obtained energy correction of ordera5mc2 due to
the no-pair Coulomb diagram is reproduced. For the
O(a7mc2) fine structure of helium, the Coulomb ladder con-
tribution including the two-pair effects from Eq.~10! be-
comes

DEC•C5S a

2p2D 24pE dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~38!

where

I so5E
0

` dk

8m2k2 H ~Ek1m!2F 1

2k2Ek
S 11

m

Ek
2
2mk2

3Ek
3 D

1
Ek2m

3Ek
4 2

m~Ek1m!

3k2Ek
3 G2

1

6mk2
1

1

24m3

1
1

Ek1m S 12
m

Ek
D

3F12
m

Ek
1

k2

3Ek
2S 21

4m

Ek
1

m

Ek1mD G J ~39!

and

I ss5E
0

` dk

24m2Ek
2 F 1m2

1

Ek1mG . ~40!

The first line in the above spin-orbit correction corresponds
to the no-pair diagram and agrees with the spin-orbit terms in
Eqs. ~26! and ~34! obtained by using the Brillouin-Wigner
perturbation. The second line is due to two-pair diagrams.
The first term and half of the second term in the above spin-
spin correction come from the no-pair diagram and agree
with that in Eq.~34! obtained in Sucher’s formulation of the
times-order formalism. The remaining part arises from two-
pair diagrams. Agreement between two quite different calcu-
lations of the no-pair Coulomb correction provides a good
check. As demonstrated above, the calculation of the no-pair
Coulomb effects using the Brillouin-Wigner perturbation
theory is very difficult. On the other hand, the Salpeter per-
turbation method is more convenient and instructive for such
calculation. Another interesting check is to calculate the
Dirac energy of ordera7mc2 perturbatively. It is well known
that the Dirac energy for a particle bound by an external
Coulomb field is a function of even powers of fine-structure
constanta. In one-body approximation, the Coulomb ladder
correction is

DEC•C5S a

2p2D 24pE dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sip1•k9uf0~p12k9,p21k9!&, ~41!

where

I so5E
0

` dk

8m2Ek~Ek1m!F 1

Ek1m
1

2m

3Ek
S 1Ek

1
1

Ek1mD G
~42!

and

I si52E
0

` dk

2k2~Ek1m!F 2

3Ek~Ek1m! S 12
m

Ek
D

2
1

4m2 S 12
m

Ek
D 2

2m

3Ek
3 2

k2

6mEk
2~Ek1m!

2
k2

6mEk
3G ,
~43!
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where we have retained the spin-independent terms for the
Dirac energy. The above Coulomb ladder correction is found
to cancel a correction arising from one-pair crossed-ladder
Coulomb diagrams to be presented in the following.

The main difference between the reformulation equation
~1! and the times-order Bethe-Salpeter formalism developed

by Sucher@3# is the calculation of the no-pair Coulomb-

Coulomb and Coulomb-transverse photon diagrams. The

kernels due to pair diagrams derived from both formulations

are exactly the same. In the case of Coulomb exchange, en-

ergy correction from one-pair diagrams is

DE21
C3C1DE12

C3C5S a

2p2D 2E dk

k2
dk8

k82 K fc~p1 ,p2!U2 L12~p12k8!L21~p21k!

E2E~p1!2E~p12k8!2E~p12k2k8!2E~p21k!

2
L11~p12k8!L22~p21k!

E2E~p12k8!2E~p2!2E~p21k!2E~p21k1k8!
Ufc~p12k2k8,p21k1k8!L ~44!

derived by using our equation~1!. The same equation was
also derived in Ref.@1# using Sucher’s formulation@3#.

From the relativistic momentum region, the energy cor-
rection of lowest order is

DEC3C5a5m3c2^f0uId~r !uf0&, ~45!

where

I52E
0

` dk

k2E1E2
F ~E12m1!~E21m2!

E11E21m12m2

1
~E11m1!~E22m2!

E11E22m11m2
G . ~46!

On computation, we obtain

DEC3C5
2

3
a5m3c2F 2m1

22
1

m1m2
1

2

m2
2G^f0ud~r !uf0&,

~47!

which agrees withDECb of Fulton and Martin@12# for two
distinct particles and that of Sucher@3# for helium.

For the helium fine structure of ordera7mc2, using the
generalized Foldy-Wouthuysen~FW! transformation@1#

^L12~p12k8!L21~p21k!&

5^L11~p12k8!L22~p21k!&

5
1

4 H 2
1

2m2 F12
m2

Ek
2 1

2m2k2

3Ek
4 G is1•~p13k9!

2
k2

3m2Ek
2 S 12

m2

Ek
2 D is1•~p13k9!1

k2

6m2Ek
2

3s1•p1is2•k91
1

mEk
is1•~k3k9!J ~48!

and expanding the denominators nonrelativistically, we ob-
tain

DEC3C~a7!

5S a

2p2D 24pE dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~49!

where

I so52
1

8m2E
0

` dk

k2Ek
F12

m2

Ek
2 1

2k2

3Ek
2G ~50!

and

I ss5
1

24m2E
0

`dk

Ek
3 . ~51!

For hydrogen, the above crossed-ladder Coulomb correction
becomes

DEC3C5S a

2p2D 24pE dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sip1•k9uf0~p12k9,p21k9!&, ~52!

where

I so52E
0

` dk

8m2Ek~Ek1m!F 1

Ek1m
1

2m

3Ek
S 1Ek

1
1

Ek1mD G
~53!

and

I si5E
0

` dk

2k2~Ek1m!F 2

3Ek~Ek1m! S 12
m

Ek
D

2
1

4m2S 12
m

Ek
D 2

2m

3Ek
3 2

k2

6mEk
2~Ek1m!

2
k2

6mEk
3G ,
~54!

which is seen to cancel exactly the Coulomb ladder correc-
tion in Eq. ~41! term by term. Therefore, the zero Dirac
energy of ordera7mc2 for non-S states is reproduced in our
perturbative calculation. TheS-state correction due to rela-
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tivistic origin arises from four-photon diagrams. The corre-
sponding nonrelativistic operator is just thed function. The
reproduction of the Dirac zero energy provides a good check
for our Coulomb calculation.

The total contribution to theO(a7mc2) fine structure
splittings, arising from Coulomb photon exchange, is ob-
tained by combining corrections in Eqs.~38! and ~49!. On
computation, we get

DEc5S a

2p2D 24pE dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s1•k9uf0~p12k9,p21k9!&, ~55!

where

I so52
p

32
1
1

8
~56!

and

I ss5
1
12 . ~57!

The above finite result is consistent with the fact that no
contribution arises from the nonrelativistic momentum re-
gion since the appearance of logarithmic cutoff terms indi-
cates that contributions come from both relativistic and non-
relativistic momentum regions. Upon Fourier transformation
described in our previous paper@1#, we obtain

DEc5a7mc2K f0UI sod~r !s1•S rr 2 3p1D
1I ssd~r !

1

r 2
s1• r̂s2• r̂Uf0L , ~58!

where

I so52
3p

4
13 ~59!

and

I ss525. ~60!

Here we have used the following formulas:

E dkis1•~p13k!exp~ ik•r !54ps1•~p13r !ks~3,1!

524p3d~r !
1

r 2
s1•~r3p1!

~61!

and

E dks1•ks2•k exp~ ik•r !

52E dks1•p1s2•k exp~ ik•r !

54ps1• r̂s2• r̂ @ks~3,1!2ks~4,2!#

52120p3d~r !
1

r 2
s1• r̂s2• r̂ . ~62!

In this section, we presented calculation of the no-pair
Coulomb effects in three different methods, namely, Such-
er’s times-order approach, the Salpeter perturbation method,
and a direct application of theS-matrix method. The last two
are the same for Coulomb exchange. The first one is quite
complicated in relativistic approximation. Calculation of pair
effects is not different from one to another.

III. SINGLE TRANSVERSE PHOTON EXCHANGE

Relativistic energy corrections due to the single transverse
photon exchange arise from no-pair, one-pair, and two-pair
diagrams. Formulas in closed form were derived on the basis
of the times-order Bethe-Salpeter formalism and presented in
our previous paper@1#. Here, we rederive them starting from
our Eq. ~1!. They all come from a transverse photon ex-
change plus a Coulomb photon.

A. No pair

In order to compare the Brillouin-Wigner perturbation
theory with the Salpeter perturbation method, we recalculate
theO(a5mc2) relativistic energy levels of helium using both
methods. In the Brillouin-Wigner perturbation method, en-
ergy corrections due to the no-pair single transverse photon
exchange arising from the relativistic momentum region
come from the Breit corrections of first order and second
order as well as recoil corrections. For two distinct particles,
the correction arising from the relativistic Breit operators is
given by

DEB
552K f0UBs1•p1s2•p2F 1

A2Ep1
~Ep1

1m1!

3
1

A2Ep1
~Ep1

1m1!
2

1

4m1m2
GUf0L

12K f0UBs1•p1s2•p2
1

A2Ep1
~Ep1

1m1!

3
1

A2Ep1
~Ep1

1m1!
Uf1L , ~63!

where the perturbed wave function of first order is
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f152mF12
Ep1

2m1

Ep1
1m1

m

m1
2
Ep2

2m2

Ep2
1m2

m

m2
G21

3F2
m

m1

1

~Ep1
1m1!

2 1
1

2Ep1
~Ep1

1m1!

2
m

m2

1

~Ep2
1m2!

2 1
1

2Ep2
~Ep2

1m2!

2
p1
2

2Ep1
~Ep1

1m1!

1

2Ep2
~Ep2

1m2!
G I cf0 ~64!

and the transverse integral operatorB is defined as

Bf~p1 ,p2!5
a

2p2E dk

2k2
s1
i s2

i f~p12k,p21k!. ~65!

After nonrelativistic expansion of the denominators and
some manipulation, we obtain

DEB
55S a

2p2D 24pE dk9^f0~p1 ,p2!uIs1•s2

3uf0~p12k9,p21k9!&, ~66!

where

I5E
0

`dk

k2 H 8m

3 F 1

E11m1
1

1

E21m2
2

1

4m1m2
G

2
4k2

3

1

E11m1

1

E21m2
f J . ~67!

Here

f52mF12
E12m1

E11m1

m

m1
2
E22m2

E21m2

m

m2
G21F2

m

m1

1

~E11m1!
2

1
1

2E1~E11m1!
2

m

m2

1

~E21m2!
21

1

2E2~E21m2!

2
k2

2E1~E11m1!

1

2E2~E21m2!
G . ~68!

Form15m25m, we get

DEB
552

2a5mc2

3
~p12!^f0ud~r !s1•s2uf0&, ~69!

which reproduces Sucher’s result.
Recoil corrections are separated from the Breit correc-

tions explicitly in terms of the numbers of photons. The Breit
corrections correspond to pure single transverse photon ex-
changed. In order to extract relativistic contributions, two
photons are required. A Coulomb photon comes in either
from repeatedly applying the Schro¨dinger equation on both
the left and the right wave functions or from the wave func-
tion perturbation. The relativistic recoil corrections arise ex-
plicitly from two-photon exchange. Therefore, no relativistic
recoil corrections of second order contribute to the order of
interest due to the perturbation of the wave function. One of
the corrections due to recoil effects arises from ladder dia-
grams and is given by

DERI
0 5

a

2p2E dk

2k2 K fc~p1 ,p2!UFa1
i

Dc
11~p12k,p2!

Dc
11~p12k,p2!2k

a2
i 1a2

i
Dc

11~p1 ,p21k!

Dc
11~p1 ,p22k!2k

a1
i G

3
1

Dc
11~p12k,p21k!

L11~p12k,p21k!I cL11~p12k,p21k!1L11~p1 ,p2!I cL11~p1 ,p2!
1

Dc
11~p1 ,p2!

3Fa1
i

Dc
11~p12k,p2!

Dc
11~p12k,p2!2k

a2
i 1a2

i
Dc

11~p1 ,p21k!

Dc
11~p1 ,p22k!2k

a1
i GUfc~p12k,p21k!L . ~70!

After nonrelativistic reduction to lowest order, it becomes

DERI
0 5S a

2p2D 24pE dk9^f0~p1 ,p2!uIs1•s2uf0~p12k9,p21k9!&, ~71!

where

I5E
0

` dk

6E1E2

1

m11m22E12E2
F m12E1

m12E12k
1

m22E2

m22E22kG . ~72!

Another recoil correction due to crossed-ladder diagrams is given by
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DERI
1 5

a

2p2E dk

2k K fc~p1 ,p2!Ua1
i 1

E2E~p12k!2E~p2!2k
L11~p12k,p2!I cL11~p12k,p2!

1

E2E~p12k!2E~p2!2k
a2
i

1a2
i 1

E2E~p1!2E~p21k!2k
L11~p1 ,p21k!I cL11~p1 ,p21k!

1

E2E~p1!2E~p21k!2k
a1
i Ufc~p12k,p21k!L .

~73!

Reduction yields

DERI
1 5S a

2p2D 24pE dk9^f0~p1 ,p2!uIs1•s2uf0~p12k9,p21k9!&, ~74!

where

I5E
0

` kdk

6E1E2

1

E11k2m1

1

E21k2m2
. ~75!

Combining the two recoil corrections, we get

DERI5S a

2p2D 24pE dk9^f0~p1 ,p2!uIs1•s2uf0~p12k9,p21k9!&, ~76!

where

I5E
0

` dk

6E1E2
F 1

m11m22E12E2
S E12m1

E11k2m1
1

E22m2

E21k2m2
D1

k

E11k2m1

1

E21k2m2
G . ~77!

Form15m2, the correction becomes

DERI52
2a5mc2

3
ln2^f0ud~r !s1•s2uf0&, ~78!

which reproduces Sucher’s result. In the above calculation, it is quite difficult to track all the relevant terms in the Brillouin-
Wigner perturbation expansion. This makes it much more complicated to calculate theO(a7mc2) fine structure. The detailed
calculation of the fine structure using this method will not be presented here. In the following we use our formulation of the
times-order theory.

Similar to Coulomb ladder corrections, the ladder correction due to no-pair single transverse photon exchange is calculated
more conveniently using the formulation equation~1!. The corresponding formula becomes

DE11
T•C5S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!a1

i L11~p12k!

m1E2«1~p12k!1e2v1 id
a2
i

3
L21~p21k!

m2E2«2~p21k!2e1v1 id
c~p1m8 p2m8 !1S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!

3
L11~p12k8!

m1E2«1~p12k8!1e2v81 id
a1
i L21~p21k8!

m2E2«2~p21k8!2e1v81 id
a2
i c~p1m8 p2m8 !. ~79!

Performing integration over the energy variables and dropping the external potentials, it becomes

DE11
T•C5S a

2p2D 2E dk

2k

dk8

k82 K fc~p1 ,p2!U 1

E2E~p12k!2E~p21k! F 1

E2E~p1!2E~p21k!2k

1
1

E2E~p12k!2E~p2!2kGa1
i L11~p12k!a2

i L11~p21k!

1
1

E2E~p12k8!2E~p21k8! F 1

E2E~p12k8!2E~p21k1k8!2k
1

1

E2E~p12k2k8!2E~p21k8!2kG
3L11~p12k8!a1

i L11~p21k8!a2
i Ufc~p12k2k8,p21k1k8!L . ~80!
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To lowest ordera5mc2, the above contribution to helium energy levels is

DE11
T•C52

4a5m3c2

3 E
0

` dk@2Ek
21k~2Ek1m!#

mEk
2~Ek1m!~Ek1k2m!

^f0ud~r !s1•s2uf0&, ~81!

which is the sum ofDEB
5 and DERI

0 in Sucher’s calculation@3#. This calculation is much simpler and more instructive,
especially for theO(a7mc2) fine structure.

The recoil correctionDERI
1 in Sucher’s times-order formalism corresponds to crossed-ladder diagrams and can be derived

from Eq. ~1!. The corresponding times-order formula becomes

DE11
T3C5S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!a1

i L11~p12k!

m1E2«1~p12k!1e2v1 id
2

3
L21~p21k8!

m2E2«2~p21k8!2e1v81 id
a2
i c~p1m8 p2m8 !1S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!

3
L11~p12k8!

m1E2«1~p12k8!1e2v81 id
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i a2

i L21~p21k!

m2E2«2~p21k!2e1v1 id
c~p1m8 p2m8 !. ~82!

Performing integration over the energy variables and neglecting the external potentials lead to

DE11
T3C5S a

2p2D 2E dk

2k

dk8

k82 K fc~p1 ,p2!U 1

E2E~p1!2E~p21k!2k
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E2E~p12k8!2E~p21k1k8!2k

3 L11~p12k8!a1
i a2
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1

E2E~p12k2k8!2E~p21k8!2k

3 a1
i L11~p12k!L21~p21k8!a2

i Ufc~p12k2k8,p21k1k8!L . ~83!

To lowest ordera5mc2, it becomes

DE11
T3C5

4a5m3c2

3 E
0

` kdk

Ek
2~Ek1k2m!2

^f0ud~r !s1•s2uf0&,

~84!

which reproducesDERI
1 The total correction due to no-pair

single transverse photon exchange is given by Eqs.~81! and
~84! and becomes

DE11
T3C1DE11

T•C5
4a5mc2

3 S 212
1

2
ln22

p

2 D
3^f0ud~r !s1•s2uf0&

5DEB
51DERI , ~85!

which reproduces that of Sucher@3# arising from the no-pair
single transverse photon diagrams.

For the helium fine structure of ordera7mc2, the relativ-
istic contribution due to the no-pair crossed-ladder single
transverse photon exchange is derived from Eq.~83! by ex-
panding the denominators nonrelativistically and using the
FW transformation,
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^L11~p12k8!a1
i a2

i L21~p21k!&

5
1

16H 2S 1m1
1

E~p12k8! D ~p1
i 2k9 i !1S 1m2

1

E~p12k8! Ds1•k9s1
i 1

2

E~p12k8!
s1•ks1

i

1
1

2m2E~p12k8!
s1•p1s1•ks1

i s1•~p12k9!J H 2S 1m1
1

E~p21k! D p2i 1S 1m2
1

E~p21k! Ds2
i s2•k9

1
2

E~p21k!
s2
i s2•k1

1

2m2E~p21k!
s2•p2s2

i s2•ks2•~p21k9!J
5J2

01J1
11J3

11J0
21J2

21J4
2 , ~86!

where

J2
052

1

4Ek
2s1•ks2•k,

J1
15

1

4Ek
S 1m1

1

Ek
D is1•@~2p12k9!3k#

1
1

4Ek
S 1Ek

2
1

mDs1•ks2•k9,

J3
152

1

4Ek
4 k9•ks1•ks2•k,

J0
25

1

6S 1

m2 2
1

Ek
2 1

k2

2m2Ek
2D is1•~p13k9!

2
1

12F S 1m2
1

Ek
D 21 2k2

m2Ek
2Gs1•p1s2•k9,

J2
25

k2

12Ek
3 F S 1m1

2

Ek
D is1•~p13k9!

2S 1m2
2

Ek
Ds1•p1s2•k9G ,

J4
252

k4

30Ek
6s1•p1s2•k9. ~87!

In deriving the above result, one needs to keep all terms
containing up to fourk’s and care is required. After some
manipulation, we obtain

DE11
T3C5S a

2p2D 24pE
0

`

dk

3E dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~88!

where

I so5
1

6k~Ek1k2m!2 H F 1m2 2
1

Ek
21

k2

2m2Ek
2G

1
k2

2Ek
3S 1m1

2

Ek
D 1

1

Ek
S 1Ek

1
1

mD
3F21

k2

Ek~Ek1k2m!G J ~89!

and

I ss5
1

6k~Ek1k2m!2 H 2
1

2S 1Ek
2

1

mD 22 k2

m2Ek
2

1
1

Ek
F21

k2

Ek~Ek1k2m!GF 1Ek
2

1

m
2
2k2

5Ek
3G

2
k2

2Ek
3 S 1m2

2

Ek
D 2

k4

5Ek
62

1

5Ek
2 F81

4k2

Ek~Ek1k2m!

1
k4

Ek
2~Ek1k2m!2G J . ~90!

The correction due to no-pair ladder single transverse photon
exchange is derived from Eq.~80! and given by

DE11
T•C5S a

2p2D 24pE
0

`

dk

3E dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~91!

where

I so5
1

6k~Ek2m!~Ek1k2m! H F 1m2 2
1

Ek
21

k2

2m2Ek
2G

1
k2

2Ek
3S 1m2

2

Ek
D 1

2

Ek
S 1Ek

1
1

mD 1
k2

2Ek
2 S 1m2

1

Ek
D

3S 1

Ek2m
1

1

Ek1k2mD J ~92!

and
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I ss5
1

6k~Ek2m!~Ek1k2m!H 2
1

2 S 1Ek
2

1

mD 22 k2

m2Ek
2

2
k2

2Ek
3S 1m2

2

Ek
D 2

2

Ek
S 1m2

1

Ek
D 2

k2

2Ek
2 S 1m2

1

Ek
D

3S 1

Ek2m
1

1

Ek1k2mD 2
4k2

5Ek
4

2
1

15Ek
2 F41

k2

Ek
S 1

Ek2m
1

1

Ek1k2mD G J . ~93!

The total contribution due to the no-pair single transverse
photon exchange is obtained by adding the corrections in
Eqs.~88! and ~91!. Upon calculation, we get

DE1111
T 5S a

2p2D 24pE dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~94!

where

I so5
5

72
2
1

6
lnB1

1

24
ln21

1

48
p ~95!

and

I ss5
1

40
ln21

69

960
p1

17

240
1

1

30
lnB, ~96!

whereB is the cutoff. The logarithmic cutoff is supposed to
cancel that which arises from nonrelativistic contributions.
Taking Fourier transform yields

DE1111
T 5a7mc2K f0UI sod~r !s1•S rr 2 3p1D

1I ssd~r !
1

r 2
s1• r̂s2• r̂Uf0L , ~97!

where

I so5
5
3 24 lnB1 ln21 1

2 p ~98!

and

I ss52 3
2 ln22 69

16 p2 17
4 22 lnB. ~99!

At first glance, the logarithmic cutoff terms do not seem to
cancel those in Eqs.~307!–~309! in Ref. @1#, arising from
no-pair single transverse photon exchange in nonrelativistic
approximation. A careful examination shows that they cancel
the logarithmic singular terms due to the no-pair single trans-
verse photon exchange plus a Coulomb photon or the diver-
gent terms in Eqs.~78! and ~93! in Ref. @1#. This is under-
stood because the cancellation takes place between
relativistic and nonrelativistic contributions arising from the
same no-pair diagrams of one transverse and one Coulomb
photons. The other part of no-pair single transverse photon
exchange in Eq.~94! in Ref. @1# comes from the correction of
another transverse photon and is a pure transverse photon
correction. We will show that the singular terms in this cor-
rection cancel those in ladder double transverse photon ex-
change in relativistic approximation.

B. One pair

Relativistic energy corrections arising from one-pair dia-
grams are due to a transverse photon plus a Coulomb photon
exchanged. The formula derived from our reformulation
equation~1! for calculation of one-pair single transverse pho-
ton contribution is

DE21
T3C5S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!a1

i L12~p12k!

m1E1«1~p12k!1e2v2 id

L21~p21k8!

m2E2«2~p21k8!2e1v81 id

3a2
i c~p1m8 p2m8 !1S a

2p2D 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!

L12~p12k8!

m1E1«1~p12k8!1e2v82 id

3a1
i a2

i L21~p21k!

m2E2«2~p21k!2e1v1 id
c~p1m8 p2m8 !. ~100!

Performing integration over the energy variables and neglecting the external potentials lead to

DE21
T3C5S a2

2p D 2E dk

2k

dk8

k82
^fc~p1 ,p2!uL12~p12k8!a1

i a2
i L21~p21k!I1a1

i L12~p12k!L21~p21k8!a2
i I 8

3ufc~p12k2k8,p21k1k8!&, ~101!

where
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I5
21

E2E~p1!2E~p12k2k8!2E~p12k8!2E~p21k! F 1

E2E~p1!2E~p21k!2k
1

21

E~p12k2k8!1E~p21k!1kG
~102!

and

I 85
21

E2E~p1!2E~p12k2k8!2E~p12k!2E~p21k8! F 1

E2E~p12k2k8!2E~p21k8!2k
1

21

E~p1!1E~p21k8!1kG .
~103!

The above correction agrees with that derived in Ref.@1# using Sucher’s formulation. To lowest order, the crossed-ladder
correction becomes

DE21
T3C5S a

2p2D 24pE dk9^f0~p1 ,p2!uIs1•s2uf0~p12k9,p21k9!&, ~104!

where

I5
1

6E0
` kdk

E1E2

1

E11E21m12m2
F 1

E21k2m2
1

1

E11k1m1
G . ~105!

The energy correction due to ladder diagrams is derived from the reformulation equation~1!. The relevant times-order
formula is

DE21
T•C5S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!a1

i L12~p12k!

m1E1«1~p12k!1e2v2 id

3 a2
i L21~p21k!

m2E2«2~p21k!2e1v1 id
c~p1m8 p2m8 !1S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!

3
L12~p12k8!

m1E1«1~p12k8!1e2v82 id
a1
i L21~p21k8!

m2E2«2~p21k8!2e1v81 id
a2
i c~p1m8 p2m8 !. ~106!

Performing integration over the energy variables and dropping the external potentials give

DE21
T•C5S a2

2p D 2E dk

2k

dk8

k82
^fc~p1 ,p2!ua1

i L12~p12k!a2
i L21~p21k!I

1L12~p12k8!a1
i L21~p21k8!a2

i I 8ufc~p12k2k8,p21k1k8!&, ~107!

where

I5
1

E~p1!1E~p12k!1k

1

E2E~p1!2E~p21k!2k
~108!

and

I 85
1

E~p12k2k8!1E~p12k8!1k

3
1

E2E~p12k2k8!2E~p21k!2k
. ~109!

To lowest order, it becomes

DE21
T•C5S a

2p2D 24pE dk9^f0~p1 ,p2!

3uIs1•s2uf0~p12k9,p21k9!&, ~110!

where

I5
1

6E0
` kdk

E1E2

1

E12E21m11m2

3F 1

E21k2m2
2

1

E11k1m1
G . ~111!

Including the correction arising from the single pair dia-
grams in which a pair is on the second fermion line, we get
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DE21
TC 1DE12

TC 5S a

2p2D 24pE dk9^f0~p1 ,p2!uIs1•s2

3uf0~p12k9,p21k9!&, ~112!

where

I5
1

6E0
` kdk

E1E2
H 1

E12E21m11m2

3F 1

E21k2m2
2

1

E11k1m1
G1

1

E11E21m12m2

3F 1

E21k2m2
1

1

E11k1m1
G1

1

E22E11m11m2

3F 1

E11k2m1
2

1

E21k1m2
G1

1

E11E21m22m1

3F 1

E11k2m1
1

1

E21k1m2
G J . ~113!

For heliumm15m25m, we obtain

DE21
TC 1DE12

TC 5
4a5mc2

3
~11 ln2!^f0ud~r !s1•s2uf0&,

~114!

which reproduces Sucher’s result.
For the helium fine structure of ordera7mc2, we expand

nonrelativistically the spin dependent numerators and get

^L12~p12k8!a1
i a2

i L26~p21k!&5
1

16H 2S 1m2
1

E~p12k8! D ~p1
i 2k9 i !1S 1m1

1

E~p12k8! Ds1•k9s1
i 2

2

E~p12k8!
s1•ks1

i

2
1

2m2E~p12k8!
s1•p1s1•ks1

i s1•~p12k9!J
3H 2S 1m6

1

E~p21k! D p2i 1S 1m7
1

E~p21k! Ds2
i s2•k96

2

E~p21k!
s2
i s2•k

6
1

2m2E~p21k!
s2•p2s2

i s2•ks2•~p21k9!J
5J2

01J1
11J3

11J0
21J2

21J4
2 , ~115!

where

J2
056

1

4Ek
2s1•ks2•k,

J1
15

1

8Ek
H 62S 1m2

1

Ek
D is1•@~p12k9!3k#12S 1m6

1

Ek
D is1•~p23k!7

2

Ek
s1•ks2•k9

1
1

m
~161!is1•~k93k!1

1

m
~171!s1•ks2•k9J ,

J3
157

1

4Ek
4 ~p11p22k9!•ks1•ks2•k,

J0
25

1

12F S 1m2
1

Ek
D S 1m7

1

Ek
D 1S 1m1

1

Ek
D S 1m6

1

Ek
D 7

k2

m2Ek
2G is1•~p13k9!

1
1

12F2S 1m1
1

Ek
D S 1m7

1

Ek
D 6

2k2

m2Ek
2Gs1•p1s2•k9,

J2
25

k2

24Ek
3 F2

1

m
~171!7

4

Ek
G is1•~p13k9!1

k2

24Ek
3F 1m ~171!7

4

Ek
Gs1•p1s2•k9,

J4
256

k4

30Ek
6s1•p1s2•k9. ~116!

Similarly, the FW transformation for the other one- and two-pair crossed-ladder numerators is given by
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^a1
i L12~p12k!L26~p21k8!a2

i &5
1

16H 2S 1m2
1

E~p12k! D p1i 2S 1m1
1

E~p12k! Ds1
i s1•k91

2

E~p12k!
s1
i s1•k

1
1

2m2E~p12k!
s1•p1s1

i s1•ks1•~p12k9!J H 2S 1m6
1

E~p21k8! D ~p2
i 1k9 i !

2S 1m7
1

E~p21k8! Ds2•k9s2
i 7

2

E~p21k8!
s2
i s2•k7

1

2m2E~p21k8!

3s2•p2s2•ks2
i s2•~p21k9!J

5L2
01L1

11L3
11L0

21L2
21L4

2 , ~117!

where

L2
056

1

4Ek
2s1•ks2•k,

L1
15

1

8Ek
H 2F 1m ~171!6

2

Ek
G is1•@~2p12k9!3k#

1F 1m ~171!7
2

Ek
Gs1•ks2•k9J ,

L3
156

1

4Ek
4 ~p11p21k9!•ks1•ks2•k, ~118!

L0
25

1

12F S 1m2
1

Ek
D S 1m7

1

Ek
D

1S 1m1
1

Ek
D S 1m6

1

Ek
D 7

k2

m2Ek
2G is1•~p13k9!

1
1

12F2S 1m1
1

Ek
D S 1m7

1

Ek
D 6

2k2

m2Ek
2Gs1•p1s2•k9,

L2
25

k2

24Ek
3 F2

1

m
~171!7

4

Ek
G is1•~p13k9!

1
k2

24Ek
3F 1m ~171!7

4

Ek
Gs1•p1s2•k9,

L4
256

k4

30Ek
6s1•p1s2•k9.

Using the above results and expanding the denominators
nonrelativistically, we derive

DE21
T3C5S a

2p2D 24pE
0

`

dkE dk9^f0~p1 ,p2!u

3I sois1•~p13k9!1I sss1•p1s2•k9

3uf0~p12k9,p21k9!&, ~119!

where

I so52
1

12kEk
F 1

Ek1k2m
1

1

Ek1k1mG
3F 1m2 1

1

Ek
2 2

k2

2m2Ek
22

3k2

2Ek
4G

1
k

24Ek
4 F 1

~Ek1k2m!2
1

1

~Ek1k1m!2G
1

1

6kEk
3 F 1

Ek1k2m
1

1

Ek1k1mG ~120!

and

I ss5
1

12kEk
F 1

Ek1k2m
1

1

Ek1k1mGF12 S 1

m2 2
1

Ek
2D

2
k2

Ek
2S 1

m2 2
3

2Ek
2 1

k2

2Ek
4D G1

k

24Ek
4 F 1

~Ek1k1m!2

1
1

~Ek1k2m!2GF12
3k2

5Ek
2G2

1

30k2m3

2
k

30Ek
4 F 1

~Ek1k1m!2
1

1

~Ek1k2m!2

1
1

Ek
S 1

Ek1k2m
1

1

Ek1k1mD G
1

1

6kEk
3 S 1

Ek1k2m
1

1

Ek1k1mD F12
2k2

5Ek
2G

2
2

15kEk
3 S 1

Ek1k2m
1

1

Ek1k1mD . ~121!

TheO(a7mc2) correction due to ladder diagrams is ob-
tained by expanding the numerators and denominators in Eq.
~107! nonrelativistically. Upon taking the FW transforma-
tion, the numerators become
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^L12~p12k8!a1
i L26~p21k8!a2

i &5
1

16H 2S 1m2
1

E~p12k8! D ~p1
i 2k9 i !1S 1m1

1

E~p12k8! Ds1•k9s1
i 2

2

E~p12k8!
s1•ks1

i

2
1

2m2E~p12k8!
s1•p1s1•ks1

i s1•~p12k9!J H 2S 1m6
1

E~p21k8! D ~p2
i 1k9 i !

2S 1m7
1

E~p21k8! Ds2•k9s2
i 7

2

E~p21k8!
s2•ks2

i

7
1

2m2E~p21k8!
s2•p2s2•ks2

i s2•~p21k9!J
5J2

01J1
11J3

11J0
21J2

21J4
2 , ~122!

where

J2
056

1

4Ek
2s1•ks2•k,

J1
15

1

8Ek
H 62S 1m2

1

Ek
D is1•@~p12k9!3k#22S 1m6

1

Ek
D is1•@~p12k9!3k#1F 1m ~171!7

2

Ek
G

3@ is1•~k3k9!1s1•ks2•k9#J ,

J3
157

1

4Ek
4 ~p12p222k9!•ks1•ks2•k,

J0
25

1

12F S 1m2
1

Ek
D S 1m7

1

Ek
D 1S 1m1

1

Ek
D S 1m6

1

Ek
D 7

k2

m2Ek
2G is1•~p13k9!

2
1

12F S 1m1
1

Ek
D S 1m7

1

Ek
D 7

2k2

m2Ek
2Gs1•p1s2•k9,

J2
25

k2

24Ek
3 F2

1

m
~171!6

4

Ek
G@ is1•~p13k9!2s1•p1s2•k9#,

J4
250. ~123!

Similarly,

^a1
i L12~p12k!a2

i L26~p21k!&5
1

16H 2S 1m2
1

E~p12k! D p1i 2S 1m1
1

E~p12k! Ds1
i s1•k91

2

E~p12k!
s1
i s1•k

1
1

2m2E~p12k!
s1•p1s1

i s1•ks1•~p12k9!J H 2S 1m6
1

E~p21k! D p2i
1S 1m7

1

E~p21k! Ds2
i s2•k96

2

E~p21k!
s2
i s2•k6

1

2m2E~p21k!

3s2•p2s2
i s2•ks2•~p21k9!J

5L2
01L1

11L3
11L0

21L2
21L4

2 , ~124!
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where

L2
056

1

4Ek
2s1•ks2•k,

L1
15

1

8Ek
H F62S 1m2

1

Ek
D22S 1m6

1

Ek
D G is1•~p13k!

1F6S 1m1
1

Ek
D2S 1m7

1

Ek
D G

3@ is1•~k3k9!2s1•ks2•k9#J ,
L3
156

1

4Ek
4 ~p12p2!•ks1•ks2•k,

L0
25

1

12F S 1m2
1

Ek
D S 1m7

1

Ek
D

1S 1m1
1

Ek
D S 1m6

1

Ek
D 7

k2

m2Ek
2G is1•~p13k9!

2
1

12F S 1m1
1

Ek
D S 1m7

1

Ek
D 7

2k2

m2Ek
2Gs1•p1s2•k9,

L2
25

k2

24Ek
3 F2

1

m
~171!6

4

Ek
G

3@ is1•~p13k9!2s1•p1s2•k9#,

L4
250. ~125!

The above results also apply to the two-pair calculation to be
presented in the next section. Using the above results and
expanding the denominators nonrelativistically, we obtain

DE21
T•C5S a

2p2D 24pE
0

`

dk

3E dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s2•k9uf0~p12k9,p21k9!&,

~126!

where

I so52
1

6k

1

~Ek1k!22m2F 1m2 1
1

Ek
2 2

k2

2m2Ek
2 1

k2

Ek
4

1
k2

2Ek
3 S 1

Ek1k2m
1

1

Ek1k1mD G
1

1

3kEk
2

1

~Ek1k!22m2 ~127!

and

I ss5
1

12k

1

~Ek1k!22m2F 1m2 2
1

Ek
2 2

2k2

m2Ek
2 1

2k2

Ek
4

1
k2

Ek
3 S 1

Ek1k2m
1

1

Ek1k1mD G
1

1

3kEk
2

1

~Ek1k!22m2 S 12
2k2

5Ek
2D

2
k

15Ek
2

1

~Ek1k!22m2F 4k2 1
1

Ek
S 1

Ek1k2m

1
1

Ek1k1mD G2
1

30k2m3 . ~128!

The pure singular spin-spin terms in Eqs.~120! and ~127!
correspond to the subtraction of nonrelativistic contributions
of lower ordera6mc2 or of the last term in Eq.~5.15! in Ref.
@4#.

The total contribution due to the one-pair single trans-
verse photon exchange is obtained by computing the two
corrections in Eqs.~119! and ~126!, and is given by

2DE21
TC 52S a

2p2D 24pE
0

`

dk

3E dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~129!

where

I so52 1
12 ln2 ~130!

and

I ss52 103
360 2 1

12 ln21 1
30 lnB. ~131!

Taking the Fourier transform, we get

DE21
TC 1DE12

TC 5a7mc2K f0UI sod~r !
1

r 2
s1•~r3p1!

1I ssd~r !
1

r 2
s1• r̂s2• r̂Uf0L , ~132!

where

I so522 ln2 ~133!

and

I ss5
103
6 15ln222lnB. ~134!

The logarithmic cutoff term in the spin-spin correction can-
cels that from the nonrelativistic contribution in Eq.~312! of
Ref. @1#. Although individual terms in the spin-orbit correc-
tion are logarithmic singular, the sum is not. This agrees with
a similar result from the nonrelativistic contribution in Eq.
~311! of Ref. @1#. These results provide a good check for
both relativistic and nonrelativistic contributions arising
from the one-pair single transverse photon exchange.
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C. Two pairs

Relativistic contribution to the helium fine-structure splittings of ordera7mc2 also comes from two-pair single transverse
photon exchange. For two distinct particles, the energy correction due to crossed-ladder diagrams arising from a relativistic
momentum region may be calculated using the following four-dimensional formula deriving from Eq.~1!:

DE22
T3C5S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!a1

i L12~p12k!

m1E1«1~p12k!1e2v2 id

3
L22~p21k8!

m2E1«2~p21k8!2e1v82 id
a2
i c~p1m8 p2m8 !1S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!

3
L12~p12k8!

m1E1«1~p12k8!1e2v82 id
a1
i a2

i L22~p21k!

m2E1«2~p21k!2e1v2 id
c~p1m8 p2m8 !. ~135!

Performing integration over the energy variables and ignor-
ing the external potentials yield

DE22
T3C5S a2

2p D 2E dk

2k

dk8

k82
^fc~p1 ,p2!uL12~p12k8!

3a1
i a2

i L22~p21k!I1a1
i L12~p12k!L22

3~p21k8!a2
i I 8ufc~p12k2k8,p21k1k8!&,

~136!

where

I5
1

E~p12k2k8!1E~p12k8!1k

1

E~p2!1E~p21k!1k
~137!

and

I 85
1

E~p1!1E~p12k!1k

1

E~p21k8!1E~p21k1k8!
.

~138!

To lowest order, the energy correction reduces to

DE22
T3C5S a

2p2D 2E dk

k2
dk9^f0~p1 ,p2!uIs1•s2

3uf0~p12k9,p21k9!&, ~139!

where

I5
k

6E1E2

1

E11k1m1

1

E21k1m2
. ~140!

The energy correction formula due to ladder diagrams is
derived from Eq.~1!. The relevant times-order formula be-
comes

DE22
T•C5S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!
c̃~p1mp2m!a1

i

3
L12~p12k!

m1E1«1~p12k!1e2v2 id
a2
i

3
L22~p21k!

m2E1«2~p21k!2e1v2 id
c~p1m8 p2m8 !

1S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

k82~v22k21 id!

3c̃~p1mp2m!
L12~p12k8!

m1E1«1~p12k8!1e2v82 id
a1
i

3
L22~p21k8!

m2E1«2~p21k8!2e1v82 id
a2
i c~p1m8 p2m8 !.

~141!

After integration over the energy variables and dropping the
external potentials, we arrive at

DE22
T•C5S a2

2p D 2E dk

2k

dk8

k82
^fc~p1 ,p2!ua1

i L12~p12k!

3a2
i L22~p21k!I1L12~p12k8!a1

i L22~p21k8!

3a2
i I 8ufc~p12k2k8,p21k1k8!&, ~142!

where

I5
1

E1E~p12k!1E~p21k! F 1

E~p1!1E~p12k!1k

1
1

E~p2!1E~p21k!1kG ~143!

and
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I 85
1

E1E~p12k8!1E~p21k8!

3F 1

E~p12k8!1E~p12k2k8!1k

1
1

E~p21k8!1E~p21k1k8!1kG . ~144!

To lowest order, the ladder correction becomes

DE22
T•C5S a

2p2D 2E dk

k2
dk9^f0~p1 ,p2!uIs1•s2

3uf0~p12k9,p21k9!&, ~145!

where

I5
k

6E1E2

1

E11E21m11m2
F 1

E11k1m1
1

1

E21k1m2
G .

~146!

Combining the crossed-ladder and ladder corrections of or-
dera5mc2, we get

DE22
TC 5S a

2p2D 2E dk

k2
dk9^f0~p1 ,p2!uIs1•s2

3uf0~p12k9,p21k9!&, ~147!

where

I5
k

6E1E2
F 1

E11k1m1

1

E21k1m2

1
1

E11E21m11m2
S 1

E11k1m1
1

1

E21k1m2
D G .
~148!

For helium, the above energy correction of lowest order re-
duces to

DE22
TC 5

4a5mc2

3 Fp2 212
1

2
ln2G^f0ud~r !s1•s2uf0&,

~149!

which reproduces that of Sucher.
For theO(a7mc2) fine structure of helium, the crossed-

ladder correction in Eq.~136! becomes

DE22
T3C5S a

2p2D 2E dk

k2
dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~150!

where

I so5
1

6k~Ek1k1m!2 F 1m2 2
1

Ek
21

k2

2m2Ek
2

1
k2

2Ek
3 S 2

1

m
1

2

Ek
D 2

k2

Ek
2

1

Ek1k1m S 1m2
1

Ek
D G

2
1

3kEk

1

~Ek1k1m!2 S 1m2
1

Ek
D ~151!

and

I ss5
1

6k~Ek1k1m!2 H 2
1

2F S 1m1
1

Ek
D 21 2k2

m2Ek
2

2
k2

Ek
3 S 1m1

2

Ek
D 1

2k4

5Ek
6G1

k2

Ek
2~Ek1k1m!

3S 1m1
1

Ek
2
2k2

5Ek
3D 2

k4

5Ek
4~Ek1k1m!2 J

1
1

3kEk

1

~Ek1k1m!2

3F 1m1
1

Ek
2
2k2

5Ek
2 S 1Ek

1
1

Ek1k1mD G
2

k

15Ek
2~Ek1k1m!2 F 4k2 2

1

Ek~Ek1k1m!G .
~152!

As observed, nonlogarithmic singularity does not occur in
either spin-orbit or spin-spin correction. This is because there
is no nonrelativistic contribution of lower order as the nomi-
nal order of two-pair single transverse photon corrections is
a7mc2 in nonrelativistic approximation. Furthermore, there
is no individual logarithmic singular term in the spin-orbit
correction. This agrees with the result from the correspond-
ing nonrelativistic contribution.

The ladder correction toO(a7mc2) fine-structure split-
tings in helium, given in Eq.~142!, becomes

DE22
T•C5S a

2p2D 2E dk

k2
dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s1•k9uf0~p12k9,p21k9!&, ~153!

where

I so5
1

6k

1

Ek1m

1

Ek1k1m

3F 1m2 2
1

Ek
2 1

k2

2m2Ek
22

k2

2Ek
3 S 1m1

2

Ek
D

2
k2

2Ek
2 S 1m1

1

Ek
D S 1

Ek1m
1

1

Ek1k1mD G
2

1

3kEk

1

Ek1m

1

Ek1k1m S 1m2
1

Ek
D ~154!

and
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I ss5
1

12k

1

Ek1m

1

Ek1k1m

3F S 1m1
1

Ek
D 21 2k2

m2Ek
22

k2

Ek
3 S 1m1

2

Ek
D

2
k2

Ek
2 S 1m1

1

Ek
D S 1

Ek1m
1

1

Ek1k1mD G
1

1

3kEk

1

Ek1m

1

Ek1k1m S 1m1
1

Ek
2
2k2

5Ek
3D

2
k

15Ek
3

1

Ek1m

1

Ek1k1m S 1

Ek1m
1

1

Ek1k1mD
2

k

15Ek
2

1

Ek1m

1

Ek1k1m

3F 4k2 1
1

2Ek
S 1

Ek1m
1

1

Ek1k1mD G . ~155!

Again, there is no nonlogarithmic singularity in both spin-
orbit and spin-spin corrections. No logarithmic singular term
appears in the spin-orbit correction. Equations~150! and
~153! give the relativistic contribution due to the two-pair
diagrams. On computation, we obtain

DE22
TC 5S a

2p2D 2E dk

k2
dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s1•k9uf0~p12k9,p21k9!&, ~156!

where

I so52 1
48 p2 1

8 ln21 11
72 ~157!

and

I ss52 41
7201 19

120 ln22 1
30 lnB2 29

960 p. ~158!

Taking Fourier transform, we get

DE22
TC 5a7mc2K f0UI sod~r !

1

r 2
s1•~r3p1!

1I ssd~r !
1

r 2
s1• r̂s2• r̂Uf0L , ~159!

where

I so52 1
2 p23ln21 11

3 ~160!

and

I ss5
41
12 2 19

2 ln212lnB1 29
16 p. ~161!

No logarithmic cutoff term in spin-orbit correction is consis-
tent with the absence of singular terms in nonrelativistic con-
tribution in Eq.~313! of Ref. @1#. The logarithmic cutoff term
in spin-spin correction cancels that of nonrelativistic contri-
bution in Eq.~314! of Ref. @1#. These results provide a good
check for both relativistic and nonrelativistic contributions
due to the two-pair diagrams.

IV. DOUBLE TRANSVERSE PHOTON EXCHANGE

Like single transverse photon exchange, relativistic con-
tributions to the helium fine structure splittings of order
a7mc2 due to double transverse photon exchange arise from
no-pair, one-pair, and two-pair diagrams. Since all numera-
tors in the energy corrections of double transverse photon
exchange have a similar structure in terms of ladder and
crossed-ladder diagrams, we derive them in some common
form. For crossed-ladder diagrams, we have

^a1
j L16~p12k8!a1

i a2
i L21~p21k!a2

j &5
1

4 H S 17
m

E~p12k8! Ds1
j s1

i 1
1

4m2 S 17
m

E~p12k8! Ds1•p1s1
j s1

i s1•~p12k9!

6
1

2mE~p12k8!
@2up12k9u2s1

j s1
i 12~p1

i 2k9 i !~2p1
j 2s1

j s1•k9!

2s1•p1s1
j s1

i s1•k2s1
j s1

i s1•ks1•~p12k9!#J
3H S 12

m

E~p21k! Ds2
i s2

j 1
1

4m2 S 12
m

E~p21k! Ds2•p2s2
i s2

j s2•~p21k9!

1
1

2mE~p21k!
@2p2

2s2
i s2

j 12p2
i ~2p2

j 1s2
j s2•k9!

2s2•p2s2•ks2
i s2

j 2s2•ks2
i s2

j s2•~p21k9!#J
5J01J11J2 , ~162!

where
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J05
1

2 S 17
m

Ek
D S 12

m

Ek
Ds1• k̂s2• k̂,

J152
1

2 S 17
m

Ek
D S 12

m

Ek
Ds1• k̂Fs2•

k9

k
2
k•k9

k2
s2• k̂G1

m

2Ek
3 F6S 12

m

Ek
D ~p12k9!•k1S 17

m

Ek
Dp2•kGs1• k̂s2• k̂

2
1

4mEk
S 17

m

Ek
D @ is1•~k3k9!1s1•ks2•~2p21k9!#7

1

4mEk
S 12

m

Ek
D @2 is1•~k3k9!1s1•ks2•~2p12k9!#,

J25
1

6m2 F2S 17
m

Ek
D S 12

m

Ek
D 2

m

2Ek
S 17

m

Ek
D 7

m

2Ek
S 12

m

Ek
D 6

k2

Ek
2G @ is1•~p13k9!1s1•p1s2•k9#

1
1

3k2 S 17
m

Ek
D S 12

m

Ek
D s1•p1s2•k91

m

6Ek
3 F6S 12

m

Ek
D 1S 17

m

Ek
D Gs1•p1s2•k9

1
1

6mEk
F S 17

m

Ek
D 6S 12

m

Ek
D G @ is1•~p13k9!2s1•p1s2•k9#1

k2

12mEk
3 ~2171!is1•~p13k9!

1
k2

12mEk
3 F21716

4m3

5Ek
3Gs1•p1s2•k92F 2

5k2 S 12
m

Ek
D S 17

m

Ek
D 6

m

15Ek
3 S 12

m

Ek
D 1

m

15Ek
3 S 17

m

Ek
D Gs1•p1s2•k9.

~163!

Similarly, we obtain

^a1
j L16~p12k8!a1

i a2
i L22~p21k!a2

j &5
1

4 H S 17
m

E~p12k8! Ds1
j s1

i 1
1

4m2 S 17
m

E~p12k8! Ds1•p1s1
j s1

i s1•~p12k9!

6
1

2mE~p12k8!
@2up12k9u2s1

j s1
i 12~p1

i 2k9 i !~2p1
j 2s1

j s1•k9!

2s1•p1s1
j s1

i s1•k2s1
j s1

i s1•ks1•~p12k9!#J H S 11
m

E~p21k! Ds2
i s2

j

1
1

4m2 S 11
m

E~p21k! Ds2•p2s2
i s2

j s2•~p21k9!

2
1

2mE~p21k!
@2p2

2s2
i s2

j 12p2
i ~2p2

j 1s2
j s2•k9!2s2•p2s2•ks2

i s2
j

2s2•ks2
i s2

j s2•~p21k9!#J
5J01J11J2 , ~164!

where

J05
1

2 S 17
m

Ek
D S 11

m

Ek
Ds1• k̂s2• k̂,

J152
1

2 S 17
m

Ek
D S 11

m

Ek
Ds1• k̂Fs2•

k9

k
2
k•k9

k2
s2• k̂G1

m

2Ek
3 F6S 11

m

Ek
D ~p12k9!•k2S 17

m

Ek
Dp2•kGs1• k̂s2• k̂

1
1

4mEk
S 17

m

Ek
D @ is1•~k3k9!1s1•ks2•~2p21k9!#7

1

4mEk
S 11

m

Ek
D @2 is1•~k3k9!1s1•ks2•~2p12k9!#,
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J25
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2G @ is1•~p13k9!1s1•p1s2•k9#
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For ladder diagrams, all spin dependent numerators have the following structure:
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5J01J11J2 , ~166!

where
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Similarly, we have
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i L22~p21k!a2

j &5
1

4 H S 17
m

E~p12k! Ds1
i s1

j 1
1

4m2 S 17
m

E~p12k! Ds1•p1s1
i s1

j s1•~p12k9!

6
1

2mE~p12k!
@2p1

2s1
i s1

j 12p1
i ~2p1

j 2s1
j s1•k9!2s1•p1s1•ks1

i s1
j

1s1•ks1
i s1

j s1•~p12k9!#J H S 11
m

E~p21k! Ds2
i s2

j 1
1

4m2 S 11
m

E~p21k! D
3s2•p2s2

i s2
j s2•~p21k9!2

1

2mE~p21k!
@2p2

2s2
i s2

j 12p2
i ~2p2

j 1s2
j s2•k9!

2s2•p2s2•ks2
i s2

j 2s2•ks2
i s2

j s2•~p21k9!#J
5J01J11J2 , ~168!

where

J052
1

2 S 17
m

Ek
D S 11

m

Ek
Ds1• k̂s2• k̂,

J15
1

2 S 17
m

Ek
D S 11

m

Ek
D F2 is1•S k̂3

k9

k D1s1• k̂Fs2•
k9

k
2
k•k9

k2
s2• k̂G J 2

m

2Ek
3 F7S 11

m

Ek
Dp1•k2S 17

m

Ek
Dp2•kG

3s1• k̂s2• k̂1
1

4mEk
S 17

m

Ek
D @ is1•~k3k9!2s1•ks2•~2p21k9!#

7
1

4mEk
S 11

m

Ek
D @ is1•~k3k9!1s1•ks2•~2p12k9!#,

J252
1

6m2 S 17
m

Ek
D S 11

m

Ek
D @2is1•~p13k9!2s1•p1s2•k9#6

k2

6m2Ek
2@ is1•~p13k9!22s1•p1s2•k9#

1
1

12mEk
F S 17

m

Ek
D 7S 11

m

Ek
D G @3is1•~p13k9!2s1•p1s2•k9#2

1

3k2 S 17
m

Ek
D S 11

m

Ek
D s1•p1s2•k9

1
1

6mEk
H m2

Ek
2F6S 11

m

Ek
D 2S 17

m

Ek
D G1S 17

m

Ek
D 7S 11

m

Ek
D J @ is1•~p13k9!2s1•p1s2•k9#

1
k2

12mEk
3F S 17

2m

Ek
D 7S 11

2m

Ek
D G @ is1•~p13k9!2s1•p1s2•k9#

1F 2

5k2 S 11
m

Ek
D S 17

m

Ek
D 6

m

15Ek
3 S 11

m

Ek
D 2

m

15Ek
3 S 17

m

Ek
D Gs1•p1s2•k9. ~169!

The above FW transformation for the double transverse photon corrections requires great care. The presentation of these
results provides a very good check for any other independent calculation in case of disagreement.

A. No pair

Again, we start from the relativistic energy corrections of lowest order. For two distinct particles, the four-dimensional
formula to derive the energy correction due to no-pair crossed-ladder double transverse photon exchange is

DE11
T3T5S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

~v22k21 id!~v822k821 id!
c̃~p1mp2m!a1

i

3
L11~p12k!

m1E2«1~p12k!1e2v1 id
a1
j a2

j L21~p21k8!

m2E2«2~p21k8!2e1v81 id
a2
i c~p1m8 p2m8 !. ~170!
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Integrating over the energy variables and neglecting the external potentials give

DE11
T3T5S a

2p2D 2E dk

2k

dk8

2k8
^fc~p1 ,p2!ua1

j L11~p12k8!a1
i a2

i L21~p21k!a2
j I ufc~p12k9,p21k9!&, ~171!

where

I52F 1

E2E~p12k8!2E~p2!2k8
1

1

E2E~p1!2E~p21k!2kG 1

E~p12k8!1E~p21k!1k1k82E

3F 1

E2E~p12k8!2E~p21k1k8!2k
1

1

E2E~p12k2k8!2E~p21k!2k8G
1

1

E2E~p1!2E~p21k1k8!2k2k8

1

E2E~p12k8!2E~p21k1k8!2k

1

E2E~p1!2E~p21k!2k

1
1

E2E~p12k2k8!2E~p2!2k2k8

1

E2E~p12k8!2E~p2!2k8

1

E2E~p12k2k8!2E~p21k!2k8
, ~172!

which reproduced that obtained in Ref.@1# using Sucher’s times-order formulation. To lowest order, the relativistic energy
correction from two no-pair crossed-ladder transverse photons exchanged is

DE11
T3T5a5m3c2^f0uId~r !~11 1

3s1•s2!uf0&, ~173!

where

I5E
0

`

dkS 12
m1

E1
D S 12

m2

E2
D F 1

m11m222k2E12E2
S 1

E11k2m1
1

1

E21k2m2
D 22 1

k

1

~E11k2m1!~E21k2m2!
G .
~174!

The energy correction arising from the no-pair ladder double transverse photon exchange may be derived using the
following four-dimensional formula:

DE11
T•T5S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

~v22k21 id!~v822k821 id!
c̃~p1mp2m!a1

i L11~p12k!

m1E2«1~p12k!1e2v1 id
a1
j a2

i

3
L21~p21k!

m2E2«2~p21k!2e1v1 id
a2
j c~p1m8 p2m8 !. ~175!

Integrating over the energy variables and dropping the external potentials lead to

DE11
T•T5S a

2p2D 2E dk

2k

dk8

2k8
^fc~p1 ,p2!ua1

i L11~p12k!a1
j a2

i L21~p21k!a2
j I ufc~p12k9,p21k9!&, ~176!

where

I52F 1

E2E~p12k!2E~p2!2k
1

1

E2E~p1!2E~p21k!2kG 1

E~p12k!1E~p21k!2E F 1

E~p12k!1k82m

1
1

E~p21k!1k82mG1
1

E2E~p12k2k8!2E~p2!2k2k8

1

E2E~p12k!2E~p2!2k

1

E2E~p12k2k8!2E~p21k!2k8

1
1

E2E~p1!2E~p21k1k8!2k2k8

1

E2E~p12k!2E~p21k1k8!2k8

1

E2E~p1!2E~p21k!2k
, ~177!

which reproduced that in Ref.@1#, derived in Sucher’s times-order formalism. To lowest order, the above correction becomes

DE11
T•T5a5m3c2^f0uId~r !~12 1

3s1•s2!uf0&, ~178!

where

I5E
0

`

dkS 12
m1

E1
D S 12

m2

E2
D F 1

m11m22E12E2
S 1

E11k2m1
1

1

E21k2m2
D 22 1

k

1

~E11k2m1!~E21k2m2!
G . ~179!
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For helium, the two corrections in Eqs.~173! and ~178! reduce to

DE11
T3T5a5mc2F2

p

2
111

1

2
ln2G^f0ud~r !~11 1

3s1•s2!uf0& ~180!

and

DE11
T•T52

p

4
a5mc2^f0ud~r !~12 1

3s1•s2!uf0&, ~181!

which reproduce Sucher’s results.
For the helium fine structure of ordera7mc2, the relativistic correction due to the no-pair double crossed-ladder transverse

photon exchange is given by

DE11
T3T5S a

2p2D 2E dk

2k

dk8

2k8
^fc~p1 ,p2!ua1

j L11~p12k8!a1
i a2

i L21~p21k!a2
j I ufc~p12k9,p21k9!&, ~182!

where

I52F 1

E~p12k8!1k82m
1

1

E~p21k!1k2mG 1

E~p12k8!1E~p21k!1k1k822m

3F 1

E~p12k8!1k2m
1

1

E~p21k!1k82mG
2

1

k1k8F 1

E~p12k8!1k2m

1

E~p21k!1k2m
1

1

E~p12k8!1k82m

1

E~p21k!1k82mG . ~183!

After nonrelativistic expansion of the denominators, we get

I5I 01I 11I 2 , ~184!

where

I 052
1

~Ek1k2m!2 F1k1
2

Ek1k2mG ,
I 15

~p11p22k9!•k

Ek~Ek1k2m!3 F1k1
3

Ek1k2mG2
3k•k9

k~Ek1k2m!4
2

k•k9

2k2~Ek1k2m!2 F1k1
2

Ek1k2mG ,
I 252

p1•kk•k9

Ek
2~Ek1k2m!4

F1k1
4

Ek1k2mG2
3~k•k9!2

2k~Ek1k2m!4 F 1k2 1
1

Ek~Ek1k2m!
1

1

k~Ek1k1m!G
2

~k•k9!2

2k2~Ek1k2m!2 F 1

2k3
1

1

Ek~Ek1k2m!2
1

2

k2~Ek1k1m!
1

1

k~Ek1k2m!2G2
9~k•k9!2

2kEk~Ek1k2m!5

2
~k•k9!2

2k2Ek~Ek1k2m!3 F1k1
2

Ek1k2mG . ~185!

Combining with the nonrelativistic expansion of the numerator presented at the beginning of this section, we obtain

DE11
T3T5S a

2p2D 2E dk

k2
dk9^f0~p1 ,p2!uI sois1•~p13k9!1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~186!

where

I so5
1

24m2

1

~Ek1k2m!2F1k1
2

Ek1k2mG S 12
m

Ek
D F12

2m

Ek
2
k2

Ek
2G ~187!

and
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I ss5
1

24m2

1

~Ek1k2m!2 F1k1
2

Ek1k2mG H S 12
m

Ek
D S 11

2m

Ek
2
2m3

Ek
3 D 2

2m2

k2 S 12
m

Ek
D 22 k2

Ek
2 F12

m

Ek
S 12

2m3

5Ek
3 D G J

1
1

4~Ek1k2m!2 S 12
m

Ek
D F12

m

Ek
1
2mk2

5Ek
3 G H 1

Ek~Ek1k2m! S 13k1
1

Ek1k2mD 1
1

k F 1

2k2
1

1

k~Ek1k2m!

1
1

~Ek1k2m!2G J 1
1

2~Ek1k2m!2S 1k1
2

Ek1k2mD S 12
m

Ek
D F 1

5k2 S 12
m

Ek
D 1

m

15Ek
3G1

1

60S 12
m

Ek
D 2

H 2
k2

Ek
2~Ek1k2m!4 F1k1

4

Ek1k2mG2
k

~Ek1k2m!4 F10k2 1
12

Ek~Ek1k2m!
1

3

k~Ek1k2m!G
2

1

~Ek1k2m!4S 2k1
5

Ek1k2mD 2
1

~Ek1k2m!2 F 8k31 16

k2~Ek1k2m!
1

5

kEk~Ek1k2m!

1
15

Ek~Ek1k2m!2
1

6

k~Ek1k2m!2G J . ~188!

It is seen that no nonlogarithmic cutoff term appears since nonrelativistic contributions are of nominal ordera7mc2.
The ladder diagrams contribute

DE11
T•T5S a

2p2D 2E dk

2k

dk8

2k8
^fc~p1 ,p2!ua1

i L11~p12k!a1
j a2

i L21~p21k!a2
j I ufc~p12k9,p21k9!&, ~189!

where

I52F 1

E~p12k!1k2m
1

1

E~p21k!1k2mG 1

E~p12k!1E~p21k!22m F 1

E~p12k!1k82m
1

1

E~p21k!1k82mG
2

1

k1k8F 1

E~p12k!1k2m

1

E~p21k!1k82m
1

1

E~p12k!1k82m

1

E~p21k!1k2mG . ~190!

After nonrelativistic expansion, we get

I5I 01I 11I 2 , ~191!

where

I 052
1

~Ek1k2m!2 F1k1
2

Ek2mG ,
I 152

~p12p2!•k

Ek~Ek1k2m!2 F 1

Ek1k2m S 1k1
2

Ek2mD1
1

~Ek2m!2G2
k•k9

k~Ek1k2m!2 F 1

Ek1k2m S 1k1
2

Ek2mD1
1

2k2G ,
I 252

~p12p2!•kk•k9

kEk~Ek2m!~Ek1k2m!3 F 1

Ek2m
1

2

Ek1k2mG2
1

k

1

~Ek1k2m!2F ~p12p2!•k

Ek~Ek1k2m!

k•k9

k S 12k1
1

Ek1k2mD
1

~k•k9!2

2k3 S 12k1
1

Ek1k2mD G2
1

2k~Ek1k2m!3 F1k1
2

Ek2mGF ~p12p2!•kk•k9

Ek~Ek1k2m!
1

~k•k9!2

k2 G . ~192!

Reducing the numerator and denominators leads to

DE11
T•T5S a

2p2D 2E dk

k2
dk9^f0~p1 ,p2!uI sois1•~p13k9!1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~193!

where
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I so5
1

24m2

1

~Ek1k2m!2F1k1
2

Ek2mG H 2S 12
m

Ek
D 21 3m

Ek
S 12

m

Ek
D 1

2m

Ek
S 12

m

Ek
D 2S 11

m

Ek
D 1

k2

Ek
2 F11

m

Ek
S 12

2m

Ek
D G J

1
1

12Ek~Ek1k2m!2 F 1

Ek1k2mS 1k1
2

Ek2mD 1
1

~Ek2m!2G S 12
m

Ek
D F12

m

Ek
1

k2

mEk
G2

1

2k2m3 ~194!

and

I ss52
1

24m2

1

~Ek1k2m!2F1k1
2

Ek2mG H S 12
m

Ek
D F11

2m

Ek
S 12

m2

Ek
2 D G2

2m2

k2 S 12
m

Ek
D 21 2k2

Ek
2 F11

m

2Ek
S 12

2m

Ek
D G J

2
1

12Ek~Ek1k2m!2 F 1

Ek1k2mS 1k1
2

Ek2mD 1
1

~Ek2m!2G S 12
m

Ek
D F12

m

Ek
1

k2

mEk
G

2
1

12k~Ek1k2m!2 F 1

Ek1k2mS 1k1
2

Ek2mD 1
3

2k2
1

2

k~Ek2m!G S 12
m

Ek
D F12

m

Ek
1
2mk2

5Ek
3 G

2
1

2~Ek1k2m!2 S 1k1
2

Ek2mD S 12
m

Ek
D F 1

5k2 S 12
m

Ek
D 1

m

Ek
3G1

1

30k~Ek1k2m!2 S 12
m

Ek
D 2F1k S 4k1

5

Ek2mD
1

1

Ek1k2m S 2k1
5

Ek2mD 1
1

k~Ek1k2m!G1
1

30Ek~Ek1k2m!2 S 12
m

Ek
D 2F 2

Ek1k2m S 54k1
2

Ek2mD 1
2

~Ek2m!2

1
Ek

~Ek1k2m!2 S 1k1
2

Ek2mD 1
k

~Ek2m!~Ek1k2m! S 3

Ek1k2m
1

1

Ek2mD 1
3

2~Ek1k2m!2G1
31

60k2m3 . ~195!

Here, the lower-order nonrelativistic contributions are sub-
tracted. Combining Eqs.~186! and~193! on computation, we
obtain the total relativistic contribution due to the no-pair
diagrams. The contribution is

DE11
TT 5S a

2p2D 2E dk

k2
dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~196!

where

I so52 7
24 2 1

12 ln21 1
4 lnB2 1

48 p ~197!

and

I ss5
71
240 1 1

960p2 113
240lnB1 39

240 ln2. ~198!

Taking Fourier transform, we get

DE11
TT 5a7mc2^f0uI sod~r !

1

r 2
s1•~r3p1!

1I ssd~r !
1

r 2
s1• r̂s2• r̂ uf0&, ~199!

where

I so52722ln216lnB2 1
2 p ~200!

and

I ss52 71
4 2 1

16 p1 113
4 lnB2 39

4 ln2. ~201!

Again the logarithmic terms above do not cancel those in
Eqs.~315!–~317! in Ref. @1#. Separating out ladder terms of
nonrelativistic nominal ordera6mc2 or the first two lines in
Eq. ~190! as pure ladder correction, the remaining logarith-
mic terms cancel those in Eqs.~316! and ~317! in Ref. @1#.
The singular terms in the pure ladder correction cancel those
arising from Eq.~94! in Ref. @1# as we indicated earlier.
Combining with corrections from no-pair single transverse
photon diagrams, the logarithmic cutoff terms are seen to
cancel the logarithmic singular terms in Eqs.~307!–~309!
and~315!–~317!. The cancellation provides a good check on
both nonrelativistic and relativistic calculations due to the
no-pair single and double transverse photon exchange.

B. One pair

For two distinct particles, the one-pair energy correction
due to the times-order crossed-ladder diagrams can be de-
rived from Eq.~1!. The corresponding times-order formula is
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DE21
T3T5S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

~v22k21 id!~v822k821 id!
c̃~p1mp2m!a1

i L12~p12k!

m1E1«1~p12k!1e2v2 id
a1
j a2

j

3
L21~p21k8!

m2E2«2~p21k8!2e1v81 id
a2
i c~p1m8 p2m8 !. ~202!

Integrating over the energy variables and neglecting the external potentials give

DE21
T3T5S a

2p2D 2E dk

2k

dk8

2k8
^fc~p1 ,p2!ua1

j L12~p12k8!a1
i a2

i L21~p21k!a2
j I ufc~p12k9,p21k9!&, ~203!

where

I5F 21

E~p12k8!1E~p12k2k8!1k
1

1

E2E~p1!2E~p21k!2kG 1

E~p1!1E~p12k2k8!1E~p12k8!1E~p21k!2E

3F 21

E~p1!1E~p12k8!1k8
1

1

E2E~p12k2k8!2E~p21k!2k8G
1

1

E2E~p12k2k8!2E~p2!2k2k8

1

E~p12k8!1E~p12k2k8!1k

1

E2E~p12k2k8!2E~p21k!1k8

1
1

E2E~p1!2E~p21k1k8!2k2k8

1

E~p1!1E~p12k8!1k81m

1

E2E~p1!2E~p21k!2k
, ~204!

which reproduces that in Ref.@1#, derived in Sucher’s times-order formalism. To lowest order, the crossed-ladder correction
becomes

DE21
T3T5a5m3c2^f0uId~r !~11 1

3s1•s2!uf0&, ~205!

where

I5E
0

`

dkS 11
m1

E1
D S 12

m2

E2
D F 1

E11E2
S 1

E11k1m1
1

1

E21k2m2
D 21 1

k

1

~E11k1m1!~E21k2m2!
G . ~206!

The ladder energy correction may be derived using the following formula:

DE21
T•T5S a

2p2D 2 1

22p i E d4p1dp2d
4kd4k8

~v22k21 id!~v822k821 id!
c̃~p1mp2m!a1

i L12~p12k!

m1E1«1~p12k!1e2v2 id
a1
j a2

i

3
L21~p21k!

m2E2«2~p21k!2e1v1 id
a2
j c~p1m8 p2m8 !. ~207!

Integrating over the energy variables and neglecting the external field, we get

DE21
T•T5S a

2p2D 2E dk

2k

dk8

2k8
^fc~p1 ,p2!ua1

i L12~p12k!a1
j a2

i L21~p21k!a2
j I ufc~p12k9,p21k9!&, ~208!

where

I5
1

E~p1!1E~p12k!1k

1

E2E~p12k2k8!2E~p21k!2k8 F 21

E~p12k!1E~p12k2k8!1k8
1

1

E2E~p1!2E~p21k!2kG
1

1

E2E~p12k2k8!2E~p2!2k2k8

1

E~p12k!1E~p12k2k8!1k8

1

E2E~p12k2k8!2E~p21k!2k8

1
1

E2E~p1!2E~p21k1k8!2k2k8

1

E~p1!1E~p12k!1k

1

E2E~p1!2E~p21k!1k
, ~209!

which reproduces that in Ref.@1#. To lowest order, the ladder correction becomes

DE21
T•T5a5m3c2^f0uId~r !~12 1

3s1•s2!uf0&, ~210!

where
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For helium, the two corrections in Eqs.~205! and ~210! reduce to

DE21
T3T5 1

2 ~11 ln2!a5mc2^f0ud~r !~11 1
3s1•s2!uf0& ~212!

and

DE21
T•T5 ln2a5mc2^f0ud~r !~12 1

3s1•s2!uf0&, ~213!

which reproduce Sucher’s results.
For the helium fine structure of ordera7mc2, the crossed-ladder correction reads

DE21
T3T5S a

2p2D 2E dk
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where
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After nonrelativistic expansion, we get

I5I 01I 11I 2 , ~216!

where
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Combining with the nonrelativistic expansion of the numerator, we obtain
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where
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and
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The inverse linear singularity in the spin-orbit correction corresponds to the subtraction of the lower-order nonrelativistic
contribution. However, the inverse linear singularity in the spin-spin correction cancels that from the ladder diagrams to be
analyzed in the following. Such cancellation shows that there is no lower-order nonrelativistic contribution of spin-spin type.

The ladder diagrams contribute to the helium fine structure with
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After nonrelativistic expansion, we get
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Reducing the numerator and denominators leads to
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where
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The pure singular spin-orbit terms 1/(2k2)21/(6k2) in Eqs.
~218! and ~226! correspond to the subtraction of the lower-
order terms in Eq.~6.8! of Ref. @4#. In Eq. ~6.8! of Ref. @4#,
the first term gives 1/(2k2) and the second term gives
21/(3k2). The total becomes 1/(6k2) which is
21
4(1/2k

2)21/6k2). All the logarithmic singular spin-spin
terms in Eqs.~219! and ~227! cancel out. The cancellation
indicates that there is no nonrelativistic spin-spin contribu-
tion of ordera6mc2, which agrees with the absence of spin-
spin terms in Eq.~6.8! of Ref. @4#. Doubling the corrections
in Eqs.~218! and~226!, we obtain the total contribution due
to the one pair. On computation, we get

DE21
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2p2D 214E dk

k2
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where

I so5
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8 ~231!

and

I ss5
13
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6 ln2. ~232!

Performing Fourier transform, we obtain
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r 2
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1

r 2
s1• r̂s2• r̂ uf0&, ~233!

where

I so52ln214 lnB13 ~234!

and

I ss52 13
2 28lnB110 ln2. ~235!

Both logarithmic cutoff terms here cancel those from nonrel-
ativistic contributions@Eqs.~319! and~320! in Ref. @1## due
to the one-pair double transverse photon exchange, although
there are a great many individual terms contributing to the
logarithmic cutoff. In fact, all terms in the nonrelativistic
contribution in Eqs.~242! and~244! of Ref. @1# contribute to
logarithmic singularity. The cancellation of the singularities
provides an excellent check.

C. Two pairs

For two distinct particles, the energy correction due to
crossed-ladder diagrams is derived also from Eq.~1!. The
corresponding times-order formula becomes
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Integration over the energy variables and neglecting the external potentials, we obtain
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which reproduces that in Ref.@1#. To lowest order, the relativistic energy correction
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where
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The times-order formula for the ladder energy correction is
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Performing integration over the energy variables and ignoring the external potentials, we obtain

DE22
T•T5S a

2p2D 2E dk

2k

dk8

2k8
^fc~p1 ,p2!ua1

i L12~p12k!a1
j a2

i L22~p21k!a2
j I ufc~p12k9,p21k9!&, ~242!

where

I52F 1

E~p1!1E~p12k!1k
1

1

E1~p2!1E~p21k!1kG 1

E~p12k!1E~p21k!1E

3F 1

E~p12k!1E~p12k2k8!1k8
1

1

E~p21k!1E~p21k1k8!1k81mG1
1

E2E~p1!2E~p21k1k8!2k2k8

3
1

E~p1!1E~p12k!1k

1

E~p21k!1E~p21k1k8!1k8
1

1

E2E~p12k2k8!2E~p2!2k2k8

3
1

E~p12k!1E~p12k2k8!1k8

1

E~p2!1E~p21k!1k
, ~243!

which reproduces that in Ref.@1#. To lowest order, the ladder correction becomes

DE22
T•T5a5m3c2^f0uId~r !~12 1

3s1•s2!uf0&, ~244!

where

I52E
0

`

dkS 11
m1

E1
D S 11

m2

E2
D F 1

m11m21E11E2
S 1

E11k1m1
1

1

E21k1m2
D 21 1

k

1

~E11k1m1!~E21k1m2!
G . ~245!

In the case of helium, the two-pair corrections in Eqs.~240! and ~245! reduce to

DE22
T3T5a5mc2Fp2 212

1

2
ln21 ln

B

mG^f0ud~r !~11 1
3s1•s2!uf0& ~246!

and

DE22
T•T5a5mc2Fp4 2 ln21 ln

B

mG^f0ud~r !~12 1
3s1•s2!uf0&, ~247!

which reproduce Sucher’s results.
For the helium fine structure of ordera7mc2, the crossed-ladder correction becomes

DE22
T3T5S a

2p2D 2E dk

2k

dk8

2k8
^fc~p1 ,p2!ua1

j L12~p12k8!a1
i a2

i L22~p21k!a2
j I ufc~p12k9,p21k9!&, ~248!

where
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I52F 1

E~p12k8!1k81m
1

1

E~p21k!1k1mG 1

E~p12k8!1E~p21k!1k1k812m

3F 1

E~p12k8!1k1m
1

1

E~p21k!1k81mG2
1

k1k8F 1

E~p12k8!1k1m

1

E~p21k!1k1m

1
1

E~p12k8!1k81m

1

E~p21k!1k81mG . ~249!

After nonrelativistic expansion, we get

I5I 01I 11I 2 , ~250!

where

I 052
1

~Ek1k1m!2 F1k1
2

Ek1k1mG ,
I 15

~p11p22k9!•k

Ek~Ek1k1m!3 F1k1
3

Ek1k1mG2
3k•k9

k~Ek1k1m!4
2

k•k9

2k2~Ek1k1m!2 F1k1
2

Ek1k1mG ,
I 252

p1•kk•k9

Ek
2~Ek1k1m!4

F1k1
4

Ek1k1mG2
~k•k9!2

k2Ek

1

~Ek1k1m!3 S 12k1
1

Ek1k1mD2
3~k•k9!2

2k~Ek1k1m!4

3F 1k2 1S 1k1
1

Ek
D 1

Ek1k1mG2
9~k•k9!2

2kEk

1

~Ek1k1m!5
2

~k•k9!2

2k2~Ek1k1m!2

3F 1

2k3
1

2

k2~Ek1k1m!
1S 1k1

1

Ek
D 1

~Ek1k1m!2G . ~251!

Combining with nonrelativistic expansion of the numerator, we obtain

DE22
T3T5S a

2p2D 214E dk

k2
dk9^f0~p1 ,p2!uI sois1•~p13k9!1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~252!

where

I so5
1

6m2

1

~Ek1k1m!2F1k1
2

Ek1k1mG S 11
m

Ek
D F11

2m

Ek
2
k2

Ek
2G ~253!

and

I ss52
1

6m2

1

~Ek1k1m!2 F1k1
2

Ek1k1mG H S 11
m

Ek
D S 211

2m

Ek
2
2m3

Ek
3 D 1

2m2

k2 S 11
m

Ek
D 21 k2

Ek
2 F11

m

Ek
S 11

2m3

5Ek
3 D G J

1
1

~Ek1k1m!2 S 11
m

Ek
D F11

m

Ek
2
2mk2

5Ek
3 G H 1

Ek~Ek1k1m!S 13k1
1

Ek1k1mD
1
1

k F 1

2k2
1

1

k~Ek1k1m!
1

1

~Ek1k1m!2G J 12
1

~Ek1k1m!2 S 11
m

Ek
D S 1k1

2

Ek1k1mD F 1

5k2 S 11
m

Ek
D 2

m

15Ek
3G

2
1

15~Ek1k1m!2 S 11
m

Ek
D 2H k2

Ek
2~Ek1k1m!2 F1k1

4

Ek1k1mG1
k

~Ek1k1m!2 F1k S 10k 1
15

Ek
D

1S 1k1
4

Ek
D 3

Ek1k1mG1F 8k31 1

k S 16k 1
5

Ek
D 1

Ek1k1mG1
1

~Ek1k1m!2 S 8k1
5

Ek1k1mD J . ~254!

It is interesting to note that the inverse square and inverse linear singularities in the spin-spin correction imply nonrelativistic
contributions of ordersa5mc2 and a6mc2. On the other hand, we know that no spin-dependent nonrelativistic correction
appears to ordera5mc2 or a6mc2 arising from the two-pair diagrams. Indeed, these singularities cancel out those from the
ladder diagrams to be discussed in the following.

The ladder diagrams contribute to the fine structure with
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DE22
T•T5S a

2p2D 2E dk

2k

dk8

2k8
^fc~p1 ,p2!ua1

i L12~p12k!a1
j a2

i L22~p21k!a2
j I ufc~p12k9,p21k9!&, ~255!

where

I52F 1

E~p12k!1k1m
1

1

E~p21k!1k1mG 1

E~p12k!1E~p21k!12m F 1

E~p12k!1k81m
1

1

E~p21k!1k81mG
2

1

k1k8F 1

E~p12k!1k1m

1

E~p21k!1k81m
1

1

E~p12k!1k81m

1

E~p21k!1k1mG . ~256!

After nonrelativistic expansion, we get

I5I 01I 11I 2 , ~257!

where

I 052
1

~Ek1k1m!2 F1k1
2

Ek1mG ,
I 152

~p12p2!•k

Ek~Ek1k1m!2 F 1

Ek1k1m S 1k1
2

Ek1mD1
1

~Ek1m!2G2
k•k9

k~Ek1k1m!2 F 1

Ek1k1m S 1k1
2

Ek1mD1
1

2k2G ,
I 252

~k•k9!2

k3~Ek1k1m!3 S 1k1
1

Ek1mD2
~k•k9!2

4k5~Ek1k1m!2
2

~k•k9!2

kEk~Ek1k1m!3 F 1

2k2
1

3

Ek1k1m S 12k1
1

Ek1mD1
1

~Ek1m!2G .
~258!

Reducing the numerator and denominators leads to

DE22
T•T5S a

2p2D 214E dk

k2
dk9^f0~p1 ,p2!uI sois1•~p13k9!1I sss1•p1s2•k9uf0~p12k9,p21k9!&, ~259!

where

I so52
1

6m2

1

~Ek1k1m!2F1k1
2

Ek1mG H S 11
m

Ek
D S 221

3m

Ek
2
2m3

Ek
3 D 2

k2

Ek
2 F12

m

Ek
S 11

2m

Ek
D G J

1
1

3Ek~Ek1k1m!2 F 1

Ek1k1mS 1k1
2

Ek1mD 1
1

~Ek1m!2G S 11
m

Ek
D F11

m

Ek
2

k2

mEk
G ~260!

and

I ss52
1

6m2

1

~Ek1k1m!2F1k1
2

Ek1mG H S 11
m

Ek
D F12

2m

Ek
S 12

m2

Ek
2 D G2

2m2

k2 S 11
m

Ek
D 21 k2

Ek
2 F22

m

Ek
S 11

2m

Ek
D G J

2
1

3Ek~Ek1k1m!2 F 1

Ek1k1mS 1k1
2

Ek1mD 1
1

~Ek1m!2G S 11
m

Ek
D F11

m

Ek
2

k2

mEk
G

2
1

3k~Ek1k1m!2 F 1

Ek1k1mS 1k1
2

Ek1mD 1
3

2k2
1

2

k~Ek1m!G S 11
m

Ek
D F11

m

Ek
2
2mk2

5Ek
3 G22

1

~Ek1k1m!2 S 11
m

Ek
D

3S 1k1
2

Ek1mD F 1

5k2 S 11
m

Ek
D 2

m

15Ek
3G1

2

15k~Ek1k1m!2 S 11
m

Ek
D 2F1k S 4k1

5

Ek1mD 1
1

Ek1k1m S 3k1
5

Ek1mD G
1

2

15Ek~Ek1k1m!2 S 11
m

Ek
D 2F 2

Ek1k1m S 54k1
2

Ek1mD 1
Ek

~Ek1k1m!2 S 1k1
2

Ek1mD 1
2

~Ek1m!2

1
k

~Ek1m!~Ek1k1m! S 3

Ek1k1m
1

1

Ek1mD 1
3

2~Ek1k1m!2G . ~261!
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As we noted earlier, nonlogarithmic singularities in the
above spin-spin correction cancel those from the crossed-
ladder diagrams. Computing and combining the corrections
in Eqs.~252! and ~259!, we obtain

DE22
TT 5S a

2p2D 2E dk

k2
dk9^f0~p1 ,p2!uI sois1•~p13k9!

1I sss1•p1s1•k9uf0~p12k9,p21k9!&, ~262!

where

I so52 1
3 2 1

8 lnB1 1
48 p1 7

24 ln2 ~263!

and

I ss5
55
240 2 1

960 p1 3
240 lnB2 77

240 ln2. ~264!

Taking Fourier transform, we get

DE22
TT 5a7mc2^f0uI sod~r !

1

r 2
s1•~r3p1!

1I ssd~r !
1

r 2
s1• r̂s2• r̂ uf0&, ~265!

where

I so52823lnB1 1
2 p17ln2 ~266!

and

I ss52 55
4 1 1

16 p2 3
4 lnB1 77

4 ln2. ~267!

The logarithmic cutoff term in the spin-orbit correction can-
cels that in Eq.~322! of Ref. @1# due to nonrelativistic ap-
proximation. The spin-spin logarithmic cutoff term cancels
that from the nonrelativistic contribution in Eq.~323! in Ref.
@1#. An additional check is provided between the no-pair and
two-pair double transverse photon corrections. Replacingm
by 2m in the no-pair kernel reproduces the correct result for
the two-pair diagrams andvice versa.

V. RESULTS AND CONCLUSIONS

Summing all the corrections given in Eqs.~58!, ~97!,
~132!, ~159!, ~199!, ~233!, and~265!, we obtain

DE5a7mc2^f0uI sod~r !
1

r 2
s1•~r3p1!

1I ssd~r !
1

r 2
s1• r̂s2• r̂ uf0&, ~268!

where

I so52 3
4 p2 11

3 13lnB13ln2 ~269!

and

I ss52 5
2 p2 80

3 1 27
2 ln21 35

2 lnB. ~270!

The nonrelativistic contribution presented in Ref.@1# is

DE5a7mc2F9SRso

4p
1LsoD2

15

2 SRss

4p
1LssD G

1a7mc2^f0uOso1Ossuf0&, ~271!

where

Oso522Z ln~Za!22d~r1!
1

r 1
2s1•~r13p1!

1S 29 lna23lnB19ln22
221

12 D d~r !
1

r 2
s1•~r3p1!

1
8i

9
d~r !s1•@ r̂3~ r̂•p1!p2# ~272!

and

Oss5S 152 lna2
35

2
lnB2

9

2
ln22

1555

96 D d~r !
1

r 2
s1• r̂s2• r̂

1
2i

9

d~r !

r 2
s1• r̂ ~s223s2• r̂ r̂ !•p1 . ~273!

The logarithmic cutoff terms are seen to cancel out between
the relativistic and nonrelativistic contributions as they must.
In fact, there are 14 individual cancellations as we demon-
strated earlier. These cancellations provide a good check for
the calculation. In addition, nonlogarithmic singularities are
shown to cancel out the corresponding nonrelativistic contri-
butions of lower order. Such systematic cancellations of sin-
gularities at operator level~not numerical level! have never
been demonstrated explicitly in a high-order calculation for
any bound-state system. This is an important procedure for
minimizing the calculational error in increasingly sophisti-
cated higher- and higher-order QED calculations.

Combining the relativistic contributions with the nonrela-
tivistic contributions, we obtain

DE5a7mc2F9SRso

4p
1LsoD2

15

2 SRss

4p
1LssD G

1a7mc2^f0uOso1Ossuf0&, ~274!

where

Oso522Z ln~Za!22d~r1!
1

r 1
2s1•~r13p1!

1S 29lna112 ln22
265

12
2
3

4
p D d~r !

1

r 2
s1•~r3p1!

1
8i

9
d~r !s1•@ r̂3~ r̂•p1!p2# ~275!

and

Oss5S 152 lna2
5

2
p19ln22

4115

96 D d~r !
1

r 2
s1• r̂s2• r̂

1
2i

9

d~r !

r 2
s1• r̂ ~s223s2• r̂ r̂ !•p1 . ~276!
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The first two spin-orbit and first spin-spin operators above
have been calculated by Drake and Yan@13,14#. The
electron-electron part givesn01540.6 kHz andn125216.3
kHz. The revised helium fine structure splittings of 1s2p
state @13,14# then becomen015296 169 74.1 kHz and
n125229 117 9.9 kHz. Calculation of the other nonrelativis-
tic operators is in progress. However, the additional contri-
bution is expected to be small. For the spin-orbit part, the last
correction in Eq.~275! would be less than 0.5 kHz if the
expectation value of its operator were the same as that of the
second operator. For the spin-spin terms, the last two correc-
tions in Eq.~276! would be no more than 0.2 kHz assuming
their operators are identical to the first one in Eq.~276!. A
recent experiment by Shiner’s group@7# gives
n015296 169 62(3) kHz andn125229 117 4(3) kHz. Rea-
sonable good agreement between theory and experiment is
found, given the magnitude of order for uncalculated correc-
tions to the order of interest. A precise comparison with ex-
periments cannot be made until all corrections are included.
First, nonlogarithmic terms of second order also need to be
included. Second, nonlogarithmic terms in radiative correc-
tions @8# need to be calculated numerically, which are ex-
pected to be around 10 kHz. Finally, effects of the nuclear
motion corrections need to be included. The two-body part
of the nuclear motion effects was derived and presented in
Ref. @1#. However, our analysis indicates that some three-
body terms of ordera6m2c2/M might give a contribution of
a few kHz. These three-body terms cannot be calculated in
the current two-body external-field formalism. Recently, a
three-body formalism has been developed as an extension of
the two-body Bethe-Salpeter formalism with which three-
body corrections of lowest order are derived. The details of
this three-body formalism and the calculation of the true
three-body corrections will be presented elsewhere, along
with recalculation of the two-body-plus-Coulomb-field cor-
rections evaluated previously@1# using the external-potential
Bethe-Salpeter two-body formalism. This recalculation not
only verifies the correctness of our three-body formalism and
of the external-potential two-body formalism to the order of
interest, but also provides a beautiful physical picture or in-
terpretation for those two-body-plus-Coulomb-field terms,
which is totally unclear within the external-potential two-
body formalism.

In this paper, we presented the calculation of the off-
leading-order relativistic contributions in helium. Such cal-
culation has not been carried out in any other bound-state
system. A test of these corrections is very important because
the off-leading-order effects are characteristic of bound-state
physics in comparison with free particle systems. It is even
more interesting that such tests can only be provided by he-
lium at the moment. Tests of the off-leading-order correc-
tions arising from the relativistic momentum region cannot
be carried out in hydrogen, positronium, or muonium due to
the lack of experimental accuracy.

We have reformulated the times-order external-potential
Bethe-Salpeter formalism in a form more suitable for calcu-
lation of energy corrections arising from the relativistic mo-
mentum region. The essential difference between the current
formalism and Sucher’s formalism is that we obtain all rela-
tivistic kernels directly from the scattering theory and the
Brillouin-Wigner perturbation method is used in Sucher’s

formalism to derive both nonrelativistic and relativistic ker-
nels. In order to compare the Brillouin-Wigner perturbation
theory with our method, we recalculated the helium energy
levels of ordera5mc2 as well as theO(a7mc2) no-pair Cou-
lomb correction to helium fine structure. The calculation
shows that the current method is much more convenient for
the calculation of corrections arising from the relativistic
momentum region. The calculation is carried out in times
order. An explicitly covariant calculation of the leading-
order corrections arising from the relativistic momentum re-
gion is also possible as presented in Ref.@16#. This formal-
ism is similar to the one presented here since all kernels are
obtained directly from the scattering amplitudes for free par-
ticle systems. In this calculation, the explicit covariance of
all propagators is kept throughout the calculation. Coulomb
and transverse photons are treated on equal footing. In the
calculation, one needs to sandwich the covariant scattering
amplitudes between the three-dimensional wave functions.
The wave function may be written as

c~p!5ū~p!Gv~p! f ~p!, ~277!

whereu andv are the Dirac spinors andG corresponds to the
angular part of the wave function.f (p) is the radial wave
function. Note that in either the Brillouin-Wigner or the Sal-
peter perturbation theory, the Breit corrections have to be
subtracted in order to prevent singularity. On the other hand,
theO(a5mc2) corrections to the hyperfine structure in pos-
itronium due to two covariant photons exchanged were cal-
culated in the explicitly covariant approach in Ref.@16# with-
out subtracting the Breit corrections. The result is

DE52
16a2

pNm2 F E
0

`

p2f ~p!dpG2524a5mc2f0
2~0!. ~278!

This result is reproduced by summing all the relevant correc-
tions calculated by Karplus and Klein@17# and by Fulton and
Martin @12#, and is given by

DE52a5mc2^f0ud~r !s1•s2uf0&, ~279!

which is the same as that in Eq.~278! for hyperfine structure.
In deriving the above result by Sucher@3# as shown in this
paper, photon propagators are expressed in Coulomb gauge
and fermion propagators are expressed in terms of positive-
and negative-energy projection operators. This times-order
calculation is the least covariant one. The more covariant
method is the one used by Karplus and Klein@17#, by Fulton
and Martin @12#, and by Araki @2#, in which the fermion
propagators are kept covariant instead of times order. The
result in Eq.~278! is obtained without breaking explicit co-
variance of both fermion and photon propagators. This most
explicitly covariant method may only be applied to the cal-
culation of the leading-order relativistic contributions such as
contributions of ordersa5mc2, a6mc2, anda7mc2, arising
from two-, three-, and four-photon exchange diagrams, re-
spectively, when all nonrelativistic variables can be ne-
glected. So far, the two-photon diagrams are best understood
in two-body bound-state study beyond tree level. This is be-
cause the two-photon corrections are the only ones that have
been calculated in all three possible approaches. Since non-
relativistic contributions are calculated in times order within
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any two-body formalism, the difference between various for-
malisms is the calculation of relativistic contributions. The
calculation of the leading-order relativistic contributions
from two-photon diagrams has been carried out, as shown
above, in all three possible ways from the most covariant one
to the least covariant times-order form. The next-to-leading-
order relativistic contributions from two-photon diagrams are
calculated in the times-order manner as presented in this pa-
per. It would be interesting to calculate these contributions
using the other two methods. However, such calculation
could be difficult since the fermion propagators are ex-
pressed covariantly while the four-dimensional wave func-
tions are expressed in terms of positive or negative poles. To
leading order, such calculation is relatively easy since all
nonrelativistic variables are neglected. To higher order, one
needs to separate effectively relativistic variables from non-

relativistic variables. In addition, there are two overall spin-
orbit and spin-spin cancellations of logarithmic singularity to
check the correctness of the calculation. In the times-order
calculation, there are 14 additional individual cancellations
to pinpoint possible missing terms in terms of the times-
order diagrams for no-pair pure single transverse photon ex-
change; no-pair, one-pair, and two-pair single transverse
photon exchange plus a Coulomb photon; and no-pair, one-
pair, and two-pair double transverse photon exchange.
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