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We investigate classical dynamics and properties of highly excited charged two-body systems in a magnetic
field. We hereby focus on the regular regime which can be described by perturbation theoretical methods. After
introducing the exact constants of motion as canonical momenta we apply a perturbation theoretical series
expansion with respect to the parameters :5B1/2 and use a time-averaging method to obtain the long-time
dynamical behavior of the system. This procedure allows us to identify approximate constants of motion and
enables us to derive effective Hamiltonians which describe the averaged dynamics on different time scales. The
doubly averaged equations of motion are in fourth-order perturbation theory integrable. The solutions of these
equations in terms of rotators and librators are given analytically and phase space is classified completely.
Finally we arrive at a thorough understanding of the recently found self-stabilization effect of the center-of-
mass motion of the ion in the context of our perturbation theoretical investigation.@S1050-2947~96!07612-3#

PACS number~s!: 32.60.1i, 47.20.Ky, 31.50.1w

I. INTRODUCTION AND PHENOMENA

The behavior of few-body systems in strong external
fields became during the past twenty years a very active re-
search field. The most thoroughly studied system is certainly
the hydrogen atom in a strong magnetic field~see Ref.@1#
and references therein!. Both theoretically as well as experi-
mentally large parts of the spectrum below as well as above
the field-free ionization threshold@2# have been investigated
in detail. The hydrogen atom in a magnetic field serves as an
outstanding simple example of a physical system whose clas-
sical counterpart undergoes with increasing electronic exci-
tation a transition from regularity to chaos. At the same time
the properties of the atom change, with increasing action,
from purely quantal to semiclassical and eventually to clas-
sical behavior.

In the presence of an external magnetic field, neutral as
well as charged two-body systems possess an inherent two-
body character, i.e., the center of mass~CM! and relative
motion cannot be separated but are intimately coupled@3,4#.
There exists, however, a constant of motion, the so-called
pseudomomentum, which can be used to perform a pseu-
doseparation of the CM and relative motion. For neutral sys-
tems the components of this pseudomomentum are indepen-
dent and the pseudoseparation accomplishes a complete
elimination of the CM coordinates from the Hamiltonian
@3–5#. Nevertheless, the CM and relative motion remain
coupled and, in particular, the CM velocity is completely
determined by the relative coordinates perpendicular to the
magnetic field. Recently a number of two-body effects due to
this coupling have been found and investigated for neutral
systems@6–10#. As examples we mention the classical dif-
fusion of the CM for chaotic phase space, the intermittent
near-threshold dynamics of the CM as well as electronic mo-
tion and the existence of an outer potential well for suffi-
ciently large pseudomomentum which yields a new class of
weakly bound states with large electric dipole moments.

For the case of a system with a net chargeQ the two

components of the pseudomomentum perpendicular to the
magnetic field do not commute and, therefore, they cannot be
introduced simultaneously as canonical momenta. There ex-
ists, however, a generalization of the pseudoseparation for
neutral systems to the case of a charged particle system
@4,11–13#. The resulting Hamiltonian consists of three parts
describing qualitatively different types of motion and cou-
plings. The first part involves only CM degrees of freedom
and treats the CM as a free pseudoparticle with chargeQ and
massM ~M is the total mass of the ion! in a magnetic field.
The second part couples the CM and relative degrees of free-
dom and represents a motional Stark term with a rapidly
oscillating electric field of intrinsic dynamical origin. This
term arises due to the fact that a moving ion in a magnetic
field experiences an additional electric field. Finally the third
term involves only relative degrees of freedom, i.e., repre-
sents the electronic Hamiltonian for the case of an atom.

Very recently interesting effects and phenomena due to
the coupling of the CM and electronic motions in one-
electron atomic ions have been observed and studied@14#.
The corresponding investigations have been performed by
evaluating the results of the integration of the classical equa-
tions of motion for electronically highly excited atomic ions
and are supported by quantum-mechanical considerations
@12#. Two major effects have been reported: the self-
stabilization and self-ionization effects. For regular CM and
relative motion and vanishing initial CM velocity the self-
stabilization of the highly excited ion on a cyclotron orbit
takes place. For large values of the initial CM velocity the
energy transfer from the CM to the electronic degrees of
freedom becomes strong enough to allow the atom to ionize.
The dynamical self-ionization process has been studied in
some detail. Both the self-stabilization as well as the self-
ionization effect are consequences of the presence of the
coupling term between the CM and the electronic degrees of
freedom. The self-stabilization effect has only been under-
stood to some heuristic degree by performing an empirical
averaging of the relevant quantities over the numerically ob-
served different time scales of motion.
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Since the self-stabilization effect takes place in the regular
regime which is the subject of investigation of the present
paper we provide in the following a few more details on the
numerically observed classical behavior of the highly excited
ion in this regime. We are referring to the case for which the
Coulomb interaction dominates over the magnetic forces. In
particular, let us concentrate on a vanishing initial CM ve-
locity. In the absence of a magnetic field the ion would sim-
ply stay at rest. In the presence of a magnetic field, however,
the above-mentioned coupling term causes an oscillating
flow of energy between the CM and electronic degrees of
freedom and the CM motion exhibits a variety of possibili-
ties for its dynamical behavior. Four time scales, differing by
orders of magnitude, have been observed for the CM motion.
On the longest time scale the CM performs approximately a
circular motion which corresponds to the motion of a free
pseudoparticle with chargeQ and massM in a magnetic
field. In spite of the fact that the initial CM velocity of the
ion is equal to zero we encounter on this longest time scale
the effect of self-stabilization of the ion on a cyclotron orbit.
With the help of the above-mentioned empirical averaging
procedure approximate expressions for the radius as well as
the angular frequency of these orbits have been derived. We
remark that the effect of the classical self-stabilization is a
generic phenomenon for regular phase space and will in the
following be shown to occur for any initial conditions.

The purpose of the present paper is the investigation of
the regular regime for highly excited atomic ions in magnetic
fields within the framework of classical perturbation theory.
Apart from an improvement of our general understanding of
the dynamics in the regular regime, our goals are to derive
low-dimensional effective Hamiltonian equations of motion
which describe the averaged classical motion on the different
time scales, to reveal approximate constants of motion and,
particularly, to gain a deeper understanding of the classical
self-stabilization effect which has been observed in numeri-
cal simulations. In detail we proceed as follows. In Sec. II we
perform, step by step, the canonical transformations of the
Hamiltonian which introduce all existing exact constants of
motion as canonical momenta, thereby eliminating the corre-
sponding cyclic coordinates. Our choice of canonical vari-
ables and transformations already take into account the type
of perturbation theory we want to apply. Appendixes A and
B provide the necessary transformation formulas for the ca-
nonical CM and action angle variables of the Kepler prob-
lem. Section III gives a brief account of the perturbation
theoretical ideas. Appendix C provides the general perturba-
tion theoretical methods, i.e., the series expansion as well as
the time-averaging procedure for the derivation of effective
Hamiltonian and their equations of motion. In Sec. IV we
apply the methods described in Appendix C to our case of
the charged two-body system in a magnetic field. Many
properties of the regular regime are derived and discussed.

II. CONSTANTS OF MOTION AND CANONICAL
TRANSFORMATIONS OF THE HAMILTONIAN

Our starting point is the Hamiltonian for a charged two-
body system of two interacting particles in a homogeneous
external magnetic field

H8~$p8~ i !%,$r 8~ i !% !5(
i51

2
1

2mi
@p8~ i !2qiA~r 8~ i !!#2

1V~ ur 8~1!2r 8~2!u!, ~1!

where we have used the prime to label the quantities in the
laboratory coordinate system. Throughout the paper we will
use the symmetric gaugeA~r !51

2B3r for the vector poten-
tial and the magnetic-field vectorB along thez axis. In the
following we perform a number of canonical transformations
which will finally lead us to canonical variables which take
into account all exact constants of motion and are best suited
for a perturbation theoretical approach to the system. It is
elucidating to perform these transformations step by step and
not by a single composed canonical transformation: this
way will provide us with a number of additional insights into
the structure and properties of the underlying Hamiltonian as
well as motivate our choice of variables for the perturbation
theoretical approach.

In the absence of a magnetic field the total canonical
~5kinetic! momentum is conserved and the straightlined uni-
form CM motion separates completely from the relative mo-
tion. The Kepler-HamiltonianH8@3# involving the relative de-
grees of freedom is integrable and the commonly used
action-angle variables are

I 1~p8,r 8!5 l z85x8py82y8px8 ,

I 2~p8,r 8!5u l8u5A~r 83p8!2,

I 3~p8,r 8!5S 2
mk2

2H8@3#~p8,r 8! D
1/2

, ~2!

wherem5(m1m2/M ) andk is the coupling constant of the
~Coulomb! potentialV. The dynamics is, in these variables,
extremely simple, i.e., the action variablesI 1 ,I 2 ,I 3 are con-
served, the anglesF1, F2 are constant, andF3 shows a linear
time dependence. As we shall see later on, part of these
variables is also useful for the case of the presence of a
magnetic field to which we shall turn next.

The Hamiltonian depends now on the vector potentialA
and therefore translations in space do not provide a symme-
try. Instead the Hamiltonian is invariant with respect to the
phase-space translation group@3#. The generators of this
group are the components of the so-called pseudomomentum
which is a conserved quantity and takes on the following
appearance:

K 85(
i51

2 S p8~ i !1
qi
2
B3r 8~ i !D . ~3!

The componentKz8 is identical to the corresponding compo-
nent of the total canonical momentum in field-free space and
reflects the fact that the translation motion parallel to the
magnetic field is uniform. If the net charge of the system is
nonzero the components of the pseudomomentum perpen-
dicular to the magnetic field do not commute and, therefore,
cannot be used simultaneously in a complete set of constants
of motion.

In addition the total canonical angular momentum parallel
to the magnetic field
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Lz85(
i51

2

x8~ i !py8
~ i !2y8~ i !px8

~ i ! ~4!

is conserved@15#. A maximal set of commuting constants of
motion is (H8,K'8

2,Kz8 ,Lz8). In the following we will intro-
duce, apart from field-dependent factors~see below!, these
quantities through canonical transformations as canonical
momenta and will at the same time transform the remaining
degrees of freedom to action-angle variables which are well
suited for the perturbation theoretical approach with respect
to the magnetic field.

In a first step we make the usual coordinate change from
the laboratory coordinate system to CM variables~Rcm,Pcm!
relative variables~r ,p!. In the latter coordinate frame the
quantitiesKz8 andLz8 separate, i.e., are direct sums of differ-
ent parts involving only CM and relative variables. The
quantityK'8

2, however, does not separate in this sense. To
achieve its separation the following unitary gauge transfor-
mation is necessary@4,11–13#:

Pcm5Pcm8 1
b

2
B3r 8,

p5p82
b

2
B3Rcm8 , ~5!

where b5@~q1m22q2m1)/M ]. The resulting Hamiltonian
reads as follows:

H5H @1#1H @2#1H @3#,

H @1#5
1

2M SPcm2
Q

2
B3RcmD 2,

H @2#52
b

M SPcm2
Q

2
B3RcmDB3r ,

H @3#5
p2

2m
1gLBlz1lB2~x21y2!1V~r !, ~6!

wherel z is thez component of the canonical relative angular
momentum and

gL5S 2
q1
2m1

2
q2
2m2

1
Q

2M D
l5

1

8 H q12m1
1

q2
2

m2
2
2Q

M2 ~q1m11q2m2!1Q2
m1
31m2

3

M4 J .
~7!

It has a particular appealing form which has been mentioned
in the introduction. H @1# is the CM Hamiltonian for a free
pseudoparticle with chargeQ and massM in a magnetic
field which treats the ion as an entity.H @2# contains the
coupling of the CM and relative degrees of freedom and
represents a motional Stark term with a rapidly oscillating
electric field of intrinsic dynamical origin.H @3# is the
purely electronic Hamiltonian. With the above transforma-

tion we have achieved even more than we wanted:K'
2 de-

pends now solely on the CM variables, i.e.,K'
25K cm'

2 ! ~The
reader should carefully distinguish between the total quanti-
ties K'

2 ,Lz and the CM variablesK cm'
2 ,Lcmz which are, in

general, different quantities.! This means that we are now
ready to introduce, by a further canonical transformation,K'

2

as a canonical momentum~see also Ref.@17#!. The complete
set of new canonical momenta for the CM variables, i.e., for
the HamiltonianH @1#, are

~p1 ,p2 ,p3!5SK cm'
2

2B
,Lcmz ,PcmzD .

With these momenta the HamiltonianH @1# reads

H @1#5
p3
2

2M
1BS gZp21

p1
M D , ~8!

with gZ :52(Q/M ). For the corresponding canonical con-
jugated coordinates (q1 ,q2 ,q3) we refer the reader to Ap-
pendix A. SinceH @1# is integrable it depends only on the
conserved momentapi . We included a factor 1/2B in the
definition of the canonical momentump1 due to the follow-
ing reason: after the canonical transformation to the mo-
mentapi the relevant part of the HamiltonianH @1# @see Eq.
~8!# consists only of terms which are linear proportional to
the magnetic-field strength@this is not the case for the cor-
responding Hamiltonian in Eqs.~6! which contains terms
proportional toB as well asB2#. Equally important, the cou-
pling HamiltonianH @2# will, in the above-chosen scaled vari-
ables, also be proportional to only one power of the field
strength, namely, toB3/2 @see Eq.~10!#. These facts are of
particular relevance and desirable for our later on perturba-
tion theoretical expansion in terms of powers of the
magnetic-field strength since we will be able to take into
account the CM or coupling Hamiltonian by the inclusion of
a single low perturbation theoretical order in the field
strength. We remark that this scale transformation does not
prevent us from performing a consistent perturbation theory.
Since the only rescaled variablep1 is a constant of motion,
every rescaled expression in the equations of motion appears
only in connection with this conserved quantity and therefore
does not affect the dynamics of our perturbation theory. For
any field strength and, in particular, for the low-field limit
B→0, the above-performed scaling does not cause any intri-
cacies. Before the limitB→0 is performed the constant
p15~K cm'

2/2B! has to be reinserted and will only occur in
connection with an additional multiplicative power of the
field strength which makes the limiting process smooth.

We mention that a transformation to a coordinate system
rotating around the magnetic-field axis would yield an ex-
plicitly time-dependent coupling HamiltonianH @2# which is
difficult to handle in our perturbation theoretical approach.

For the internal HamiltonianH @3# we choose the action
angle variables of the Kepler problem@see Eqs.~2!# as the
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new variables@see also Ref.@16## and arrive after some
lengthy algebra~see Appendix B for the corresponding trans-
formation formulas! at

H @3#~ I ,F!52
mk2

2I 3
2 1gLBI11lB2

I 2
4

m2k2

3

F12sin2@x~ I 2 ,I 3 ,f3!1f2#S 12
I 1
2

I 2
2D G

@11e~ I 2 ,I 3!cosx~ I 2 ,I 3 ,f3!#
2 .

~9!

The functionse(I 2 ,I 3), x~I 2 ,I 3 ,f3! are given in Appendix
B. H @3# does not depend onf1 which reflects the fact that it
conserves the canonical relative angular momentum compo-
nent parallel to the magnetic field. Finally the coupling
HamiltonianH @2# takes on the following appearance:

H @2#52
&b

M
B3/2Ap12Qp2 r ~ I 2 ,I 3 ,f3!

3S sin~q22f1!cos~f21x!2cos~q22f1!

3sin~f21x!
I 1
I 2

D , ~10!

where r (I 2 ,I 3 ,f3) is also given in Appendix B. The cou-
pling HamiltonianH @2# depends onf1 and, therefore, does
not conserve the angular momentumI 1. This had to be ex-
pected since the total HamiltonianH does not conserve the
relative angular momentumI 1 but the total angular momen-
tumLz! The conservation ofLz can be seen from Eq.~10! by
its dependence on~q22f1! and not onq2 or f1 separately.
Our last canonical transformation which introduces in addi-
tion to the other conserved quantities alsoLz , or more pre-
cisely Lz/2, as a canonical conjugated momentum reads as
follows:

L5 1
2 ~p21I 1!, j5q21f1

L̄5 1
2 ~p22I 1!, j̄5q22f1 . ~11!

Using this canonical transformation we arrive at the follow-
ing appearance of our final Hamiltonian:

H~L,p1 ,p3 ;L̄,I 2 ,I 3 ,j̄,f2 ,f3!

5H @1#~L,p1 ,p3 ;L̄!1H @2#~L,p1 ;L̄,I 2 ,I 3 ,j̄,f2 ,f3!

1H @3#~L;L̄,I 2 ,I 3 ,f2 ,f3!, ~12!

with

H @1#~L,p1 ,p3 ;L̄!5
p3
2

2M
1BS gZ~L1L̄!1

p1
M D , ~13!

H @2#~p1 ,L;L̄,I 2 ,I 3 ,j̄,f2 ,f3!

52
&b

M
B3/2Ap12Q~L1L̄! r ~ I 2 ,I 3 ,f3!

3S sinj̄ cos~f21x!2cosj̄ sin~f21x!
L2L̄
I 2

D ,
~14!

H @3#~L;L̄,I 2 ,I 3 ,f2 ,f3!

52
mk2

2T3
2 1gLB~L2L̄!1lB2r 2~ I 2 ,I 3 ,f3!

3F12sin2~x1f2!S 12
~L2L̄!2

I 2
2 D G . ~15!

The arguments of the Hamiltonian are the conserved mo-
menta separated by a semicolon from the dynamical vari-
ables. Our final total HamiltonianH in Eq. ~12! is only a
function of the momenta~p1 ,p3 ,L,L̄,I 2 ,I 3! and of the coor-
dinates~j̄,f2,f3!. The coordinatesq1 ,q3 ,j are cyclic since
their corresponding momentap1 ,p3 ,L are conserved. The
motion of the cyclic coordinatesq1 ,q3 ,j separates from the
motion of the coupled dynamical variables~L̄,I 2 ,I 3 ,j̄,f2,f3!
in the sense that the motion of the set of cyclic coordinates
can be calculated independently and one by one after solving
the coupled Hamiltonian equations of motion for the set
~L̄,I 2 ,I 3 ,j̄,f2,f3! of variables. We remark that once the dy-
namical behavior ofj is known the time dependence of the
second nontrivial cyclic coordinateq1 can be easily obtained
by using the equation of conservation for the pseudomomen-
tum.

Let us conclude. By performing several canonical trans-
formations we arrived at a particularly simple and appealing
form for the Hamiltonian of a one-electron ion in a magnetic
field. The conserved quantities

SK'
2

2B
,Kz ,

Lz
2 D

have been introduced as canonical momenta and we hereby
reduced the number of coupled dynamical degrees of free-
dom from six to three, i.e., we reduced the coupled phase
space from 12 to 6 dimensions. Secondly, by choosing the
above field-dependent scale transformation the pure CM part
as well as the coupling part of the total Hamiltonian became
proportional to a single low power of the field strength. We
have, therefore, obtained a very good starting point for a
perturbation theoretical treatment of the classical~and in the
future also semiclassical! dynamics of highly excited ions in
external magnetic fields and turn next to a brief description
of our perturbation theoretical approach.

III. PERTURBATION THEORETICAL CONCEPTS

Our unperturbed Hamiltonian is the Kepler-Hamiltonian
in field-free space and the perturbation expansion will be
done in powers of the magnetic-field strength. In spite of the
fact that our example of application will be the He1 ion all

54 4871HIGHLY EXCITED CHARGED TWO-BODY SYSTEMS IN . . .



following considerations and perturbation theoretical results
are valid for any mass ratio of the two particles. We mention
that the special case of an infinite nuclear mass which corre-
sponds to the HamiltonianH @3# for m2→` has been investi-
gated in detail in Ref.@16#. The perturbation theoretical ap-
proach to the hydrogen atom in crossed electric and magnetic
fields has been developed in Ref.@18–20#. If we rearrange
the total HamiltonianH in terms of powers of the magnetic-
field strength we immediately realize that the perturbation
theoretical expansion parameter is best chosen ass:5B1/2,
since the coupling HamiltonianH @2# is proportional toB3/2.
Our expanded Hamiltonian, therefore, looks as follows:

H~L,p1 ,p3 ;L̄,I 2 ,I 3 ,j̄,f2 ,f3!

5H0~p3 ;I 3!1
s2

2!
H2~L,p1 ;L̄!

1
s3

3!
H3~L,p1 ;L̄,I 2 ,I 3 ,j̄,f2 ,f3!

1
s4

4!
H4~L;L̄,I 2 ,I 3 ,f2 ,f3!, ~16!

with

H0~p3 ;I 3!5
p3
2

2M
2

mk2

2I 3
2 , ~17!

H2~L,p1 ;L̄!52S gL1
p1
M D12ḡL̄ ~18!

H3~L,p1 ;L̄,I 2 ,I 3 ,j̄,f2 ,f3!

526
&b

M
Ap12Q~L1L̄!

I 2
2

mk

1

11e cosx

3S sinj̄ cos~f21x!2cosj̄ sin~f21x!
L2L̄
I 2

D ,
~19!

H4~L;L̄,I 2 ,I 3 ,f2 ,f3!524l
I 2
4

m2k2
1

~11e cosx!2

3F12sin2~x1f2!

3S 12
~L2L̄!2

I 2
2 D G , ~20!

with g :5gZ1gL andḡ:5gZ2gL . The zeroth-order Hamil-
tonianH0 consists, apart from the trivial CM energy parallel
to the magnetic field, of the pure Kepler-Hamiltonian. The
HamiltonianH2 contains the complete cyclotron motion of
the ion treated as a pseudoparticle with chargeQ and mass
M in a magnetic field as well as the Zeeman term ofH @3#.
Since p1,L are conserved momenta the only term inH2
which contributes to the coupled part of the corresponding
Hamiltonian equations of motion~see below! is the term
involving the momentumL̄. Finally H3 represents the cou-

pling Hamiltonian between the CM and electronic motion
andH4 is the diamagnetic electronic part ofH @3#.

In Appendix C we give a brief account of our perturbation
theoretical approach which will be applied in Sec. IV to the
Hamiltonian~16!. In order to establish the equations of mo-
tion for each order ins, a series expansion due to the explicit
and implicit dependence, for all relevant quantities~Hamil-
tonian and variables!, ons has to be performed. Because of
the particular structure of the zeroth order and the exact
Hamiltonian~see the beginning of Appendix C! our pertur-
bation theoretical equations of motion can be simplified in
each order enormously@see Eqs.~C9!–~C11!#.

Apart from the perturbation theoretical approach with re-
spect tos there is another conceptual idea which will be
used extensively in our investigation of the classical motion
of the highly excited ion. According to the numerical simu-
lations performed in Refs.@14# the CM as well as electronic
motion exhibit several oscillatory motions on by-orders-of-
magnitude different time scalesTi ~whether, and if yes, how
these time scales can be derived from the different parts of
the expanded HamiltonianH will be clarified in Sec. IV!.
These oscillatory motions are superimposed on each other. It
is therefore a natural idea to obtain the motion on a larger
time scale by averaging over the fast individual oscillations
on the smaller time scale. This can successively be done until
one arrives at a complete picture of the motion on any of the
existing time scales. The shortest time scale, i.e., fastest os-
cillatory motion, is the one due to the time dependence of the
angle f3 which represents in orders0 the period
tK5(2pI 3

3/mk2) of the Kepler ellipses. The second time
scale is given by the oscillatory motion of the anglej̄ which
arises first for the orders 2 and possesses in this order the
periodt̄5(2p/uḡs2u). Up to orders 2 our expanded Hamil-
tonian is integrable. It possesses no coupling between the
CM and electronic degrees of freedom and describes the CM
motion as a free cyclotron motion of a pseudoparticle with
chargeQ and massM in a magnetic field and the electronic
motion as Kepler ellipses which are rotating with their Lar-
mor frequency.

The next higher orders 3 of the perturbation expansion
involves the coupling HamiltonianH3 which depends on the
anglesf3,j̄ ~belonging to the above-mentioned time scales!
and which destroys, in particular, the property ofI 3 andL
being conserved quantities~see, however, Sec. IV!. Since the
exact solutions L̄(t),I 2(t),I 3(t),j̄(t),f2(t),f3(t) of the
Hamiltonian equations of motion are unknown, the question
for the practical feasibility of the time-averaging procedure
now arises. Let us consider first the fastest oscillations due to
the motion off3. For a certain cycle off3 the above un-
known functions could in a first approximation be replaced
in the Hamiltonian equations of motion by their initial values
and the anglef3 by its linear time behavior due to the pure
Kepler problem. The changesDL̄,DI 2 ,DI 3 ,Dj̄,Df2,Df3 af-
ter one time cycletK then arise from the time averages of
the quantitiesLG ,İ 2 , İ 3 ,jG ,ḟ2 ,ḟ3 and tell us the change in the
above variables due to the coupling during one cycle as well
as the deviation of the anglef3 from its uniform time depen-
dence. Such a procedure yields a system of difference equa-
tions which can, under appropriate conditions, be replaced
by a system of differential equations. These conditions de-
mand, roughly speaking, the smallness of the second deriva-
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tives of all quantities. Corrections going beyond the de-
scribed approximation for the averaging over the smallest
time scale can be shown~see Appendix C and, in particular,
Ref. @22#! to be of orders 5 and are therefore within our
perturbation theoretical approach of orders4 negligible. The
smallest time scale of the averaged equations of motion is
now t̄5(2p/uḡus2) due to the motion ofj̄. To obtain the
motion on even larger time scales one uses the fact that the
variablesL̄,I 2 ,I 3 ,f2 are constant on the time scalet̄ and
performs a second averaging procedure now over the time
scalet̄. Corrections due to this second averaging are of order
s4 and will be given in Sec. IV~see also Appendix C!. The
corrections of the second averaging process go together with
the diamagnetic electronic term which occurs in the next
orders4 of perturbation theory. They determine the behavior
of the system on a time scale much larger thant̄ and define,
as we shall see, a third even longer time scale. For the math-
ematical details of the performance of the averaging proce-
dure and for the corresponding notation we refer the reader
to Appendix C and Ref.@22#.

IV. RESULTS AND DISCUSSION

In the present section we apply the perturbation theoreti-
cal method to our problem of the charged two-body system
in an external magnetic field. First of all we establish the
exact perturbation theoretical equations of motion up to
fourth order ins, i.e., r54. Let us begin by providing the
first few perturbational theoretical HamiltonianH (r ) for the
lowest ordersr<4 @see Eqs.~C3! and ~C4! in Appendix C#.
In zeroth order we obtainH (0)(p3 ;I 30)5H0(p3 ;I 30) and the
first-order contribution vanishes, i.e.,H ~1!50. In second or-
der we haveH ~2!~L,p1;L̄0!5H2~L,p1;L̄0!, whereL̄0[L̄~0!.
Apart from that forj̄(t), all solutions of second order vanish.
For the third and fourth order we obtain

H ~3!~L,p1 ;L̄0 ,I 20,I 30,j̄0 ,f20,f30uI 33!

5H3~L,p1 ;L̄0 ,I 20,I 30,j̄0 ,f20,f30!

1I 33
]

]I 30
H0~p3 ;I 30!,

H ~4!~L;L̄0 ,I 20,I 30,f20,f30uI 33!

5H4~L;L̄0 ,I 20,I 30,f20,f30!1I 34
]

]I30
H0~p3 ;I 30!.

~21!

The coupled part of the corresponding Hamiltonian equa-
tions of motion read in zeroth, second, third, and fourth order
as follows:
r50:

ḟ305
]

]I 30
H0~ I 30!, ~22!

r52:

jG 25
]

]L̄0
H2~L̄0!, ~23!

r53:

LG 352
]

]j̄0
H3~L̄0 ,I 20,I 30,j̄0 ,f20,f30!,

İ 2352
]

]f20
H3~L̄0 ,I 20,I 30,j̄0 ,f20,f30!,

İ 3352
]

]f30
H3~L̄0 ,I 20,I 30,j̄0 ,f20,f30!,

jG 35
]

]L̄0
H3~L̄0 ,I 20,I 30,j̄0 ,f20,f30!,

ḟ235
]

]I 20
H3~L̄0 ,I 20,I 30,j̄0 ,f20,f30!,

ḟ335
]

]I 30
H3~L̄0 ,I 20,I 30,j̄0 ,f20,f30!1I 33

]2

]I 30
2 H0~ I 30!,

~24!

r54:

LG 450,

İ 2452
]

]f20
H4~L̄0 ,I 20,I 30,f20,f30!,

İ 3452
]

]f30
H4~L̄0 ,I 20,I 30,f20,f30!,

jG 45
]

]L̄0
H4~L̄0 ,I 20,I 30,f20,f30!,

ḟ245
]

]I 20
H4~L̄0 ,I 20,I 30,f20,f30!,

ḟ345
]

]I 30
H4~L̄0 ,I 20,I 30,f20,f30!1I 34

]2

]I 30
2 H0~ I 30!,

~25!

which shows that up to second order all canonical momenta
are conserved. In addition the decoupled equations of motion
for the variablej for the ordersr52,3,4 take on the follow-
ing appearance:

j̇25
]

]L H2~L,p1 ;L̄0!,

j̇35
]

]L H3~L,p1 ;L̄0 ,I 20,I 30,j̄0 ,f20,f30!,

j̇45
]

]L H4~L;L̄0 ,I 20,I 30,f20,f30!. ~26!

The above perturbation theoretical equations now clearly re-
veal that the time scaletK of order r50 belongs to the mo-
tion off30, the time scalest̄5(2p/uḡus2) andt5~2p/ugus2!
of order r52 belong to the motionj̄2 andj2, respectively.

In order to study the behavior of the system on a long-
time period we have to average the fast oscillations due to
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the variablesf3 and j̄. The underlying ideas and the formal
aspects of this averaging procedure have been described in
some detail in the preceding section and particularly in Ap-
pendix C. We, therefore, refer in the following only to the
results of the corresponding calculations.

Let us begin with the averaging over the shortest time
scale due to the rapid oscillatory motion off3. The nth
averaging period is the momentary Kepler period after~n
21! cycles off30, i.e.,DT(n)5[2pI 3

3(n)/mk2]. In averag-
ing Eqs.~22!–~26! we use the fact that all Hamiltonian are
periodic with respect tof3 and can be represented in Fourier
series according to Eq.~C13! in Appendix C. The corre-
sponding Fourier components are provided in Appendix D.
Subsequently we take the continuum limit of the resulting
averaged difference equations and arrive at the following dif-
ferential equations for the canonical averaged variables:

dL̄
dT

52
s3

3!

]H30

]j̄
,

dI2
dT

52
s3

3!

]H30

]f2
2

s4

4!

]H40

]f2
,

dI3
dT

50,

dj̄

dT
5

s2

2!

]H20

]L̄
1

s3

3!

]H30

]L̄
1

s4

4!

]H40

]L̄
,

df2

dT
5

s3

3!

]H30

]I 2
1

s4

4!

]H40

]I 2
~27!

and for the decoupled variables

df3

dT
51

s3

3! S ]H30

]I 3
1~* ! D1

s4

4! S ]H40

]I 3
1~* ! D ,

dj

dT
5

s2

2!

]H20

]L 1
s3

3!

]H30

]L 1
s4

4!

]H40

]L , ~28!

where the asterisk symbolizes contributions which are not
explicit derivative terms. We immediately realize the follow-
ing important results of our averaging procedure. The aver-
aged time derivatives ofI 33,I 34 vanish and the first nonvan-
ishing contribution toI 3 arises in fifth-order perturbation
theory. The averaged variableI 3 is therefore in fourth order
an exact constant of motion@see Eqs.~27!# and, in general,
for the regime accessible by perturbation theory anapproxi-
mate constant of motion.

Second, we observe that the terms representing deriva-
tives do no more contain the HamiltonianHl , but their ze-
roth Fourier componentsHl0 with respect tof3, and these
components, do not depend onf3. In particular, up to order
r54, f3 does not show up in the equations of motion for the
coupled variables~L̄,j̄!, ~I 2,f2! and the variables~I 3,f3!,
therefore, decouple in the averaged equations of motion.
Consequently the number of coupled degrees of freedom is
reduced by the averaging procedure from three to two. An-
other important property of the averaged coupled equations
is the fact that they possess Hamiltonian structure which was

not the case for the original perturbation theoretical equa-
tions of motion @see also Appendix C, in particular, Eqs.
~C14! and below#.

Heff~s;L,p1 ,I 3 ;L̄,I 2j̄,f2!

:5
s2

2!
H20~L,p1 ;L̄!1

s3

3!
H30~L,p1 ,I 3 ;L̄,I 2 ,j̄,f2!

1
s4

4!
H40~L,I 3 ;L̄,I 2 ,f2!, ~29!

with the Fourier componentsH20,H30,H40 given in Appen-
dix D 1.

From Eqs.~22!–~25! we know that, apart from the fast
oscillations off3, there is a second larger time scale defined
by the behavior ofj̄. The effective Hamiltonian~29! is pe-
riodic with respect to the angle variablej̄. It is, therefore, an
obvious idea to repeat the above-performed averaging proce-
dure but now with respect to the variablej̄ and its time scale.
Before doing this according to the procedure described in
Appendix C we have to meet the requirements given at the
very beginning in Appendix C. This means, in particular,
that the zeroth order of our Hamiltonian to be averaged over
j̄ should contain the fast oscillations ofj̄. This can be ac-
complished by the rescaling of timeq:5s 2

•T which yields a
rescaling of the HamiltonianHeff by a factor of 1/s 2, i.e.,
Heff5~1/s 2!Heff in the corresponding equations of motion.
We remark that these scale transformations do not prevent us
from performing a, up to some desired order, consistent per-
turbation theory. The coupled equations of motion read then
as follows:

dL̄
dq

52
]Heff

]j̄
,

dI2
dq

52
]Heff

]f2
,

dj̄

dq
5

]Heff

]L̄
,

df2

dq
5

]Heff

]I 2
. ~30!

Next we apply the procedure described in Appendix C to
these equations, i.e., we expand them with respect to their
total dependence ons and average the resulting equations
over the periodDQ52p/uḡu, whereQ5s 2 T stands for the
continuous scaled time variable after the second averaging
process.

The resulting effective Hamiltonian can, after some
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lengthy calculation, be shown to possess the following struc-
ture:

Heffeff
~s;L,p1 ,I 3 ;L̄;I 2 ,f2!

:5
s2

2! S Heff20
~L,p1 ,I 3 ;L̄,I 2 ,f2!

1
2

Heff00
8

(
kÞ0

H 1/ik ]Heff1k

]I 2~Q!

]Heff1~2k!

]f2~Q!

2Heff1~2k!

]Heff1k

]L̄~Q! J D , ~31!

with the Fourier componentsHeffij
given in Appendix D 2.

The first term arises due to the diamagnetic term and reads

Heff20
~L,I 2 ,f2!5

l

2

1

m2k2
I 3
2

I 2
2 „~5I 3

223I 2
2!@ I 2

21~L2L̄!2#

15~ I 3
22I 2

2!@ I 2
22~L2L!2#cos2f2…,

~32!

whereas the second contribution is a correction due to the
coupling term

2

Heff00
8 (

kÞ0
$•••%5

9

20

b2e

gM2

1

m2k2
I 3
2

I 2
2 F „220~L2L̄!

3S p1e 2
Q

e
~L1L̄! D I 2215

Q

e
~ I 3

22I 2
2!

3@ I 2
21~L2L̄!2#15

Q

e
~ I 3

22I 2
2!

3@ I 2
22~L2L̄!2#cos2f2G . ~33!

Scaling back to real time we, therefore, arrive at the final
coupled equations of motion

dI2
dT 52s2

]

]f2
Heffeff

~s;I 2 ,f2!,

df2

dT 5s2
]

]I 2
Heffeff

~s;I 2 ,f2!. ~34!

Let us now discuss the above results of the second averaging
process. The averaged variableL̄ is up to orderr54 an
approximate constant of motion. By the second averaging of
the equations of motion we have reduced the number of
coupled degrees of freedom in fourth order from two to one.
This means that our twice averaged system is integrable. It is
a surprising result that the two contributions Eqs.~32! and
~33! to the effective Hamiltonian Eq.~31! have, to some
extent, a similar structure. Both the term arising from dia-
magnetism@Eq. ~32!# as well as the term due to the coupling

of the CM and relative motion@Eq. ~33!# contain a cos2f2
dependence onf2 and a prefactor involving a second-order
polynomial inI 2

2. The first term in Eq.~33! represents, how-
ever, a qualitative difference between the two contributions
~the caseM→` which means, in particular, the absence of
the contribution~33! has been treated in Ref.@16#!. For an
atomic system like the He1 ion the ratio of the prefactors of
the two contributions isd'72m2/5M2 which shows the sup-
pression of the contribution due to the coupling term for this
extreme mass ratio.

In the following we discuss the solutions of the equations
of motion ~34!. These solutions are periodic functions of
time and will, together with their period, be given below as
functions of the initial conditions. In order to integrate the
equations of motion~34! we will take advantage of the con-
servation ofHeffeff

. As a first step we defines2Heffeff
:5n E

with n5s4l/4m2k2I 3
4. This gives us the anglef2 as a func-

tion of I 2 and the conserved momenta

cos2f25
a~ I 2 /I 3!

41b~ I 2 /I 3!
21c

d~ I 2 /I 3!
41e~ I 2 /I 3!

21 f
, ~35!

with

a5S 315d
Q

e D ,
b525S 11d

Q

e D1S 315d
Q

e D ~L2L̄!2

I 3
2 120d

L2L̄
I 3
2

3S p1e 2
Q

e
~L1L̄! D1E

5:b81E,

c525S 11d
Q

e D ~L2L̄!2

I 3
2 ,

d525S 11d
Q

e D ~36!

ande52c2d, f5c. In the following we restrict ourselves
to the physically interesting caseudQ/eu,3

5 which implies
a.0, c,0, d,0, d2.a2. The curvesI 2~f2! for constant
energy possess the periodp and are symmetric with respect
to f25n p/2. E and b possess an absolute minimum at
f2
min5p/2 and I 2

min5(2c/a1d)1/4I 3 and we havebmin
522A2c(a1d)1c1d. There exist two classes of curves.
Librators are closed curves which exist in the vicinity of the
above given minimum and are separated by a separatrix from
the rotators which experience the whole range of possible
values forf2. The separatrix is given bybcrit52a2c. For
2c.a1d both classes coexist whereas for 2c,a1d only
rotators are present.

Using Eqs.~35! we can eliminate the anglef2 and obtain
an ordinary differential equation forI 2~T!:

54 4875HIGHLY EXCITED CHARGED TWO-BODY SYSTEMS IN . . .



dI2
dT 52

2n

~ I 2 /I 3!
2 6A@d~ I 2 /I 3!

41e~ I 2 /I 3!
21c#22@a~ I 2 /I 3!

41b~ I 2 /I 3!
21c#2. ~37!

In order to integrate the above equation we have to establish
the roots of the polynomial under the square root

P15
2b2c2d

a2d
,

P25
A~e1b!228c~d1a!1~e1b!

22~a1d!
,

P35
2A~e1b!228c~d1a!1~e1b!

22~a1d!
, ~38!

which yields

dT52
I 3
4n

6

Ad22a2
dP

A~P2P1!~P2P2!~P2P3!
.

~39!

P3 is always the smallest root and belongs to the lower turn-
ing point atf25p/2. P1 andP2 belong to the upper turning
points of the librators and rotators, respectively. Due to the
periodicity as well as the symmetry properties we have to
integrate Eq.~39! only for the first half of the period of
motion. The period finally can be obtained as

T f25
I 3
2n

1

Ad22a2
2

Amax~P1 ,P2!2P3

3FS p/2,Amin~P1 ,P2!2P3

max~P1 ,P2!2P3
D , ~40!

whereF(f,k) is the elliptical function of the first kind@23#.
The periodT f2 depends strongly on the values of the roots
Pi , i.e., the initial conditions. On the separatrixb5bcritT f2

diverges. The periodT f2 possesses however a lower bound

T f2>Td
f2min :5

I 3
n

p

2A2d~d2a!
, ~41!

which can be considered a new third time scale which adds
to the two previously discussed onestK and t̄.

For a discussion of the behavior of the decoupled coordi-
nates~j̄,f3,j! belonging to the conserved momenta~L̄ , I 3,L!
we refer the reader to Ref.@22#. We remark here only that

their typical time scalesT j̄ ,T f3,T j are comparable toT f2

and these four quantities therefore define one common time
scale of the doubly averaged motion.

In the remaining part of the paper we report on the inter-
pretation of the above obtained results in Cartesian coordi-
nates and build a bridge to the numerically observed phe-
nomena in Ref.@74#. In order to get the time-dependent
dynamics of the Cartesian CM coordinates and velocities we
exploit Eqs.~A4!–~B5! and use the relation

Ṙcm5
1

M
Pcm2

b

M
B3r ,

wherePcm is given in Eq.~A1!. First of all we emphasize
that all numerically observed time scales of the motion of the
CM can be found and are described in detail by our pertur-
bation theoretical approach. The individual oscillations on
the shortest time scaletK can be obtained by the unaveraged
Hamiltonian equations of motion. The modulations of the
CM energy on the time scalet̄ are precisely described by the
once averaged perturbation theoretical equations. The dy-
namical behavior for timest>t̄ is best described by the
twice averaged equations of motion and gives the additional
modulations of the CM motion on the typical time scale
T f2.

Finally on the largest time scaletZ the CM motion closes
to a circular orbit with radius

RZ5U M

QB2
B3Ṙcm~0!2

b

Q
r'~0!U. ~42!

and cyclotron frequencyvZ :5gZs
2. Equation ~42! now

establishes the self-stabilization effect in a rigorous analyti-
cal way. In particular, it demonstrates that the CM of the ion
stabilizes for vanishing initial CM velocity on a cyclotron
orbit whose radius is, apart from constant factors, determined
by the initial relative distance of the two particles perpen-
dicular to the magnetic field. We conclude with the remark
that this effect is ultimately a consequence of the action of
the coupling HamiltonianH @2#, H3.

V. SUMMARY AND CONCLUSIONS

We have investigated the classical dynamics and proper-
ties of charged two-body systems in a magnetic field in the
regular, i.e., by perturbation-theory accessible, regime. This
system possesses three exact commuting constants of mo-
tion: the component of the total momentum parallel to the
field, the corresponding component of the total angular mo-
mentum as well as the square of the absolute value of the
pseudomomentum perpendicular to the magnetic field. In a
first step these conserved quantities have been introduced by
a number of subsequent canonical transformations as canoni-
cal momenta, thereby eliminating their cyclic coordinates. At
the same time we introduced a field-dependent scale trans-
formation which brings the Hamiltonian to a form well
suited for the application of perturbation theory. In particu-
lar, the coupling term between the CM and relative motion is
in this representation proportional to a single low power of
the field strength. By the above canonical transformations the
number of coupled degrees of freedom was reduced from six
to three which means a five-dimensional energy shell in
phase space.

Next we applied two perturbation theoretical concepts to
the resulting exact Hamiltonian equations of motion: a per-
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turbation theoretical series expansion due to the explicit as
well as implicit dependence of the equations on the param-
eter s:5B1/2 and a time averaging procedure. Both ap-
proaches are in some detail described in Appendix C of the
present work. The latter perturbation theoretical concept was
motivated by the fact that the system under consideration
possesses several by orders-of-magnitude different time
scales which manifest themselves in the perturbation theo-
retical equations of motion. The series expansion by itself
allows only for a determination of the short-time dynamics
whereas the long-time behavior is accessible by the averaged
equations of motion. Our first application of the averaging
procedure revealed already interesting properties: the prin-
cipal action of the Kepler problem proved to be a constant of
motion up to fourth order in perturbation theory. The number
of coupled degrees of freedom, therefore, reduced from three
to two after the first averaging. An effective Hamiltonian
which describes the averaged dynamics for the two remain-
ing degrees of freedom could be presented.

After another field-dependent scale transformation a sec-
ond averaging process could be performed which finally ren-
ders the system integrable. The canonical momentumL̄ turns
out to be an additional constant of motion up to fourth-order
perturbation theory. L̄ is the difference between the angu-
lar momentum components of the CM and relative motion.
Since the total angular momentum componentL is exactly
conserved this means, that, on the level of the twice averaged
equations of motion, the coupling between the CM and rela-
tive motion causes in fourth-order perturbation theory only
an exchange of energy but no exchange of angular momen-
tum components parallel to the field. The number of coupled
degrees of freedom is now reduced from two to one and we
encounter on this large time scale an integrable averaged
motion described by an effective HamiltonianHeffeff

. The
solutions as well as phase-space structure of this Hamil-
tonian are calculated and discussed in detail. The existence
of rotating and librating trajectories is established and their
periods are given analytically as a function of the initial con-
ditions.

The above procedure provides an analytical manifestation
of the existence of four different time scales of the CM mo-
tion of the ion which have very recently been observed in
numerical simulations@14#. Apart from this it provides, in
addition, an analytical approach to the classical self-
stabilization effect of the ion. The radius as well as the fre-
quency of the cyclotron orbit of the CM motion with initially
vanishing CM velocity can be calculated explicitly and the
self-stabilization effect can, therefore, be understood in the
general framework of the phenomena arising in the regular
regime.

One of the authors~P.S.! acknowledges financial support
by the Deutsche Forschungsgemeinschaft.

APPENDIX A: THE CANONICAL CENTER
OF MASS VARIABLES

Let us introduce the kinetic as well as pseudomomentum
of the CM

Pcm5Pcm2
Q

2
B3Rcm,

K cm5Pcm1
Q

2
B3Rcm, ~A1!

which are related to the angular momentum of the CM in the
following way:

2QBLcmz5K cm'
2 2Pcm'

2 . ~A2!

Choosing the set (p1 ,p2 ,p3)5(K cm'
2 /2B,Lcmz ,Pcmz) as ca-

nonical momenta it is possible to derive the following trans-
formation formulas:

p15
K cm'
2

2B
; cosQq15

K cm'Pcm'

uK cm'uuPcm'u
;

sinQq15
~K cm'3Pcm'!z
uK cm'uuPcm'u

,

p25Lcmz ; cosq25
Pcm x

uPcm'u
; sinq25

Pcm y

uPcm'u
,

p35Pcmz ; q35Zcm ~A3!

With some calculation we arrive at the inverse transfor-
mation laws

Xcm5
1

QB
@A2Bp1sin~Qq11q2!2A2B~p12Qp2! sinq2#,

Ycm52
1

QB
@A2Bp1cos~Qq11q2!

2A2B~p12Qp2!cosq2#,

Zcm5q3 ,

Pcmx5
1
2 @A2Bp1cos~Qq11q2!1A2B~p12Qp2!cosq2#,

Pcmy5
1
2 @A2Bp1sin~Qq11q2!1A2B~p12Qp2!sinq2#,

Pcmz5p3 , ~A4!

APPENDIX B: THE ACTION-ANGLE VARIABLES
OF THE KEPLER PROBLEM

For the details of the derivation of the action-angle vari-
ables for the Kepler problem we refer the reader to the lit-
erature@16,21#. In the following we provide only some of the
key relationships among the different relevant quantities. We
define the action variables

I 15 l z ,

I 25 l ,

I 35S mk2

22H D 1/2, ~B1!

whereL is the absolute value of the total canonical angular
momentum andH the Kepler-Hamiltonian. In addition we
introduce the true anomalyx, the eccentric anomalyc, as
well as the mean anomaly, which is the canonical anglef3.
These quantities are related by the following equations:
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f35c2« sinc,

tan
x

2
5S 11«

12« D 1/2 tanc

2
, ~B2!

where

«~ I 2 ,I 3!5S 12
I 2
2

I 3
2D 1/2 ~B3!

is the eccentricity of the ellipse. From the focal representa-
tion of the ellipse we obtain for the radius

r5
I 2
2mk

11«~ I 2 ,I 3!cosx~ I 2 ,I 3 ,f3!
, ~B4!

where the true anomaly is given in Eqs.~B2!. The radius
vector reads as follows:

r ~ I 1 ,I 2 ,I 3 ,f2 ,f3!5r ~ I 2 ,I 3 ,f3!S cosf1cos~f21x!2sinf1sin~f21x!
I 1
I 2

sinf1cos~f21x!1cosf1sin~f21x!
I 1
I 2

sin~f21x!S 12
I 1
2

I 2
2D 1/2 D ~B5!

APPENDIX C: THE PERTURBATION THEORETICAL
METHOD

Our starting situation possesses the following characteris-
tics: The underlying exact Hamiltonian can be represented
in a series, in our case up to fourth order, in a small param-
eters; in the lowest orders0 only a single variable, namely,
f3, is not constant; the total Hamiltonian is a periodic func-
tion of this variable@see Eqs.~16!–~20!#. The aim of the
present appendix is to derive the perturbation theoretical
Hamiltonian equations of motion which have been averaged
over one time cycle of the distinguished variablef3. Our
method can be applied to any problem meeting the above
characteristics and is therefore by no means restricted to the
case of interest of the present paper, i.e., highly excited
charged two-body systems in a magnetic field. The above
conditions are not as special as they might seem from a first
glance. Indeed, if possible one would always choose as a
zeroth-order Hamiltonian an integrable one which meets in
suitable action-angle variables the first two of the above con-
ditions.

Let us begin with a perturbation theoretical expansion of
the Hamiltonian and its equations of motion according to the
explicit as well as implicit dependence on the small param-
eters. According to our assumption the explicit dependence
of the Hamiltonian on the parameters can be represented in
a series

H~s;p,q!5(
l50

`

s l / l !Hl~p,q!, ~C1!

Of course, the solutions, i.e., coordinates and momenta
q(s;t) and p(s;t), depend implicitly on the parameters
which can also be expanded in a series

pi~s;t !5(
r50

`

s r /r !pir ~ t ! with pir ~ t !:5
] r

]s r pi~s;t !,

qi~s;t !5(
r50

`

s r /r !qir ~ t ! with qir ~ t !:5
] r

]s r qi~s;t !.

~C2!

These expansions possess only a finite radius of conver-
gence. To get the long-time behavior we will in general have
to apply the time-averaging procedure described below. The
total expansion of the Hamiltonian with respect to the param-
eters can after some calculation be obtained as

H@s;p~s!,q~s!#

5(
r50

`

s r /r !H ~r !~p0 ,q0up1 ,...,pr ,q1 ,...,qr !, ~C3!

whereH (r ) is defined as

H ~r !~p0 ,q0up1 ,...,pr ,q1 ,...,qr !

5 (
l1s5n

S rsD(
~s!

~p1 ,...,ps ,q1 ,...,qs!Hl~p0 ,q0!,

~C4!

with
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(
~s!

~p1 ,...,ps ,q1 ,...,qs!55
1;

(
n51

s

1/n! (
ra>1

r11•••1r n5s

H s!

r 1!...r n!
Dr1

~pr1,qr1!...

...Dr2
~pr n

,qr n
!J ;

s50

sÞ0

~C5!

and for r>1

Dr~pr ,qr !5S pir ]

]pi0
1qir

]

]qi0
D . ~C6!

The Hamiltonian equations of motion for each order read as
follows:

ṗir52
]

]qi0
H ~r !~p0 ,q0up1 ,...,pr ,q1 ,...qr !,

q̇ir5
]

]pi0
H ~r !~p0 ,q0up1 ,...,pr ,q1 ,...,qr !, ~C7!

which shows thatH (r ) alone determines ther th order ofp
and q. The dynamics of the variables inr th order depend
therefore on all variables of orders<r . Since the equation of
motion for ther th order of a certain variable depends not
only on the lower orders but also on ther th order of the other
variables it is in general not obvious how Eqs.~C7! could be
solved. However, Eqs.~C7! are very helpful and much easier
to solve than the exact equations of motion if the zeroth-
order Hamiltonian has a particularly simple structure and de-
pends only on a few variables which is definitely the case for
our chosen Hamiltonian~see comments at the beginning of
this appendix!. This becomes particularly obvious if we de-
compose

H ~r !~p0 ,q0up1 ,...,pr ,q1 ,...,qr !

5H̃ ~r !~p0 ,q0up1 ,...,pr21 ,q1 ,...,qr21!

1(
~r !

~p1 ,...,pr ,q1 ,...,qr !H0~p0 ,q0! ~C8!

according to which the part ofr th order appears only in
connection with the Hamiltonian of zeroth order and any
simplification of the zeroth-order Hamiltonian therefore re-
sults in a major simplification of the Hamiltonian equations
of motion ofr th order. Similarly simplifications of the higher
ordersHl of the Hamiltonian will also lead to simplifications
of the Hamiltonian equations of motion of ordersr> l .

As already mentioned we deal in our particular case with
an integrable HamiltonianH0 which depends on only one
canonical momentump1, i.e., we haveH0(p,q!5h(p1). Us-
ing this fact Eqs.~C7! take on the following appearance:

ṗir52
]

]qi0
H̃ ~r !~p0 ,q0up1 ,...,pr21 ,q1 ,...,qr21!,

~C9!

q̇1r5
]

]p10
H̃ ~r !~p0 ,q0up1 ,...,pr21 ,q1 ,...,qr21!

1Y~r !~p11,...,p1r !
]

]p10
h~p10!, ~C10!

q̇ir5
]

]pi0
H̃ ~r !~p0 ,q0up1 ,...,pr21 ,q1 ,...,qr21!, iÞ1.

~C11!

Apart from the second term on the right-hand side of Eqs.
~C10!, the above equations of motion of orderr involve only
quantities of orderr21 and are therefore almost decoupled.
The remaining coupling term reads as follows:

Y~r !~p11,...,p1r !h~p10!:5(
~r !

~p1 ,...,pr ,q1 ,...,qr !

3H0~p0 ,q0!. ~C12!

Due to the simple structure of the equations of motion~C9!–
~C11! the solution of orderr can be obtained from the solu-
tions of orderr21 in the following way. First we obtain by
ordinary time integrationspir (t),qir (t) exceptq1r(t) from
Eqs. ~C9!–~C11!. Inserting these solutions into Eq.~C10!
yields again by ordinary time integration alsoq1r(t). The
equations of motion can therefore be solved to any order
iteratively by ordinary time integrations. This should not ob-
scur the fact that our expansion possesses a finite radius of
convergences f(t).0 for t,t f , i.e., converges only for a
certain propagation time of the trajectory. However, the
above choice enhances the chance of good convergence
properties, since only one variable~f3! occupies in zeroth
order an unbounded coordinate range.

To get the classical behavior on a long time scale we will
apply in addition to the above discussed perturbation theory
a time-averaging procedure whose fundamental equations
and properties will be derived in the remaining part of this
appendix. By performing a time-averaging procedure we are
no more interested in the fine structure of the dynamics of
our system but in its averaged behavior. The averaging-time
scale can, for example, be the shortest time scale associated
with the time dependence of the coordinateq1. Following
this way we will obtain effective equations of motion which
describe the deviation of the real motion from the fast oscil-
latory motion.

The first step is to divide the time axis in intervalsI (n) so
that the lengthDT(n) of each interval is less thant f . Instead
of the original initial value problem we consider the initial
value problem for each interval separately, perform the av-
eraging procedure, and will finally link them in a well-
defined way together~see below!. The equations describing
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the changesDp(n),Dq(n) during thenth averaging period
depend on the corresponding initial valuesp(n),q(n) and
represent a system of difference equations inn which can be
determined to some desired orderr in the perturbation pa-
rameters. The lengths of the averaging periodsDT(n) can
now be chosen in such a way that the resulting equations
take on a particularly simple form. We hereby take advan-
tage of the fact that the only dynamic variable in zeroth order
is q1 and that the exact Hamiltonian is periodic inq1 with
period 2p. The optimal choice is therefore
DT(n)52p/h8„p1(n)… which takes into account that the
time intervals of averaging have to be adapted to the momen-
tary values of the momentump1. The time-averaging inter-
val depends therefore on the stepn and has to be calculated
together with the changes in the coordinates and momenta.

In order to perform the averaging we represent all peri-
odic functions in Fourier series

Hl~p,q!5 (
k52`

`

Hlk~p,q2 ,...,qm!eikq1. ~C13!

Having done this we are now in a position to express the
initial value problem of the changes of the variables during
one cycle to arbitrary order in the parameters as a series of
elementary integrals. Subsequently performing these inte-
grals we obtain difference equations of the following appear-
ance:

Dp~s;n!

DT~n!
5 f „s;p~n!,q~n!…

Dq~s;n!

DT~n!
5g„s;p~n!,q~n!… ~C14!

which go up to a certain desired order in their explicit de-
pendence on the parameters. However, the functionsf ,g
depend also implicitly via the initial valuesp(n),q(n) on
any order ofs. To obtain the final working difference equa-
tions one has to perform the expansion with respect to the
explicit as well as implicit dependence of the functionsf ,g
on the parameters. How this has to be done was described
in the first part of this appendix, now with the minor differ-
ence that we are dealing with difference equations instead of
differential equations and with the fact thatf ,g can not nec-
essarily be obtained as partial derivatives of a single func-
tion, i.e., the equations do not necessarily possess Hamil-
tonian structure ~see below!. The resulting system of
difference equations in some pure order ofs are finally re-
placed by differential equations which describe the smooth
behavior of the averaged variables and take on the following
structure:

dpr~T!

dT
5 f ~r !

„p0~T!,q0~T!up1~T!,...,

pr~T!,q1~T!,...,qr~T!…,

dqr~T!

dT
5g~r !

„p0~T!,q0~T!up1~T!,...,

pr~T!,q1~T!,...,qr~T!…, ~C15!

where we have usedT to describe the continuous time de-
pendence of the averaged variables. The property that the
zeroth-order Hamiltonian depends only onp1 translates now
into the fact that onlyg1~0! is nonzero forr50. We give the
zeroth and first-order equations explicitly

r50:

f i
~0!
„p0~T!,q0~T!…50,

g1
~0!
„p0~T!,q0~T!…5h8„p10~T!…

gi
~0!
„p0~T!,q0~T!…50; iÞ1 ~C16!

r51:

f 1
~1!
„p0~T!,q0~T!up1~T!,q1~T!…50,

f i
~1!
„p0~T!,q0~T!up1~T!,q1~T!…

52
]H10

]qi0~T!
„p0~T!,q20~T!,...,qn0~T!…; iÞ1,

g1
~1!
„p0~T!,q0~T!up1~T!,q1~T!…

5
]H10

]p10~T!
„p0~T!,q20~T!,...,qn0~T!…

1^p11&n„p0~T!,q0~T!…h9„p10~T!…1p11~T!h9„p10~T!…

gi
~1!
„p0~T!,q0~T!up1~T!,q1~T!…

5
]H10

]pi0~T!
„p0~T!,q20~T!,...,qn0~T!…; iÞ1. ~C17!

For the particular example of a charged two-body system in
a magnetic field our perturbation theoretical averaged equa-
tions of motion show for the coupled variables up to fourth
order ins a Hamiltonian structure, i.e., they can be derived
from an effective HamiltonianHeff ~see Sec. IV!. For further
details on our perturbation theoretical approach we refer the
reader to Ref.@22#.

APPENDIX D: THE FOURIER COMPONENTS
OF THE HAMILTONIAN

In this appendix we provide the Fourier components of
the Hamiltonians needed in our perturbation theoretical cal-
culation of Sec. IV. The Hamiltonian depends periodically
on the variablesf3 andj̄ whose corresponding Fourier com-
ponents are given in Secs. D 1 and D 2, respectively.

1. The periodicity in f3

The componentsHl of the Hamiltonian~16! are periodic
with respect tof3. Since the components of zeroth and sec-
ond order do not depend onf3 at all their Fourier represen-
tation is trivial, i.e., we have

H0k~p3 ;I 3!5 HH0~p3 ;I 3!; k50
0 else, ~D1!

4880 54W. BECKEN AND P. SCHMELCHER



H2k~L,p1 ;L̄!5HH2~L,p1 ;L̄!; k50
0 else.

~D2!

Due to the averaging process we need from the third and
fourth order HamiltonianH3 andH4 only the zeroth Fourier
components which can after some calculation be obtained as

H30~L,p1 ;I 3 ;L̄,I 2 ,j̄,f2!59
&b

M
Ap12Q~L1L̄!

I 3
mk

3AI 322I 2
2S sinj̄ cosf2

2cosj̄ sinf2

L2L̄
I 2

D , ~D3!

and

H40~L;I 3 ;L̄,I 2 ,f2!5
6l

m2k2
I 3
2

I 2
2 „~5I 3

223I 2
2!@ I 2

21~L2L̄!2#

15~ I 3
22I 2

2!@ I 2
22~L2L̄!2#cos2f2….

~D4!

2. The periodicity in j̄

The Hamiltonian~16! is also periodic with respect toj̄.
However, we do not need the Fourier components of this
original Hamiltonian but of the averaged HamiltonianHeff in
Eq. ~29!. According to Sec. IV and Appendix C we need
now not only the zeroth but all Fourier components. We
obtain after some calculation

Heff0k
~L,p1 ;L̄!5H Heff0k

~L,p1 ;L̄!5ḡL̄1gL1
p1
M
; k50

0 else,
~D5!

Heff2k
~L;I 3 ;L̄,I 2 ,f2!5H Heff2

~L;I 3 ;L̄,I 2 ,f2!5 1
12H40~L;I 3 ;L̄,I 2 ,f2!; k50

0 else.
~D6!

The only nonvanishing Fourier components for the HamiltonianHeff1
are those withk51,21. It can be shown that

Heff11
~L̄,I 2 ,I 3 ,f2!52

3

4

&b

M
Ap12Q~L1L̄!

I 3
mk

AI 322I 2
2S sinf2

L2L̄
I 2

1 i cosf2D ,
Heff1~21!

5Heff11
*

Heff1k
50; k¹$21,1%, ~D7!
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