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A perturbation theoretical approach to classical dynamics
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We investigate classical dynamics and properties of highly excited charged two-body systems in a magnetic
field. We hereby focus on the regular regime which can be described by perturbation theoretical methods. After
introducing the exact constants of motion as canonical momenta we apply a perturbation theoretical series
expansion with respect to the parameter=B*? and use a time-averaging method to obtain the long-time
dynamical behavior of the system. This procedure allows us to identify approximate constants of motion and
enables us to derive effective Hamiltonians which describe the averaged dynamics on different time scales. The
doubly averaged equations of motion are in fourth-order perturbation theory integrable. The solutions of these
equations in terms of rotators and librators are given analytically and phase space is classified completely.
Finally we arrive at a thorough understanding of the recently found self-stabilization effect of the center-of-
mass motion of the ion in the context of our perturbation theoretical investigg8d050-294®6)07612-3

PACS numbes): 32.60+i, 47.20.Ky, 31.50+w

I. INTRODUCTION AND PHENOMENA components of the pseudomomentum perpendicular to the
magnetic field do not commute and, therefore, they cannot be
The behavior of few-body systems in strong externalintroduced simultaneously as canonical momenta. There ex-
fields became during the past twenty years a very active reésts, however, a generalization of the pseudoseparation for
search field. The most thoroughly studied system is certainljpeutral systems to the case of a charged particle system
the hydrogen atom in a strong magnetic fi¢sete Ref[1] 4,11-13. The resulting Hamiltonian consists of three parts
and references thergirBoth theoretically as well as experi- describing qualitatively different types of motion and cou-
mentally large parts of the spectrum below as well as abov8lings. The first part involves only CM degrees of freedom
the field-free ionization threshol@] have been investigated @nd treats the CM as a free pseudoparticle with cherged
in detail. The hydrogen atom in a magnetic field serves as af/@5SM (M is the total mass of the igrin a magnetic field.
outstanding simple example of a physical system whose cla "he second part couples the CM and relative degrees of free-

sical counterpart undergoes with increasing electronic exciEjom and represents a motional Stark term with a rapidly

tation a transition from regularity to chaos. At the same timeoscillatipg electric field of intrinsic dynami_cal .origin. This_
' . term arises due to the fact that a moving ion in a magnetic
. . ield experiences an additional electric field. Finally the third
fr.om purely'quantal to semiclassical and eventually to clasiam involves only relative degrees of freedom, i.e., repre-
sical behavior. o sents the electronic Hamiltonian for the case of an atom.

In the presence of an external magnetic f|elq, neutral as Very recently interesting effects and phenomena due to
well as charged two-body systems possess an inherent tWehe coupling of the CM and electronic motions in one-
body character, i.e., the center of md&M) and relative  glectron atomic ions have been observed and studiéf
motion cannot be separated but are intimately coufel.  The corresponding investigations have been performed by
There exists, however, a constant of motion, the so-calledvaluating the results of the integration of the classical equa-
pseudomomentum, which can be used to perform a psetions of motion for electronically highly excited atomic ions
doseparation of the CM and relative motion. For neutral sysand are supported by quantum-mechanical considerations
tems the components of this pseudomomentum are indepefit2]. Two major effects have been reported: the self-
dent and the pseudoseparation accomplishes a complet&abilization and self-ionization effects. For regular CM and
elimination of the CM coordinates from the Hamiltonian relative motion and vanishing initial CM velocity the self-
[3-5]. Nevertheless, the CM and relative motion remainstabilization of the highly excited ion on a cyclotron orbit
coupled and, in particular, the CM velocity is completely takes place. For large values of the initial CM velocity the
determined by the relative coordinates perpendicular to thenergy transfer from the CM to the electronic degrees of
magnetic field. Recently a number of two-body effects due tdreedom becomes strong enough to allow the atom to ionize.
this coupling have been found and investigated for neutralhe dynamical self-ionization process has been studied in
systemg6—10]. As examples we mention the classical dif- some detail. Both the self-stabilization as well as the self-
fusion of the CM for chaotic phase space, the intermittenionization effect are consequences of the presence of the
near-threshold dynamics of the CM as well as electronic moeoupling term between the CM and the electronic degrees of
tion and the existence of an outer potential well for suffi-freedom. The self-stabilization effect has only been under-
ciently large pseudomomentum which yields a new class o$tood to some heuristic degree by performing an empirical
weakly bound states with large electric dipole moments. averaging of the relevant quantities over the numerically ob-

For the case of a system with a net chaf@ethe two served different time scales of motion.
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Since the self-stabilization effect takes place in the regular ' ' 2 1 _ _
regime which is the subject of investigation of the present ~ H'({p’V},{r'"})=> o [p'M—q;A(r'1)]?
paper we provide in the following a few more details on the i=1 2y
numerically observed classical behavior of the highly excited +V(|r’ D= @)y, (1
ion in this regime. We are referring to the case for which the
Coulomb interaction dominates over the magnetic forces. Imvhere we have used the prime to label the quantities in the
particular, let us concentrate on a vanishing initial CM ve-laboratory coordinate system. Throughout the paper we will
locity. In the absence of a magnetic field the ion would sim-use the symmetric gaug®(r)=3Bxr for the vector poten-
ply stay at rest. In the presence of a magnetic field, howevetial and the magnetic-field vectd along thez axis. In the
the above-mentioned coupling term causes an oscillatiné!lowing we perform a number of canonical transformations
flow of energy between the CM and electronic degrees ofvhich will finally lead us to canonical variables which take
freedom and the CM motion exhibits a variety of possibili- INto account aII_ exact constants of motion and are best sungd
ties for its dynamical behavior. Four time scales, differing by 0" & perturbation theoretical approach to the system. It is

orders of magnitude, have been observed for the CM motiorﬁlucmaﬂng to perform these transformations step by step and

On e longest me el he O peroms poroxinately 49,7, © 512 7boses Snonen L e
circular motion which corresponds to the motion of a free y P g

seudoparticle with charg® and massM in a magnetic the structure and properties of the underlying Hamiltonian as
Eeld Inpspite of the fact 31at the initial CM velocit;/] of the well as motivate our choice of variables for the perturbation

S : . heoretical roach.
ion is equal to zero we encounter on this longest time scalé eoretical approac

the effect of self-stabilization of the ion on a cyclotron orbit. Ir_1 th_e absence of_a magnetic field the toFaI c_anonlce_ll
(=kinetic) momentum is conserved and the straightlined uni-

With the help of the above-mentioned empirical averagin gm CM motion separates completely from the relative mo-
procedure approximate expressions for the radius as Wellgéon_ The Kepler-HamiItoniarH’ijinvolving the relative de-

the angular frequency of these orbits have been derived. ees of freedom is intearable and the commonly used
remark that the effect of the classical self-stabilization is &2 9 y

generic phenomenon for regular phase space and will in th%cnon-angle variables are

following be shown to occur for any initial conditions. L(p',r)=1=x"p.—y'p.
The purpose of the present paper is the investigation of ne z y X!

the regular regime for highly excited atomic ions in magnetic 'y , RPNV

. L . . = =,/ X

fields within the framework of classical perturbation theory. 2P ) =[] =" xp")%,

Apart from an improvement of our general understanding of uk? 1/2
the dynamics in the regular regime, our goals are to derive I3(p’,r’)=( - W) , 2
low-dimensional effective Hamiltonian equations of motion 2H"(p"r")

which describe the averaged classical motion on the different

time scales, to reveal approximate constants of motion an oulomb) potentialV. The dynamics is, in these variables
particularly, to gain a deeper understanding of the classic IC P S yr I '
extremely simple, i.e., the action variablesl,,|; are con-

self-stabilization effect which has been observed in numeri-serveol the analeb. ®. are constant. and. shows a linear
cal simulations. In detail we proceed as follows. In Sec. Il we ’ 9i€8y, ®a ’ 3

perform, step by step, the canonical transformations of théIme dependence. As we shall see later on, part of these

Hamiltonian which introduce all existing exact constants of\rfna:ar?é%i ;iselglfg v:/ﬁif# Ingrs;gi t(ij za;ieng;‘(tthe presence of a
motion as canonical momenta, thereby eliminating the corre- 9 I ' .
The Hamiltonian depends now on the vector potenial

sponding cyclic coordinates. Our choice of canonical vari- nd therefore translations in space do not brovide a symme-
ables and transformations already take into account the typ% 1ons In sp : P y
tfy. Instead the Hamiltonian is invariant with respect to the

of perturbation theory we want to apply. Appendixes A and hase-space translation gro@ig]. The generators of this

B provide the necessary transformation formulas for the caP
nonical CM and action angle variables of the Kepler prob-grOUp are the components of the so-called pseudomomentum

lem. Section Il gives a brief account of the perturbationWhICh Is a conserved quantity and takes on the following

here u=(m;m,/M) andk is the coupling constant of the

theoretical ideas. Appendix C provides the general perturbae_lppearance.

tion theoretical methods, i.e., the series expansion as well as 2 '

the time-averaging procedure for the derivation of effective K'=> [p W+ 4 Bxr'(]. 3
Hamiltonian and their equations of motion. In Sec. IV we i=1 2

apply the methods described in Appendix C to our case of L ) )
the charged two-body system in a magnetic field. ManyThe componenk; is identical to the corresponding compo-

properties of the regular regime are derived and discussednent of the total canonical momentum in field-free space and
reflects the fact that the translation motion parallel to the

magnetic field is uniform. If the net charge of the system is

nonzero the components of the pseudomomentum perpen-

dicular to the magnetic field do not commute and, therefore,

cannot be used simultaneously in a complete set of constants
Our starting point is the Hamiltonian for a charged two- of motion.

body system of two interacting particles in a homogeneous In addition the total canonical angular momentum parallel

external magnetic field to the magnetic field

II. CONSTANTS OF MOTION AND CANONICAL
TRANSFORMATIONS OF THE HAMILTONIAN
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2 o o tion we have achieved even more than we wanted? de-
Ly=2> x'Opy -y (Opr® (4)  pends now solely on the CM variables, i2=K2 ! (The

=1 reader should carefully distinguish between the total quanti-

is conserved15]. A maximal set of commuting constants of ties KE ,Lz_and the CM _v_arlabl_e:t(gm,Lcm which are, in
motion is (H’,Kiz,K; ,L2). In the following we will intro- general, _dlfferent guantitiesThis means that we are now
duce, apart from field-dependent factdsee below; these ready to mt_roduce, by a further canonical transformatiof,
quantities through canonical transformations as canonicdl$ & canonical momentufsee also Re{.17]). The complete
momenta and will at the same time transform the remaining®t of new canonical momenta for the CM variables, i.e., for
degrees of freedom to action-angle variables which are wefihe HamiltonianH M, are
suited for the perturbation theoretical approach with respect
to the magnetic field.

In a first step we make the usual coordinate change from Kim
the laboratory coordinate system to CM variab(Bs,,,P¢) (pl'pZ'p3):(ﬁ'Lcm’PcmZ>'
relative variables(r,p). In the latter coordinate frame the
quantitiesK; andL, separate, i.e., are direct sums of differ-
ent parts involving only CM and relative variables. The \ith these momenta the Hamiltoni&i ! reads
guantity Kf, however, does not separate in this sense. To
achieve its separation the following unitary gauge transfor-
mation is necessary,11-13: 2

P3 P1
[1=_= =
P H=oM +B( YzP2t 1 | (8)
Pem= Pt > Bxr’,
B with y,:=—(Q/M). For the corresponding canonical con-
p=p’— > BXR.y, (5 jugated coordinatesq,q,,q;) we refer the reader to Ap-

pendix A. SinceH™ is integrable it depends only on the
conserved momentp;. We included a factor 1R in the
definition of the canonical momentupy due to the follow-
ing reason: after the canonical transformation to the mo-
mentap; the relevant part of the Hamiltoniad* [see Eq.
H=H+H21 4 Hi3] (8)] consists only of terms which are linear proportional to
the magnetic-field strengtfihis is not the case for the cor-
Q 2 responding Hamiltonian in Eq<$6) which contains terms
H[”:m ( Pon— o BX Rcm) : proportional toB as well asB?]. Equally important, the cou-
pling HamiltonianH (21 ill, in the above-chosen scaled vari-

where B8=[(q;m,—qg,m;)/M]. The resulting Hamiltonian
reads as follows:

B Q ables, also be proportional to only one power of the field
Hi2l= _ 2 (pcm— = BXRgy|BXT, strength, namely, t®>? [see Eq.(10)]. These facts are of
M 2 particular relevance and desirable for our later on perturba-
2 tion theoretical expansion in terms of powers of the
H[3]=p—+yLBIZ+>\Bz(x2+y2)+V(r), (6) ~ magnetic-field strength §ince we Wil! be able to takg into
2u account the CM or coupling Hamiltonian by the inclusion of

a single low perturbation theoretical order in the field
strength. We remark that this scale transformation does not
prevent us from performing a consistent perturbation theory.
) Since the only rescaled variabpg is a constant of motion,

wherel, is thez component of the canonical relative angular
momentum and

every rescaled expression in the equations of motion appears
only in connection with this conserved quantity and therefore
does not affect the dynamics of our perturbation theory. For
1 [ qf qg 20Q mf+ mS any field strength and, in particular, for the low-field limit

8

m m, M2 (G2m; +dm,) +Q? YERRR B—0, the above-performed scaling does not cause any intri-
7) cacies. Before the limiB—0 is performed the constant
p,=(K.L%2B) has to be reinserted and will only occur in
It has a particular appealing form which has been mentionedonnection with an additional multiplicative power of the
in the introduction. H* is the CM Hamiltonian for a free field strength which makes the limiting process smooth.
pseudoparticle with charg® and massM in a magnetic We mention that a transformation to a coordinate system
field which treats the ion as an entityH!?! contains the rotating around the magnetic-field axis would yield an ex-
coupling of the CM and relative degrees of freedom andplicitly time-dependent coupling Hamiltoniad!? which is
represents a motional Stark term with a rapidly oscillatingdifficult to handle in our perturbation theoretical approach.
electric field of intrinsic dynamical origin. HE! is the For the internal HamiltoniaH!®! we choose the action
purely electronic Hamiltonian. With the above transforma-angle variables of the Kepler problefsee Eqs(2)] as the
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new variables[see also Ref[16]] and arrive after some H[z](plyﬁiﬁ_Jz,'s,E(i’z'(i)s)
lengthy algebrdsee Appendix B for the corresponding trans-

formation formulas at V2P
== B¥\p1—Q(L+L) r(l5,13,¢3)
k2 |4 _
[3] K 2_2_ — _ [—L
HEl(1, D) 212 +y Bl +AB 12K2 X | siné cog ¢, + x) — COE Sin( b, + x) -
2
. K 14
1S x(1 3, ba) + 6] 1—,—2” o
2 E—
3 .
Tt el lco(als. 6 F HE(L L,05,15,¢02,b3)
9 ,u,k2 —
= ﬁ—i_ ‘}/LB(E_‘C)—'_)\BZrZ(IZvISv(ﬁ?))
The functionse(l,,13), x(15,15,¢3) are given in Appendix s _
B. H does not depend o, which reflects the fact that it _ (L—L)?
conserves the canonical relative angular momentum compo- X[ 1=sirf(x+¢,)| 1- 12 . (19

nent parallel to the magnetic field. Finally the coupling

. . 2] : . . .
HamiltonianH'* takes on the following appearance: The arguments of the Hamiltonian are the conserved mo-

menta separated by a semicolon from the dynamical vari-
v2[3 ables. Our final total Hamiltoniai in Eq. (12) is only a
HI?)=— ™ B¥2p1—Qp2 r(12,13,43) function_of the momentép, ,p3,L,L,1,,13) and of the coor-
dinates(¢,¢,,¢3). The coordinates; ,qs,£ are cyclic since
. their corresponding momentay ,p;,£ are conserved. The
Sin(0z— ¢1)CO o+ x) —COL 2~ ¢by) motion of the cyclic coordinates; ,q;.£ separates from the
motion of the coupled dynamical variables,| ,,15,&,¢,,d4)
X Sin( -+ x) |_ (10) in the sense that the motion of the set of cyclic coordinates
27X I,/ can be calculated independently and one by one after solving
the coupled Hamiltonian equations of motion for the set
(L,5,13,&,¢5,05) of variables. We remark that once the dy-
namical behavior of is known the time dependence of the
second nontrivial cyclic coordinatg can be easily obtained
by using the equation of conservation for the pseudomomen-
tum.

X

wherer(l,,l5,¢3) is also given in Appendix B. The cou-
pling HamiltonianH™? depends oy, and, therefore, does
not conserve the angular momentum This had to be ex-
pected since the total Hamiltoniath does not conserve the

relative angular momentumn but the total angular momen- : .
Let us conclude. By performing several canonical trans-

tumL,! The conservation of , can be seen from E¢10) by . . : ; .
: formations we arrived at a particularly simple and appealing
its dependence ofg,—¢;) and not ong, or ¢, separately. L o .

. . 12 = . . form for the Hamiltonian of a one-electron ion in a magnetic
Our last canonical transformation which introduces in addi-

tion to the other conserved quantities alsg or more pre- field. The conserved quantities

cisely L,/2, as a canonical conjugated momentum reads as K2 L
follows: <_i K _Z)
2B 2
L=53(pat11), E=Urt s have been introduced as canonical momenta and we hereby
reduced the number of coupled dynamical degrees of free-
E_=%(p2—|1), §_IQ2—¢1- (11) dom from six to three, i.e., we reduced the coupled phase

space from 12 to 6 dimensions. Secondly, by choosing the
] ] . ) ) above field-dependent scale transformation the pure CM part
Using this canonical transformation we arrive at the follow-as well as the coupling part of the total Hamiltonian became

ing appearance of our final Hamiltonian: proportional to a single low power of the field strength. We
have, therefore, obtained a very good starting point for a
H(L,p, p3.£_|2 s §—¢>2 b3) perturbation theoretical treatment of the classieald in the

future also semiclassigadlynamics of highly excited ions in
_ _ _ external magnetic fields and turn next to a brief description
=HE(L,p1,p3: L) +HENL,p1i L5 0 3,E,¢0,b3) of our perturbation theoretical approach.

Bl r:r |
FHEL L 2,05, b2, ), (12 Ill. PERTURBATION THEORETICAL CONCEPTS
with Our unperturbed Hamiltonian is the Kepler-Hamiltonian
in field-free space and the perturbation expansion will be
done in powers of the magnetic-field strength. In spite of the
fact that our example of application will be the Héeon all

2

HI(L,py paiL)= 5o +B . a3

- P1
’)/z([:'f' £)+ m
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following considerations and perturbation theoretical resultpling Hamiltonian between the CM and electronic motion
are valid for any mass ratio of the two particles. We mentionandH, is the diamagnetic electronic part bif3!.
that the special case of an infinite nuclear mass which corre- In Appendix C we give a brief account of our perturbation
sponds to the HamiltoniaR'® for m,— has been investi- theoretical approach which will be applied in Sec. IV to the
gated in detail in Refl16]. The perturbation theoretical ap- Hamiltonian(16). In order to establish the equations of mo-
proach to the hydrogen atom in crossed electric and magnetifon for each order i, a series expansion due to the explicit
fields has been developed in RE18-20. If we rearrange  and implicit dependence, for all relevant quantitieamil-
the total HamiltoniarH in terms of powers of the magnetic- tonjan and variabléson o has to be performed. Because of
field strength we immediately realize that the perturbationthe particular structure of the zeroth order and the exact
theoretical expansion parameter is best ChPSem@@l;z, Hamiltonian (see the beginning of Appendix)@ur pertur-
since the coupling Hamiltoniah' is proportional toB¥%.  pation theoretical equations of motion can be simplified in
Our expanded Hamiltonian, therefore, looks as follows: each order enormous[gee Eqs(C9)—(C11)].
— — Apart from the perturbation theoretical approach with re-
H(L,p1.p3:L,12,13.€, b2, b3) spect too there is another conceptual idea which will be
2 used extensively in our investigation of the classical motion
_ ) e N of the highly excited ion. According to the numerical simu-
Ho(Psila) 57 HalL,P1iL) lations performed in Ref§14] the CM as well as electronic
3 motion exhibit several oscillatory motions on by-orders-of-
+ % H3(£,p1§ﬁ_,|z,|3,€¢2,¢3) magnitl_Jde different time scalé_'s (whether, ano_l if yes, how
' these time scales can be derived from the different parts of
o o the expanded Hamiltoniakl will be clarified in Sec. V.
+—Hy(L: Lo 5, o, dba), (16)  These oscillatory motions are superimposed on each other. It
41 is therefore a natural idea to obtain the motion on a larger
time scale by averaging over the fast individual oscillations
on the smaller time scale. This can successively be done until
02 K2 one arrives at a complete picture of the motion on any of the
Ho(Pa:ls) = ~o— '“_2 (17)  existing time scales. The shortest time scale, i.e., fastest os-
2M 215 cillatory motion, is the one due to the time dependence of the
angle ¢; which represents in orders® the period
= (2 3/ uk?) of the Kepler ellipses. The second time
scale is given by the oscillatory motion of the anglevhich
arises first for the ordes? and possesses in this order the
Ha(Lp1: Lol gl 3 Eocbys ba) period 7= (2/| ya?|). Up to ordero? our expanded Hamil-
tonian is integrable. It possesses no coupling between the
V2P 12 1 CM and electronic degrees of freedom and describes the CM
=—6 VP QUL+ L) T motion as a free cyclotron motion of a pseudoparticle with
® € COSy . _ ;
chargeQ and masdM in a magnetic field and the electronic
— — L—L motion as Kepler ellipses which are rotating with their Lar-
Siné cog ¢o+ x) —COE sin( ¢+ x) |—) mor frequency.
2 The next higher order® of the perturbation expansion
(19 involves the coupling Hamiltoniakl ; which depends on the
4 angles¢s,¢ (belonging to the above-mentioned time scales
I3 1 and which destroys, in particular, the propertylgfand £
w?k? (1+ € cogy)? being conserved guantiti¢see, however, Sec. )VSince the
exact solutions L(t),l5(t),15(t),&(t), do(t),ds(t) of the
Hamiltonian equations of motion are unknown, the question
for the practical feasibility of the time-averaging procedure
_ now arises. Let us consider first the fastest oscillations due to
x(l (L—E)ZH 20 the motion of ¢5;. For a certain cycle ofp; the above un-

with

Ha(L,py;L)=2 +2yL (18)

P1
’}/[,‘l' M

X

Ha(LiL,12,05, b2, b3) = 24\

X | 1—sirf(x+ ¢5)

12 known functions could in a first approximation be replaced
2 in the Hamiltonian equations of motion by their initial values
with y:=vy,+ y_andy:=y,— y, . The zeroth-order Hamil- and the anglep; by its linear time behavior due to the pure
tonianH,, consists, apart from the trivial CM energy parallel Kepler problem. The changesC,Al,,Al3,A&,Ad, Ad af-

to the magnetic field, of the pure Kepler-Hamiltonian. Theter one time cycler then arise from the time averages of
HamiltonianH, contains the complete cyclotron motion of the quantitiesC,l,,l3,§,¢,, ¢4 and tell us the change in the
the ion treated as a pseudoparticle with cha@gand mass above variables due to the coupling during one cycle as well
M in a magnetic field as well as the Zeeman ternmHét.  as the deviation of the angt, from its uniform time depen-
Since p4,£ are conserved momenta the only termH3  dence. Such a procedure yields a system of difference equa-
which contributes to the coupled part of the correspondingions which can, under appropriate conditions, be replaced
Hamiltonian equations of motioisee below is the term by a system of differential equations. These conditions de-
involving the momentunt. Finally H; represents the cou- mand, roughly speaking, the smallness of the second deriva-
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tives of all quantities. Corrections going beyond the de- . 9 . .

scribed approximation for the averaging over the smallest Lz=——H3(Lg,l20:130:&0, 920, P30),
time scale can be showsee Appendix C and, in particular, d&o

Ref. [22]) to be of orders® and are therefore within our
perturbation theoretical approach of or@érnegligible. The
smallest time scale of the averaged equations of motion is
now 7= (27/[y[o?) due to the motion of. To obtain the
motion on_even larger time scales one uses the fact that the © - -
variablesZ,l,,15,¢, are constant on the time scateand l33=— I H3(Lo.120.130,60. b20, b30),
performs a second averaging procedure now over the time

scaler. Corrections due to this second averaging are of order

. 9 _ _
l23= — ——— H3(Lo, 120,130, €05 P20: P30),
dbao

- 9 — _
o* and will be given in Sec. I\(see also Appendix ICThe &3=—H3(Ly,l 20,3060, P20, P30
corrections of the second averaging process go together with 9Lo
the diamagnetic electronic term which occurs in the next 5
orderca” of perturbation theory. They determine the behavior bz Hal Lol ol o Em
of the system on a time scale much larger thaand define, P23 dl 3(£Lo120.150,€0, $20 P30,

as we shall see, a third even longer time scale. For the math-
ematical details of the performance of the averaging proce--, - -
dure and for the corresponding notation we refer the reader®33™ g1, H3(£0’|20’|30’§0'¢20’¢30)+|33T§O Ho(l30),

to Appendix C and Ref.22]. (24)

2

IV. RESULTS AND DISCUSSION r=4:

In the present section we apply the perturbation theoreti- £,=0,
cal method to our problem of the charged two-body system
in an external magnetic field. First of all we establish the - —
exact perturbation theoretical equations of motion up to '24:_%H4(£0'|20'|30-¢20’¢30)’
fourth order ing, i.e.,r=4. Let us begin by providing the
first few perturbational theoretical Hamiltoniah™ for the ) 9 —
lowest orders <4 [see Eqs(C3) and(C4) in Appendix C. l34= — Er Ha(Lo. 120130, #20, ¢30),
In zeroth order we obtaiRi (¥)(p3;130)=Hy(p3;l30) and the 30
first-order contribution_vanishes, i.¢4Y=0. In second or-

- 4 —
der we haveH®(L.p;:Lo)=H,(L,p1iLo), Where Lo=L(0). E4=——Ha( Lo\ 20,1 30, 20, b20),
Apart from that for&(t), all solutions of second order vanish. Ly
For the third and fourth order we obtain
_ _ - d —
HE(L,p1;L0.120.1 30, €0+ 20, Pl 39) ¢24:T20 Hal(Lo:l20.130. P20, b30),
:H3(£1p1;£01|201'301501(1)201(1)30) . J R (92
g ¢34:T30 H4(£o,|2o,|301¢20:¢30)+|34T§0 Ho(l30),
+|33T30H0(psi|30), 25
HOL T 1o ] I which shows that up to second order all canonical momenta
(£:Lo:120:1 30, 20, 0l 3 are conserved. In addition the decoupled equations of motion
— J for the variable¢ for the orders =2,3,4 take on the follow-
:H4(£2£0'|20a|3o:¢20v¢30)+|34T30 Ho(p3;130)- ing appearance:

.9 —
(21) §2=E H,(L,p1:Lo),

The coupled part of the corresponding Hamiltonian equa-
tions of motion read in zeroth, second, third, and fourth order

i J _ _
as follows: 857 Hs(L,p1: Lol 20:130:é0, 920, P30),
r=0:
. J . J J—
$a0=—=— Ho(l30), (22) 54:—/: H4(L; Lo, 20,130, b20, P30)- (26)
dl 30 d
r=2: The above perturbation theoretical equations now clearly re-

veal that the time scalg of orderr =0 belongs to the mo-
-4 — tion of ¢5, the time scales= (27/[y]o?) andr=(2/|y|d?)
52:7 Ha(Lo), (23 of orderr =2 belong to the motiog, and &,, respectively.
0 In order to study the behavior of the system on a long-
r=3: time period we have to average the fast oscillations due to
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the variablesp; and . The underlying ideas and the formal not the case for the original perturbation theoretical equa-
aspects of this averaging procedure have been described fions of motion[see also Appendix C, in particular, Egs.
some detail in the preceding section and particularly in Ap{C14) and below.
pendix C. We, therefore, refer in the following only to the
results of the corresponding calculations. o
Let us begin with the averaging over the shortest time  Hx(o;L,p1,13;L,15&, ¢5)

scale due to the rapid oscillatory motion ¢g. The nth
averaging period is the momentary Kepler period after Lo T, 9 e
—1) cycles of g, i.e., AT(n)=[271 5(n)/ uk?]. In averag- 1= o7 Had £,P0i L) 37 Had £,P1 153 £12,6, ¢2)
ing Egs.(22)—(26) we use the fact that all Hamiltonian are 4
periodic with respect t@; and can be represented in Fourier g e
series according to E(:(?C13) in Appendix C. The corre- *gr Had £15iL.12, ¢2), 29
sponding Fourier components are provided in Appendix D.
Subsequently we take the continuum limit of the resulting
averaged difference equations and arrive at the following difwith the Fourier componentd ,o,H30,H 40 given in Appen-
ferential equations for the canonical averaged variables: dix D 1.

_ From Egs.(22)—(25) we know that, apart from the fast

2 3

dc a2 IHgg oscillations of¢;, there is a second larger time scale defined
ﬁ: - ; (95—’ by the behavior of. The effective Hamiltoniar§29) is pe-
’ riodic with respect to the angle variabfelt is, therefore, an
dl, 03 Hay o dHyg obvious idea to repeat the above-performed averaging proce-

9T 3 0. A 95, dure but now with respect to the varialdlend its time scale.
b dds b dds Before doing this according to the procedure described in
Appendix C we have to meet the requirements given at the

%: , very beginning in Appendix C. This means, in particular,
dT that the zeroth order of our Hamiltonian to be averaged over
_ & should contain the fast oscillations éf This can be ac-
dé 0% dHp  0° dHzo o dHyp complished by the rescaling of tim&=¢2-T which yields a
dT 21 M_”L 31 M_”L a oo rescaling gf the Hamiltoniai . by a factor of 162, ie.,
Hei=(Llo“)Hq in the corresponding equations of motion.
3 4 We remark that these scale transformations do not prevent us
déo 0° dHgzy 0" dHyg : ) .
oT 31 A + TR (27)  from performing a, up to some desired order, consistent per-
’ 2 ' 2 turbation theory. The coupled equations of motion read then
and for the decoupled variables as follows:
d¢3 0'3 0"H30 0'4 O"H40 _
at e\, T e G ) AL oMy
do o¢
dg_O’2 (?Hzo 0'3 (?Hso 0'4 (?H4o 28 g
aT 2 oc "3 o T4t oz
dl;  Hen

where the asterisk symbolizes contributions which are not —= ,
explicit derivative terms. We immediately realize the follow- do I2
ing important results of our averaging procedure. The aver-

aged time derivatives dfys, |5, vanish and the first nonvan- _

ishing contribution tol; arises in fifth-order perturbation dé  IHeg
theory. The averaged variablg is therefore in fourth order T A

an exact constant of motidisee Eqs(27)] and, in general, do oL
for the regime accessible by perturbation theoryapproxi-
mate constant of motion
Second, we observe that the terms representing deriva- %: I Hett (30)
tives do no more contain the Hamiltoni&ty , but their ze- dd aly

roth Fourier componentsl;, with respect togs, and these

components, do not depend gg. In particular, up to order

r =4, ¢3 does not show up in the equations of motion for theNext we apply the procedure described in Appendix C to
coupled variablegZ,¢), (I,,¢,) and the variablesl,¢3), these equations, i.e., we expand them with respect to their
therefore, decouple in the averaged equations of motiortotal dependence omr and average the resulting equations
Consequently the number of coupled degrees of freedom igver the periodA®=27/|y[, where®=02 T stands for the
reduced by the averaging procedure from three to two. Aneontinuous scaled time variable after the second averaging
other important property of the averaged coupled equationprocess.

is the fact that they possess Hamiltonian structure which was The resulting effective Hamiltonian can, after some
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lengthy calculation, be shown to possess the following strucef the CM and relative motiofiEq. (33)] contain a cos,
ture: dependence og, and a prefactor involving a second-order
polynomial inl3. The first term in Eq(33) represents, how-
ever, a qualitative difference between the two contributions
(the caseM —~ which means, in particular, the absence of
the contribution(33) has been treated in Rdfl6]). For an
atomic system like the Heion the ratio of the prefactors of
the two contributions i$~72u%5M? which shows the sup-
pression of the contribution due to the coupling term for this
extreme mass ratio.

In the following we discuss the solutions of the equations
of motion (34). These solutions are periodic functions of
time and will, together with their period, be given below as
functions of the initial conditions. In order to integrate the
equations of motior§34) we will take advantage of the con-
servation ofHey . As a first step we define*Heq_:=v E
with v=0*NM4uk?13. This gives us the angle, as a func-
fion of I, and the conserved momenta

Her (05 L,P1,13:L512,62)

Heir,( L,P1:13;L,12,62)

0_2
21
5Hefflk 3Heffl(7k)
d(0) d¢,(0)

2
+— 1/
H effook# 0

IHefr, ]

_Heﬁl(—k) &Z(@) ] (31)

with the Fourier componembleﬁij given in Appendix D 2.
The first term arises due to the diamagnetic term and read

N F: — a(l,/13)4+b(1,/15)2+c
N2.h2) =5 —75 5 (515-313)[15+(L—L)? =23 22
Heffzo(L 2 ¢2) 2 M2k2 |§ (( 3 2)[ 2 ('C E) ] COS%Z d(|2/|3)4+e(|2/|3)2+f ’ (35)
+5(13-15)[13- (L~ £)?]cos2p,),
with
(32)
whereas the second contribution is a correction due to the _ Q
coupling term a=|3+55_/,
2 _9 Be 115 20L—L) b=—5(1+62|+ 3+55Q) (c—£_)2+2055—£_
Héffoo k#o{ }_Z)’yl\/lz Mzkz E ( O( ) = e e |§ I:z3
P1 Q PN Q 2 2 &_9 T~
X| g5 (L+O)[13+52 (15-15) X\ e e LTh)+E
_ Q =:b'+E,
X[3+(L=L)2]+5 (15-19)
_ - Q| (£—L)?
X[13= (£~ £)?]cos2p, . (33 S e T
Scaling back to real time we, therefore, arrive at the final Q
coupled equations of motion d= _5( 1+ 6 _> (36)
e

dl,

-2 .
=—0 H ails,ds), ) ]
dT A efer( 7312 ¢2) ande= —c—d, f=c. In the following we restrict ourselves

to the physically interesting cagéQ/e|<2 which implies
a>0, ¢<0, d<0, d®>>a? The curvesl,(¢,) for constant
energy possess the periadand are symmetric with respect
to ¢,=n w/2. E andb possess an absolute minimum at
Let us now discuss the above results of the second averagingf"==/2 and 15"=(2c/a+d)*%; and we haveb,
process. The averaged variabfeis up to orderr=4 an =-2y2c(a+d)+c+d. There exist two classes of curves.
approximate constant of motioBy the second averaging of Librators are closed curves which exist in the vicinity of the
the equations of motion we have reduced the number ohbove given minimum and are separated by a separatrix from
coupled degrees of freedom in fourth order from two to onethe rotators which experience the whole range of possible
This means that our twice averaged system is integrable. It igalues for¢,. The separatrix is given b.;=—a—c. For

d¢2_ , 0

W—U _Heffeﬁ(0'§|2a¢2)-

al, (34)

a surprising result that the two contributions E¢32) and
(33) to the effective Hamiltonian Eq(31) have, to some

extent, a similar structure. Both the term arising from dia-

2c>a+d both classes coexist whereas far<a+d only
rotators are present.
Using Eqgs.(35) we can eliminate the angl#, and obtain

magnetisn{Eq. (32)] as well as the term due to the coupling an ordinary differential equation fdg(7):
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dl 2v
—2__ 5=\ [d(1/13)%+e(l2/15)%+c]?—[a(l 2 /13)*+b(1,/15)%+c]>. (37)
d7 (1,/13)
|
In order to integrate the above equation we have to establish : 1 B
the roots of the polynomial under the square root Rcmzm Hem— M BXr,
pl:ﬂ, wherell,, is given in Eq.(A1). First of all we emphasize
a—d that all numerically observed time scales of the motion of the
CM can be found and are described in detail by our pertur-
_V(e+b)*—8c(d+a)+(e+b) bation theoretical approach. The individual oscillations on
2= —2(a+d) ' the shortest time scalg can be obtained by the unaveraged
Hamiltonian equations of motion. The modulations of the
— J(e+b)2=8c(d+a)+(e+b) CM energy on the time scateare precisely described by the
3= “o(ard , (38 once averaged perturbation theoretical equations. The dy-
(a+d) namical behavior for times=r is best described by the
which vields twice averaged equations of motion and gives the additional
y modulations of the CM motion on the typical time scale
T2,
d7=— ls = dpP . Finally on the largest time scalg the CM motion closes
4v \[d?—a® J(P—P,)(P—P,)(P—Py) to a circular orbit with radius
(39
: B
P, is always the smallest root and belongs to the lower turn- Rz= oB? BXRem(0)— 1o} r.(0)). (42

ing point at¢,=m/2. P, and P, belong to the upper turning

points of the librators and rotators, respectively. Due to theand cyclotron frequencyw, : = y,o2. Equation (42) now
z-— rzv -

periodicity as well as the symmetry properties we have tg ; ] S ; . .
integrate Eq.(39) only for the first half of the period of establishes the self-stabilization effect in a rigorous analyti

motion. The period finallv can be obtained as cal way. In particular, it demonstrates that the CM of the ion
: P y : stabilizes for vanishing initial CM velocity on a cyclotron
orbit whose radius is, apart from constant factors, determined

by — |_3 ! 2 by the initial relative distance of the two particles perpen-
2v [d?—a? \/ma>(P1,P2)— P, dicular to the magnetic field. We conclude with the remark
that this effect is ultimatel ]a consequence of the action of
min(P,,P,)—P the coupling HamiltoniaH'?!, H.
<F 77/2’\/ (P1,P2)—P3 , 40 upling iltoni 3
maxPy,P;)—P3

. . . ) ) V. SUMMARY AND CONCLUSIONS
whereF(¢,k) is the elliptical function of the first kin@23].

The period7#2 depends strongly on the values of the roots We have investigated the classical dynamics and proper-
P,, i.e., the initial conditions. On the separattixb,,7¢2  ties of charged two-body systems in a magnetic field in the

diverges. The period®2 possesses however a lower bound regular, i.e., by perturbation-theory accessible, regime. This
system possesses three exact commuting constants of mo-

tion: the component of the total momentum parallel to the
—_—, 41 field, the corresponding component of the total angular mo-
v 2y2d(d—a) @ mentum as well as the square of the absolute value of the
_ ) o ) pseudomomentum perpendicular to the magnetic field. In a
which can be considered a new third time scale which addgyst step these conserved quantities have been introduced by
to the two previously discussed onggand 7. ‘a number of subsequent canonical transformations as canoni-
For a discussion of the behavior of the decoupled coordiza| momenta, thereby eliminating their cyclic coordinates. At
nates(¢, ¢3,£) belonging to the conserved momeiita, 13.£)  the same time we introduced a field-dependent scale trans-
we refer the reader to Ref22]. We remark here only that formation which brings the Hamiltonian to a form well
their typical time scaleg¢,7%3,7¢ are comparable td%2  suited for the application of perturbation theory. In particu-
and these four quantities therefore define one common timkar, the coupling term between the CM and relative motion is
scale of the doubly averaged motion. in this representation proportional to a single low power of
In the remaining part of the paper we report on the interthe field strength. By the above canonical transformations the
pretation of the above obtained results in Cartesian coordirumber of coupled degrees of freedom was reduced from six
nates and build a bridge to the numerically observed pheto three which means a five-dimensional energy shell in
nomena in Ref[74]. In order to get the time-dependent phase space.
dynamics of the Cartesian CM coordinates and velocities we Next we applied two perturbation theoretical concepts to
exploit Egs.(A4)—(B5) and use the relation the resulting exact Hamiltonian equations of motion: a per-

: | T
b ¢omin, _ '3
T =Ty =



54 HIGHLY EXCITED CHARGED TWO-BODY SYSTEMSN. .. 4877

turbation theoretical series expansion due to the explicit aghich are related to the angular momentum of the CM in the
well as imPIicit dependence of the equations on the paramfollowing way:

eter o:=B"2 and a time averaging procedure. Both ap-

proaches are in some detail described in Appendix C of the 2QBLgp= Kgm—ﬂgm- (A2)
present work. The latter perturbation theoretical concept was

motivated by the fact that the system under consideratio&hoosing the Setr(lapz1p3):(K§m/ZBvLcm1Pcw) as ca-

possesses several by orders-of-magnitude different timgqioo momenta it is possible to derive the following trans-
scales which manifest themselves in the perturbation the ormation formulas:

retical equations of motion. The series expansion by itsel
allows only for a determination of the short-time dynamics K2 K TI
whereas the long-time behavior is accessible by the averaged = cml | coQq,= cmL*feml
equations of motion. Our first application of the averaging 17 2B YK g | Moy |
procedure revealed already interesting properties: the prin-

cipal action of the Kepler problem proved to be a constant of (K ey X Mgy )
motion up to fourth order in perturbation theory. The number sianFW,
of coupled degrees of freedom, therefore, reduced from three emL H= eml
to two after the first averaging. An effective Hamiltonian
which describes the averaged dynamics for the two remain- L CMemx - Hemy
ing degrees of freedom could be presented. Po=tore:  COSLTy T ST T

After another field-dependent scale transformation a sec-
ond averaging process could be performed which_finally ren- _ . _

P3=Pemz;  d3=Zem (A3)

ders the system integrable. The canonical momenfunrns

out to be an additional constant of motion up to fourth-order
perturbation theory. £ is the difference between the angu-
lar momentum components of the CM and relative motion. 1
Since the total angular momentum compongnis exactl e T PRA. _ \/7_ i
conserved this megns, that, on the level (?fthe twice aveyrage(>1(cm QB [V2BPisi(Qay +qz) = V2B(P1~ QP,) sindz ],
equations of motion, the coupling between the CM and rela-

With some calculation we arrive at the inverse transfor-
mation laws

tive motion causes in fourth-order perturbation theory only 1

an exchange of energy but no exchange of angular momen- Yem=— OB [V2Bp;cogQa;+0y)
tum components parallel to the field. The number of coupled

degrees of freedom is now reduced from two to one and we — J2B(p.—Qp,)cosy,]

encounter on this large time scale an integrable averaged
motion described by an effective Hamiltoni&meﬁeﬁ. The
solutions as well as phase-space structure of this Hamil-
tonian are calculated and discussed in detail. The existence )
of rotating and librating trajectories is established and their Pemx= 2[ V2BP;1c0gQ0;+0,) + v2B(p1—Qp,)cog,],
periods are given analytically as a function of the initial con-

Zcm=0s,

ditions. , ) , ~ Pemy=3[V2Bp;sin(Qa; +a,) + V2B(p; — Qp,)sing,],
The above procedure provides an analytical manifestation
of the existence of four different time scales of the CM mo- Pers=Ps (A%)
cmz 1

tion of the ion which have very recently been observed in

numerical simulation$14]. Apart from this it provides, in

addition, an analytical approach to the classical self- APPENDIX B: THE ACTION-ANGLE VARIABLES

stabilization effect of the ion. The radius as well as the fre- OF THE KEPLER PROBLEM

quency of the cyclotron orbit of the CM motion with initially . o ) )

Vanishing CM Ve|ocity can be calculated exp||c|t|y and the For the details of the derivation of the actlon—angle varil-

self-stabilization effect can, therefore, be understood in th@bles for the Kepler problem we refer the reader to the lit-

general framework of the phenomena arising in the regulaeraturg16,21]. In the following we provide only some of the

regime. key relationships among the different relevant quantities. We
define the action variables

One of the authoréP.S) acknowledges financial support =1,

by the Deutsche Forschungsgemeinschaft.
APPENDIX A: THE CANONICAL CENTER I=1,
OF MASS VARIABLES
. . . k2 1/2
Let us introduce the kinetic as well as pseudomomentum = ('“_) , (B1)

of the CM —2H

M.—-p. 9 BXR wherelL is the absolute value of the total canonical angular
cmotemo 2 cm: momentum ancH the Kepler-Hamiltonian. In addition we

introduce the true anomaly, the eccentric anomaly, as
Q well as the mean anomaly, which is the canonical anfgle

=P+ = BX o : .
Kem=Pem BXRem, (AL) These quantities are related by the following equations:

2
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b3=y—e siny, is the eccentricity of the ellipse. From the focal representa-
tion of the ellipse we obtain for the radius
X 1+¢\ 12 1/
tanZ = tan -, (B2)
2 1= 2 12mk ®
r= ,
where 1+e(ly,13)co(l2,13,¢3)
2\ 1/2
s(|2,|3)=(1——§) (B3)  Wwhere the true anomaly is given in Eq®82). The radius
I3 vector reads as follows:
. . I
COSp1€0q ¢+ x) —SiNgSiN( p, + x) N,
. . Iy
r(14,05,05, 00, ¢3)=r(15,l3,d3) snn¢1cos(¢2+x)+COS¢1$m(¢z+x)E (BS)
|z£ 1/2
Sin( b+ X) 1—|—2)
2
|
APPENDIX C: THE PERTURBATION THEORETICAL ® "
METHOD pi(ait) =2 o'/rip(t) with py(t):=-— pi(ait),
r=0

Our starting situation possesses the following characteris-
tics: The underlying exact Hamiltonian can be represented
in a series, in our case up to fourth order, in a small param- *
eterc; in the lowest ordep® only a single variable, namely,  g;(o;t)= >, o'/riq;,(t) with o (t):= — gi(o;t).
¢, IS not constant; the total Hamiltonian is a periodic func- r=0 do
tion of this variable[see Eqs.(16)—(20)]. The aim of the (C2)
present appendix is to derive the perturbation theoretical
Hamiltonian equations of motion which have been average

r

. T : ci’hese expansions possess only a finite radius of conver-
over one time cycle of the distinguished varialabg. Our ) . o
. . ence. To get the long-time behavior we will in general have
method can be applied to any problem meeting the abov . . :
0 apply the time-averaging procedure described below. The

characteristics and is therefore by no means restricted to t &1al expansion of the Hamiltonian with respect to the param-
case of interest of the present paper, i.e., highly excite ter an after some calculation be obtairﬁ)e d as P
charged two-body systems in a magnetic field. The abov&'©" 7

conditions are not as special as they might seem from a first

glance. Indeed, if possible one would always choose as Ar o
zeroth-order Hamiltonian an integrable one which meets in Loip(e).a(0)]
suitable action-angle variables the first two of the above con-

ditions. o
Let us begin with a perturbation theoretical expansion of _ riH®
. . . . . . - r . H 1 L] 1 1 1" ’ ’ C3
the Hamiltonian and its equations of motion according to the 20 7 (Po:GolPas---+Pr G-+ ) €3

explicit as well as implicit dependence on the small param-

etero. According to our assumption the explicit dependence

of the Hamiltonian on the parametercan be represented in whereH(" is defined as
a series

; H(Po, Aol Py Pr 1 Ga.---.Gr)
H(7;pa)= 2, o'/ItHi(p.a), (CD S

I+s=n

(s)
(;)E (P1s+ P51, - Gs) Hi(Po, o),

(CH
Of course, the solutions, i.e., coordinates and momenta
g(o;t) and p(o;t), depend implicitly on the parameter
which can also be expanded in a series with
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1; N s=0
§ o ;1 1/V!rl+.%iy=s mDrl(prl.qu)... 5
+.De,(pr 0 )i S7O
[
and forr=1 df%}ﬁ(r>(po,qup1.---,prfl.ql.---,qrfl)
J
DelbroG)=| P 5o+ G (O P O(pu o py) 5o g, (€10

The Hamiltonian equations of motion for each order read as

follows: ) J ~ .
qir:m H(r)(p0!q0|pli"'vpr711Ql="'vqr71)= i#1.
|
. 7 (C11
Pir=" 25— H"(Po,GolPy,--- P A1),
Yio Apart from the second term on the right-hand side of Egs.

(C10), the above equations of motion of ordeinvolve only
L 4 HO) | ) ) quantities of order —1 and are therefore almost decoupled.
Y= Fpr (Po,Gol Py Pr .- Gr), The remaining coupling term reads as follows:

. . (r)
which shows thatH(") alone determines theth order ofp

(r o
and q. The dynamics of the variables irth order depend YO(Prts P1)N(P10= 2 (PrseoPr G )
therefore on all variables of ordessr. Since the equation of
motion for therth order of a certain variable depends not % Ho(Po.do)- (C12

only on the lower orders but also on thil order of the other . .
variables it is in general not obvious how E¢87) could be Due to the S|mple struciure of the equations of motioh)—
' (C11) the solution of order can be obtained from the solu-

solved. However, Eq¥C7) are very helpful and much easier tions of orderr —1 in the following way. First we obtain by

to solve than the exact equations of motion if the zeroth-Ordinar time integrations,.(t),q, (t) exceptdy,(t) from
order Hamiltonian has a particularly simple structure and de-E S (Cy9)—(Cll) I?lsertin$)”theég”solutionspigtlcg E¢C10
pends only on a few variables which is definitely the case for 'qld in b ' di 9 . . | h
our chosen Hamiltoniatsee comments at the beginning of /€4S adain by ordinary time integration alsg,(t). The

! . . . : . equations of motion can therefore be solved to any order
this appendix This becomes particularly obvious if we de- . . . N ; .
compose iteratively by ordinary time integrations. This should not ob-

scur the fact that our expansion possesses a finite radius of
M convergencer¢(t)>0 for t<t;, i.e., converges only for a
H"(po,dolP1,---Pr A1, ,0) certain propagation time of the trajectory. However, the
=ﬁ(”(p ol P1see Py —1:G1se G 1) above _choicg enhances the phance of gqod _convergence
O HOIELy » B =1 MLy e Hr =1 properties, since only one variables;) occupies in zeroth
() order an unbounded coordinate range.
+ 2 (PryeePrsG1se- 0 Ho(Po,do)  (C8) To get the classical behavior on a long time scale we will
apply in addition to the above discussed perturbation theory
. . . a time-averaging procedure whose fundamental equations
according to which the part ofth order appears only in gnq properties will be derived in the remaining part of this
connection with the Hamiltonian of zeroth order and any,nhengix. By performing a time-averaging procedure we are
simplification of the zeroth-order Hamiltonian therefore 'e-no more interested in the fine structure of the dynamics of
sults in a major simplification of the Hamiltonian equations . system but in its averaged behavior. The averaging-time
of motion ofrth order. Similarly simplifications of the higher scale can, for example, be the shortest time scale associated
ordersH, of.the _Hamiltoni_an will also.lead to simplifications with the time dependence of the coordinate Following
of the Hamiltonian equations of motion of orders|. __this way we will obtain effective equations of motion which
As already mentioned we deal in our particular case Withyeqcribe the deviation of the real motion from the fast oscil-
an mtc_agrable Hamlltomfem'rlO which depends on only one latory motion.
canonical momenturp,, i.e., we havéHo(p,)=h(p,). Us- The first step is to divide the time axis in interva(®) so
ing this fact Eqs(C7) take on the following appearance: ¢ the length\ T(n) of each interval is less thap. Instead
of the original initial value problem we consider the initial
value problem for each interval separately, perform the av-
eraging procedure, and will finally link them in a well-
(C9  defined way togethefsee below. The equations describing

. J ~
pir: - WO H(r)(p01q0|p1!'--rpr—laqla'-'yqr—l);
|
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the change\p(n),Aq(n) during thenth averaging period where we have used to describe the continuous time de-
depend on the corresponding initial valug&),q(n) and pendence of the averaged variables. The property that the
represent a system of difference equations imhich can be  zeroth-order Hamiltonian depends only pptranslates now
determined to some desired ordein the perturbation pa- into the fact that onlyg,(0) is nonzero for =0. We give the
rametero. The lengths of the averaging periodd (n) can  zeroth and first-order equations explicitly
now be chosen in such a way that the resulting equations r=0:
take on a particularly simple form. We hereby take advan-
tage of the fact that the only dynamic variable in zeroth order 9 (po(T),0q0(T))=0,
is g, and that the exact Hamiltonian is periodic dq with
period 27. The optimal choice is therefore
AT(n)=2=/h'(p;(n)) which takes into account that the
time intervals of averaging have to be adapted to the momen- ) ]
tary values of the momentum,. The time-averaging inter- gi (Po(T),do(T))=0; i#1 (C19
val depends therefore on the ste@nd has to be calculated
together with the changes in the coordinates and momenta. =1

In order to perform the averaging we represent all peri-
odic functions in Fourier series ™ (po(T),q0(T) [ p1(T),q1(T))=0,

9.2 (po(T),do(T))=h"(p1(T))

H'(p’Q):k;w Hu(p,Ga,...qm) e (C13 2 (Po(T), 0T P2(T),02(T))

dH1o o
Having done this we are now in a position to express the T 0gio(T) (Po(T). Gz T, Gno(T); - 1#1,

initial value problem of the changes of the variables during
one cycle to arbitrary order in the paramedeas a series of (1) T T T T
elementary integrals. Subsequently performing these mte (Po(T), Ao P2(T),ax(T)

grals we obtain difference equations of the following appear- dH 1o
ance: = (Po(T),d20(T),-- - Gno(T))
IP1o(T)
Ap(a:n) +(P12)n(Po(T),do(THN" (P2 )+ P1a(TIN (P1o(T))

T(m=f(a;p(n),q(n))

Aqo 9 (Po(T),q0(T)|P2(T),q2(T))
) = g(opn) a(n) (14

= o BT Gad T, (T %1, (€17

which go up to a certain desired order in their explicit de-

pendence on the parameter However, the functiond,g For the particular example of a charged two-body system in
depend also implicitly via the initial valueg(n),q(n) on  a magnetic field our perturbation theoretical averaged equa-
any order ofg. To obtain the final working difference equa- tions of motion show for the coupled variables up to fourth
tions one has to perform the expansion with respect to therder ino a Hamiltonian structure, i.e., they can be derived
explicit as well as implicit dependence of the functidng from an effective Hamiltoniai . (see Sec. IV. For further

on the parametes. How this has to be done was describeddetails on our perturbation theoretical approach we refer the
in the first part of this appendix, now with the minor differ- reader to Ref[22].

ence that we are dealing with difference equations instead of
differential equations and with the fact thiay can not nec-
essarily be obtained as partial derivatives of a single func-
tion, i.e., the equations do not necessarily possess Hamil-
tonian structure (see below. The resulting system of In this appendix we provide the Fourier components of
difference equations in some pure orderoofre finally re-  the Hamiltonians needed in our perturbation theoretical cal-
placed by differential equations which describe the smootltulation of Sec. IV. The Hamiltonian depends periodically
behavior of the averaged variables and take on the followingn the variablegp; and ¢ whose corresponding Fourier com-

APPENDIX D: THE FOURIER COMPONENTS
OF THE HAMILTONIAN

structure: ponents are given in Secs. D 1 and D 2, respectively.
dp, (T o
p(;(T ) =t (po(T),do(T)|p2(T), ..., 1. The periodicity in ¢
The component$l, of the Hamiltonian(16) are periodic
Pr(T),91(T),...,a:(T)), with respect tog,. Since the components of zeroth and sec-
ond order do not depend afy at all their Fourier represen-
dq,(T) tation is trivial, i.e., we have

g1 = 9" (Po(T),qo(T)[pa(T),.
Ho(psils); k=0

p(T),qo(T),...q(T)), (c15 Ho(Psi1a) =10 else, (OD
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Had Lo 0= o o 0 o2 " _ O _
Due to the avergging process we need from the thirq andH40(£;|3;£'|2’¢2): nk? E ((5|§_3|§)[|§+(£_£)2]
Components which can afer some catulation be obtained as #5(13-15)[13- (L~ £)%]cos2y).
— — V2 I3 (B4
H30(51p12|3§£,|2-§,¢2):9V P1—Q(L+ L) uk 2. The periodicity in &

o The Hamiltonian(16) is also periodic with respect t?
x«/lg—lg(sing cosp, However, we dol not need the Fourier components pf this
original Hamiltonian but of the averaged Hamiltonidg in
sy Eqg. (29). According to Sec. IV and Appendix C we need

—cof_singﬁz ) (D3)  how not only the zeroth but all Fourier components. We
I2 obtain after some calculation

— —= p
Hey(£:P1i L) =YL+ yL+ 157 k=0

Heft, (£.P1:L) = (D5)
0 else,
— Hert (Li1ai L0, d0) =5Hao L3135 L, 2, dp); k=
Heﬁzk(£;|3;£1|21¢2): eff2(£1 31‘61 21¢2) 12 40([’7 31£1 21¢2)1 0 (DG)
0 else.
The only nonvanishing Fourier components for the Hamiltorh'legﬁl are those wittk=1,—1. It can be shown that
— 3v2B Iy . L-L
Herty(Lil2,13,2)= = 7 == V1= Q(L+ L) —- V13- 15| sing, ——— +i cospy |,
11 4 M uk P
— *
HEﬁlhl)_ Heﬁn
Herr, =0; ke{—1,1, (D7)
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