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We present accurate ground-state energies for the positronium atom in a Coulomb field of point chargeZ
(XZPs!, for the positronium hydrogen~HPs! and positronium lithium~LiPs! atoms. Calculations are done using
the diffusion quantum Monte Carlo~DQMC! method. ForXZPs, the critical value ofZ for binding is exam-
ined. While HPs is stable, the results show that LiPs is unstable against dissociation to a lithium atom and a
positronium.@S1050-2947~96!04512-X#

PACS number~s!: 36.10.Dr, 14.60.Cd, 31.25.Eb

I. INTRODUCTION

Among other spectroscopies, positron annihilation stands
out for its unique capability to monitor electronic structure
changes produced by impurities and defects in several mate-
rials @1#. In order to extract detailed information from the
experimental data, computational methods for calculating
electron-positron correlation are needed@2,3#. A bound pos-
itron in the vicinity of a defect is a problem more directly
related to current positron annihilation experiments~see for
instance@4#!, and has been treated@5,6# within the two-
component density-functional theory@7#. However, the
quantitative accuracy is limited by the local-density approxi-
mation~LDA !. Finding the bound state of a positronium~Ps!
in finite atomic systems is an easier related problem that
could be useful for developing functionals of higher accu-
racy to describe the electron-positron correlation. Moreover,
the stability of finite Coulomb systems formed by particles
with various constituent masses and charges is a challenging
open question in theoretical physics and chemistry@8#. At
first glance, it is surprising to notice that three-particle sys-
tems as different as H2, H2

1, or Ps2 are stable against
dissociation, whereas the positron-hydrogen system is un-
bound. Rigorous properties of the stability domain can be
extracted@8#, but in most cases an accurate numerical calcu-
lation is needed to confirm the stability.

The quantum Monte Carlo~QMC! methods are attractive
tools for studying small electron-positron bound systems,
where the electron-positron correlations are crucial. Accurate
calculations using the QMC have already been performed for
the Ps2 @9# and for the positronium halides@10,11#. In this
work, we perform total energy QMC calculations for the
XZPs system whereZ is a massive point charge
(0.5<Z,1), and for HPs and LiPs. We compare the results
for XZPs and HPs with the variational Hylleraas calculations
@12,13#. We improve significantly the level of accuracy for
theXZPs case. Our results for the HPs are in good agreement
with the previous accurate results.

For the LiPs atom, we have performed both a model po-
tential @14# and an all-electron calculation. The electron af-
finity of the lithium atom is well described by both methods,
but the results for the LiPs atom differ in an important way.
The total energy from the model potential calculation is be-
low the total energy of both Li2 1 e1 and Li 1 Ps and
would thus predict the stability of the LiPs system. However,

for the all-electron calculation, the total energy is below the
energy of Li21e1 but not the energy of Li1 Ps. We con-
clude that LiPs is unstable.

II. METHOD

The use of imaginary time converts the Schro¨dinger equa-
tion to a diffusion equation~in atomic units!
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which can be solved by a random-walk method first sug-
gested by Fermi and described by Anderson@15#. The diffu-
sion quantum Monte Carlo~DQMC! method is based on a
simulation where random walkers are made to diffuse and to
multiply or disappear. The scheme can fail when the poten-
tial V is unbounded, but there is a simple cure discovered by
Kalos, Levesque, and Verlet@16# for the Green’s function
QMC, but equally applicable to the DQMC@17–19#. The
improved scheme is obtained by multiplying Eq.~1! by a
trial functionCT and considering the equation forf5CCT
given by
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whereH is the Hamiltonian operator. Equation~2! has the
terms on the right-hand side corresponding to diffusion, drift
in a ‘‘fluid velocity’’ ¹ ln(CT) and birth or death of the
walkers with a first-order constant given by the local energy
Eloc5HCT /CT of the trial wave function. The eigenvalue is
given by an average value ofEloc at steady-state conditions.
When the trial wave functionCT approximates the true wave
function the local energy is nearly constant and the variance
in the computed value ofE is reduced. The variational QMC
~VQMC! as presented by Umrigar, Wilson, and Wilkins@20#
is a very useful procedure to obtain optimized trial wave
functions by minimizing the variance of the local energy.
The trial wave functionCT is chosen in the Jastrow-Slater
form

CT5F)
s
detsuf i~r j !u, ~3!
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wheres runs over the different species of particles~spin-up
electrons, spin-down electrons, spin-up positrons, spin-down
positrons!, f are the one-body wave functions, and
F5exp((i,juij) is the product of the two-body correlation
factors. In a good trial function the singularities in the local
kinetic energy must cancel those of the potential. For the
Coulomb potential this leads to the Kato cusp condition@21#
of the two-body correlation factor

dui j ~0!

dr
5

m i j qiqj
~k11!

, ~4!

where qi and qj are the constituent charges,
m i j5mimj /(mi1mj ) is the reduced mass, andk is the an-
gular momentum of the two-particle subsystem, i.e., 0 for
unlike spins and unlike particles and 1 for like spins. Foru
we have used the form

ui j5
m i j qiqj
~k11!

r

11bi j r
, ~5!

where thebi j are variational parameters. The one-body wave
functions f can be expressed as linear combinations of
Slater functionsrmexp(2zr) that fulfill the Kato cusp condi-
tion at the nuclei.

In our DQMC runs, we have evaluated the error estimates
using the standard formula of the statistical analysis

DE5sES LcN D 1/2, ~6!

where sE is the standard deviation of the energy from a
single DQMC run,N is the number of time steps taken after
the transient, andLc is the correlation length~in the same
units asN). Lc is the value where the autocorrelation func-
tion of the energy is less than 10%@22#. The transient is
determined from the plot of energy as a function of time.

One disadvantage of the DQMC is the systematic error
due to a finite time stepDt. In practice one must repeat the
calculation with differentDt in order to extrapolate to the
Dt→0 limit. We have done the extrapolation using second-
order polynomials and a least-squares fit.

Another problem for the DQMC can be posed by the an-
tisymmetry in the case of the Fermi statistics@23#. As a
matter of fact, the interpretation of the Schro¨dinger equation
in imaginary time as a generalized diffusion equation rests
on the interpretation of the wave function as a probability
density represented by the concentration of diffusing par-
ticles ~the walkers!. The ground state with different particle
species or with identical bosons can be described with a real
positive distribution~in the absence of magnetic fields!. In
the case of identical fermions, the wave function is negative
as often as positive. The stochastic approach can still be used
to solve the Schro¨dinger equation if the diffusion process is
confined within a subdomain bounded by the nodal surface.
In the fixed-node~FN! approximation, one forbids moves in
which the sign of the trial function changes. However, the
resulting energy will be an upper bound of the exact ground-
state energy@24#. In this work, the FN approximation is
implemented so that the configurations that cross the nodal

boundary are discarded. The number of walkers used in this
work is around 200 and the walkers are propagated for
around 104 steps.

III. RESULTS

A. The XZPs system

Positron states in ionic crystals can have properties resem-
bling a Ps atom@26#. Boev and Arefiev@12# proposed a
simple model considering the Ps-like states in ionic crystals
as a positron-electron pair bound states in the Coulomb field
of the chargeZ less than unity. In addition, the behavior of
the system asZ is varied, is rich and illustrative for the study
of both positron, and positronium binding. The Hamiltonian
for this system is
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where index 1 refers to the electron, index 2 to the positron
andr 12 is the distance of electron and the positron. The mass
of the point chargeZ is taken to be infinite. We will assume
that the positron is repulsed by the point charge (Z.0), but
the interchange of indices 1 and 2 is equivalent to the oppo-
site chargeZ. To be stable, the energy of the system should
lie below its lowest dissociation threshold, which corre-
sponds to the less negative of the Ps and the hydrogenlike
atom (XZe2) total energies. In atomic units, the Ps total
energy is2 1

4 and that ofXZe2 is 2 1
2Z

2. These are equal
whenZ5A1/2.

A simple qualitative description of theXZPs is theonion
model, which is exact forZ→1. One considers the electron
localized close to the point charge and the positron surround-
ing the hydrogenlike atom (XZe2), feeling only an effective
charge ofZ21. Thus the electron and positron shells have
some similarity to the onion shells. The total energy of the
system in this model is given by

E>2 1
2Z

22 1
2 ~Z21!2. ~8!

According to this model, forZ51 the system becomes un-
stable and the positron escapes away. On the other hand, for
Z, 1

2 the system becomes more stable ifZ is reduced. There-
fore in this region ofZ one can expect that the Ps escapes
from the point charge. However, the onion model is not ac-
curate in this region due to the overlap of the electron and
positron wave functions and we need a more careful inves-
tigation. This is easily done using the DQMC.

In Fig. 1 we compare the DQMC with a variational Hyl-
leraas basis calculation@12# and the onion model. The ener-
gies for the positronium and the hydrogenlike stateXZe2 are
shown, too. In the limitZ→1, the calculated energies ap-
proach the onion model and the hydrogenlike state. For
Z,A1/2, the energy is closer to the energy of a Ps system
than theXZe2 system. Among the points we have calculated,
the pointZ50.7 gives the greatest stability, binding energy
being 0.049~a.u.!. Table I gives a precise comparison of our
DQMC results with the variational calculations@12#. We can
see that the DQMC energies are lower. In the limitZ→1,
both of the methods give almost the same energy, but they
differ whenZ is smaller. In this region the electron-positron
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correlation is more important and the difference is due to the
fact that DQMC is able to recover the correlation energy
exactly. Moreover, the DQMC confirms the onion model
prediction that the Ps escapes from the point charge at a
critical chargeZC . The inclusion of the correlation effects
enlarge the range of stability and we findZC'0.45.

B. The HPs and the LiPs systems

The hydrogen-positron system is unstable, but this is not
the case for the HPs system@13#. We have performed the
DQMC simulation for HPs using different time steps. The
results are shown in Table II. The extrapolation to zero time
step gives the total energyE520.788560.0005 ~a.u.!,
which is very close to the valueE520.788 945 found by
Ho @13#. This clearly shows the accuracy of our algorithm.
From the total energies HPs is found stable by 0.039~a.u.!.

In general, the straightforward method of calculating the
binding energy ofXPs or the Ps affinity of an atomX by
subtracting the calculated total energy ofXPs from the sum
of that of Ps andX, is not the most reliable way. The reason
is that an uncanceling error may result@10#. Another method
@25# is to consider the positron affinity of the corresponding
anion

Ae1~X2!5E~X2!2E~XPs!, ~9!

and the electron affinity

Ae2~X!5E~X!2E~X2!. ~10!

Then the Ps affinity of atomX is

APs~X!5Ae2~X!1Ae1~X2!2 1/4. ~11!

ThusAPs(X) is a delicate balance of the binding energy of Ps
( 14!, the electron affinity of the atom and the positron affinity
of the negative ion. All these quantities require high preci-
sion for the description of correlation.

One commonly thinks of hydrogen as a group I element,
sitting above lithium and other alkali-metal elements. The
main difference is that H has no core electrons. However, it
can also appear in group VII along with the halogens, as H is
just one electron short of having a closer outer shell. There-
fore, the alkali elements and the halogens are the next good
candidates for Ps binding. DQMC calculations for halogens
@10,11# found FPs stable by 0.073~a.u.!, ClPs by 0.070
~a.u.!, and BrPs by 0.042~a.u.!. These positronium binding
calculations were done using a model potential@10,11#. In
the same way, the alkali-negative ions and H2 can be treated
using similar approaches@14#. In particular, the core elec-
trons of Li could be frozen as their polarizability is very
small. Therefore, it is justified to treat Li2 as a system com-
posed only of two electrons in an external potential

V~r !52
11~Z21!exp~2a1r !1a2r exp~2a3r !

r
,

~12!

whereZ53, a157.9, a2510.31, anda353.898. This po-
tential has been parametrized by Klapisch~as quoted in Ref.
@14#! to reproduce the experimental energy levels of Li@31#
@its ground-state energy isE(Li)520.198~a.u.!#. For Li2,
our DQMC calculation givesE(Li2)520.223~a.u.!. Then,
the corresponding electron affinity is 0.025~a.u.!, which is in

FIG. 1. The DQMC total energy of theXZPs system and the
results of Boev and Arefiev@12# compared with the onion model
and the energies of a free positronium and a hydrogenlike
stateXZe2.

TABLE I. Total energy for theXZPs system~in a.u.! obtained
by the DQMC simulations compared with the Hylleraas basis cal-
culation by Boev and Arefiev@12#. The statistical error in the last
digit is in the parentheses.

Z DQMC Hylleraas

0.45 20.2502~5! —
0.5 20.252~1! —
0.55 20.2593~5! 20.257
0.6 — 20.265
0.7 20.299 25~30! 20.292
0.8 — 20.344
0.9 20.4100~2! 20.410

TABLE II. The total energy for HPs system for various time
steps~in a.u.! obtained by the DQMC method. The statistical error
in the last digit is in the parentheses.

Time step DQMC

0.2 20.7980~2!

0.15 20.7960~2!

0.1 20.7938~3!

0.05 20.7909~6!

0.03 20.7898~9!

0.0 20.7885~5!a

aExtrapolated.
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good agreement with the experimental value@29#. We have
performed DQMC simulations for LiPs using the model po-
tential for the electrons and the Coulomb potential~with a
frozen core! for the positron. Our optimized trial wave func-
tion for LiPs gives a variational energyE520.4234
60.0003, indicating an instability against dissociation to Li
and Ps. However, our DQMC result gives a very small bind-
ing of 0.015~a.u.!. To improve this approach, we have also
performed an all-electron DQMC calculation using the fixed-
node approximation@24# and optimized VQMC the trial
functionCT . We have used a novel optimization method for
both Jastrow and one-body wave functions@27#. The result-
ing total energies areE(Li)527.47060.002 ~a.u.!,
E(Li2)527.48760.004 ~a.u.!, and E(LiPs)527.709
60.004 ~a.u.!. The total energy for the LiPs with various
time steps is shown in Table III. The result for the neutral
atom is only slightly higher than the ‘‘exact,’’ nonrelativis-
tic, infinite mass energyE(Li)527.478025~a.u.! @28#. This
is due to the fixed-node error. The electron affinity

Ae2(Li)50.01760.006~a.u.! is in good agreement with the
experimental value of 0.0227@29#. The energy for the LiPs
system is higher by around 0.02~a.u.! than the sum of the
energies of Li and Ps systems. This indicates the instability
of the system. Positronium escapes from the Li atom as it
escapes from the point charge forZ<0.45. Clary has re-
ported the stability ofe1Li against Li ande1 dissociation
but has suggested a similar instability against Li1 and Ps
@30#. Finally, we would like to emphasize the importance of
optimizing both the Jastrow factor and the one-body orbitals,
as done in the present work. As a matter of fact, we observed
that the use of the same one-body orbitals for LiPs than for
Li 2 leads to much higher instability of LiPs.

IV. CONCLUSION

We have used the DQMC in order to perform rigorous
studies of the positron energetics in small system such as
XZPs, HPs, and LiPs. For theXZPs, the electron-positron
correlation effects are important whenZ<A1/2. Using a
model potential and a frozen core approximation LiPs is
found weakly stable, but the all-electron calculation and the
FN approximation shows the system to be unbound with
respect to dissociation to Li and Ps.

The techniques for cooling and trapping positrons@32#
point to the possibility of well-defined experimental studies
of positrons and Ps interacting with a few atoms. This gives
further impetus for developing and applying accurate calcu-
lation methods for these systems.
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