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Stability of light positronic atoms: Quantum Monte Carlo studies
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We present accurate ground-state energies for the positronium atom in a Coulomb field of pointZcharge
(XZPs, for the positronium hydrogefHPs and positronium lithiun(LiPs) atoms. Calculations are done using
the diffusion quantum Monte CarlQMC) method. ForX?Ps, the critical value oF for binding is exam-
ined. While HPs is stable, the results show that LiPs is unstable against dissociation to a lithium atom and a
positronium.[S1050-294®6)04512-X]

PACS numbds): 36.10.Dr, 14.60.Cd, 31.25.Eb

[. INTRODUCTION for the all-electron calculation, the total energy is below the
energy of Li" +e™ but not the energy of Lir Ps. We con-
Among other spectroscopies, positron annihilation standslude that LiPs is unstable.

out for its unique capability to monitor electronic structure
changes produced by impurities and defects in several mate- Il. METHOD
rials [1]. In order to extract detailed information from the )
experimental data, computational methods for calculating The use of imaginary time converts the Sainger equa-
electron-positron correlation are need&B]. A bound pos- tion to a diffusion equatioriin atomic unit$
itron in the vicinity of a defect is a problem more directly
related to current positron annihilation experime(sse for o 1_,
instance[4]), and has been treatd®,6] within the two- EIEV V-V, @
component density-functional theor}7]. However, the
quantitative accuracy is limited by the local-density approxi-which can be solved by a random-walk method first sug-
mation(LDA). Finding the bound state of a positroniuRs  gested by Fermi and described by Ander§b8]. The diffu-
in finite atomic systems is an easier related problem thagjon quantum Monte CarlOQMC) method is based on a
could be useful for developing functionals of higher accu-simulation where random walkers are made to diffuse and to
racy to describe the electron-positron correlation. Moreovermyitiply or disappear. The scheme can fail when the poten-
the stability of finite Coulomb systems formed by particlestia| v is unbounded, but there is a simple cure discovered by
with various constituent masses and charges is a challengingalos, Levesque, and Verl¢i6] for the Green’s function
open question in theoretical physics and chemi$8ly At  QmC, but equally applicable to the DQM{L7-19. The
first glance, it is surprising to notice that three-particle sysimproved scheme is obtained by multiplying Ed) by a

tems as different as H H,", or Ps™ are stable against trial function ¥ and considering the equation for= ¥
dissociation, whereas the positron-hydrogen system is Urgiven by

bound. Rigorous properties of the stability domain can be

extracted 8], but in most cases an accurate numerical calcu- of 1 HY

lation is needed to confirm the stability. E=§V2f—V[fV In(\IfT)]—\P—f, 2
The quantum Monte Carl@MC) methods are attractive T

tools for studying small electron-positron bound systems . I .

where the electron-positron correlations are crucial. Accuratg"hereH IS thg Hamlltonlgn operator. Equaﬂc(ﬂ)l ha§ the .

calculations using the QMC have already been performed foﬁerms on the right-hand side corresponding to diffusion, drift

the Ps [9] and for the positronium halidg4.0,11]. In this In a “fluid_ velopity” V In(¥y) and .birth or death of the
work, we perform total energy QMC calculations for the walkers with a first-order constant given by the local energy

X?Ps system whereZ is a massive point charge Eioc=HWY /¥ of the trial wave function. The eigenvalue is

(0.5=7<1), and for HPs and LiPs. We compare the result iven by an average valu_e Bioc at steady-state conditions.
for X“Ps and HPs with the variational Hylleraas calculations her_1 the trial wave functl_oﬂfT approximates the true wave
[12,13. We improve significantly the level of accuracy for functlon the local energy is nearly constant and the variance

the X?Ps case. Our results for the HPs are in good agreeme the computed value d is reduced. _The variatior_lal QMC
with the previous accurate results. f((I/QMC) as presented by Umrigar, Wilson, and Wilkir9]

For the LiPs atom, we have performed both a model po_is a very useful procedure to obtain optimized trial wave

tential [14] and an all-electron calculation. The electron af_functhns by minimizing th.e variance of the local energy.
finity of the lithium atom is well described by both methods, The trial wave functior¥'r is chosen in the Jastrow-Slater
but the results for the LiPs atom differ in an important Way.form

The total energy from the model potential calculation is be-

low the total energy of both Li + e*. and Li + Ps and Wo=F[] det ol &)
would thus predict the stability of the LiPs system. However, s
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wheres runs over the different species of particispin-up  boundary are discarded. The number of walkers used in this
electrons, spin-down electrons, spin-up positrons, spin-dowwork is around 200 and the walkers are propagated for
positrong, ¢ are the one-body wave functions, and around 10 steps.

F=expEi-ju;) is the product of the two-body correlation

factors. In a good trial function the singularities in the local 1. RESULTS

kinetic energy must cancel those of the potential. For the

Coulomb potential this leads to the Kato cusp condifidh] A. The X*Ps system

of the two-body correlation factor Positron states in ionic crystals can have properties resem-

bling a Ps atom[26]. Boev and Arefiev[12] proposed a
du;(0)  wi;G;q; simple model considering the Ps-like states in ionic crystals
dr  (k+1)’ 4) as a positron-electron pair bound states in the Coulomb field
of the chargeZ less than unity. In addition, the behavior of
where g and q; are the constituent charges, the system ag is varied, is_ rich and i_IIus_trative for the_stuc_iy
Iu“ij :mimj /(m|+m]) is the reduced mass, amkdis the an- of bOth pOS|tr0n., and pOSItI’Othm b|nd|ng. The Hamiltonian
gular momentum of the two-particle subsystem, i.e., 0 forfor this system is
unlike spins and unlike particles and 1 for like spins. Hor

we have used the form H:_E(V§+V§)_E+E_i’ (7)
2 rv+ rz rgp
Uji Sl L (50  where index 1 refers to the electron, index 2 to the positron
(k+1) 1+byr !

andr 4, is the distance of electron and the positron. The mass
o of the point charge is taken to be infinite. We will assume
wher_e theb;; are variational parametefs. The one—_bod_y WaV€hat the positron is repulsed by the point charge-0), but
functions ¢ can be expressed as linear combinations Ok interchange of indices 1 and 2 is equivalent to the oppo-
$Iater functiong r'“exp(—g“r) that fulfill the Kato cusp condi- gt chargeZ. To be stable, the energy of the system should
tion at the nuclei. _ lie below its lowest dissociation threshold, which corre-
Inour DQMC runs, we have evaluated the error estimateégpongs to the less negative of the Ps and the hydrogenlike
using the standard formula of the statistical analysis atom (X%e”) total energies. In atomic units, the Ps total

energy is—3 and that ofX%e™ is —1Z2. These are equal
, 6 WhenZ= Vi/2.
A simple qualitative description of th&“Ps is theonion
mode] which is exact forZ— 1. One considers the electron
where o is the standard deviation of the energy from alocalized close to the point charge and the positron surround-
single DQMC runN is the number of time steps taken after ing the hydrogenlike atomX“e ™), feeling only an effective
the transient, and.; is the correlation lengtitin the same charge ofZ— 1. Thus the electron and positron shells have
units asN). L. is the value where the autocorrelation func- some similarity to the onion shells. The total energy of the
tion of the energy is less than 10922]. The transient is system in this model is given by
determined from the plot of energy as a function of time.
One disadvantage of the DQMC is the systematic error E=-37°-3(Z-1)2 (8
due to a finite time stepit. In practice one must repeat the
calculation with differentAt in order to extrapolate to the According to this model, foZ=1 the system becomes un-
At—0 limit. We have done the extrapolation using second-Stable and the positron escapes away. On the other hand, for
order polynomials and a least-squares fit. Z< 3 the system becomes more stabl& i reduced. There-
Another problem for the DQMC can be posed by the anfore in this region ofZ one can expect that the Ps escapes
tisymmetry in the case of the Fermi statistika3]. As a  from the point charge. However, the onion model is not ac-
matter of fact, the interpretation of the Sctiimger equation ~curate in this region due to the overlap of the electron and
in imaginary time as a generalized diffusion equation rest$ositron wave functions and we need a more careful inves-
on the interpretation of the wave function as a probabilitytigation. This is easily done using the DQMC.
density represented by the concentration of diffusing par- In Fig. 1 we compare the DQMC with a variational Hyl-
ticles (the walkerg. The ground state with different particle le€raas basis calculatidii2] and the onion model. The ener-
species or with identical bosons can be described with a redlies for the positronium and the hydrogenlike stéfe™ are
positive distribution(in the absence of magnetic fieJdgn ~ shown, too. In the limitZ—1, the calculated energies ap-
the case of identical fermions, the wave function is negativéoroach the onion model and the hydrogenlike state. For
as often as positive. The stochastic approach can still be usedk \/FZ, the energy is closer to the energy of a Ps system
to solve the Schidinger equation if the diffusion process is than theX?e~ system. Among the points we have calculated,
confined within a subdomain bounded by the nodal surfacethe pointZ=0.7 gives the greatest stability, binding energy
In the fixed-nodgFN) approximation, one forbids moves in being 0.049a.u). Table | gives a precise comparison of our
which the sign of the trial function changes. However, theDQMC results with the variational calculatiofi2]. We can
resulting energy will be an upper bound of the exact groundsee that the DQMC energies are lower. In the lifit1,
state energy{24]. In this work, the FN approximation is both of the methods give almost the same energy, but they
implemented so that the configurations that cross the nodaliffer whenZ is smaller. In this region the electron-positron
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TABLE Il. The total energy for HPs system for various time

\‘\\ steps(in a.u) obtained by the DQMC method. The statistical error
™~ x DAQMC in the last digit is in the parentheses.
\\ --_ngl_leraas
010 | \\‘\ Onion model | Time step DQMC
. . ——-Ps
AN 0.2 —0.79802)
\\ 0.15 —0.7960@2)
N 0.1 —0.79383)
5 0207 \ 1 0.05 —0.79096)
5 \‘s. 0.03 —0.7898‘9)a
g \‘ 0.0 —0.788%5)
& 0.30 | \\ ®Extrapolated.
\\ In general, the straightforward method of calculating the
\ binding energy ofXPs or the Ps affinity of an atod by
040 | \ | subtracting the calculated total energyX®s from the sum
of that of Ps and, is not the most reliable way. The reason
is that an uncanceling error may requlf]. Another method
[25] is to consider the positron affinity of the corresponding
050 , . , ‘ anion
0.0 0.2 0.4 0.6 0.8 1.0

Zlaul A+(XT)=E(X")—E(XPs9, 9

FIG. 1. The DQMC total energy of th¥“Ps system and the and the electron affinity
results of Boev and Arefie{12] compared with the onion model

and the energies of a free positronium and a hydrogenlike Ac-(X)=E(X)—E(X7). (10
stateX%e”.
Then the Ps affinity of atonX is
correlation is more important and the difference is due to the
P Apd X)=Ag(X)+Ags (X7)— 1/4. (11)

fact that DQMC is able to recover the correlation energy
exactly. Moreover, the DQMC confirms the onion model
prediction that the Ps escapes from the point charge at
critical chargeZ.. The inclusion of the correlation effects

enlarge the range of stability and we fidg~0.45.

husApd X) is a delicate balance of the binding energy of Ps
7), the electron affinity of the atom and the positron affinity
of the negative ion. All these quantities require high preci-
sion for the description of correlation.
One commonly thinks of hydrogen as a group | element,
sitting above lithium and other alkali-metal elements. The

The hydrogen-positron system is unstable, but this is no'f”ain difference is that H has no core electrons. However, it
the case for the HPs systeih3]. We have performed the can also appear in group VIl along with the halogens, as H is

DQMC simulation for HPs using different time steps Thejust one electron short of having a closer outer shell. There-
results are shown in Table II. The extrapolation to zero timg©re: the alkali elements and the halogens are the next good

i __ didates for Ps binding. DQMC calculations for halogens
step gives the total energf=—0.7885-0.0005 (a.u), &N
which is very close to the valuE=—0.788 945 found by [10:11 found FPs stable by 0.07&.u), CIPs by 0.070

Ho [13]. This clearly shows the accuracy of our algorithm. (a.u), and BrPs by 0.042a.u). These positronium binding

From the total energies HPs is found stable by 0.G88). calculations were done. using a ’T‘Ode' potenflz, 11]. In
the same way, the alkali-negative ions and Elan be treated

using similar approachdd4]. In particular, the core elec-
trons of Li could be frozen as their polarizability is very
small. Therefore, it is justified to treat Lias a system com-

B. The HPs and the LiPs systems

TABLE I. Total energy for thex?Ps systen{in a.u) obtained
by the DQMC simulations compared with the Hylleraas basis cal
culation by Boev and Arefie{12]. The statistical error in the last

digit is in the parentheses.

posed only of two electrons in an external potential

4

DQMC

Hylleraas

1+(Z—-1)exp— aqr)+ a,r exp— asr)

V(r)= p ,

0.45 —0.25025) — (12)
0.5 —0.2521) —

0.55 —0.25935) —-0.257 whereZ=3, a;=7.9, @,=10.31, anda3=3.898. This po-
0.6 — —0.265 tential has been parametrized by Klapigek quoted in Ref.
0.7 —0.299 2%30) —0.292 [14]) to reproduce the experimental energy levels of31]
0.8 — —0.344 [its ground-state energy E(Li) = —0.198(a.u)]. For Li~,
0.9 —0.41002) —0.410 our DQMC calculation give&(Li~)=—0.223(a.u). Then,

the corresponding electron affinity is 0.0&bu), which is in



4852 A. HARJU, B. BARBIELLINI, AND R. M. NIEMINEN 54

TABLE lIl. The total energy for LiPs vs time steps. The statis- A__(Lj) =0.017+0.006(a.u) is in good agreement with the
tical error in the last digits is in the parentheses. All numbers are iréxperimental value of 0.02229]. The energy for the LiPs

atomic units. system is higher by around 0.Ga.u) than the sum of the

) energies of Li and Ps systems. This indicates the instability
Time step Energy of the system. Positronium escapes from the Li atom as it

0.3000 —7.7725) escapes from the point charge fd<0.45. Clary has re-
0.2000 ~7.7422) ported the stability o™ Li against Li ande™ dissociation
0.1000 ~7.7142) but has suggested a similar instability against land Ps
0.0750 ~7.7122) [30]. Finally, we would like to emphasize the importance of
0.0500 ~7.7122) optimizing both the Jastrow factor and the one-body orbitals,
0.0300 ~7.7132) as done in the present work. As a mattgr of fact, we observed
0.0200 —7.7082) that the use of the same qne—ony orbngls for LiPs than for
0.0000 —7.7094)2 Li ~ leads to much higher instability of LiPs.

aExtrapo|ated_ IV. CONCLUSION

We have used the DQMC in order to perform rigorous
studies of the positron energetics in small system such as
X?Ps, HPs, and LiPs. For th¥?Ps, the electron-positron
correlation effects are important whef<\1/2. Using a
model potential and a frozen core approximation LiPs is
+0.0003, indicating an instability against dissociation to Li found weakly stable, but the all-electron calculation and the

and Ps. However, our DQMC result gives a very small bind—'r:e'\sI 2@?22)(&@222?“5::\%5Ltih:njys;em to be unbound with
ing of 0.015(a.u). To improve this approach, we have also 'Il?he techniques for coolin and.tra ing positrdae]
performed an all-electron DQMC calculation using the fixed- q g pping p

node approximatior[24] and optimized VOMC the trial point to the possibility of well-defined experimental studies
functionW . We have used a novel optimization method forof positrons and Ps interacting with a few atoms. This gives

both Jastrow and one-body wave functig@g]. The resul- further impetus for developing and applying accurate calcu-

ing total energies areE(Li)=-7.470-0.002 (a.u), lation methods for these systems.
E(Li")=-7.487+0.004 (a.u), and E(LiPs)=-7.709
+0.004 (a.u). The total energy for the LiPs with various
time steps is shown in Table Ill. The result for the neutral We have benefited from the work of S. Siljaknan the
atom is only slightly higher than the “exact,” nonrelativis- VOMC. We acknowledge useful discussions with M. J.
tic, infinite mass energig(Li) = —7.478025(a.u) [28]. This  Puska and O. V. Boev. B.B. was supported by the Swiss
is due to the fixed-node error. The electron affinity National Science Foundation Grant No. 8220-037167.

good agreement with the experimental val@é]. We have
performed DQMC simulations for LiPs using the model po-
tential for the electrons and the Coulomb poten(iaith a
frozen corg for the positron. Our optimized trial wave func-
tion for LiPs gives a variational energ¥=—0.4234
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