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A theoretical study of the muon spin relaxation of the gaseous muonated ethyl radical C2H4Mu is expanded
in this paper to include both longitudinal and transverse signals. This study is based upon an operator expan-
sion of the spin-density operator for the radical with its time dependence described by the linearized quantum
Boltzmann equation. Relaxation is due to collisions which reorient the radical’s rotational angular momentum
while effects on the muon’s spin are due to couplings between the muon’s spin, the radical’s free-electron spin,
and the radical’s rotational angular momentum. The coefficients of the radical’s spin Hamiltonian and the
collisional lifetimes~cross sections! are used as fitting parameters to describe the transverse signals. A fit to the
transverse data by itself and a global fit to both the transverse and longitudinal data are obtained with good
accuracy.@S1050-2947~96!02812-0#

PACS number~s!: 36.10.2k, 51.60.1a

I. INTRODUCTION

Experiments on the muon spin relaxation (mSR! of the
muonated ethyl radical C2H4Mu have been performed in
longitudinal and transverse configurations@1–4#. A phenom-
enological equation@1–4# has been developed to describe the
T1 andT2 relaxation times associated with these experiments
while a theoretical@5# approach to theT1 relaxation time has
been developed. It is the purpose of this paper to reexamine
the fit to the longitudinal data and extend the theoretical
study to the transverse experiments. The phenomenological
approach and the current theoretical approach are equally
successful in fitting the pressure and field dependence of the
transverse signals. Indeed, the fits produce essentially the
same plots for the pressure and field dependence of the trans-
verse signal. As well, both the phenomenological approach
and the theoretical approach are successful in fitting all the
pressure and field dependences of both the transverse and
longitudinal signals with single sets of parameters. Both fits
are about equally good.

In mSR experiments@6,7#, the dynamics of an ensemble
of muon spins are followed through observation of the decay
positrons which are emitted preferentially along the muon
spin direction. Histograms of these ensembles are fitted to a
count function,

N~ t !5N0e
2t/tm@11S~ t !#1B0 , ~1!

where tm52.2 msec is the lifetime of the muon,N0 is a
normalization constant,B0 is a background constant, and
S(t) is the observed signal. These experiments are usually
performed in one of two configurations, namely, a longitudi-
nal setup where the incoming muon’s spin and the magnetic-
field direction are collinear and a transverse setup where they
are perpendicular. The observed signalsS(t) may be theo-
retically described by the ensemble averaged behavior of a
single muon’s spin time dependence. For the ethyl radical
experiments@1–4#, the assumed forms of these signals are

SL~ t !5e2lLtAL ~2!

for the longitudinal configuration and

ST~ t !5e2lTtcos~vTt1uT!AT ~3!

for the transverse configuration. The relaxation rates are then
interpreted in terms of the relaxation times as follows:

lL5
1

T1
,

lT5
1

T2
1lT0 , ~4!

wherelT0 is inversely proportional to the total pressureP,

lT05
h0

P
, ~5!

with h0 an experimental fitting constant.lT0 contributes to
the overall relaxation rate due to field inhomogeneity over
the stopping distribution of the muon in the gas@1–4#. In
transverse fields the oscillatory time dependence associated
with an observed frequency ensures that the signal being
observed is due to a single relaxation mode. However, in
longitudinal fields, this is not necessarily the case as more
than one zero-frequency mode might be contributing to the
observed signal. It is then a matter of fitting the signal to a
sum of exponentials with differing amplitudes. For the theo-
retical description adopted in Ref.@5#, the longitudinal signal
was assumed to be a single exponential determined by the
slowest relaxation rate. In the present extension of this study
the amplitudes of the various relaxation modes are calculated
as well as the relaxation rates and only those modes with
appreciable amplitudes are considered. From a fitting point
of view, the transverse field results are the more easily inter-
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preted since they have a definite frequency and this aids in
the selection of which single mode is being observed.

In attempting a theoretical study of the spin dynamics of
the muonated ethyl radical a number of assumptions are
needed. These assumptions fall into three broad categories of
dynamical behavior, namely, the roles of thermalization, spin
dynamics, and collision dynamics.

In the first category and under the present approach@5#, it
is assumed that the muon thermalizes in the muonated radi-
cal so that the initial state of the system is C2H4Mu with
only the muon spin initially polarized, i.e., having a preferred
laboratory direction. That is, since no thermal muonium is
detected in the transverse field experiment, it is assumed that
muonium forms epithermally and reacts with the ethylene
before thermalization is complete. This assumption ignores
the possibility of the formation of thermal muonium with a
very rapid reaction to form the radical. These are considered
to be reasonable assumptions.

The next set of assumptions deal with the free evolution
of the radical and its angular momentum properties. This
radical has an electron spinS, a muon spinI , and four hy-
drogen spinsIH , as well as a rotational angular momentum
J, and various vibrational, bending, and torsional modes. To
include all of these dynamical quantities, which are all ex-
pected to be coupled, would lead to an extremely large basis
set and also to the question of whether the experimental data
are either accurate enough, or sufficient, to uniquely deter-
mine the fitting parameters. A reduction in the size of the
basis is required and, hopefully, not all the quantities are
important for the bulk phase relaxations. Three assumptions
are made about the dynamics. First is that the bending, vi-
brational, and torsional modes are too high in energy to sub-
stantially contribute to the motion. Thus they are ignored.
The second assumption is that the radical can be thought of
as a diatomic in its rotational angular momentum behavior
since the carbons are much more massive than the hydrogen
isotopes. Furthermore, the rotational angular momentum is
assumed to be well represented by a single average magni-
tudeJ since this is large. As well, a multipole expansion in
J is carried out and truncated at second order. Finally, the
third assumption about the free evolution is that the proton
spins may be ignored since the largest coupling of the muon
spin is to the electron’s spin. However, even with these three
assumptions, the operator basis set used in the following for
the full spin dynamics is 95 dimensional. The spin Hamil-
tonian for the radical is constructed from the angular mo-
mentaS, J, andI , and the external magnetic fieldB, as

H/\5veB̂•S2vmB̂•I1v0S•J2vJB̂•J1vSRS•J1v IRI•J

1cAI•@J#~2!S. ~6!

As stated above, this Hamiltonian assumes that only up to
second order effects inJ are important. The first three terms
in this Hamiltonian form the standard muonium or hydrogen
spin Hamiltonian which have well-known analytic eigenval-
ues and eigenvectors@8#.

The last category of assumptions deals with the many-
body interactions between the radical and the rest of the gas
in the experimental chamber. It is assumed that only binary
collisions are important so that a quantum~linearized! Bolt-

zmann equation@9–11# will accurately describe the dynam-
ics of the gaseous system. Furthermore, it is assumed that the
effect of the collisions between the radical and the other gas
molecules is to relax only the rotational angular momentum
of the radical. As this is coupled to the electron and muon
spin angular momenta, the latter are also expected to relax.
Neither the electron spin nor muon spin is directly relaxed by
the collisions since they are only indirectly coupled to the
geometrical shape of the free radical. Finally, since the ob-
servable of interest is the spin of the muonI the translational
degrees of freedom may be averaged over, see, for example,
Ref. @12#, to obtain the evolution equation

]r~ t !

]t
52 iLr~ t !2Rr~ t !

52Gr~ t ! ~7!

for the spin-density operatorr(t). The time dependence is
determined by the motion generator

G5R1 iL, ~8!

which consists of the free motion commutator~Liouville su-
peroperator! of the spin HamiltonianH,

LA[
1

\
@H,A#2 , ~9!

and the collision superoperatorR, which describes the relax-
ation due to collisions with molecules of the moderating gas.
Consistent with the assumption that the translational degrees
of freedom are in equilibrium and thus have been averaged
over, R will involve equilibrium averaged collision cross
sections. The major effect ofR, which is rotationally invari-
ant, is to cause the rotational angular momentumJ of the
radical to decay to thermal equilibrium. Details of collision
superoperators are given, for example, in Refs.@9–11# and
@13–15#. For a given free Hamiltonian and an assumed form
for the collision superoperator it is then a matter of solving
Eq. ~7! for the time evolution of the density operator. Such
an approach has previously been used in studies of the
hydrogen-atom isotope spin relaxation via electron-spin ex-
change@13#, in gas phase NMR@14,16#, in muon charge
exchange processes@12#, and in Muonium addition reactions
@17#.

Section II deals with the operator basis for the full spin
system, and its restrictions for longitudinal and transverse
relaxation phenomena. The basis elements are vector valued
quantities since it is the muon spin angular momentum vec-
tor I , that is observed. To classify the expansions, irreducible
Cartesian tensor operators@18# ~under the three-dimensional
rotation group! @19–21# and standard Clebsch-Gordan cou-
plings are used. Section III relates the experimental longitu-
dinal signal Eq.~2! to the component of the muon spin in the
magnetic-field direction using the longitudinal eigenvalues
and eigenvectors of the motion generator Eq.~8!, within the
longitudinal basis Eq.~15!. In general there will be more
than one exponential contributing to the signal depending
upon the specific dynamics. Section IV does the same for the
transverse signal by relating the experimental result Eq.~3!
to the transverse eigenvalues using the transverse basis Eq.
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~26!. Finally, Sec. V gives the results of fits to the transverse
data and of the global fits to both the transverse and longi-
tudinal data.

II. OPERATOR BASES

As the observed quantity is the muon spin angular mo-
mentum vectorI , a general basis describing the motion of
this vector should be a vector valued basis. Both the longi-
tudinal and transverse configurations are included in this
general description and either one can be extracted using a
reduction to the particular scalar component of the motion
being observed. For example, the longitudinal signal is the
component of the expectation value of the muon spin in the
field direction while the transverse signal may be expressed
as the~real part of the! positively rotating component in the
plane perpendicular to the magnetic-field direction. In this
way, the longitudinal and transverse bases are scalar valued
bases.

Since the spin-density operatorr(t) is a function of the
three spin vectorsI ,S,J, and the field direction~unit vector!
B̂, it is appropriate to use an orthonormal vector valued op-
erator basis involving these quantities. Such a basis is de-
scribed in Ref.@5# and is given in Cartesian tensor form as

xM5A~2a11!~2b11!Y~n!~J!Y~m!~S!

3(m1nV~m,n,a!(aV~a,b,r !( rY~r !~B̂!

3(bV~b,1,p!(pY~p!~ I !. ~10!

The notation for irreducible Cartesian tensorsY(n), n-fold
tensor contraction ( (n), and Clebsch-Gordan tensors
V(m,n,a), follows that of Coope and Snider@20,21#. This
operator basis is orthonormal,

^^xMuxM8 &&5dMM85dmm8dnn8dpp8daa8dbb8d rr 8 ~11!

with respect to an inner product defined as follows:

^^YuZ&&[
1

4p~2I11!~2S11!~2J11!
TrI ,S,JE dB̂Y†

•Z.

~12!

When the reduction to longitudinal and transverse compo-
nents is performed, there is no longer a need for the vector
dot product and the inner product

^^YuZ&&[
1

4p~2I11!~2S11!~2J11!
TrI ,S,JE dB̂ Y†Z

~13!

is appropriate. With the assumptions made about the spin
Hamiltonian and the retention of only second order inJ mul-
tipoles, this full vector basis is 95 dimensional. The index
M , for the basis consists of the combinationmnp,abr
wherem,n,p represent, respectively, the tensorial order of
the angular momentaS, J, and I , r is the tensorial order of
the magnetic-field direction, whilea andb are angular mo-
mentum coupling indices. Matrix elements of the motion
generator Eq.~8!

GMM85^^xMuGuxM8 &&

5^^xMu iLuxM8 &&1
1

tM
dMM8, ~14!

are calculated using this basis. See Ref.@5# for specific de-
tails for both the spin Hamiltonian terms and the collision
terms.

A. Longitudinal basis

Experiments are carried out in either a longitudinal or a
transverse configuration, that is, with the magnetic field and
the initial muon spin either collinear or perpendicular. More-
over, since the Hamiltonian hasC`v symmetry about the
field directionB̂, the dynamics of the spin system separates
into independent longitudinal and rotating components. Thus
it is appropriate to restrict the general basis to bases appro-
priate for describing either the longitudinal or rotating dy-
namics. Matrix elements of the motion generatorG may then
be determined from the full vector basis elements Eq.~14!,
using the appropriate set of restriction coefficients. The 35
dimensional real, scalar valued orthonormal longitudinal ba-
sis

FN
L5A2a11Y~n!~J!Y~m!~S!(m1nV~m,n,a!

3(aV~a,p,q!(p1qY~q!~B̂!Y~p!~ I ! ~15!

has been described previously@5#. Its numerical indexN is to
classify, in some convenient order, the set of parameters
mnp,aq. This scalar valued basis can be expanded in terms
of the full vector valued basisxM according to

FN
L5 (

M51

95

aM ,NxM•B̂. ~16!

The expansion coefficients are obtained@5# by using the or-
thonormality of thexM ’s, whose use requires thatFN

L must
be embedded as a vector in the same space as thexM , spe-
cifically that

aM ,N5^^xMuFN
L B̂&&5^^xmnpabr uFmnpaq

L B̂&&

5~21!a1b1q11F ~2b11!~q1r11!

2 G1/2
3H a b r

1 q pJ d uq2r u,1 . ~17!

Note that only theq and r indices differ between the index
setsN andM . Matrix elements of the motion generator Eq.
~8! in the longitudinal basis

GNN8
L

5^^FN
L uGuFN8

L &&5 (
M51

95

(
M851

95

aM ,N
! GMM8aM8,N8,

~18!

can then be calculated from the full basis matrix elements
GMM8 Eq. ~14!. The explicit~numerical! solution of the spin
evolution is to be solved by finding the complex eigenvalues
lN
L and eigenvectorswN

L of GL,
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GLwN
L5lN

LwN
L . ~19!

These are determined numerically in terms of the longitudi-
nal basis

wN
L5 (

M51

35

cM ,N
L FM

L . ~20!

The association of a numerical indexN to the sets of
parametersmnp,aq is chosen in this work so that the first
five operators in the longitudinal basis correspond to the
muonium observables, that is, the first is the component of
the muon spin in the longitudinal direction

F1
L5F001,01

L 52B̂•I , ~21!

the second is the component of the electron spin in the lon-
gitudinal direction

F2
L5F100,11

L 52B̂•S, ~22!

the third is the dot product between the electron and muon
spins

F3
L5F101,10

L 5
4

A3
S•I , ~23!

the fourth is the component of the cross product between the
electron and muon spins in the longitudinal direction

F4
L5F101,11

L 5A2B̂•~S3I !, ~24!

and the fifth is the symmetric traceless component of the
tensor product of the electron and muon spins aligned along
the field direction

F5
L5F101,12

L 52A6B̂•@SI#~2!
•B̂. ~25!

It is only the first element of this set whose expectation value
is measured experimentally.

B. Transverse basis

For rotational (C`v) symmetry, a right-handed~complex!
three-dimensional coordinate system may be constructed
from the magnetic-field directionB̂5 ẑ, the positively rotat-
ing unit vectorê15( x̂1 i ŷ)/A2, and the negatively rotating
unit vectorê25( x̂2 i ŷ)/A2. Thus to construct an orthonor-
mal scalar valued transverse field basis set, the component
with the positively rotating unit vector may be used, that is,

CN
T5~2q13!F2~2a11!

q12 G1/2Y~n!~J!Y~m!~S!

3(m1nV~m,n,a!(aV~a,p,q11!(q11

3V~q11,1,q!(q111pY~q!~B̂!ê1Y~p!~ I !. ~26!

This complex basis set is 30 dimensional, whose numerical
indexN is associated with some convenient ordering of the
mnp,aq parameter set having orthonormality expressed
through the inner product of Eq.~13!, that is,

^^CN
T uCN8

T &&5dNN85dmm8dnn8dpp8daa8dqq8. ~27!

Note that the negatively rotating transverse field basis set is
just the complex conjugate of the above basis set, so only
one set is needed in order to determine everything about the
transverse system, but of course it is the rotating basis sets
that describe the dynamically independent parts of the spin
system. The positively rotating basis set may be expanded in
terms of the full basis set Eq.~10! according to

CN
T5 (

M51

95

bM ,NxM•ê1 . ~28!

As for the longitudinal basis set expansion, the expansion
coefficients are obtained by using the orthonormality of the
xM , which requires embedding the scalarCN

T in the vector
space in whichxN is defined. This results in the expansion
coefficients being given by

bM ,N5^^xMuCN
T ê2&&5^^xmnpabr uCmnpaqê2&&

5~21!a1b1qF 2b11

2~q12!G
1/2

~2q13!

3H r 1 q11

p a b J
3FdqrS q12

2q13D 2d r ~q12!

A~q12!~q11!

2q13

1 id r ~q11!S q12

2q13D 1/2G , ~29!

with only ther andq indices differing in the two parameter
sets. Matrix elements of the motion generator Eq.~8! in the
transverse basis are then obtained according to

GNN8
T

5^^CN
T uGuCN8

T &&5 (
M51

95

(
M851

95

bM ,N
! GMM8bM8,N8

~30!

from the full basis matrix elementsGMM8, Eq. ~14!. The
dynamical properties of the spin system in a transverse field
can then be expressed in terms of the complex eigenvalues
lN
T and eigenvectorswN

T of GT,

GTwN
T5lN

TwN
T . ~31!

The latter are determined numerically as sets of expansion
coefficientscM ,N

T in terms of the transverse basis

wN
T5 (

M51

30

cM ,N
T CM

T . ~32!

The indexing scheme was chosen so that the first four
operators in the transverse basis correspond to the muonium
observables. That is, the first is the component of muon spin
which positively rotates in the plane perpendicular to the
field direction

C1
T5C001,00

T 52I•ê1 , ~33!

4818 54RALPH ERIC TURNER AND R. F. SNIDER



the second is the component of electron spin which posi-
tively rotates in the plane perpendicular to the field direction

C2
T5C100,10

T 52S•ê1 , ~34!

the third is the positively rotating component of the cross
product between the electron and muon spins

C3
T5C101,10

T 52A2~S3I !•ê1 , ~35!

and the fourth is a component of the symmetric traceless part
of the tensor product of the electron and muon spins

C4
T5C101,11

T 54A2B̂•@SI#~2!
•ê1 . ~36!

Experimental measurements involve the relaxation rate and
oscillation frequency of the muon spin. Both these quantities
are determined by the expectation value ofC1

T .

III. OBSERVABLE LONGITUDINAL SIGNAL

The experiments carried out in longitudinal field detect
the component of the muon spin in the magnetic-field direc-
tion, that is,

SL~ t !5B̂^I &~ t !5TrIB̂•Ir~ t !.

5^^F1
Lur~ t !&&. ~37!

By the C`v symmetry of the experimental setup, only the
longitudinal basis contributes to this signal. Thus the time
dependence is governed entirely byGL and conveniently ex-
pressed in terms of its eigenvalues and eigenfunctions,
namely,

r~ t !5e2GLtr~0!5 (
N51

35

e2GLtwN
L pN

L ~0!

5 (
N51

35

wN
Le2lN

L tpN
L ~0!. ~38!

The observed signal Eq.~37! is thus a sum of complex ex-
ponentials and amplitudes,

SL~ t !5 (
N51

35

e2lN
L tpN

L ~0!^^F1
LuwN

L &&

5 (
N51

35

e2lN
L tpN

L ~0!cN1
L 5 (

N51

35

e2lN
L tAN

L . ~39!

On the basis that at the zero of time, only the muon spin is
out of equilibrium and that this spin is pointed in theB̂
direction, then it is to be shown that the amplitudesAN

L are
determined completely by the expansion coefficients of the
eigenvectors in terms of the longitudinal operator basis. To
start this demonstration, note that the initial expectation
value for the muon spin component is 1/2, namely,
^B̂•I &51/2 with the consequence that the nonequilibrium
~ne! part of the spin-density operator is

rne~0!5B̂•I5
1

2
F1

L5 (
N51

35

wN
L pN

L ~0!. ~40!

This sum over the eigenvectors needs to be inverted in order
to identify the expansion coefficientspN

L (0). Since the mo-
tion generatorGL is not Hermitian, nor even necessarily nor-
mal, the eigenvectors are not necessarily orthogonal. Thus
the inversion requires the use of the eigenvector overlap ma-
trix

ONN8
L [^^wN

L uwN8
L &&5 (

M51

35

cNM
L! cN8M

L . ~41!

In this way, the expansion coefficientspN
L (0) are calculated

to be

pN
L ~0!5 (

N851

35

@~OL!21#NN8^^wN8
L urne~0!&&

5
1

2 (
N851

35

@~OL!21#NN8cN81
L! ~42!

while the amplitudes of the signal are

AN
L5

1

2 (
N851

35

cN1
L @~OL!21#NN8cN81

L! . ~43!

If the eigenvectors actually are orthonormal, this sum re-
duces to giveAN

L5 1
2ucN1

L u2.
The complex eigenvalues

lN
L5S 1

T1N
D1 ivN

L ~44!

are usually expressed in terms of relaxation timesT1N , and
frequenciesvN

L . For longitudinal signals, some of these will
have zero frequency and the signal becomes

SL~ t !5 (
N{vN

L
50

e2t/T1NAN
L

1 (
N{vN

LÞ0

e2t/T1Ncos~vN
L t1uN

L !uAN
L u ~45!

since for each term with frequencyvN
L there is a correspond-

ing term with frequency2vN
L and complex conjugate am-

plitude. In carrying out the experiments, the nonzero fre-
quencies are found to be too large to be measured so that the
signal is then simply given by the zero-frequency compo-
nents,

SL~ t !5 (
N{vN

L
50

e2t/T1NAN
L . ~46!

In general there may be a number of modes which contribute
to the observed signal which may cause fitting problems for
the experimental measurements and for the theoretical de-
scription of them. Thus the assumed form for the experimen-
tal longitudinal signal Eq.~2! may not be appropriate in all
cases. That is, there may be some fields and pressures where
only a single mode is populated and others where two or
more modes contribute. Care must be taken both in carrying
out the experiments and in their theoretical interpretation to
ensure that these various situations are treated properly.
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For pure muonium there are five longitudinal modes, of
which three have zero frequency. Thus there could be up to
three different exponentials and amplitudes if all the modes
can be observed. For the present case of the C2H4Mu radical
and under the current theoretical assumptions, there are 35
longitudinal modes. If only the linear terms in the rotational
angular momentum are retained then there are only 15 lon-
gitudinal modes of which only a few will have zero fre-
quency. It turns out, see Sec. V, that the retention of only the
linear in J terms in the Hamiltonian is sufficient for the in-
terpretation of the C2H4Mu experiments.

IV. OBSERVABLE TRANSVERSE SIGNAL

The experiments carried out in transverse field detect the
component of the muon spin which rotates in the plane per-
pendicular to the magnetic-field direction. Here this is ana-
lyzed according to the positively rotating component of the
spin, that is,

S1~ t !5ê1^I &~ t !5^^C1
Tur~ t !&&. ~47!

As with the longitudinal signal, this transverse result may be
expressed as follows:

S1~ t !5 (
N51

30

e2lN
TtAN

T , ~48!

where the amplitudes are the transverse analogs of the lon-
gitudinal amplitudes

AN
T5

1

2 (
N851

30

cN1
T @~OT!21#NN8cN81

T! , ~49!

on the assumption that initially the spin was 100% in the
positively rotating component.

The complex eigenvalues

lN
T5S 1

T2N
D1 ivN

T ~50!

are usually expressed in terms of relaxation timesT2N and
frequenciesvN

T . For transverse signals, none of these have
zero frequency so that the real part of the signal becomes a
series of damped cosines,

ST~ t !5ReS1~ t !5 (
N51

30

e2t/T2Ncos~vN
Tt1uN

T !uAN
T u.

~51!

In the ethyl radical experiments Eq.~3! only the lowest fre-
quency is observed so that the measured signal

ST~ t !5e2t/T2cos~vTt1uT!uATu. ~52!

involves only one decay rate 1/T2 and one frequencyvT.
This greatly simplifies any problems with regard to fitting the
experimental data or its theoretical interpretation as both the
frequency and the decay rate result from a single mode.

V. FITS TO EXPERIMENTAL DATA

Experiments have been performed@1–4# in both longitu-
dinal and transverse fields. The collected experimental data
have been fit to signals with single exponentials of the form
of Eqs.~2! and~3!. A fit @5# to the longitudinalT1 data using
the current theory has been made. In that fit it was assumed
that only one mode contributes to all the longitudinal signals
and that the choice of mode was the one with the smallest
relaxation rate 1/T1N . The parameters obtained in this way
were not well defined and their values did not necessarily fall
within the ranges expected on the basis of other arguments. It
was recognized that there was a difficulty with the interpre-
tation of the longitudinal data, specifically which particular
relaxation mode, or more generally, modes, contribute to the
signal. From an experimental point of view this is a question
of whether the collected data is to be fit to a single exponen-
tial or to more than one exponential. The difficulty is that
there may be large ranges of fields and/or pressures where
there is only one mode and small ranges where more than
one mode contributes. As well there may be cases where two
modes contribute but that they can not be differentiated in
the fitting process. From a theoretical point of view, it should
not be assumed that only one mode contributes and that it is
the one with the slowest relaxation rate. To answer these
questions, it is appropriate to calculate the mode amplitudes
and to consider only those modes with appreciable ampli-
tude. Since these difficulties do not exist for the transverse
signal@since there is then an observed frequency which aids
in the selection of which~transverse! mode is being ob-
served# it is more appropriate to first fit the transverse signal
and then use the Hamiltonian parameters and collision times
deduced therefrom to either attempt to fit all sets of data at
once or to predict the longitudinal (T1) data.

A. Transverse relaxation fitting

In transverse fields, the signal has a damped cosine be-
havior Eq. ~3! with a single relaxation rate. Neither the
theory nor the experiments require more than one relaxation
rate per frequency. Such a situation might occur if two fre-
quencies were sufficiently close and agreed with the ob-
served frequency, as is the case for very low magnetic fields.
However, the fields in the experiments were quite high. The
experimental data@1–4# consist of 34 measured relaxation
rates with their corresponding frequencies, for pressures
ranging from 1.0 to 14.6 atmospheres and in fields from 9.5
to 26.6 kG.

The theory presented here is capable of predicting both
relaxation rates and frequencies. This is very important for
the theory since the frequencies are extremely sensitive to
the size of the isotropic hyperfine constantv0. Indeed, in the
fitting, the value of v0 is always very close to 2073
rad/msec, which is the frequency measured in transverse field
experiments@22#. The contributions to the totalx2 per de-
gree of freedom (x2) from the frequencies are negligible in
all fits, with the relaxation rates contributing virtually all the
uncertainty. Since the phenomenological approach@1–4#
does not involve fitting the frequency, thex2 reported for the
present theory are those for the relaxation rate only.

The phenomenological approach represents the relaxation
rate in a form of the type
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1

T2
52DEP

2 F t

11~vet!2G12DM
2 F t

11~vmt!2G , ~53!

whereDEP , DM , and t are fitting parameters. See Refs.
@1–4# for a detailed discussion of the meanings of these
quantities. In order to provide a comparison for the present
theoretical approach, the experimental data was fit to Eq.
~53!. The results of this fit are reported in Table I with a
x2 of 1.73. The three parameters were found to be well de-
fined and the addition of the experimental stopping distribu-
tion parameterh0, see Eq.~5!, was not required. Although
the addition of this parameter in a fit produces a slightly
betterx2, the parameter is not well defined.

Under the assumptions in the current theoretical approach,
there are five radical fitting parameters,gJ , v0, vSR, v IR ,
and cA , two collisional parameterst1 and t2, and one ex-
perimental parameterh0, see Eq.~5!. In all the theoretical
fits the value of the magnitudeJ of the rotational angular
momentumJ, has been taken to be 17 since this is its thermal
average value. When this value is altered only the coupling
parameters that depend upon it change in size in a predict-
able manner. The theoretical parameters fall into three cat-
egories depending upon their relation to the tensorial order of
the rotational angular momentumJ. Only the isotropic hy-
perfine coupling parameterv0 between the electron and
muon spins is independent ofJ. It is this parameter which
dictates the observed frequency and it is well defined in all
the fits. Although it is recorded as a fitting parameter, it is
not free to vary with respect to the relaxation rates and
should not be considered as a fitting parameter for the relax-
ation rates. The Hamiltonian has both linear and quadratic in

J terms. If only the linear inJ terms are kept, then the spin
system is parameterized by the two spin-rotation parameters
vSR andv IR , the rotational gyromagnetic ratiogJ , and the
collision lifetimet1. The quadratic inJ terms add as param-
eters the anisotropic hyperfine coupling constantcA and the
collision lifetime t2.

To fit the data, matrix elements of the motion generator
Eq. ~8! in the full basis are calculated and from these, the
matrix elements Eq.~30! of the transverse motion generator
is deduced using the restricting coefficients Eq.~29!. Eigen-
values and eigenvectors of this matrix are obtained using
standard numerical procedures, see for example,@24#. Signal
amplitudes are determined using Eq.~49!. To choose the
correct mode, the modes with nonzero amplitude~defined as
greater than 1% of the total amplitude! are selected and then
the mode with the minumum absolute frequency is chosen.
This selection procedure is that of the experiments, that is, of
the populated modes the one with the lowest frequency is
observed. Fits to the experimentalT2 data are performed
using MINUIT @23#. For each pressure and field, new eigen-
values and eigenvectors must be calculated.

A good fit to theT2 data, with ax
2 of 1.75, was obtained

keeping only the linear inJ terms in the Hamiltonian. This
requires using only three fitting parameters, namely,vSR,
v IR , and t1, see Table II, sincev0 is determined by the
frequency dependence. That is, only the vector behavior of
the rotational angular momentum was required to adequately
fit the current experimental data with reasonably well defined
parameters. Inclusion of any combination of the rotational
gyromagnetic term, the second rank tensorial rotational an-

FIG. 1. Experimental transverse muon spin-
relaxation rate vs magnetic field at a pressure of
1.0 atmosphere. The solid curve is the global fit
while the squares are the experimental points.

TABLE I. Phenomenological transverse parameters.

Parameter Value Error

DEP ~rad/ms! 1661 309
DM ~rad/ms! 279 75.5
t ~ps/atm! 81.8 49.8
x2 1.73

TABLE II. Theoretical transverse parameters.

Parameter Value Error

vo ~rad/ms! 2073 16
vsr ~rad/ms! 2233 43
v ir ~rad/ms! 28.0 7.3
t1 ~ps/atm! 82.2 48.8
x2 1.75
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FIG. 2. Same as Fig. 1 but for a pressure of
1.5 atmospheres.

FIG. 3. Same as Fig. 1 but for a pressure of
2.0 atmospheres.

FIG. 4. Same as Fig. 1 but for a pressure of
3.8 atmospheres.
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FIG. 5. Same as Fig. 1 but for a pressure of
6.5 atmospheres.

FIG. 6. Same as Fig. 1 but for a pressure of
8.0 atmospheres.

FIG. 7. Same as Fig. 1 but for a pressure of
10.0 atmospheres.
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gular momentum contribution, and the experimental stopping
distribution contributionh0, see Eq.~5!, produced similar
fits. However, the extra parameters were not well defined in
these fits. This is similar to the phenomenological approach.
Plots of the experimental data and the current theoretical fit
are presented in Figs. 1–9. The transverse fits discussed here
are virtually indistinquishable from the global fits which are
given by the solid lines, see Sec. V B. Except at low fields
the theoretical transverse, theoretical global and phenomeno-
logical fits are indistinguishable and, even for low fields,
there is not much difference. While it is difficult to relate the
molecular parametersvSR andv IR to the phenomenological
parametersDEP andDM it seems reasonable to conclude that
the lifetimest1 andt are comparable quantities.

B. Global fits and longitudinal relaxation

In longitudinal fields, the experimental time dependence
has been fitted@1–4# with a single relaxation rate, see Eq.
~2!. However the theory suggests that there might be more
than one relaxation rate. The experimental data@1–4# con-

sists of 56 relaxation rates for pressures ranging from 1.0 to
11.9 atmospheres and for fields from 0.5 to 35.0 kG.

The phenomenological approach represents the relaxation
rate in a form of the type

1

T1
54@DE

21x2DME
2 #F 1

11x2GF t

11~vet!2G12DM
2t,

~54!

where x5B/B0 and B05v0 /(ge1gm)5118 G with
v052073 rad/msec andDE , DME , DM , andt are four fit-
ting parameters. For global fits to both the longitudinal and
transverse data, the parameterDEP

2 in the transverse fit is set
equal toDE

21DME
2 . A fit to both the longitudinal and trans-

verse data using Eqs.~53! and ~54! was made with a result-
ing x2 of 10.40. The contribution tox2 from the longitudinal
data was 2.96 while the contribution from the transverse data
was 7.44. For the transverse data thex2 was mainly due to
the predicted low pressure 1/T2 values being too small. Since
the effect of the transverse signal experimental parameter,

FIG. 8. Same as Fig. 1 but for a pressure of
11.9 atmospheres.

FIG. 9. Same as Fig. 1 but for a pressure of
14.6 atmospheres.
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h0, is greatest at low pressures, a fit was also made including
this term with parameters given in Table III. The resulting
x2 was 3.05 with a 1/T1 contribution of 2.29 and a 1/T2
contribution of 0.756. The values of the fitting parameters
reported here differ slightly from those given in Refs.@1–4#
due to variations in the details of the phenomenological
equations used and the available experimental data. Clearly
the fitting to the longitudinal data is slightly improved
whereas the transverse part of the fit is greatly improved.
Thus the phenomenological approach gives a global fit to
both longitudinal and transverse signals with five fitting pa-
rameters.

To fit the data with the current theoretical approach, ma-
trix elements of the motion generator Eq.~8! in the full basis
are calculated. Then using the restricting coefficients, Eq.
~17!, to relate the full and longitudinal bases, the motion
generator in the longitudinal basis is obtained Eq.~18!. Ei-
genvalues and eigenvectors of this matrix are obtained. Sig-
nal amplitudes are determined using Eq.~43!. To choose the
correct mode, the modes with nonzero amplitude~defined as
greater than 1% of the total amplitude! are selected and then
sorted as to whether they have zero or nonzero frequency.
The significantly populated zero-frequency mode with the
minumum relaxation rate was chosen and this was selected
as the single mode to be compared with the experimental
T1 since the experimental fitting was to a single exponential
relaxation. For each pressure and field new eigenvalues and

eigenvectors must be calculated. The transverse field data
was fit in the manner discussed in Sec. V A.

The transverse field fitting parameters were used as a
starting point to attempt a global fit to all the transverse and
longitudinal data simultaneously. With only the four param-
eters that were well defined by the transverse fit it was not
possible to find an acceptable global fit. However, when the
rotational angular momentum gyromagnetic termgJ was in-
cluded, a not unreasonable global fit was obtained. This fit
has ax2 of 4.23 with a 1/T1 contribution of 2.61 and a
1/T2 contribution of 1.62. It is comparable to the fit obtained
using the phenomenological approach with no correction for
stopping distribution. An even better fit resulted when the
experimental stopping distribution parameterh0 was in-
cluded, see Table IV. Thex2 is 3.07 with contributions of
2.41 from 1/T1 and 0.655 from 1/T2. In this case the longi-
tudinal fits are slightly improved while the transverse fits
have been appreciably improved. As with the phenomeno-
logical approach there are five fitting parameters for the re-
laxation rates with the isotropic hyperfine parameterv0 fit
by the frequency. Plots of the theoretical global fit to the
transverse data are given by the solid lines in Figs. 1–9 while
plots of the theoretical global fit and the longitudinal data are
given in Figs. 10–15.

If the inclusion of the experimental stopping distribution

FIG. 10. Experimental longitudinal muon
spin-relaxation rate vs magnetic field at a pres-
sure of 1.0 atmosphere. The solid curve is the
global fit obtained while the squares are the ex-
perimental data points.

TABLE III. Phenomenological global parameters.

Parameter Value Error

DE ~rad/ms! 1511 143
DME ~rad/ms! 232 13
DM ~rad/ms! 22.8 16.4
t ~ps/atm! 63.8 8.5
h0 ~atm/ms! 12.4 4.5
x2 3.05

TABLE IV. Theoretical global parameters.

Parameter Value Error

vo ~rad/ms! 2074 25
vsr ~rad/ms! 2178 31
v ir ~rad/ms! 21.9 3.1
t1 ~ps/atm! 150 25
gJ ~rad/ms G! 21.18 0.29
h0 ~atm/ms! 5.42 4.85
x2 3.07
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term is valid, then the resulting fits toh0 should agree within
experimental error between the two fits. This is the case as
the phenomenological fit produces 12.46 4.5 atm/ms while
the theoretical fit gives 5.426 4.85 atm/ms. It is to be noted
that at the lowest pressures, namely 1.0 and 1.5 atm, that it is
the relaxation associated with this stopping distribution that
is the dominant part of the observed relaxation rate.

VI. DISCUSSION

A theoretical study of the muon spin relaxation of the
gaseous C2H4Mu radical has been extended to transverse
fields. Fits to the transverse field data by itself were obtained
as were global fits to both the transverse and longitudinal
data. These fits give very good representations of the experi-
mentally reported relaxation ratesT1 andT2. Fits based on
phenomenological formulas are of comparable accuracy. The
theoretical treatment has the advantage that it is expressed in
terms of well defined molecular properties of the radical and
collisional lifetimes.

The treatment given here is based on a quantum Boltz-
mann equation that incorporates the dynamics of the freely
moving radical through a spin Hamiltonian, plus the decay to
thermal equilibrium associated with collisions of the radical
with other molecules in the gas. For application to spin re-
laxation, it has been assumed that only the direction of rota-
tion of the radical is affected by such collisions since the
intermolecular potential is not much influenced by the other
out-of-equilibrium ~angular momentum directions! degrees
of freedom. The C2H4Mu radical has muonI , electronS,
and four protonIH spins as well as the rotational angular
momentumJ. Thus the spin Hamiltonian correctly should
include all possible couplings between all these spins. The
large gyromagnetic ratio of the electron implies that the elec-
tron spin is the leading contributer to coupling the muon and
rotational angular momentum and to the effect of the applied
magnetic field. Thus the electron spin must be carefully in-
cluded. In practice, both to keep the computations within
bounds, and also because there is only so much data to de-
termine the associated coupling constants, a selection must

FIG. 11. Same as Fig. 10 but for a pressure of
2.0 atmospheres.

FIG. 12. Same as Fig. 10 but for a pressure of
3.8 atmospheres.
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be made as to which terms in the Hamiltonian are important
to include, and to which terms can be ignored. The first to go
are the terms involving the proton spins, on the physical
basis that the small proton gyromagnetic ratio should have
only a very small direct effect on the measured muon spin,
thus their major effect should only be via an indirect cou-
pling through the electron spin. It would be nice to explore
how much their presence would affect the measured muon
spin relaxation rate, but since it is indirect, it has been as-
sumed to be relatively unimportant and consequently ignored
in the present treatment. Based on the~presumably! small
gyromagnetic ratio associated with the radical’s rotational
(J) motion, it is reasonable to expand the Hamiltonian in
powers ofJ. Note that the relatively large mass of the car-
bons has been used to assume that the radical can be treated
as a diatomic. While the presence of quadratic terms inJ
were explored, they were found to be unnecessary for an
adequate fit of the data, and if they were included, the result-
ing values of the coupling constants were not well deter-
mined, nor was it clear that the fit was improved. That is, the

experimental data was not of sufficient accuracy or quantity,
to give a unique determination of these coupling constants.
Thus they were left out.

Even with the restrictions on the number of degrees of
freedom discussed above, the linearized Boltzmann equation
is still 19 dimensional for solving for the longitudinal muon
spin relaxation, and 15 dimensional for the transverse. The
eigenvectors for these sets of coupled linear equations are the
precession-relaxation modes for the spin dynamics. It is then
a question of which of the 19~15! precession-relaxation
modes is measured experimentally. Since the experimental
data fits a simple exponential decay, one mode must domi-
nate the relaxation. In our previous work@5# on the longitu-
dinal relaxation it was assumed that it was the mode with the
slowest relaxation rate that dominates. The resulting fit to the
experimental data was reasonable but the fitting parameters
that were obtained did not appear to be physically very rea-
sonable. This was presumably due to the fitting procedure
adjusting the parameters to make a best compromise to fit the
experimental data with this fitting procedure. When attempt-

FIG. 13. Same as Fig. 10 but for a pressure of
6.5 atmospheres.

FIG. 14. Same as Fig. 10 but for a pressure of
10.0 atmospheres.
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ing to fit the transverse relaxation rates, it was soon discov-
ered that a different method of selection of precession-
relaxation mode needs to be made. It was first considered
necessary to find which mode has most of the amplitude of
the muon spin. It is also important to ask how the modes are
initially excited. In this work, the last question was answered
by assuming that the experiments are carried out in such a
way that there are no spin interactions before the radical is
formed or until thermalization has occurred. That is, the ini-
tial state of the spins in the radical are assumed to be random
except for the muon spin. If spin dynamic effects occurred
prior to the thermalization of the radical, then the muon spin
amplitude could be distributed among the other spins, in par-
ticular, with the electron spin. In such a case, a different

initial spin state would be appropriate, with the result that the
populations of the different relaxation modes might be quite
different. It is this selection of which mode is to dominate
the relaxation that has led to the present much better fit of the
experimental data.
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