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Theory of muon spin relaxation of gaseous ¢H,Mu
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A theoretical study of the muon spin relaxation of the gaseous muonated ethyl ragditg\\0 is expanded

in this paper to include both longitudinal and transverse signals. This study is based upon an operator expan-
sion of the spin-density operator for the radical with its time dependence described by the linearized quantum
Boltzmann equation. Relaxation is due to collisions which reorient the radical’s rotational angular momentum
while effects on the muon’s spin are due to couplings between the muon’s spin, the radical’s free-electron spin,
and the radical’s rotational angular momentum. The coefficients of the radical’'s spin Hamiltonian and the
collisional lifetimes(cross sectionsare used as fitting parameters to describe the transverse signals. A fit to the
transverse data by itself and a global fit to both the transverse and longitudinal data are obtained with good
accuracy|[S1050-29406)02812-Q

PACS numbd(s): 36.10—k, 51.60+a

l. INTRODUCTION S (t)=e MA 2

Experiments on the muon spin relaxationR) of the  for the longitudinal configuration and

muonated ethyl radical £4,Mu have been performed in
longitudinal and transverse configuratidis-4]. A phenom- Si(t)=e M'cod wrt+ 67) AT 3
enological equatiohl—4] has been developed to describe the
T, andT, relaxation times associated with these experiments$or the transverse configuration. The relaxation rates are then
while a theoretical5] approach to th&; relaxation time has interpreted in terms of the relaxation times as follows:
been developed. It is the purpose of this paper to reexamine
the fit to the longitudinal data and extend the theoretical 1
study to the transverse experiments. The phenomenological
approach and the current theoretical approach are equally
successful in fitting the pressure and field dependence of the 1
transverse signals. Indeed, the fits produce essentially the Ar==—+ A0, (4
same plots for the pressure and field dependence of the trans- T
verse signal. As well, both the phenomenological approach o _
and the theoretical approach are successful in fitting all th&hereh o is inversely proportional to the total pressite
pressure and field dependences of both the transverse and
longitudinal signals with single sets of parameters. Both fits )

Ao=—5, )
are about equally good. P

In SR experiment$6,7], the dynamics of an ensemble

of muon spins are followed through observation of the decawith 7, an experimental fitting constant, contributes to
positrons which are emitted preferentially along the muorthe overall relaxation rate due to field inhomogeneity over
spin direction. Histograms of these ensembles are fitted to the stopping distribution of the muon in the gds-4]. In

count function, transverse fields the oscillatory time dependence associated
with an observed frequency ensures that the signal being
N(t)=Nge V7s[1+ S(t)]+ By, (1)  observed is due to a single relaxation mode. However, in

longitudinal fields, this is not necessarily the case as more
where 7,=2.2 usec is the lifetime of the muorf\, is a  than one zero-frequency mode might be contributing to the
normalization constantB, is a background constant, and observed signal. It is then a matter of fitting the signal to a
S(t) is the observed signal. These experiments are usuallyum of exponentials with differing amplitudes. For the theo-
performed in one of two configurations, namely, a longitudi-retical description adopted in R¢B], the longitudinal signal
nal setup where the incoming muon’s spin and the magnetiovas assumed to be a single exponential determined by the
field direction are collinear and a transverse setup where theslowest relaxation rate. In the present extension of this study
are perpendicular. The observed signd{s) may be theo- the amplitudes of the various relaxation modes are calculated
retically described by the ensemble averaged behavior of as well as the relaxation rates and only those modes with
single muon’s spin time dependence. For the ethyl radicahippreciable amplitudes are considered. From a fitting point
experimentg 1-4], the assumed forms of these signals are of view, the transverse field results are the more easily inter-
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preted since they have a definite frequency and this aids immann equatiofi9—11] will accurately describe the dynam-
the selection of which single mode is being observed. ics of the gaseous system. Furthermore, it is assumed that the
In attempting a theoretical study of the spin dynamics ofeffect of the collisions between the radical and the other gas
the muonated ethyl radical a number of assumptions areolecules is to relax only the rotational angular momentum
needed. These assumptions fall into three broad categories of the radical. As this is coupled to the electron and muon
dynamical behavior, namely, the roles of thermalization, spirspin angular momenta, the latter are also expected to relax.
dynamics, and collision dynamics. Neither the electron spin nor muon spin is directly relaxed by
In the first category and under the present appr¢&tht  the collisions since they are only indirectly coupled to the
is assumed that the muon thermalizes in the muonated radieometrical shape of the free radical. Finally, since the ob-
cal so that the initial state of the system isH,Mu with servable of interest is the spin of the muothe translational
only the muon spin initially polarized, i.e., having a preferreddegrees of freedom may be averaged over, see, for example,
laboratory direction. That is, since no thermal muonium isRef.[12], to obtain the evolution equation
detected in the transverse field experiment, it is assumed that

muonium forms epithermally and reacts with the ethylene ap(t)

before thermalization is complete. This assumption ignores at —1Lp(H)=Rp(1)

the possibility of the formation of thermal muonium with a

very rapid reaction to form the radical. These are considered =—Gp(1) )

to be reasonable assumptions.

The next set of assumptions deal with the free evolutio
of the radical and its angular momentum properties. Thi
radical has an electron spi a muon spinl, and four hy- G=R+iL ®
drogen spindy, as well as a rotational angular momentum '

J, and various vibrational, bending, and torsional modes. TqQuhich consists of the free motion commutathiouville su-
include all of these dynamical quantities, which are all ex-peroperatorof the spin HamiltoniarH,

pected to be coupled, would lead to an extremely large basis

set and also to the question of whether the experimental data 1

are either accurate enough, or sufficient, to uniquely deter- LA=+[H.A]-, C)
mine the fitting parameters. A reduction in the size of the

basis is required and, hopefully, not all the quantities argyng the collision superoperat®, which describes the relax-
important for the bulk phase relaxations. Three assumptiongtion due to collisions with molecules of the moderating gas.
are made about the dynamics. First is that the bending, viconsistent with the assumption that the translational degrees
brational, and torsional modes are too high in energy 10 subyf freedom are in equilibrium and thus have been averaged
stantially contribute to the motion. Thus they are ignored.gyer, R will involve equilibrium averaged collision cross
The second assumption is that the radical can be thought Qfections. The major effect ¢, which is rotationally invari-

as a diatomic in its rotational angular momentum behavio,nt is to cause the rotational angular momentumof the
since the carbons are much more massive than the hydrogegyical to decay to thermal equilibrium. Details of collision
isotopes. Furthermore, the rotational angular momentum 'Superoperators are given, for example, in RE¥s-11] and
assumed to be well represented by a single average magiir3_15. For a given free Hamiltonian and an assumed form
tudeJ since this is large. As well, a multipole expansion infor the collision superoperator it is then a matter of solving
J is carried out and truncated at second order. Finally, thgq_ (7) for the time evolution of the density operator. Such
third assumption about the free evolution is that the protory,, approach has previously been used in studies of the
spins may be ignored since the largest coupling of the muoRy4rogen-atom isotope spin relaxation via electron-spin ex-
spin is to the electron’s spin. However, even with these thre%hange[13], in gas phase NMH14,16,, in muon charge

assumptions, the operator basis set used in the following fQExchange processgs2], and in Muonium addition reactions
the full spin dynamics is 95 dimensional. The spin Hamil-[17],

tonian for the radical is constructed from_ thg angular mo-  gection 1l deals with the operator basis for the full spin
mentaS, J, andl, and the external magnetic fieB as system, and its restrictions for longitudinal and transverse
R R A relaxation phenomena. The basis elements are vector valued
H/fi=wB S~ 0,B 1+ weS J— 0;B- I+ wseS I+ wgl - J gquantities since it is the muon spin angular momentum vec-
tor 1, that is observed. To classify the expansions, irreducible
+eal-[3]Ps. (6) Cartesian tensor operatdrs8] (under the three-dimensional
rotation group [19-21] and standard Clebsch-Gordan cou-
As stated above, this Hamiltonian assumes that only up tplings are used. Section Ill relates the experimental longitu-
second order effects il are important. The first three terms dinal signal Eq(2) to the component of the muon spin in the
in this Hamiltonian form the standard muonium or hydrogenmagnetic-field direction using the longitudinal eigenvalues
spin Hamiltonian which have well-known analytic eigenval- and eigenvectors of the motion generator B}, within the
ues and eigenvectof8]. longitudinal basis Eq(15). In general there will be more
The last category of assumptions deals with the manythan one exponential contributing to the signal depending
body interactions between the radical and the rest of the gagpon the specific dynamics. Section IV does the same for the
in the experimental chamber. It is assumed that only binaryransverse signal by relating the experimental result(Bg.
collisions are important so that a quant(linearized Bolt-  to the transverse eigenvalues using the transverse basis Eq.

r{or the spin-density operatgi(t). The time dependence is
éjetermined by the motion generator
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(26). Finally, Sec. V gives the results of fits to the transverse Gumr ={(xmlGlxiu))

data and of the global fits to both the transverse and longi-

tudinal data. 4 1
:<<XM||[’|XM>>+E5MMH (14

Il. OPERATOR BASES . . . .
are calculated using this basis. See RB{.for specific de-

As the observed quantity is the muon spin angular mo4ails for both the spin Hamiltonian terms and the collision
mentum vector, a general basis describing the motion of terms.
this vector should be a vector valued basis. Both the longi-
tudinal and transverse configurations are included in this A. Longitudinal basis
general description and either one can be extracted using a

reduction to the particular scalar component of the motiog Experiments are carried out in either a longitudinal or a

being observed. For example, the longitudinal signal is th ransverse configuration, that is, with the magnetic field and

component of the expectation value of the muon spin in th he ‘”‘“?" muon spin e_ithe_r collinear or perpendicular. More-
field direction while the transverse signal may be expresseaver’ _S'”C‘? thAe Hamﬂtomah has.., symmetry about the
as the(real part of the positively rotating component in the field directionB, the dynamics of the spin system separates
plane perpendicular to the magnetic-field direction. In thisinto independent longitudinal and rotating components. Thus

way, the longitudinal and transverse bases are scalar valudgiS @ppropriate to restrict the general basis to bases appro-
bases. priate for describing either the longitudinal or rotating dy-

Since the spin-density operatp(t) is a function of the namics. Mgtrix elements of the motion genera@(may then
three spin vectors,S,J, and the field directiorfunit vectoy ~ Pe determined from the full vector basis elements @),
é, it is appropriate to use an orthonormal vector valued Op_usmg the appropriate set of restriction coefficients. The 35

erator basis involving these quantities. Such a basis is ded_imensional real, scalar valued orthonormal longitudinal ba-
scribed in Ref[5] and is given in Cartesian tensor form as

OL=2a+ 1YV Y™ (S O™ "V (m,n,a)
XONV(a,p,q)OP YPIBYIP() (15

has been described previou§B). Its numerical indeX is to
classify, in some convenient order, the set of parameters
mnp,aq. This scalar valued basis can be expanded in terms
of the full vector valued basigy, according to

an=V(2a+1)(28+1)YM(HIY™(S)
X O (m,n, ) OV (a, B,r) O W (B)
X OBV(B,1,p)OPIYP(I). (10)

The notation for irreducible Cartesian tens@%", n-fold
tensor contraction ©(, and Clebsch-Gordan tensors
V(m,n,«), follows that of Coope and Snid¢20,21. This 95 R

operator basis is orthonormal, ®h=le ay nxw - B. (16)

(Ol X0a)) = Samr = Sy Sy Sppy St O O (1) The expansion coefficients are obtaifé&d by using the or-
thonormality of theyy’s, whose use requires théih must

with respect to an inner product defined as follows: be embedded as a vector in the same space ag,fhespe-

1 cifically that
Y|Z))= Tr fdéYT.z. . .
YI2)= e Des DeIvn s o 1.0 = (Xl PEB)) = (Xrmnpr| P B))
1
wiprqed (2BTD(GHT+D) 12
When the reduction to longitudinal and transverse compo- =(=1 2
nents is performed, there is no longer a need for the vector
dot product and the inner product a B r
X 5\qfr\,l- (17)
1 1 g p

Tr,SJJ'dBYTZ N - , ,

S, ote that only theg andr indices differ between the index
(13) setsN andM. Matrix elements of the motion generator Eq.

(8) in the longitudinal basis

is appropriate. With the assumptions made about the spin

Hamiltonian and the retention of only second orded imul- L L .

tipoles, this full vector basis is 95 dimensional. The index GNN'=<<¢h|g|q’w>>=M§=:l Mzzl amNGmmam Ny

M, for the basis consists of the combinatiomnp, aBr B (18)

wherem,n,p represent, respectively, the tensorial order of

the angular moment§, J, andl, r is the tensorial order of can then be calculated from the full basis matrix elements

the magnetic-field direction, while and 8 are angular mo- Gyuu+ Eq. (14). The explicit(numerical solution of the spin

mentum coupling indices. Matrix elements of the motionevolution is to be solved by finding the complex eigenvalues

generator Eq(8) Ay and eigenvectorg} of G-,

(M2 =@ Des D@+

95 95
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gL()DII:l:)\kI(PII:] (19) <<\P-l{l|\1’-rl\-|f>>:5NN’:5mm’5nn’ 5ppr 5&'(1"5(](1" (27)

These are determined numerically in terms of the longitudi-Note that the negatively rotating transverse field basis set is
nal basis just the complex conjugate of the above basis set, so only
one set is needed in order to determine everything about the
L 2 L oL 20 transverse system, but of course it is the rotating basis sets
‘PN_NI=l CmNPwm - (20 that describe the dynamically independent parts of the spin
system. The positively rotating basis set may be expanded in
The association of a numerical indéx to the sets of terms of the full basis set E¢10) according to
parametersnnp,«q is chosen in this work so that the first 05
five operators in the longitudinal basis correspond to the Ppl= 2 b & (28)
muonium observables, that is, the first is the component of NT =y DMINAMT S
the muon spin in the longitudinal direction

35

. As for the longitudinal basis set expansion, the expansion
P=dg, o=2B-1, (21)  coefficients are obtained by using the orthonormality of the
' Xm » Which requires embedding the scaﬂa& in the vector
the second is the component of the electron spin in the lonspace in whichyy, is defined. This results in the expansion

gitudinal direction coefficients being given by
(DIZ_:(DIiOO,HZZB'Sv (22) bM,N:<<XM|\P-I{Jé*>>:<<anpa,8r|\1'mnpaqé7>>
thg third is the dot product between the electron and muon (= 1)etBta 2B+1 1/2(2q+3)
spins 2(q+2)
Lo { r 1 g+1
O;=0 =—S-1, 23 X
3= P101,16 73 (23) b a B
the fourth is the component of the cross product between the S q+2 _ v@+2)(q+1)
electron and muon spins in the longitudinal direction arl 2g+3/ “r@t2 - 2q+3
- 12
dL=dt,, .= V2B-(SXI), (24) : q+2
4= P17 +i 6 (g+1) 2q+3) | (29

and the fifth is the symmetric traceless component of the

tensor product of the electron and muon spins aligned alonwith only ther andq indices differing in the two parameter

the field direction sets. Matrix elements of the motion generator B8j.in the
transverse basis are then obtained according to

dE=dYy, ,,~26B-[SI]?-B. (25) o o
. . . . T _ T T _ *
It is only the first element of this set whose expectation value Gy = (VNG V) = |v|§—:1 2 VM EIVIVISIVIRNE
is measured experimentally. oMl (30)
B. Transverse basis from the full basis matrix element§ ., Eq. (14). The

dynamical properties of the spin system in a transverse field
gan then be expressed in terms of the complex eigenvalues
°XT and ei v of GT

N genvectorgy of G',

For rotational C..,,) symmetry, a right-hande@omplex
three-dimensional coordinate system may be construct
from the magnetic-field directioB=z, the positively rotat-
ing unit vegtorét= (_>A<A+i§/)/\/§, and the negatively rotating ol =\lol. (31)
unit vectoré_ = (X—iy)/\/2. Thus to construct an orthonor-
mal scalar valued transverse field basis set, the componeTihe latter are determined numerically as sets of expansion
with the positively rotating unit vector may be used, that iS,coefficientscI,l,N in terms of the transverse basis

2(2a+1)
q+2

X O™V (m,n,a)O*V(a,p,q+1)09*1

12 30

Yy=(29+3) YV I (S) o= 2 el (32)

The indexing scheme was chosen so that the first four
X V(q+ 1,1,q)@q+1+Py<ﬂ>(|_3,)é+y<m(|)_ (26) operators in the transverse basis correspond to the muonium
observables. That is, the first is the component of muon spin
This complex basis set is 30 dimensional, whose numericakhich positively rotates in the plane perpendicular to the
index N is associated with some convenient ordering of thefield direction
mnpaq parameter set having orthonormality expressed Tt .
through the inner product of E¢L3), that is, W1 =Woo1,05=21- €4, (33
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the second is the component of electron spin which posiThis sum over the eigenvectors needs to be inverted in order
tively rotates in the plane perpendicular to the field directionto identify the expansion coefficienfs(0). Since the mo-
T . tion generatoG- is not Hermitian, nor even necessarily nor-
Vo=V1001525 €4, (34 mal, the eigenvectors are not necessarily orthogonal. Thus

the third is the positively rotating component of the CrOSSthe inversion requires the use of the eigenvector overlap ma-

product between the electron and muon spins trix

35
T_apT — A .
‘P3_\P101,10_2\/§(S><|)~E+, (35) OhN,E<<@h|¢h,>>:M2=l CII(IMCh’M' (41)
and the fourth is a component of the symmetric traceless part _ o
of the tensor product of the electron and muon spins In this way, the expansion coefficientg(0) are calculated
. to be
Wi=W1o 1 =4V2B-[SI]?.&, . (36) a
- L
Experimental measurements involve the relaxation rate and pr(0)= Z [(OH ™ HTnnr{{op [ p™0)))
oscillation frequency of the muon spin. Both these quantities NT=1
are determined by the expectation valuelof . 13 "
=5 2 [(OYH ey, (42

IIl. OBSERVABLE LONGITUDINAL SIGNAL N'=1

The experiments carried out in longitudinal field detectWhIIe the amplitudes of the signal are

the component of the muon spin in the magnetic-field direc- 35

1
tion, that is, Ahzz > cRal(OM  HawCyry- (43)
N'=1

SLO=B{HO=TrB-Ip(1). If the eigenvectors actually are orthonormal, this sum re-
= (D] p(D))). (37)  duces to giveAy=3|cy,|%
The complex eigenvalues
By the C., symmetry of the experimental setup, only the
longitudinal basis contributes to this signal. Thus the time
dependence is governed entirely @y and conveniently ex-

pressed in terms of its eigenvalues and eigenfunctions, . o
namely are usually expressed in terms of relaxation tiffigs, and

frequencies»h. For longitudinal signals, some of these will
have zero frequency and the signal becomes

T1N

A=| 7| Fioy (44)

35
_ab _ AL
p(t)=e"9 tp(O)zN; e 9torpr(0)
S(= > e YAy

35 T
N2 oy=0

L
=N§1 one Mpy(0). (39)

+ > e YTincogwit+6K)|ALl (49
The observed signal E¢37) is thus a sum of complex ex- N> ok #0
ponentials and amplitudes,
since for each term with frequen&)),;‘ there is a correspond-
L ing term with frequency— wk, and complex conjugate am-
SL('[):NE:1 e MWpR(0)(( P ox)) plitude. In carrying out the experiments, the nonzero fre-
quencies are found to be too large to be measured so that the

35 35 : i : ;
L L signal is then simply given by the zero-frequency compo-
=2 e WpR(O)ck= X e WAL (39 nents,

35

On the basis that at the zero of time, only the muon spin is S(tH= > e YTiNAY. (46)
out of equilibrium and that this spin is pointed in the N> wy=0

direction, then it is to be shown that the amplitudeg are . .
) . - In general there may be a number of modes which contribute
determined completely by the expansion coefficients of th?o the observed signal which may cause fitting problems for

eigenvectors in terms of the longitudinal operator basis, T(%he experimental measurements and for the theoretical de-

start this demonstration, note that the initial expectauonScription of them. Thus the assumed form for the experimen-

value for th_e muon spin component is 1/2, n_a_lm_ely,tal longitudinal signal Eq(2) may not be appropriate in all
(B-1)=1/2 with the consequence that the nonequilibrium ases “That is, there may be some fields and pressures where
(ne) part of the spin-density operator is only a single mode is populated and others where two or
35 more modes contribute. Care must be taken both in carrying
p"%(0) = B.l= %Cbli: E (Pklpkl(o)' (40) out the experiments a_md in _their theoretical interpretation to
N=1 ensure that these various situations are treated properly.
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For pure muonium there are five longitudinal modes, of V. FITS TO EXPERIMENTAL DATA
which three have zero frequency. Thus there could be up to
three different exponentials and amplitudes if all the mode
can be observed. For the present case of thid Su radical
and under the current theoretical assumptions, there are
longitudinal modes. If only the linear terms in the rotational
angular momentum are retained then there are only 15 lo
gitudinal modes of which only a few will have zero fre-
qguency. It turns out, see Sec. V, that the retention of only th
linear inJ terms in the Hamiltonian is sufficient for the in-
terpretation of the GH ,Mu experiments.

S Experiments have been performgld-4] in both longitu-
dinal and transverse fields. The collected experimental data
ve been fit to signals with single exponentials of the form

of Egs.(2) and(3). A fit [5] to the longitudinall; data using
the current theory has been made. In that fit it was assumed
That only one mode contributes to all the longitudinal signals
nd that the choice of mode was the one with the smallest
relaxation rate I/, . The parameters obtained in this way
were not well defined and their values did not necessarily fall
within the ranges expected on the basis of other arguments. It
was recognized that there was a difficulty with the interpre-
IV. OBSERVABLE TRANSVERSE SIGNAL tation of the longitudinal data, specifically which particular
The experiments carried out in transverse field detect thg_alaxatlon mode, or more ge”e“”?"y’ ques, ‘?Of_‘”'b“te to_the
component of the muon spin which rotates in the plane per§'fgnﬂ|' I;romhan eﬁperlgzntal _p0|ntbof]c\(|ew th|$ |s|a question
pendicular to the magnetic-field direction. Here this is anal IW ether the C?] ected data is to 'el IEI'tr? ads_flpg ? expouen-
lyzed according to the positively rotating component of thetIa or to more than one expongnUa. e difficulty is that
Spin, that is, there may be large ranges of fields and/or pressures where
there is only one mode and small ranges where more than
o _ T one mode contributes. As well there may be cases where two
S+t =e(NO =¥ 1lp(1)). 47 modes contribute but that they can not be differentiated in
As with the longitudinal signal, this transverse result may be;hoef[ g?g%g:%::ds ihz{%rr?l; g;]zorr:élggl C%Onl?rti;jt\gse v;/nlé fﬁgtuiltd is
expressed as follows: the one with the slowest relaxation rate. To answer these
questions, it is appropriate to calculate the mode amplitudes
and to consider only those modes with appreciable ampli-
tude. Since these difficulties do not exist for the transverse

signal[since there is then an observed frequency which aids
where the amplitudes are the transverse analogs of the loff? the selection of which(transverse mode is being ob-

30
S.()=, e AT, (489)
N=1

gitudinal amplitudes served it is more appropriate to first fit the transverse signal
and then use the Hamiltonian parameters and collision times
1 30 deduced therefrom to either attempt to fit all sets of data at
AI,=§ > (O iy (49 once or to predict the longitudinall() data.
N’ =1

on the assumption that initially the spin was 100% in the A. Transverse relaxation fitting

positively rotating component. In transverse fields, the signal has a damped cosine be-
The complex eigenvalues havior Eqg. (3) with a single relaxation rate. Neither the
theory nor the experiments require more than one relaxation
T rate per frequency. Such a situation might occur if two fre-
Tloy (50) quencies were sufficiently close and agreed with the ob-
served frequency, as is the case for very low magnetic fields.
However, the fields in the experiments were quite high. The
xperimental dat§l—4] consist of 34 measured relaxation

1

A=
N T2N

are usually expressed in terms of relaxation tirfigg and
frequencieSwL. For transverse signals, none of these havé ; ) . )
zero frequency so that the real part of the signal becomes rates with their corresponding frequenue_s, _for pressures
series of damped cosines, ranging from 1.0 to 14.6 atmospheres and in fields from 9.5
to 26.6 kG.
30 The theory presented here is capable of predicting both
Si(t)=ReS, (1) = E eft/TZNCOS(th_i_ GL)|AL|- relaxation rates and frequencies. This is very important for
N=1 the theory since the frequencies are extremely sensitive to
(51  the size of the isotropic hyperfine constant Indeed, in the
fitting, the value of wy is always very close to 2073

In the ethyl radical experiments E(B) only the lowest fre-  radjusec, which is the frequency measured in transverse field

quency is observed so that the measured signal experimentg22]. The contributions to the tota}? per de-
gree of freedom x?) from the frequencies are negligible in
Si(t)=e YTecog w't+ 6T)|AT|. (52 all fits, with the relaxation rates contributing virtually all the

uncertainty. Since the phenomenological approath4]
involves only one decay rate T/ and one frequency’. does not involve fitting the frequency, thy@ reported for the
This greatly simplifies any problems with regard to fitting the present theory are those for the relaxation rate only.
experimental data or its theoretical interpretation as both the The phenomenological approach represents the relaxation
frequency and the decay rate result from a single mode. rate in a form of the type
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TABLE |. Phenomenological transverse parameters. TABLE Il. Theoretical transverse parameters.
Parameter Value Error Parameter Value Error
Agp (radjus) 1661 309 w, (radjus) 2073 16
Ay (radjus) 279 75.5 wg, (radjus) —233 43
7 (ps/atm 81.8 49.8 w;, (radjus) 28.0 7.3
X2 1.73 7, (ps/atm 82.2 48.8
X2 1.75
1 2 T 2
T_Z_ZAEP 1+ (wer)? +24) 1+(w,7)?) (53 J terms. If only the linear inJ terms are kept, then the spin

system is parameterized by the two spin-rotation parameters
where Agp, Ay, and 7 are fitting parameters. See Refs. wggr andw,g, the rotational gyromagnetic ratig;, and the
[1-4] for a detailed discussion of the meanings of thesecollision lifetime 7,. The quadratic i) terms add as param-
quantities. In order to provide a comparison for the presengters the anisotropic hyperfine coupling consantind the
theoretical approach, the experimental data was fit to Eccollision lifetime ,.
(563). The results of this fit are reported in Table | with a  To fit the data, matrix elements of the motion generator
x? of 1.73. The three parameters were found to be well degq. (8) in the full basis are calculated and from these, the
fined and the addition of the experimental stopping distribumatrix elements Eq(30) of the transverse motion generator
tion parametery, see Eq(5), was not required. Although is deduced using the restricting coefficients E29). Eigen-
the addition of this parameter in a fit produces a slightlyvalues and eigenvectors of this matrix are obtained using

bettery?, the parameter is not well defined. standard numerical procedures, see for exanjpig, Signal
Under the assumptions in the current theoretical approactamplitudes are determined using E49). To choose the
there are five radical fitting parametens,, wq, wsr, ®|Rr, correct mode, the modes with nonzero amplitgdiefined as

andc,, two collisional parameters; and 7,, and one ex- greater than 1% of the total amplitudere selected and then
perimental parameten,, see Eq.5). In all the theoretical the mode with the minumum absolute frequency is chosen.
fits the value of the magnitudé of the rotational angular This selection procedure is that of the experiments, that is, of
momentumJ, has been taken to be 17 since this is its thermathe populated modes the one with the lowest frequency is
average value. When this value is altered only the couplingbserved. Fits to the experimentd) data are performed
parameters that depend upon it change in size in a predictising MINUIT [23]. For each pressure and field, new eigen-
able manner. The theoretical parameters fall into three catralues and eigenvectors must be calculated.

egories depending upon their relation to the tensorial order of A good fit to theT, data, with ay? of 1.75, was obtained
the rotational angular momentudh Only the isotropic hy- keeping only the linear id terms in the Hamiltonian. This
perfine coupling paramete®, between the electron and requires using only three fitting parameters, namelyg,
muon spins is independent df It is this parameter which g, and 71, see Table IlI, sinces, is determined by the
dictates the observed frequency and it is well defined in alfrequency dependence. That is, only the vector behavior of
the fits. Although it is recorded as a fitting parameter, it isthe rotational angular momentum was required to adequately
not free to vary with respect to the relaxation rates andit the current experimental data with reasonably well defined
should not be considered as a fitting parameter for the relaparameters. Inclusion of any combination of the rotational
ation rates. The Hamiltonian has both linear and quadratic igyromagnetic term, the second rank tensorial rotational an-
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FIG. 2. Same as Fig. 1 but for a pressure of
1.5 atmospheres.

FIG. 3. Same as Fig. 1 but for a pressure of
2.0 atmospheres.

FIG. 4. Same as Fig. 1 but for a pressure of
3.8 atmospheres.
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gular momentum contribution, and the experimental stoppingists of 56 relaxation rates for pressures ranging from 1.0 to
distribution contributionz,, see Eq.(5), produced similar 11.9 atmospheres and for fields from 0.5 to 35.0 kG.

fits. However, the extra parameters were not well defined in  The phenomenological approach represents the relaxation
these fits. This is similar to the phenomenological approachrate in a form of the type

Plots of the experimental data and the current theoretical fit

are presented in Figs. 1-9. The transverse fits discussed here i—4[A2+x2A2 ]
are virtually indistinquishable from the global fits whicn are T, - F MEL 1+ x2|| 1+ (weT)?
given by the solid lines, see Sec. V B. Except at low fields (54)

the theoretical transverse, theoretical global and phenomeno-

logical fits are indistinguishable and, even for low fields, _ _ _ ;
there is not much difference. While it is difficult to relat(_e the \C/ov:irgo;(:; riijlzosec? r;?]dABz K,(\),,/E(,yeA-:,'},/Ma)mdlq-lgre(?ou\rlv#tr]
molecular parameterssg andw)g to the phenomenological (ing narameters. For global fits to both the longitudinal and
parameterdep andAy it seems reasonable to conclude thattransverse data, the parame@P in the transverse fit is set

+2AM27,

the lifetimesr, and  are comparable quantities. equal toAZ+ A2, . A fit to both the longitudinal and trans-
) o ) verse data using Eg$53) and(54) was made with a result-
B. Global fits and longitudinal relaxation ing x2 of 10.40. The contribution tg? from the longitudinal

In longitudinal fields, the experimental time dependencedata was 2.96 while the contribution from the transverse data
has been fitted1—4] with a single relaxation rate, see Eq. was 7.44. For the transverse data jffewas mainly due to
(2). However the theory suggests that there might be morghe predicted low pressureTl/values being too small. Since
than one relaxation rate. The experimental ddta4] con- the effect of the transverse signal experimental parameter,
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TABLE Ill. Phenomenological global parameters. TABLE IV. Theoretical global parameters.
Parameter Value Error Parameter Value Error
Ag (radjus) 1511 143 w, (radjus) 2074 25
Aye (radjus) 232 13 wg, (radjus) -178 31
Ay (radjus) 22.8 16.4 w;, (radjus) 21.9 3.1
7 (ps/atm 63.8 8.5 7, (ps/atm) 150 25
7o (@tmius) 12.4 4.5 vy (radjus G -1.18 0.29
X2 3.05 70 (atmjus) 5.42 4.85

x° 3.07

70, IS greatest at low pressures, a fit was also made including

this term with parameters given in Table Ill. The resulting eigenvectors must be calculated. The transverse field data
x> was 3.05 with a I, contribution of 2.29 and a T  was fit in the manner discussed in Sec. V A.

contribution of 0.756. The values of the fitting parameters The transverse field fitting parameters were used as a
reported here differ slightly from those given in Reffs=4]  starting point to attempt a global fit to all the transverse and
due to variations in the details of the phenomenological,ngitudinal data simultaneously. With only the four param-
equations used and the available experimental data. Clearlyors that were well defined by the transverse fit it was not
the fitting to the longitudinal data is slightly improved possible to find an acceptable global fit. However, when the
whereas the transverse part of the fit is greatly improvedrotational angular momentum gyromagnetic teyﬁnv\’/as in-

Thus the phenomenological approach gives a global fit to ' g L
both longitudinal and transverse signals with five fitting pa—CIUded’ a not unreasonable global fit was obtained. This fi

rameters. has ay“ of 4.23 with a 1T, contribution of 2.61 and a

To fit the data with the current theoretical approach, ma_1f|'2 contribution of 1.62. It is comparable to the fit obtained

trix elements of the motion generator E@) in the full basis ~ USing the phenomenological approach with no correction for
are calculated. Then using the restricting coefficients, EqSIOPPINg distribution. An even better fit resulted when the
(17), to relate the full and longitudinal bases, the motion€xperimental stopping distribution parametgp was in-
generator in the longitudinal basis is obtained E). Ei-  cluded, see Table IV. Thg? is 3.07 with contributions of
genvalues and eigenvectors of this matrix are obtained. Sig2.41 from 1T, and 0.655 from I7,. In this case the longi-
nal amplitudes are determined using E4p). To choose the tudinal fits are slightly improved while the transverse fits
correct mode, the modes with nonzero amplitgdefined as  have been appreciably improved. As with the phenomeno-
greater than 1% of the total amplitudare selected and then logical approach there are five fitting parameters for the re-
sorted as to whether they have zero or nonzero frequencjaxation rates with the isotropic hyperfine parametgr fit

The significantly populated zero-frequency mode with theby the frequency. Plots of the theoretical global fit to the
minumum relaxation rate was chosen and this was selectadansverse data are given by the solid lines in Figs. 1-9 while
as the single mode to be compared with the experimentadlots of the theoretical global fit and the longitudinal data are
T, since the experimental fitting was to a single exponentiagiven in Figs. 10-15.

relaxation. For each pressure and field new eigenvalues and If the inclusion of the experimental stopping distribution
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ar- perimental data points.
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term is valid, then the resulting fits tg, should agree within The treatment given here is based on a quantum Boltz-

experimental error between the two fits. This is the case amann equation that incorporates the dynamics of the freely
the phenomenological fit produces 12:44.5 atmfs while  moving radical through a spin Hamiltonian, plus the decay to
the theoretical fit gives 5.42 4.85 atm/s. It is to be noted  thermal equilibrium associated with collisions of the radical

that at the lowest pressures, namely 1.0 and 1.5 atm, that it i{gith other molecules in the gas. For application to spin re-
the relaxation associated with this Stopping distribution thaIaxation’ it has been assumed that on|y the direction of rota-
is the dominant part of the observed relaxation rate. tion of the radical is affected by such collisions since the

intermolecular potential is not much influenced by the other
out-of-equilibrium (angular momentum directionglegrees

of freedom. The GHMu radical has muon, electronS,

A theoretical study of the muon spin relaxation of the and four protonly spins as well as the rotational angular
gaseous GH Mu radical has been extended to transversemomentumJ. Thus the spin Hamiltonian correctly should
fields. Fits to the transverse field data by itself were obtaineéhclude all possible couplings between all these spins. The
as were global fits to both the transverse and longitudinalarge gyromagnetic ratio of the electron implies that the elec-
data. These fits give very good representations of the experiron spin is the leading contributer to coupling the muon and
mentally reported relaxation ratdg and T,. Fits based on rotational angular momentum and to the effect of the applied
phenomenological formulas are of comparable accuracy. Themagnetic field. Thus the electron spin must be carefully in-
theoretical treatment has the advantage that it is expressedétuded. In practice, both to keep the computations within
terms of well defined molecular properties of the radical andounds, and also because there is only so much data to de-
collisional lifetimes. termine the associated coupling constants, a selection must

VI. DISCUSSION
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be made as to which terms in the Hamiltonian are importanexperimental data was not of sufficient accuracy or quantity,
to include, and to which terms can be ignored. The first to gao give a unique determination of these coupling constants.
are the terms involving the proton spins, on the physicalThus they were left out.

basis that the small proton gyromagnetic ratio should have Even with the restrictions on the number of degrees of
only a very small direct effect on the measured muon spinfreedom discussed above, the linearized Boltzmann equation
thus their major effect should only be via an indirect cou-is still 19 dimensional for solving for the longitudinal muon
pling through the electron spin. It would be nice to explorespin relaxation, and 15 dimensional for the transverse. The
how much their presence would affect the measured muosigenvectors for these sets of coupled linear equations are the
spin relaxation rate, but since it is indirect, it has been asprecession-relaxation modes for the spin dynamics. It is then
sumed to be relatively unimportant and consequently ignored question of which of the 1915) precession-relaxation

in the present treatment. Based on f{peesumably small modes is measured experimentally. Since the experimental
gyromagnetic ratio associated with the radical’s rotationadata fits a simple exponential decay, one mode must domi-
(J) motion, it is reasonable to expand the Hamiltonian innate the relaxation. In our previous wdrk| on the longitu-
powers ofJ. Note that the relatively large mass of the car-dinal relaxation it was assumed that it was the mode with the
bons has been used to assume that the radical can be treatdowest relaxation rate that dominates. The resulting fit to the
as a diatomic. While the presence of quadratic termd in experimental data was reasonable but the fitting parameters
were explored, they were found to be unnecessary for athat were obtained did not appear to be physically very rea-
adequate fit of the data, and if they were included, the resultsonable. This was presumably due to the fitting procedure
ing values of the coupling constants were not well deter-adjusting the parameters to make a best compromise to fit the
mined, nor was it clear that the fit was improved. That is, theexperimental data with this fitting procedure. When attempt-
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ing to fit the transverse relaxation rates, it was soon discovinitial spin state would be appropriate, with the result that the
ered that a different method of selection of precessionpopulations of the different relaxation modes might be quite
relaxation mode needs to be made. It was first consideredifferent. It is this selection of which mode is to dominate
necessary to find which mode has most of the amplitude ofne relaxation that has led to the present much better fit of the
the muon spin. It is also important to ask how the modes arexperimental data.

initially excited. In this work, the last question was answered

by assuming that the experiments are carried out in such a

way that there are no spin interactions before the radical is ACKNOWLEDGMENTS

formed or until thermalization has occurred. That is, the ini-
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