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Most approximate exchange-correlation functionals used within density-functional theory are constructed as
the sum of two distinct contributions for exchange and correlation. Separating the exchange component from
the entire functional is useful since, for exchange, exact relations exist under uniform density scaling and spin
scaling. In the past, accurate exchange-correlation potentials have been generated from essentially exact den-
sities but they have not been correctly decomposed into their separate exchange and correlation components
~except for two-electron systems!. Using a recently proposed method, equivalent to the solution of an opti-
mized effective potential problem with the corresponding orbitals replaced by the exact Kohn-Sham orbitals,
we obtain the separation according to the density functional theory definition. We compare the results for the
Ne and Be atoms with those obtained by the previously used approximate separation scheme.
@S1050-2947~96!01812-4#

PACS number~s!: 31.15Ew, 31.25.Eb, 71.10.2w

I. INTRODUCTION

Within density-functional theory~DFT!, the ground-state
energy of an interacting system of electrons in an external
potential can be written as a functional of the ground-state
electronic density@1#. In the Kohn-Sham formulation of
density-functional theory@2#, the ground-state density is ob-
tained as the density of a system of noninteracting electrons
in an effective local potential. Although density-functional
theory is in principle exact, the energy functional contains an
unknown quantity, called the exchange-correlation energy,
Exc@r#. The effective potential for the fictitious noninteract-
ing system is the sum of the external potential, the Hartree
potential, and the exchange-correlation potential, which is
the functional derivative with respect to the density of
Exc@r#. The density-functional theory definition of the sepa-
rate exchange and correlation components ofExc@r# is based
on the noninteracting system and is such that the resulting
exchange functional has properties that are useful guides in
the construction of an approximate exchange. Consequently,
most approximate exchange-correlation functionals are also
constructed as the sum of two distinct contributions for ex-
change and correlation.

In the past, exchange-correlation potentials and energies,
of varying degrees of accuracy, have been determined by
generating a density for the system of interest and then com-
puting an exchange-correlation potential that yields the de-
sired density as the ground-state solution for the fictitious
noninteracting system. In this context, researchers have used
charge densities calculated by quantum chemistry methods
for atoms@3–13# and molecules@14–16#, as well as quantum
Monte Carlo methods for atoms@17,18# and for a model
semiconductor @19#. The subsequent inverse problem,

namely, the search of the corresponding exchange-
correlation potential, has been performed using a variety of
different techniques. For example, the exchange-correlation
potential has been determined by expanding it in a set of
basis functions and varying the expansion coefficients to re-
produce the accurate density@5,17,18#.

With the exception of two-electron systems, these accu-
rate exchange-correlation potentials have never been sepa-
rated into their exchange and correlation components accord-
ing to the density-functional theory definition. For many-
electron systems, an approximate scheme was used where
the exchange potential was defined as the potential yielding
the Hartree-Fock density and the correlation potential as the
difference of the accurate exchange-correlation potential and
this approximate exchange potential. In this paper, following
the approach proposed by Go¨rling and Levy@20#, we obtain
the correct separation of accurate exchange-correlation po-
tentials for the Be atom and the Ne atom.

In Sec. II we briefly introduce density-functional theory
and its Kohn-Sham formulation. In Sec. III, we derive the
formulas used to determine the decomposition of the
exchange-correlation potential into exchange and correlation.
A comparison with approximate separation schemes is given
in Sec. IV. In the Appendix, we describe the method for the
special case of closed-shell systems.

II. THEORETICAL BACKGROUND

Density functional theory provides an expression of the
ground state energy of a system of interacting electrons in an
external potential as a functional of the ground state elec-
tronic density@1#. Let us assume for simplicity that the spin
polarization of the system of interest is identically zero. In
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the Kohn-Sham ~KS! formulation of density-functional
theory @2#, the ground state density is written in terms of
single-particle orbitals obeying the equations in atomic units
(\5e5m51):

H 2
1

2
¹21vext~r !1E r~r 8!

ur2r 8u
dr 81vxc~@r#;r !J c i5e ic i ,

~1!

where

r~r !5(
i51

N

uc i~r !u2. ~2!

The electronic density is constructed by summing over the
N lowest energy orbitals whereN is the number of electrons.
vext(r ) is the external potential. The exchange-correlation
potential vxc(@r#;r ) is the functional derivative of the
exchange-correlation energyExc@r# that enters in the expres-
sion for the total energy of the system:

E52
1

2 (
i51

N E c i¹
2c idr1E r~r !vext~r !dr

1
1

2E E r~r !r~r 8!

ur2r 8u
drdr 81Exc@r#. ~3!

The exchange-correlation functional is written as the sum of
two separate contributions for exchange and correlation,

Exc@r#5Ex@r#1Ec@r#. ~4!

The definition of the exchange energy is in terms of the
noninteracting wave functionF0, the Slater determinant con-
structed from the Kohn-Sham orbitals, as

Ex@r#5^F0uVeeuF0&2
1

2E E r~r !r~r 8!

ur2r 8u
drdr 8, ~5!

whereVee is the electron-electron interaction. This definition
differs from the conventional quantum chemistry definition
of Ex as the exchange energy in a Hartree-Fock calculation,
given by the same expression as in Eq.~5! but with the
Kohn-Sham determinant replaced by the Hartree-Fock deter-
minant. The separation of the exchange-correlation func-
tional into exchange and correlation yields a corresponding
splitting of the exchange-correlation potential into
vx(@r#;r ) and vc(@r#;r ). In this formulation, the essential
unknown quantity is the exchange-correlation energy
Exc@r#. If the functional form ofExc@r#, and consequently
the exchange-correlation potential, were available, we could
solve theN-electron problem by finding the solution of a set
of single-particle equations.

The exchange functional, as defined in Eq.~5!, scales un-
der uniform density scaling,rl(r )5l3r(lr ) @21#, as

Ex@rl#5lEx@r#, ~6!

and its spin-polarized version is simply given in terms of the
unpolarized exchange functional@22# as

Ex@r↑ ,r↓#5
1

2
$Ex@2r↑#1Ex@2r↓#%. ~7!

Clearly, the separation of the exchange-correlation functional
according to Eq.~5! is useful since, for exchange, only an
approximation for the unpolarized functional needs to be
sought and the behavior under uniform scaling determines
how derivatives of the density combine with the density in
an approximate exchange functional:

Ex
approx@r#

5E r~r !4/3F„u¹r~r !u/r~r !4/3,¹2r~r !/r~r !5/3, . . . …dr .

~8!

III. SEPARATION OF Vxc INTO Vx PLUS Vc

For the special case of two electrons in a singlet state, the
separation of the exchange-correlation potential into ex-
change plus correlation is quite simple since the exchange
potential is simply given by the condition that it cancels the
self-interaction term in the Hartree potential. On the other
hand, for many-electron systems, this decomposition into ex-
change and correlation components has never been done. In
previous work@5,6,9,17,12#, the exchange potential was de-
fined as the difference of the effective Kohn-Sham potential
yielding the Hartree-Fock density and the sum of the Hartree
and the external potentials. The correlation potential was
then obtained as the difference of the exchange-correlation
potential corresponding to the exact density and the above
approximate exchange potential. Note that this ‘‘exchange’’
potential is not an exchange-correlation potential since we
are subtracting the wrong external potential: the Hartree-
Fock density is the true ground state density for a Hamil-
tonian with an external potential different than the original
one. However, it is also not the exchange potential corre-
sponding to the Hartree-Fock density~although very close to
it! since it is not the functional derivative with respect to the
density of the exchange energy evaluated for the orbitals
obtained from the effective potential yielding the Hartree-
Fock density. Therefore this separation scheme is incorrect:
it involves two densities, the exact and the Hartree-Fock den-
sities, and, moreover, the potential used for exchange is only
approximately equal to the exchange potential corresponding
to the Hartree-Fock density.

We follow Görling and Levy @20# in showing how to
separate the exchange-correlation potential into exchange
and correlation. We consider a spin-unpolarized system. If
we assume that the densityr is noninteractingv represent-
able, it can be expressed as in Eq.~2! in terms of single-
particle orbitals$c i% of the Kohn-Sham potentialvs(r ),

vs~r !5vext~r !1E r~r 8!

ur2r 8u
dr 81vxc~@r#;r !. ~9!

The exchange energy is a functional of the density but can
also be expressed in terms of the Kohn-Sham orbitals$c i%
@Eq. ~5!# as

54 4811SEPARATION OF THE EXCHANGE-CORRELATION . . .



Ex@r#52
1

2 (
i51

N

(
j51

N

dmsi
,msj

3E E c i* ~r !c j* ~r 8!c j~r !c i~r 8!

ur2r 8u
drdr 8, ~10!

where thed function is over the spin quantum numbers of
the i th andj th orbitals. We evaluate the functional derivative
of the exchange energy functional with respect to the Kohn-
Sham potential as

dEx@r#

dvs~r !
5E dEx@r#

dr~r 8!

dr~r 8!

dvs~r !
dr 8

5E vx~@r#;r 8!(
i51

N S c i* ~r 8!
dc i~r 8!

dvs~r !

1
dc i* ~r 8!

dvs~r !
c i~r 8! Ddr 8. ~11!

On the other hand, since the exchange functional can be
written as a function of the orbitals@Eq. ~10!#, we also have

dEx@r#

dvs~r !
5(

i51

N E S dEx@r#

dc i~r 8!

dc i~r 8!

dvs~r !

1
dEx@r#

dc i* ~r 8!

dc i* ~r 8!

dvs~r !
D dr 8. ~12!

If we combine Eqs.~11! and ~12!, we obtain the integral
equation

E vx~@r#;r 8!K~r 8,r !dr 85Q~r !, ~13!

where the kernelK(r 8,r ) and the right hand sideQ(r ) de-
pend on the orbital$c i% and their functional derivative with
respect to the potentialvs(r ). This integral equation is
equivalent to the one solved in the optimized effective po-
tential method~OEP! where the KS orbitals are replaced by
the OEP orbitals@23#. The functional derivatives of the or-
bitals dc i(r )/dvs(r 8) can be expressed in terms of the
Green’s functionGi(r ,r 8) as

dc i~r !

dvs~r 8!
52Gi~r ,r 8!c i~r 8!, ~14!

whereGi(r ,r 8) satisfies the differential equation

S 2
1

2
¹21vs~r !2e i DGi~r ,r 8!5d~r2r 8!2c i~r !c i* ~r 8!.

~15!

By knowing the exchange-correlation potential, the KS or-
bitals, and eigenvalues, we can compute the Green’s func-
tions $Gi% and, consequently, the kernelK and the function
Q. If we express the exchange potential as a linear combina-
tion of basis functions, Eq.~13! can be rewritten as a non-
homogeneous set of linear equations for the coefficients of
the expansion of the potential in the basis set.

Once the exchange potential is determined, the correlation
potential is simply obtained as the difference:

vc~@r#;r !5vxc~@r#;r !2vx~@r#;r !. ~16!

In the Appendix, the equations derived in this section are
rewritten for the case of a closed-shell system.

IV. COMPARISON WITH APPROXIMATE
SEPARATION SCHEMES

For the Be atom and the Ne atom, we calculate the ex-
change potentials as explained in the preceding section. The
correlation potentials are determined as the difference of the
accurate exchange-correlation potentials and the exchange
components@Eq. ~16!#. We already mentioned that, in the
past, an approximate ‘‘exchange’’ potential was instead
used, given by the effective potential yielding the Hartree-
Fock density minus the Hartree and the external potentials:

ṽx~@rHF#;r !5vs~@rHF#;r !2E dr 8
rHF~r 8!

ur2r 8u
2vext~r !,

~17!

where we introduced an explicit dependence of the Kohn-
Sham potentialvs on the density reproduced byvs . The
potential ṽx is very close to the exchange potential corre-
sponding to the Hartree-Fock density,vx(@rHF#;r ). To deter-
minevx(@rHF#;r ), we can use the same scheme explained in
the preceding section with the orbitals given by the Kohn-
Sham orbitals corresponding to the effective potential yield-
ing the Hartree-Fock density instead of the exact density. We
denote byvc

A andvc
B the correlation potentials determined as

the difference of the accuratevxc and ṽx(@rHF#;r ) and
vx(@rHF#;r ), respectively:

vc
A~r !5vxc~@r#;r !2 ṽx~@rHF#;r !,

vc
B~r !5vxc~@r#;r !2vx~@rHF#;r !. ~18!

As discussed in Ref.@13#, for two-electron systems,
ṽx(@rHF#;r )5vx(@rHF#;r ) and, consequently, vc

A(r )
5vc

B(r ). Further, it was empirically found that the difference
betweenvc(r ) andvc

A,B(r ) is small on the scale ofvc(r ).
Here, we find that even for the many-electron atoms Be

and Ne, the differences betweenvx(@r#;r ), vx(@rHF#;r ), and
ṽx(@rHF#;r ) are almost not visible on the scale of
vx(@r#;r ). As shown in Fig. 1, the difference between
vc
A(r ) andvc

B(r ) is just barely visible even on the more ex-
panded scale ofvc(r ). This agreement is expected since the
HF and the OEP densities are very close to each other and,
for the OEP density, the agreement would be perfect. On the
other hand, the difference between eithervc(r ) andvc

A(r ) or
vc(r ) and vc

B(r ) is visible. For both atoms, the exact and
approximate potentials are clearly different, although the
shapes are very similar. The similarity of the exact and the
approximate potentials justifies the use of the approximate
scheme in earlier work.
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APPENDIX: CLOSED-SHELL CASE

In Sec. III we presented the theory of separation of the
exchange-correlation potential into the exchange and corre-
lation components for spin-unpolarized systems. In the
present section, we restrict ourselves to the special case of a
closed-shell atom. For a closed-shell atom, the self-
consistent solutions of the Kohn-Sham equations@Eqs. ~1!
and~2!# can be factorized as the product of radial and angu-
lar components:

c i~r !5Ri~r !Yl imi
~ r̂ !5

f i~r !

r
Yl imi

~ r̂ !, ~A1!

where l i is the angular momentum quantum number. Using
this expression for the orbitals, the density@Eq. ~2!# can be
rewritten as a sum over the occupied shells:

r~r !5
1

4pr 2(i51

Ns

f if i
2~r !, ~A2!

whereNs is the number of occupied shells andf i is the
occupation number of thei th shell, f i52(2l i11).

Following the derivation by Slater@24#, we rewrite the
exchange energy@Eq. ~10!# as

Ex@r#52(
i , j

Ns

A~2l i11!~2l j11!

3 (
k5u l i2 l j u

l i1 l j

ck~ l i ,0;l j ,0!Gk~ni ,l i ;nj ,l j !, ~A3!

where the coefficientsck incorporate the integrals overu and
are tabulated in Ref.@24# andGk is given by

Gk~ni ,l i ;nj ,l j !

5E dr1E dr2f i~r 1!f j~r 2!f j~r 1!f i~r 2!
r,
k

r.
k11 , ~A4!

with r,5min$r1,r2% and r.5max$r1,r2%.
The functional derivative of the exchange energy with

respect to the effective Kohn-Sham potential@Eqs.~11! and
~12!# can here be obtained taking into account that the den-
sity depends only on the radial components of the Kohn-
Sham orbitals. Equation~11! is therefore equivalent to

dEx@r#

dvs~r !
52E

0

`

dr8vx~r 8!(
i51

Ns

f if i~r 8!
df i~r 8!

dvs~r !
, ~A5!

while Eq. ~12! reduces to

dEx@r#

dvs~r !
5E

0

`

dr8(
i51

Ns dEx@r#

df i~r 8!

df i~r 8!

dvs~r !
. ~A6!

Equations~23! and~24! can be combined to give the follow-
ing integral equation for the exchange potential:

E
0

`

dr8vx~r 8!K~r 8,r !5Q~r !. ~A7!

The functional derivative of the exchange energy@Eq.
~21!# with respect to the radial orbital is given by

dEx@r#

df i~r !
522 f i(

j51

Ns A2l j11

2l i11 (
k5u l i2 l j u

l i1 l j

ck~ l i ,0;l j ,0!f j~r !

3E
0

`

dr2f i~r 2!f j~r 2!
r,
k

r.
k11 . ~A8!

FIG. 1. Comparison of the correlation potentials of Be and Ne.
vc is the correct correlation potential from Eq.~16!, vc

A(r ) and
vc
B(r ) are the approximate correlation potentials constructed from

the HF density using Eq.~18!. vc
A(r ) andvc

B(r ) are nearly indistin-
guishable on the scale of these plots. For Ne, there is some uncer-
tainty in the potentials forr,0.4a0.
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The functional derivative of the radial orbital,
df i(r )/dvs(r 8), is expressed in terms of the Green’s func-
tion Gi(r ,r 8) as

df i~r !

dvs~r 8!
52Gi~r ,r 8!f i~r 8!, ~A9!

whereGi(r ,r 8) satisfies the following differential equation:

H 2
1

2

d2

dr2
1
l i~ l i11!

2r 2
1vs~r !2e i JGi~r ,r 8!

5d~r2r 8!2f i~r !f i~r 8!. ~A10!

This equation can also be derived by starting from Eq.~15!
in polar coordinates and projecting out the radial component.
It can be easily checked thatGi has the following expression:

Gi~r ,r 8!5 (
jÞ i : l j5 l i

f j~r !f j~r 8!

e j2e i
, ~A11!

where the sum is over all the orbitals, except thei th one,
with angular momentum quantum numberl i . In solving the
differential equation forGi , we set rÞr 8, divide by
f i(r 8), and determinexout(r ) andx in(r ) as solutions of out-
ward (r,r 8) and inward (r.r 8) integration.f(r ) is a ho-
mogenous solution of Eq.~28! and can be added toxout(r )
and x in(r ) asaoutf(r ) anda inf(r ), respectively. The dif-

ferenceaout2a in is determined by imposing continuity on
Gi and the sumaout1a in by requiring that

E
0

`

drf i~r !
df i~r !

dvs~r 8!
50, ~A12!

which follows from the normalization off i(r ). Finally, we
obtain

df i~r !

dvs~r 8!
5G̃i~r ,r 8!2f i~r !E

0

`

dr9f i~r 9!G̃i~r 9,r 8!,

~A13!

whereG̃i(r ,r 8) is

G̃i~r ,r 8!5u~r2r 8!H x in~r !f i~r 8!2

2
1

2
@x in~r 8!2xout~r 8!#f i~r !f i~r 8!J

1u~r 82r !H xout~r !f i~r 8!2

1
1

2
@x in~r 8!2xout~r 8!#f i~r !f i~r 8!J .

~A14!
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