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Separation of the exchange-correlation potential into exchange plus correlation:
An optimized effective potential approach
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Most approximate exchange-correlation functionals used within density-functional theory are constructed as
the sum of two distinct contributions for exchange and correlation. Separating the exchange component from
the entire functional is useful since, for exchange, exact relations exist under uniform density scaling and spin
scaling. In the past, accurate exchange-correlation potentials have been generated from essentially exact den-
sities but they have not been correctly decomposed into their separate exchange and correlation components
(except for two-electron systemdJsing a recently proposed method, equivalent to the solution of an opti-
mized effective potential problem with the corresponding orbitals replaced by the exact Kohn-Sham orbitals,
we obtain the separation according to the density functional theory definition. We compare the results for the
Ne and Be atoms with those obtained by the previously used approximate separation scheme.
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PACS numbds): 31.15Ew, 31.25.Eb, 71.10w

I. INTRODUCTION namely, the search of the corresponding exchange-
correlation potential, has been performed using a variety of
Within density-functional theoryDFT), the ground-state different techniques. For example, the exchange-correlation
energy of an interacting system of electrons in an externgpotential has been determined by expanding it in a set of
potential can be written as a functional of the ground-statdvasis functions and varying the expansion coefficients to re-
electronic density[1]. In the Kohn-Sham formulation of produce the accurate densf,17,18.
density-functional theory2], the ground-state density is ob-  With the exception of two-electron systems, these accu-
tained as the density of a system of noninteracting electronsite exchange-correlation potentials have never been sepa-
in an effective local potential. Although density-functional rated into their exchange and correlation components accord-
theory is in principle exact, the energy functional contains aring to the density-functional theory definition. For many-
unknown gquantity, called the exchange-correlation energyelectron systems, an approximate scheme was used where
E,d p]. The effective potential for the fictitious noninteract- the exchange potential was defined as the potential yielding
ing system is the sum of the external potential, the Hartre¢he Hartree-Fock density and the correlation potential as the
potential, and the exchange-correlation potential, which iglifference of the accurate exchange-correlation potential and
the functional derivative with respect to the density ofthis approximate exchange potential. In this paper, following
E,d p]. The density-functional theory definition of the sepa-the approach proposed by fing and Levy[20], we obtain
rate exchange and correlation componentg gfp] is based the correct separation of accurate exchange-correlation po-
on the noninteracting system and is such that the resultintgntials for the Be atom and the Ne atom.
exchange functional has properties that are useful guides in In Sec. Il we briefly introduce density-functional theory
the construction of an approximate exchange. Consequentignd its Kohn-Sham formulation. In Sec. Ill, we derive the
most approximate exchange-correlation functionals are alstormulas used to determine the decomposition of the
constructed as the sum of two distinct contributions for ex-exchange-correlation potential into exchange and correlation.
change and correlation. A comparison with approximate separation schemes is given
In the past, exchange-correlation potentials and energie#) Sec. IV. In the Appendix, we describe the method for the
of varying degrees of accuracy, have been determined bgpecial case of closed-shell systems.
generating a density for the system of interest and then com-
puting an exchange-correlation potential that yields the de- Il. THEORETICAL BACKGROUND
sired density as the ground-state solution for the fictitious
noninteracting system. In this context, researchers have used Density functional theory provides an expression of the
charge densities calculated by quantum chemistry methodground state energy of a system of interacting electrons in an
for atoms[3—13] and molecule§14-16, as well as quantum external potential as a functional of the ground state elec-
Monte Carlo methods for atomd7,18 and for a model tronic density{1]. Let us assume for simplicity that the spin
semiconductor [19]. The subsequent inverse problem, polarization of the system of interest is identically zero. In
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the Kohn-Sham(KS) formulation of density-functional 1
theory [2], the ground state density is written in terms of Expip]=51EL2p1]1+Ed2p 1. ™

single-particle orbitals obeying the equations in atomic units

h=e=m=1): ; i i
( ) Clearly, the separation of the exchange-correlation functional

1 p(r') according to Eq(5) is useful since, for exchange, only an
—§V2+vext(r)+f?dr'-f—vxc([p];r) U=, approximation for the unpolarized functional needs to be
r=r| 1 sought and the behavior under uniform scaling determines

@) how derivatives of the density combine with the density in

n roxim xchange functional:
where an approximate exchange functiona

. LT
p<r>=i§1 [y (n)|2. (2)

— 4/3 4/3 w2 5/3
The electronic density is constructed by summing over the _f P(NTE(VOl PV Zp()p(r)™, - )dr.
N lowest energy orbitals whei is the number of electrons. 8
vexdl) is the external potential. The exchange-correlation
potential vxc([p];r_) is the functional deriv_ative of the lll. SEPARATION OF V,. INTO V, PLUS V,
exchange-correlation ener@y[ p] that enters in the expres-
sion for the total energy of the system: For the special case of two electrons in a singlet state, the

separation of the exchange-correlation potential into ex-
N

1 change plus correlation is quite simple since the exchange
E=-— > E j t//ivzz//ierrj p(Nve(r)dr potential is simply given by the condition that it cancels the
=1 self-interaction term in the Hartree potential. On the other

1 p(1)p(r') hand, for many-electron systems, this decomposition into ex-

+ ij f Wdrdr’+ E.dp]. (3 change and correlation components has never been done. In

previous work{5,6,9,17,12, the exchange potential was de-
pned as the difference of the effective Kohn-Sham potential
yielding the Hartree-Fock density and the sum of the Hartree
and the external potentials. The correlation potential was
4) then obtained as the difference of the exchange-correlation
potential corresponding to the exact density and the above

The definition of the exchange energy is in terms of theapproximate exchange potential. Note that this “exchange”

noninteracting wave functio®,, the Slater determinant con- potential is not an exchange-correlation pqtential since we
structed from the Kohn-Shan?orbitaIs as are subtracting the wrong external potential: the Hartree-

Fock density is the true ground state density for a Hamil-
1 p(Np(r') tonian with an efxt'ernal potential different than the'original
EX[P]:<(DO|VeeI(I)O>__f f—,drdr’, (5) one. However, it is also not the exchange potential corre-
2 [r=r’| sponding to the Hartree-Fock densfgithough very close to
) ) ) ) ~__it) since it is not the functional derivative with respect to the
whereV,, is the electron-electron interaction. This definition density of the exchange energy evaluated for the orbitals
differs from the conventional quantum chemistry deﬁ”iti‘?”obtained from the effective potential yielding the Hartree-
of E, as the exchange energy in a Hartree-Fock 9a|CU|atl0rFock density. Therefore this separation scheme is incorrect:
given by the same expression as in E§) but with the i inyolves two densities, the exact and the Hartree-Fock den-
Kohn-Sham determinant replaced by the Hartree-Fock detekities, and, moreover, the potential used for exchange is only
minant. The separation of the exchange-correlation funcapnroximately equal to the exchange potential corresponding
tional into exchange and correlation yields a correspondingg the Hartree-Fock density.
splitting of the exchange—correlatio_n potential i_nto We follow Galing and Levy[20] in showing how to
villplir) andv([p];r). In this formulation, the essential separate the exchange-correlation potential into exchange
unknown quantity is the exchange-correlation energyang correlation. We consider a spin-unpolarized system. If
Exd p]. If the functional form ofE,{p], and consequently e assume that the densityis noninteracting represent-
the exchange-correlation potential, were available, we coulgb|e’ it can be expressed as in E8) in terms of single-

solve theN-electron problem by finding the solution of a set particle orbitals{;} of the Kohn-Sham potential(r),
of single-particle equations.

The exchange functional, as defined in Es), scales un- (1)
der uniform density scaling, (r)=X\3p(\r) [21], as V() =V + | ——rdr’ +v,([p]ir). 9

=]
Edpx]=NEp], (6)

The exchange-correlation functional is written as the sum o
two separate contributions for exchange and correlation,

Exdp]l=EJpl+Edp].

The exchange energy is a functional of the density but can
and its spin-polarized version is simply given in terms of thealso be expressed in terms of the Kohn-Sham orbite|$
unpolarized exchange function®?2] as [Eq.(5)] as
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1 NN Once the exchange potential is determined, the correlation
Edpl=—3 2 2 potential is simply obtained as the difference:
Nyt (r r vdlplin)=vxllplir) —vulplr). (16)
”w.( Yo |(r_;//,|( W) e o) ¢ " x

In the Appendix, the equations derived in this section are
where thed function is over the spin quantum numbers of rewritten for the case of a closed-shell system.
theith andjth orbitals. We evaluate the functional derivative
of the exchange energy functional with respect to the Kohn-

. IV. COMPARISON WITH APPROXIMATE
Sham potential as

SEPARATION SCHEMES

OE( p] _j OE[p] op(r') | For the Be atom and the Ne atom, we calculate the ex-
Sug(r) ) 8p(r") ug(r) ' change potentials as explained in the preceding section. The
N correlation potentials are determined as the difference of the
" o, OU(r") accurate exchange-correlation potentials and the exchange
:j ([pLir") 2, (wi (r') Su4(r) componentdEq. (16)]. We already mentioned that, in the

past, an approximate “exchange” potential was instead

SYF(r") used, given by the effective potential yielding the Hartree-
+ Suy(r) i(r') |dr’. 1) Fock density minus the Hartree and the external potentials:
On the other hand, since the exchange functional can be pue(r’)
written as a function of the orbita[€q. (10)], we also have vl puelit) =vs([puelir) — J'd ' ] —Vexdl),
, a7
SE L] :§ f ( SELp] SY(r")
dug(r) =1 ) \ oyi(r') dus(r) where we introduced an explicit dependence of the Kohn-
SE Sur(r! Sham potentiabg on the density reproduced hy;. The
i Lp] S (r ))d / (12) potential v, is very close to the exchange potential corre-
Y (r') dug(r) sponding to the Hartree-Fock density([ pue];r). To deter-

minev,([ pyel;r), we can use the same scheme explained in
If we combine Egs(11) and (12), we obtain the integral the preceding section with the orbitals given by the Kohn-
equation Sham orbitals corresponding to the effective potential yield-
ing the Hartree-Fock density instead of the exact density. We
f v[plir K, )dr’ = Q(r), (13) denotc_a by4 andv? the correlation potentials determined as
the difference of the accurate,. and v,([pnel;r) and

i), tively:
where the kernelC(r’,r) and the right hand sid@(r) de- vx{lpwelir), respectively

pend on the orbita{;} and their functional derivative with

A _ . -~ .
respect to the potentiab(r). This integral equation is ve(N)=vxllpLir) —vulprelin),
equivalent to the one solved in the optimized effective po-
tential method OEP where the KS orbitals are replaced by B =vy([pl;n) — v puelil). (18)

the OEP orbital§23]. The functional derivatives of the or-
bitals di;(r)/dvg(r') can be expressed in terms of the

Green’s functionG;(r,r') as As discussed in Ref[13], for two-electron systems,

Uy([prelin) =velpuelir)  and,  consequently, vf(r)

Sui(r) =u?(r). Further, it was empirically found that the difference
Bosr) —Gi(r,r)i(r"), (14 betweenv(r) _andv’é'B(r) is small on the scale af(r).
Here, we find that even for the many-electron atoms Be
whereG;(r,r’) satisfies the differential equation and Ne, the differences betweeg([p];r), vx([pnel;r), and

vy([puel;r) are almost not visible on the scale of
1 vy([pl;r). As shown in Fig. 1, the difference between
- §V2+Us(f)—€i Gi(r,r")=a8(r—r")= () g (r'). va(r) andv®(r) is just barely visible even on the more ex-
(15) panded scale af (r). This agreement is expected since the
HF and the OEP densities are very close to each other and,
By knowing the exchange-correlation potential, the KS or-for the OEP density, the agreement would be perfect On the
bitals, and eigenvalues, we can compute the Green’s funsther hand, the difference between eitbglr) andv2(r) or
tions{G;} and, consequently, the kernland the function v(r) andv2(r) is visible. For both atoms, the exact and
Q. If we express the exchange potential as a linear combinapproximate potentials are clearly different, although the
tion of basis functions, Eq13) can be rewritten as a non- shapes are very similar. The similarity of the exact and the
homogeneous set of linear equations for the coefficients aiipproximate potentials justifies the use of the approximate
the expansion of the potential in the basis set. scheme in earlier work.
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. ; . " i(r “
% [ Correlation Potential of Be YD) =Ri(1)Y, i (F) = @Ylimi(r), (A1)
008 | wherel; is the angular momentum quantum number. Using
= this expression for the orbitals, the dendiBqg. (2)] can be
2 rewritten as a sum over the occupied shells:
~
g-0a2 Ng
< 1 2
- p()= 722 figf(r), (A2)
& wrei=1
ve(le])
- L ——— Al
e I O :}Eﬁ:g)) where Ng is the number of occupied shells arigd is the
occupation number of thigh shell,f;=2(2l;+1).
Following the derivation by Slate24], we rewrite the
o ) ) s . exchange energhEqg. (10)] as
(@) r (units of ao) N
- . Edpl=—2 J2i+1)(2l+1)
— Correlation Potential of Ne i
|i+|j
0.08 | X ; | ck(li,O;Ij,O)Gk(ni,li;nj,|j), (A3)
k: |i7 ]
mn
50 where the coefficients® incorporate the integrals ovérand
;a are tabulated in Ref24] andGX is given by
= 000 K .
s ve([p]) G (nivlivnjylj)
0os —— = vA[pwr]) K
-eo04  \{ veB([owr]) ] r
:f drlf dr2¢i(rl)¢j(r2)¢j(r1)d’i(rz)rkj_, (A4)
>
—0.08 . )
©) ° ! r (2units of 80) 4 with r -=min{r,,ro} andr-=maxrq,r,}.

The functional derivative of the exchange energy with
respect to the effective Kohn-Sham potentiggs.(11) and
FIG. 1. Comparison of the correlation potentials of Be and Ne.(12)] can here be obtained taking into account that the den-
v is the correct correlation potential from E(L6), v’é(r) and sity depends only on the radial components of the Kohn-
uE(r) are the approximate correlation potentials constructed fromgham orbitals. EquatiofL1) is therefore equivalent to
the HF density using Eq18). v2(r) andv®(r) are nearly indistin-
guishable on the scale of these plots. For Ne, there is some uncer- SE
tainty in the potentials for <0.4a,.

N B | Si(r")
s(r) _zfo dr Ux(r )I=El fi¢i(r )5U5(r) 3 (AS)

ov
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f driv(r")K(r’,r)=Q(r). (A7)
0

APPENDIX: CLOSED-SHELL CASE
) The functional derivative of the exchange eneldsq.
In Sec. Il we presented 'the. theory of separation of the(21)] with respect to the radial orbital is given by
exchange-correlation potential into the exchange and corre-

lation components for spin-unpolarized systems. In the Ng L+,
. ; . SE,[p] 2lj+1
present section, we restrict ourselves to the special case ofa ="~ - _» fiE 2 Ck(li,O;lj,O) b;(r)
= Ii*|j|

closed-shell atom. For a closed-shell atom, the self- 9¢i(r) =1 V2hi+l k=

consistent solutions of the Kohn-Sham equatipiggs. (1) . o

and(2)] can be factorlzed as the product of radial and angu- XJ dradi(ra) é;(ra) jl_ (A8)
lar components: 0 rs
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The functional derivative of the radial orbital, ferenceay,— a;, is determined by imposing continuity on
S¢i(r)duvg(r"), is expressed in terms of the Green’s func-G; and the sumu,,+ aj, by requiring that
tion G;(r,r') as
¢( )

S5¢i(r) ot O

S0~ G (A9)
S

which follows from the normalization o;(r). Finally, we
whereG;(r,r") satisfies the following differential equation: gptain

1d2 1(I;+1)
2d—;+72—+vs(r) € (Gi(r,r’) §U¢((r ))—G(r r'y— ¢(r)f dr’ i (r")Gi(r",r"),

=8(r—r")— (1) i(r"). (A10) (A13)

(A12)

This equation can also be derived by starting from @&  WhereG(r,r') is
in polar coordinates and projecting out the radial component.

It can be easily checked th@t has the following expression: Gi(r,r')=6(r—r ,)[ Xin(1) i (112
$i(N¢i(r’)
Gi(r,rh)= > —+——1—, (A11) 1 , , ,
A= €T ~ 5 Lxin(r") = Xoulr ) 1i(r) ¢i(r’)
where the sum is over all the orbitals, except the one,
with angular momentum quantum number In solving the + G(r’—r)[)(out(f)@(r’)z
differential equation forG;, we setr#r’, divide by
¢i(r"), and determing,,(r) andy;,(r) as solutions of out- 1
ward (r<r') anq inward (>r') integration.¢(r) is a ho- +E[Xin(r')—xout(r')]¢i(r)¢i(r')]-
mogenous solution of Eq28) and can be added tg,(r)
and yin(r) as aqup(r) and a;,¢é(r), respectively. The dif- (A14)
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