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High Rydberg states about a dipolar molecular core can exhibit special features due to the exceptionally long
range of the electrical anisotropy of the core. Unlike all other, more localized, couplings of the Rydberg
electron to the ion, here the interaction is not shielded by the centrifugal barrier. The influence of the core even
on states of the electron with higher angular momentuand the significant matrix elements between states
that differ considerably in the principal quantum numbemake this problem worthy of separate consider-
ations. Using specialized computational technig(oesh analytical and numerigafor the exact evaluation of
the relevant matrix elements, the role of both inter- and intra-Rydberg series coupling is discussed. The
importance of the lattefi.e., the coupling of the Rydberg electron to the rotation of the )cgremphasized.
Special attention is given to the role of an external dc electrical field that is different in the present problem in
that it does not significantly dilute the strength of the electron-core interaction. A positively charged core can
have a dipole momer{tefined with respect to its center of mpkwrger than that of neutral polar molecules,
particularly if the charge is localized. Hence the interseries and intraseries dynamics discussed in this paper can
give rise to experimentally measurable special effd@4050-294{06)01112-2

PACS numbgs): 31.15-p, 33.80.Rv, 03.65.Ge, 34.50.Gb

[. INTRODUCTION as to significantly reduce the electron-core coupling by in-
ducing mixing ofl states. A not so intuitively obvious fea-
The power of selective pulsed field ionization of high ture of the long-range potential is that it can preferentially
Rydberg states for providing high-resolution spectra of mo-and effectively couple orbitals with rather different values of
lecular and cluster ions has recently been demonstratedl This is particularly expressed when we consider in-
[1-9]. In addition, by varying the delay of the ionizing pulse, terseries couplings, that is, changesninaccompanied by
time-resolved studies, from several nanoseconds to many mghanges in the rotational stateof the core.
croseconds, can be achievE@-13. The initially excited The numerical results that we present are obtained by an
state can undergo complex, multi-time-scale dynamics durexact diagonalization of the Hamiltonian using a zeroth-
ing such intervals that are very long compared to (iteelf  order basis spanning a finite-energy band. Two alternative
long) orbital period of the Rydberg electr¢f4]. The rather zeroth-order bases are used to describe the orbital motion of
weak couplings that can be important over such long timeshe electron. One is the familiar hydrogenic one. For this
also mean that the role of external perturbations, which arease, an external dc electrical field, if present, must be
otherwise often of marginal importance, need to be examinetteated as part of the perturbation. The alternative, discussed
[12,13,15-2% in Sec. IV, is to include the dc field as part of the zeroth-
In this paper we consider the special features that are torder description.
be expected for molecular Rydberg states when the central The discussion of the results is based on the properties of
ionic core has a dipolar anisotropy. The range of such amhe matrix elements of the coupling between the zeroth-order
interactionr ~2 (wherer is the distance from the electron to states of the electron. It is therefore important that these ma-
the center of mass of the coris comparable to that of the trix elements are correctly evaluated, particularly so since we
centrifugal barrier in the orbital motion of the electron. Un- argue that large changes in quantum numbers are possible.
like the case of more localized electron-core couplings, théAnalytical and numerical results are presented to support the
centrifugal barrier is far less effective in shielding the elec-conclusions. The Appendix provides a detailed discussion of
tron from the dipolar anisotropy. Electrons with angular mo-the recursion procedure that we use. This method has been
mentuml as high as, roughly, Orbcan still be coupled. In  validated against analytical resulgghen the agreement is
particular, this means that a dc electric field does not act swithin the accuracy of the compujeand also using wave
functions generated by Numerov integrat[@7—30 and the
two sets of numerical results agree to within 1%. The impor-
* Author to whom correspondence should be addressed. Fax: 972ance of large changes in the quantum numbers and the range
2-6513742. Electronic address: rafi@batata.fh.huji.ac.il of the coupling being comparable to the centrifugal barrier
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mean that the near-threshold Bessel approximation for thetrength is roughly constant up lttn of about 0.3(ii) While
radial wave functions of high [31] is not sufficient even on the coupling is strictly zero i=n" and is very small when
qualitative grounds. The numerical procedures discussed in—n’ is small, asn—n’ increases the coupling increases
the Appendix of this paper are not limited to a dipolar cou-both in the hydrogenic and in the parabolic zeroth-order
pling and have also been used to generate the Stark matrgtates. In the hydrogenic basis, the coupling reaches a plateau
elements needed below and also for the quadrupolar anisocdd then finally decreases. The height of the plateau is higher
ropy, which is discussed in detail elsewhere. for lower | and the value oh’ for which it is reached de-
The special features of the dipolar matrix elements implycréases withi. On the other hand, in the parabolic states,
that this coupling is not important for low and intermediate there is @ monotonic increase as decreases and the mag-

molecular Rydberg states. The reason isAlmedependence i

nitude of the coupling is smaller for lowdk| parabolic
of the coupling, which is weak in than<n limit. Detailed states. In both zeroth-order bases, the dipolar coupling takes
results demonstrating this effect are provided in Secs. Il an

ignificant values for finitn—n’ values. The simpler prob-
IV below. Whenn is low, the most nearly isoenergetic state em of intraseries coupling is discussed in Sec. Ill and the
of another series has' comparable ta. This is the Born-

behavior of the dipolar coupling in parabolic states in Sec.
Oppenheimer regime. The interseries dipolar coupling is imlV. Section V discusses the implications for the importance
portant precisely in the higher+egime, which is being cur-

of inter series coupling and for the role of an external dc
rently explored by ZEKE(zero electron kinetic energy field. Particular attention is given to the case when the field
spectroscopy.

is above the Inglis-Teller limif30]. This is the limit when
Besides the special feature expected for the dipolar Cout_he Stark manifold of states of differents begin to overlap
pling, there is another reason for our interest. It is likely that

so that the density of states reaches its uniform vaftién
this coupling is stronger and more common than one migh‘[’1

.u). Then™® scaling of this onset means that it occurs at
expect on the basis of the magnitude of typical dipoles ofluite low fields for high Rydberg states. Numerical results

s for the temporal evolution are given in Sec. VI. Conclusions
neutral polar molecules. The point is that, for ZEKE spec are given in Sec. VII. The Appendix provides the details of

troscopy of neutral parents, the dipole in question is the di—h o ; f1h . thod dt ¢
pole of the positively charged core about which the Rydber € two versions ot the recursion method used 1o generate
ccurate matrix elements whenand alsad are high.

electron revolves. Unless the core is homonuclear, this di
pole, which is defined with respect to the center of massl

not the center of chargef the core, can be of the order of IIl. RADIAL MATRIX ELEMENTS
more than 1 a.u. This will be particularly the case for poly- OF THE DIPOLAR COUPLING

atomic molecules that contain a side group where the charge The selection rules for the dipolar coupling, determined

will be localized. by the angular part of the interaction, imply that radial matrix

The theoretical interest in dipolar coupling is about as oldgjements are only required for changesl o6f +1. These
as the interest in autoionization of molecu[@-38. The  ggjection rules are identical for those for absorption of light
present work differs in several respects from the earlier studsg can be seen from the so-called acceleration form of the

ies. One practical difference is that we are primarily inter- 5q4iative matrix element§43]. For a hydrogenic electron
ested in highn Rydberg states. It is then reasonable to use #,=p%2—1ir of position and momentum andp

zeroth-order basis, where each rotational state of the core has

its own series of Rydberg states, rather than the use of a r/r3=—i[Hg,p]=[Ho.[Ho,r1l, (1)
Born-Oppenheimer basis. Within that basis we compute ma-

trix elements using exact radial wave functicinather than Where the square bracket denotes the commutator. Taking
using a Bessel approximatipmnd diagonalize the Hamil- matrix elements of both sides,

tonian within a band of quasi-isoenergetic states. An impor- 3 VI N N TR

tant point about the zeroth-order basis is that it contains mordn’!’m [d-r/r%nim)=3(n""*=n"%)%n"I'm’|d-r[nIm),

than one seriesi.e., more than one rotational state of the (2

core) so that we examine both intra- and interseries couplingyhereq is the dipole moment of the core. When the coupling
We also include the intraseriesand| Stark mixing due 10 ¢ yhe electron is to a molecular core, the selection rulefor

an external dc field. As we shall point out in detail below, ;o hat for either change ih Am=0,+1. The identity also

each one of these seemingly technical points has qualitativg, s the long-range nature of the dipolar coupling and the
implications for the dynamics. Two conclusions that are im- iy range ofn’s that can be coupled.

portant enough to note are in particular the followifiyThe The matrix elements are, as us{##—46, expressed as a

role of the dc field is not p_rima'rily' to dilute the coupling product of a radial and an angular term
strength [15,23,39—-41 Dilution is important for all the

other, more localized, electron-core interaction and even the<nr| ’m'|d-r/r3|nlm)=d<n’l ’|1/r2|nl>'(l ’m’|6|-?|lm>,

r ~3 quadrupolar coupling is qualitatively different from the

dipolar one[42]. (i) The (interseries coupling of the elec-

tron to the rotation of the core is not negligible. where the caret denotes the unit vector. The angular terms
Section Il examines the matrix elements of the dipolarare standard analytical integrdl43], but note that them

interaction. The rest of the paper hinges upon the two mainlependence is such that then= =1 terms are about a factor

qualitative results of this sectiofi) The matrix elements do of 2 smaller than tham=0 ones. Since the totéll is con-

not necessarily decline as the orbital angular momentum o$erved, the changes i of the electron are compensated by

the electron increases. Indeed, on the average, the couplimgrresponding changes in the orientation quantum number of
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FIG. 1. Matrix elements of the dipolar coupling betwaen154 0 20 40 60 80 100

andn’=113 vsl computed by the recursion method discussed in [
the Appendix. The matrix elements are shown multipliecpbyn®,
the density of states in the absence of an external electrical dc field. FIG. 2. Matrix elements of the dipolar coupling between pairs of

The reason for this choice is that the dimensionless parameteli .o of differenn’s in NO vs|. The states chosen are all about

Y.ZZVP Is disgussed in Sec. V as the measure of the average COl'rtéoenergetic when they belong to two different series built upon the
pling strength in the absence of an external field. Shown are the tW?=O and 1 rotational states of NOB=1.9842 cm'l). The matrix

possible tran_smons correspon_dlnglt@l +1 (doty an_d the sum_of elements are shown multiplied by the density of states? in the
the two _matrlx eleme_ntesolld line). Note the very wide range in presence of an electrical field. Note, however, Mas$ a product of
over which the coupling extends. the radial matrix element by an angular factor that is an expectation

value of a cosine of an angle and hence this additional factor is

the core. This compensation is not possible when the couselow unity. Therefore Rydberg states of higher but not very high
p“ng IS due to an eXtemal dC f'eld A Stark m|X|ng haS n’s are not Strong|y Coup|ed.

strictly an intraseries character.

The experience with radiative matrix elements is that theypling is n dependent also because of the energy term in Eq.
require accurate radial wave functions for their evaluation2). In Fig. 1, the matrix elements are shown multiplied by
[31]. The recursion procedure discussed in the Appendix was®, the density of statep in the absence of an external dc
found to be very accurate. It was checked using analyticafield. The dimensionless parameteV2is discussed in Sec.
results for both diagonal and off-diagonal matrix elementsV below and provides a measure of the average coupling
In particular, the identity47] strength. Figure 2 shows, \Is the magnitude of the radial

matrix elements for coupling of two nearly isoenergetic Ry-
[+ —1"(1"+D)Un'1"|1r3nl)=(n""2—=n"2)(n’'l"|nl)  dberg states that belong to distinct serigs-0 and 3 in

(4)  NO™. Here the matrix elements are shown multipliedrfy

the density of state®r quasi degeneragyn the presence of
was found useful for this purpose. As discussed in the Apa dc field.
pendix, the recursion method was also compared with a The dependence of the radial matrix element on the
purely numerical procedure using radial wave functions genehange in the principal quantum numbeis shown in Fig.
erated by a Numerov integration. Except at very high value8. From the identity(4) the matrix element vanishes fam
of bothn andl, where the recursion procedure is to be pre-=0. The phase mismatch between radial wave functions of
ferred, the two methods agree with the Numerov procedursimilar values ofn lead to a matrix element that is small
being accurate to approximately 1%. The recursion methosvhen An is small. However, am—n’ increases, the radial
is very accurate, but inefficient, so that the Numerov methodnatrix does reach significant values. The coupling reaches a
can be used as a practical alternative. See the Appendix falateau and then decreases as mjin()—|. The position of
more detalils. the plateau im’ occurs for larger values dn and its height

When the binding energy—1/2n?) of the electron is is higher as decreases. It is this variation that is not cap-
small compared to the potential and/or the centrifugal enertured when the matrix element is approximated using the
gies, the radial wave function can be approximated as 8essel wave function$48| that are otherwise realistic at
Bessel functiori31]. Approximate analytical expressions for very highn's. See Fig. 18 below for more details on this
the radial matrix elements derived using such Bessel radigdoint.
wave functions were found not to be quite satisfactory. For The matrix element folAn changes is relevant to both
large changes in the principal quantum number, these resulister- and intraseries coupling. For a given series, the small
are, as is to be expected, unreliable. Further details on thealue of the dipolar coupling for adjacent states means that
comparison are provided in the Appendix. its role will be small. Coupling of states of the same series

Figure 1 shows the dependence of the radial matrix elethat differ very much in their values aof is not important
ments onl for givenn andn’. There are two possible tran- because these states will differ considerably in their energy.
sitons for a given |, Al=*1. For n—n'>0, the This is no longer true for coupling of states that belong to
Al=|'"—I=+1 terms are smaller and decrease WittFig. different series where the electronic energy mismatch can be
1). The Al=—1 terms are bigger and initially increase with made up by the difference in the rotational energy of the
increasing. The sum of the two terms is nearly constant upcore. An additional reason why interseries dipolar coupling
to I/min(n,n’) of about 0.3 and decreases thereafter. Thecan be significant is that the large changes iare possible
midpoint is atl/min(n,n’)=0.5. The magnitude of the cou- for a wide range of values df (cf. Fig. 2.
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FIG. 3. Matrix elements of the dipolar coupling between a state
of given n=154,1=20, 30, 40, and’=1—1 vs n’. The matrix
elements are shown multiplied by the density of states” in the
presence of an electrical field. Note the vanishing of the coupling
for n=n" and the low value when is small. The peaking of the 4 r
coupling for a fairly large value oAn (which increases with de- L
creasing values df) means that two different Rydberg series cor-
responding to two different states of the core will experience dif-
ferent coupling strengths depending on the energy difference of the r
two states of the core and of cf. Fig. 2. 0 -

140 145 150 155 160 165

[ll. INTRASERIES DIPOLAR COUPLING n'
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The coupling of Rydberg states for a given rotational state
of the core has been studied by Zp#f] by averaging the
Hamiltonian for the Rydberg electron

FIG. 4. Stark matrix element6x107/a.u) for a field of 0.1
V/cm, (a) as a function of and(b) vs n. The Stark coupling, due to
the external dc field, connects only zeroth-order states of the same
Rydberg series. This is due to the conservatioMefthe projection

. . . of the total angular momentum. On the other hand, for the dipolar
over the rotational state. Earlier studj&€,51] used a resting coupling due to the core, the changenin can be compensated by

d?p0|e- The eigenvalue probllem for the Ham"ton(ﬁ)‘.i” &  achange imm; so that interseries coupling is possible.
given state oH,; separates into an angular and radial parts.

There is a problem for very lows, a problem that has been
recognized early 0[83,34,38,52in that states of Very low square of the energy differends of the order ofAn/n3), it
can penetrate too mugh Into the_core up to d|star|[5e_$ follows that the ratio of the internal dipolar coupling to the
where the approximation of the interaction in a multipole o 4004 field of magnitude is (An/n®)2d/F. If the field is
expansion 15 physmal!y not realistic. Typically, ft4, the above the Inglis-Teller limit, it follows that the field matrix
Hamiltonian(5) is realistic. . . element dominates. As emphasized in Fig. 4, the electric
The model leads to a quantum-defect-like eigenvalue field couples not only states of given but also mixes in
adjacent Rydberg states.
In the computational examples we consider a diatomic
ionic core in a3 electronic state such as NOThe intraser-

pendent noninteger parameter, which at high is essen- ie_s dipolar coupling is then absent and only th(_e dc field can
tially 1. This shows that, as expected on the basis of thdnix the zeroth-order states. When the electronic state of the

radial matrix elementéFigs. 1 and B the intraseries dipolar core carries r?ngularllmorgentum or for icﬁre that is a ﬁym—
coupling is limited, particularly so at highars, and that for ~M€tic top, the coupling does not vanish. However, with or

any but the lowest's the states exhibit a single purehar- without the presence of an external dc field, the anisotropic
acter. coupling is not a major effect in the dynamics of high Ryd-
For the highn’s of interest in this paper, an external dc berg states. Precisely because of the long-range nature of this

electric field is typically above the Inglis-Teller limitr8F inte_raction it acts,.in a given series,_ as an additional contri-
(a.u)=1[30] and can induce a more extensive mixing of thePution to the centrifugal term. Unlesss very low and/or the

zeroth-order hydrogenic states not onlyl ixStark spliting ~ diPole is large[54-58, the effect is small. The physically
but also inn. The role of the electric field is qualitatively Important mamfestatmns of the long-range interaction are in
similar to that expected in the absence of a dipole becaudd® Interseries effects.

above the Inglis-Teller limit the field matrix elements are, for
ordinary dipoles(1 D=0.393 a.u), bigger than the dipolar
coupling (Fig. 4). The semiquantitative argument is as fol-
lows. The matrix element on the right-hand side of &).is The field-inducedintraserieg coupling is often discussed
also that for Stark mixing of the hydrogenic states if we[15,23,39,4] as the cause of lifetime elongation in high

H=Ho+H+d-r/r? (5

interpretd as the external dc field. Since the fore fadive

E=—-1/2(n,+\+1)?, (6)

wheren, is the radial quantum number aids ann, inde-

IV. DIPOLAR COUPLING IN PARABOLIC STATES
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Rydberg states. In a time-independent picture this is often
termed a dilution effect: The field mixes low- and higter-
states so that the weight of lolstates in an eigenstate is, on
the average, proportional torll/ [We shall, however, note
(cf. Fig. 5 below that systematic and wide variations about
the average are the rule.In time-dependent language, the
periodic modulation of by the field means that the fraction
of time that the system spends in Idvg is reduced by a
factor proportional to 1 (see Fig. 16 below The dipolar
coupling, which is effective in the ranges0/n<0.5, will
not, however, be significantly reduced by this depletion of
the occupancy of the low-states. It remains true that the
field significantly reduces the fraction of time the system
spends in low- states, but the highdrstates can still be
effectively coupled by the dipolar interaction.

The mixing of the dipolar coupling strength induced by an
external dc field can be discussed using the zeroth-order
parabolic[30,31] n,k,m states. The parabolic states corre-
spond to the Stark eigenstates when the intraserigixing
induced by the field is neglected. In this case, the Stark ma-
trix elements are proportional to the strength of the field
and the Stark eigenstates are field-independent linear combi-
nation of the zeroth-order hydrogeniicstates of common
valuen andm [30]. The relation between the parabolic states

4793
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[nkm) and the hydrogenic statésim) is

n—-1
|nkm>=|20 (nIm|nkm)|nimy, (7

where (nkmnlm) are the 3 Clebsch-Gordan coefficients
[30,57. The weights in thé states of three parabolicstates
differently localized inl are plotted in Fig. 5. In the upper
panel plotted is the most localized In highestk state k|
=153, which is localized up tb=30 in the region where the
dipolar coupling in thd states is maximungsee Fig. L A
parabolic statek|=135 localized up td=I,, wherel ;,~80
is the range of the dipolar coupling in thestate basis, is
shown in the middle panel and the most delocalized in
parabolic staték| =1 (with a maximum in higH, but distrib-
uted over the whole range éfvalues in the lower panel.
Parabolic statek and —k have the same distributions of
weights.

120

160

FIG. 5. Weightg(nk|nl)|? of the parabolic statelk|=153,135,
1 (m=0) as a function of the zeroth-ordérstates fom=154[Eq.
(7)]. The highest parabolic statk| =153 (upper panglis the most
localized in| and is spread over the region Infor which the
coupling strength in the hydrogenic basis is maxim{afn Fig. 1).
The statgk| =135 (middle panel covers the full range of the dipo-
lar coupling (up to I/n=0.7). The lowest parabolic stattk|=1
(lower panel is the most delocalized ih and has the largest
weights in the region/n=0.7.

As can be seen from Fig. 6, there is a correlation between

In the parabolic states, the dipolar matrix elements takdhel content of the parabolic state and the strength of dipolar

the form

n"-1 n-1

(n'k'm’[rnkmy= > > (n'k'm’|[n’lI'm’)
= 50
X(n'I'm’[r ~2|nim){nIm|nkm),

5||r:il,5mmrzo, (8)

where(nl|r ~2|n’l") are the matrix elements in the hydro-
genic zeroth-order states plotted in Figs. 1-3. These matrix

elements(n=154 andn’=113) are plotted in Fig. 6 as a
function ofk’ for the threen=154 parabolik states shown
in Fig. 5. For a given value df, the coupling is well local-
ized within 5-8 values ok’. The value ofk’,k;, that corre-
sponds to the maximum is approximately givenkjyk; ..
=Kk/Kmax, With koo, =n—1—|m|. As expected, states &fand

—k give symmetrical profiles with respect kb=0.

the coupling: parabolic states essentially localized larger
thanl, (=80) have a significantly smaller couplindgy an
order of magnitudethan parabolic states localized in Idw
This correlation can be understood by looking at how diluted
the coupling strength of an Stark state of a giveh is with
respect to the zeroth-order quantum numbef the hydro-
genicn’ states. The relevant matrix elements for this purpose
are

(nkmr=3In"Im’) = i (nkmnl’my(nl"m|r ~2In"Im"),
I'=0

5||r:i1, 6mmr:O. (9)

These dipolar matrix elemenf&q. (9)] for the three para-
bolic states plotted in Figs. 5 and(6=154, |k|=153,135,1,

andn’=113 are plotted in Fig. 7 as a function of Their
behavior with respect tbcan be predicted from the behavior
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FIG. 6. Dipolar matrix elementgnk|r ~2|n’k’)| [Eq. (8)] be-
tween parabolic states=154, |k|=153,135, 1, anch’=113 as a
function of k’. The matrix elements of a givek value are well
localized ink’ around a valu;, approximately given b/ /K/ax
=KkKnax, With ka=n—21—|m|. The matrix elements are shown
multiplied by n* the density of states in a given Rydberg series in
the presence of an external field, as in Figs. 2 and 3.

2nticnk r An' [

<

v

of the hydrogenic radial matrix elemen¢al|r ~2|n’l +1)
(Fig. 1) and thel content of then=154 |k| states plotted in
Fig. 5. When the range of tHé&| state inl is smaller tharl, 1 A
(~80), the range of the dipolar matrix elememtk|r ~2|n’l)
in | is governed by the range of thi| state(Fig. 7, upper
pane) and the coupling strength is large. On the other hand, 0 o ol
when the extension of thé| state inl is larger tharl ;~80, 0 20 40 60 80 100 120
the range of the dipolar matrix elemefitk|r ~2|n’l) in | is [
limited by I, (middle and lower panels of Fig),7so that the
coupling is significantly smaller. Parabolic statek andk
have the same absolute vallf@k|r ~2|n’l)|. Their ampli-
tudes differ by a sign.

In Fig. 8, the dipolar matrix elemenfék|r ~2In’k’)| are

FIG. 7. Dipolar matrix elements between parabolic states
n=154 and|k|=153,135, 1, and hydrogenic state§=113 as a
function ofl [Eq. (9)]. In the upper panel, the extent of significant
X . dipolar coupling is governed by therange of the highk| state(cf.
plotted as a function dk| for two values ofn’, n"=140 and Fig. 5, upper pangl while for the lower|k| states of the middle and
113. The chosen value &f is that which corresponds to the |gyer panels, it is governed by the range of the dipolar coupling in
largest magnitude of the matrix element. Fig. 6). Lower-  the n| basis set(cf. Fig. 1). As in Figs. 2, 3, and 6, the matrix
|k| states, mostly localized in the range|,, have a lower  elements are shown multiplied y=n?, the density of states of a
coupling strength. In agreement with Fig. 9 below, a largergiven Rydberg series in the presence of an external dc field.
value of n’ corresponds to a smaller dipolar coupling
strength. What also appears from Fig. 8 is that, due to th@ydrogenicl states, for which the dipolar coupling reaches
long range of the dipolar interaction, there is no significanthigher magnitudes and occurs at lowgrvalues for lower
dilution of the dipolar coupling strength induced by the field. values ofl (see Fig. 3. From Eq.(8), it can be seen that the
Of course, all the parabolic states get some couplingrthogonality relation forAn=0 (which is not clearly seen
strength, while in the hydrogenic states basis, only states upecause of the logarithmic scalemains valid for the para-
to I/min(n,n")=0.5 (wheren is smal) are coupled. How- holic states. Note that parabolic states used in this section are
ever, by comparing Fig. 8 with Figs. 2 and 3, it can be seera zeroth-order description in that they take only kthrixing
that the average coupling strength is of the same order dhto account. Above the Inglis-Teller limit, the intraseries
magnitude in thd or in thek basis set. This is unlike the mixing due to the fieldwhich is included in Fig. 12 and in
case of the quadrupolar interaction, which is localized inthe dynamical computations presented in Sec. VI bglow

low-1 values in hydrogenic stat¢for the quadrupolar inter- |eads to a more uniform distribution of the coupling strength.
action,l is about 1Q. In parabolic states, the average cou-

pling strength of a quadrupolar term indeed is reduced, by
approximately a factor b/ on the average, because of the
dilution due tol mixing. We discuss, for simplicity, two series of bound Rydberg
To conclude this section, we show that significant cou-states, built on different rotational states of the core and
pling persists at largé\n in parabolic states too. This is coupled by the dipolar interaction. The difference in rota-
illustrated in Fig. 9, where the dipolar matrix elementstional energy means that in a given band of quasi-
[(nkjr ~2|n’k’)| for the parabolic states=154 and |k| isoenergetic zeroth-order states one series is denser than the
=153,135,1, plotted as a function of, are seen to increase other, where the zeroth-order HamiltonianHg+H,, [cf.
with An. This monotonic increase is due to the mixing of the Eq. (5)]. In the presence of an external dc field, we add to the

V. INTERSERIES DIPOLAR COUPLING
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areas of dynamicsy, is the mean number of states of series
i that are within the range of the coupling of a state in the
other series. Sinca is high it is typically the case that
1>, is the most common situation below the threshold for
rotational autoionization and in the presence of a dc field one
has y;>1>v,. Under such circumstances the transfer of
population in one direction is effective but much less so in
the other direction.

So far we have discussed the average behavior that is
expected when the density of states varies essentially
smoothly and continuously. That is, however, not necessarily

the case when the electrical field is so weak that for @mne
|kl both) series the Stark manifolds of adjacent Rydberg states
do not overlap.

The key role of the field for interseries coupling is due to
[(nklr =?[n"k")| as a function ok for n=154 andn’=140(dashes  the dependence of the coupling parameter on the density of
and 113(full lines). As shown in Fig. 10 below, these valuesrof states. In the absence of a dc field, most states of givare
correspond to isoenergetic states in the Rydberg series built “poé‘ssentially degenerate, except for those of lowsstwhich
the j=1 rotational states of the_core for rotatio_nal constants Ofare split by the quantum defect. There are therefore gaps in
Ejgg'fhinsallt'l?gﬁ(Frg;rrrzzgﬁﬁg‘éeg' tI\Zel;?gggtlsn:zteri:ael?een:g;t the distribution of states in energy and on the average it is

- : o . .. unlikely to find a state of the other series within the coupling
(see Fig. §and varies witm'. The malrix elements are multiplied range 2/ of a state of the first series. Once the field is above

by n“, the density of states in a given Rydberg series in the presenc, . L :
of an external dc field. The strength of the coupling increases Witrﬁ]e Inglis-Teller limit the states are about uniformly spread

An (see Fig. 9 below By comparing with Fig. 2 for the matrix In energy.(WhiIe a further increase of the field. will push
elementsn=154 andn’=113, it can be seen that there is no dilu- _states of a given farther apart, states dfn==*1 will m9ve
tion of the coupling strength due to the external dc field. The valudNto the energy ranggcf. Fig. 4b)] so that the density of

of y=2Vp is of the same order of magnitude in thend in thek ~ Rydberg states will not (_:Qange significant9].) We th_UAS
basis. have thatsE(i) in a.u=n"" for an isolated molecule ar

in the presence of a field above the Inglis-Teller lif@0].
I . . . . The resulting increase in the coupling strength is, at high
Hamiltonian of EQ(5) the intraseries Stark couplintgading of two orders of magnitude. Note also that the onset of this

to bothl andn mixing). . : !
: strong coupling is already at rather weak fields
For two series of Rydberg states there are three energetr_:(wcgm):1_7p14>?109/ns_ Whenyseveral Rydberg series are

parameters, say, the _inters_eri_es couplingnd the density_of coupled, the values af within a given energy band rapidly

states_ in the “’.VO s_erleSE(|), 1=1,2. The extent .Of the in- declines ag increases(Recall that two isoenergetic states of

terseries couplmg IS, on the average, charac.tenzed therem!:;\(?jjacent series differ in energy by2’.) Eventually one will

by the magnitude of two dlmenS|onI_ess coupling parametersyach a series that is below the Inglis-Teller limit. The de-

These can be taken to .l:;¢.=.2V/6E(|) [58]. tailed discussion given in connection with Figs. 13, 15, and

The strong coupling limit igy>1, whereas the sparse cou- 17 below is then needed

pling limit is the opposite. The reason is that, as in other In the presence of a field the zeroth-order states of diven
will be (Stark mixed as discussed in Sec. IV. For a more
localized electron-core coupling, this will dilu¢ by a fac-

FIG. 8. \Variation of the dipolar matrix elements

n=154 tor proportional to i, which will about cancel the increase

A 00— in the density of coupled states. However, and as already
2 EAN Ik 1=153 ] noted in Secs. l[cf. Fig. 1) and IV, for a dipolar coupling
= 100 | v - the dependence of the coupling matrix element @quali-
R Eeo ] tatively different so that the primary role of the field is to
= 10 L - J increase the coupling parameter due to its influence on the
§ g ] density of states.
v 1L ki1£135 o] The magnitude of the interseries coupling is quite sensi-
. k| =1] tive to the magnitude of the rotational constanof the core
. 01l LT and to the rotational state. Figure 10 shows that value’ of

o 40 30 120 160 that is degenerate with a given valuergffor the two series

!

n

j—1 andj,

n’~2=n"2-4B(a.u)j.

FIG. 9. Dipolar matrix elementsnultiplied byn?) for a givenk
andn=154 as a function ofi’ on a log, scale. The chosen value of
k’ corresponds to the largest matrix elemesge Fig. 6and varies  Effective interseries coupling requiresf. Figs. 3 and Bthat
with n’. For n’=154, the matrix elements are zero, in agreementthe change im is large compared to 1. Hence one needs that
with the orthogonality relation. Significant coupling strength is ob- 1<An~4Bjn3<n or, using the condition that strong cou-
tained for the whole range dfn values. pling requiresV/SE>1,
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FIG. 10. Value ofn’ of the Rydberg state in the series built on
j that is about isoenergetic with a stateof the serie§ —1 vsn. 0

The results are shown for different values of the rotational constant
B (in cm™ %) and for different values of. The energy difference
between the two series isB2j and if this is too smallAn is not

. b . eigenstate ordering number
large and the couplinécf. Fig. 3 is not large. See also Fig. 6.

FIG. 12. Interseries coupling of two Rydberg seriges=154,

4Bj/Vn)>1 1
(4Bj/V) (10 j=0andn=113,j=1) in the (a) absence antb) presence of a dc
for strona counling in the presence of a field field (0.0197 V/cm, which is the Inglis-Teller onset for=154).
9 piing P ' The wave functions are determined by diagonalization of the

The discussion so far has emphasized on the average bI%miltonian in the subspackl =0. Shown is the weight of the

havior. P_art|cularly In _the sparse co_upllng limit1, where zeroth-order state of the “other” series for the different eigenstates
the density of states is very nonuniform, there can be CONzrranged in order of increasing energy.

siderable local variations in the interseries energy spacing

“detuning”) from one state to the next one of the sameg y) is less than 8. Hence, in the absence of a field, unless
series. Figure 11 prOVideS a graphical demonstration of th|§‘]e d|p0|e moment is |arge Compared to1la.u., itis typ|ca||y

point. Shown is the spacing, for consecutive states of a givethe case that only every so often is the local coupling effec-
series, between the state to the state nearest in energy of thée. On the average, it is not. Figure 11 shows the detunings
otherseries. To emphasize the wide local variations, the dem the absence of a field so the conclusion that the coupling is
tunings are plotted on a logarithmic scale. Effective localpceasionally effective but otherwise is not is consistent with

coupling requires that\2 be large compared to these detun- the coupling being, on the average, weak. It requires a field
ings. The order of magnitude of the radial matrix elem@nt {0 reduce the detunings. When the field is above the Inglis-
Teller limit of both series, the average is also the local be-

havior.

Figure 11 also shows the importance of the condition
(10). The bigger the value of Bj, the more common the
occurrence of low detunings. We reiterate that Fig. 11 is a
“worst case” scenario as it is in the absence of a field.

The local variations in the effective interseries coupling
are reflected in the nature of the wave function. Plotted in
Fig. 12 are the weight of the zeroth-order state of a given
the other series. In the absence of the field, when the cou-
pling is weak, the coupling is quite regular and occurs only
when there is a near degeneracy of the two series. Once a
field is present, the variation is more extreme and occurs
throughout[61,62. The details of the computations in Fig.

FIG. 11. Small energy differencghe detuning is in a.u. on a 12 are those of Fig. 15 below.
log;o scale between two nearly isoenergetic Rydberg states that
belong to two adjacent Rydberg series vs the enéxgy®/a.u) in
the lower series-(1/2n%+B(a.u) (j—1)j, shown for three values
of B (in cm™Y) andj (cf. Fig. 10. These detunings will be closed in ~ The Hamiltonian(5) with, in addition, the intraserieb
the presence of a dc field, but in its absence the dipolar couplingndn coupling matrix elements due to an external dc electric
(Figs. 1-3 needs to overcome the energy mismatch if the couplingfield was numerically diagonalized, using the conservation of
is to be effective. M to reduce the size of the matrix. Thereby the survival

63F

log, , [ detuning (a.u.) ]

E n -1 (10° au.)

VI. DYNAMICS
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FIG. 13. Time evolution for the initial state=125 and =1 of FIG. 14. Population in different groups of states alljef0 and

thej =0 series shown vs time in nanoseconds on gjegale.P;(t) n=154, but with different ranges df as indicated for an initial
is the population in all the zeroth-order states of jtteseries. The statej=0, n=154, andl=2 plotted vs time in nanoseconds on a
higher the dipoled, the more extensive the transfer. log, Scale. The transfer to thje=1 series is allowed for, yet by 10

ns the populations have reached a steady state reflecting the number

probability of the initial state |C(t)|2=|(y(O)|y(r))p  Of auantum states in each group.
=(y(1)|Ql (1)), whereQ is a projection on the initial state,

and also the occupation probabiliB(t) of any other state - — X :
. 2 show that this is due to Stark oscillatiof9], a linear time
¢ PiO=Keil eI~ @i)(eil y(1)), or group of scale is used in Fig. 16. Unlike the case of localized cou-

statesP(t) =X;Pi(t) can be evaluated. The computations pling, here the Stark modulation éfdoes not quench the

were atan energy belpw the threshold' for rote}tlonal au'.[O'or.]éoupling, but does cause it to vary with the Stark period. Of
ization so that only discrete-discrete interseries coupling is

. S : course, the oscillations are possible becduisenot a good
ﬁggfézlrei[e?;ffblE\éegasnob‘évgzr;;;i%?gggg%ésé%f%ecwe the guantum number in the presence of a field and the zeroth-

Figure 13 compares the transfer between two series fo%rder states are chosen to be hydrogdhie, of givenl).
two values of the dipole of the coxd@=1 and 2 a.J.for a ecause in the linear Stark regime the splittings of the states

. . . - are equidistant, there is a correspondence between the clas-
E?)lt?] fé?iiz g/ /:C?gg]fzt 's rﬁalb o¥ﬁethi(ra1i:ir;iqIlssi[a;l;glliesrnh:n;l;;or sical description wherkis modulated by the Stark frequency

j=0, andl=1 and the figure shows the occupation of all [41] and the quantum-mechanical time evolution.

zeroth-order states ¢&=0 and of a nearly isoenergetic set of A point that was checked is the role of The results
statesn=100 andj =1 in the other series. The computation shown in Fig. 12b) were repeated, but when coupling was

. O . allowed only for states with>4. This had hardly any effect.
is for M =0. Note that there are more states) ofl because_ In Fig. 13 the time evolution was recomputed when all states
for M=0 all values ofm; are accessible. The transfer is

- ) . . ina. Thi
complete on a time scale of about 100 ns, which is compa9f| 4 were assigned a zero interseries coupling. This had a

rable to the minimal time delay that is usually possible innegligible effect. The results shown in Figs. 12—16 are all for
ZEKE experiment$68]. At eneryies above threghgld for 1o- M=0. The computations were repeated for higher values of

. permentsoo]. g€ M so as to verify that there are no essential changes. This is
tational autoionization, a population transfer of 10—20 % to

lower n's will amplv suffice to provide a long-time compo- to be expected because increasing the valu¥ofuts the
Ply . P 1ong PO owest value ofl that can contribute. These results suggest
nent as observed in typical ZEKE experiments.

At longer times the evolution is essentially dissipative.
We provide several backups for this claim. First consider the 1

The time evolution seen in Fig. 13-15 is modulated. To

intraseries dynamicgéFig. 14). Shown is the population in i
different groups ofj=0 states, classified according to the 0.8
value ofl. As expected from the breadth of the Stark split- I
ting (1.36x10° 7 a.u. or a period of 33 ns fon=154 and = 0.6 i
F=0.0197 V/cm, 1 a.u=5.142<x10° V/cm) by approxi- A4l
mately 10us, the population in th¢=0 series is about uni- -
form in the sense that the population in a group of states is 0.2}
proportional to the number of states in the group. Next, con- 0 [
sider two different initial states, one in the=0 series as in 1
Fig. 9 (n=154, j=0, andl=0) and the other in thg =1

series(n=113, =1, andl =0). Since the density of states is loglo [t(ns)]

higher in thej =1 series(because of the extra degeneracy of

the rotational statgsthe transfer is more extensive in the  F|G. 15. Time evolution for two different initial states in the
j=0—]j=1 direction(Fig. 15. By about 300 ngfor a dipole  j=0 and 1 series, respectively, shown vs time in nanoseconds on a
of 1 a.u) the distribution of populations among the two se-log,, scale. Initiallyl =0. The transfer is more extensive in the0

ries has reached a steady state. Note that comparing Figs. §a#j =1 direction because there are more nearly isoenergetic quan-
and 15, the interseries coupling reaches a plateau first.  tum states in thg =1 series.
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1 ' ' also states of higher orbital angular momentum, ug/to
| 0=(<5 S5s/<31 31sl<n | ~0.5 (see Fig. 1 and the AppendixTherefore, the presence
0.8 "‘ T of a weak dc field does not dilute the strength of this cou-
= o6 i ‘-:‘;' ; pling. Indeed, for a dc field above the Inglis-Teller limit
~ : ‘g‘l i | [3n°F (a.u)>1] the field acts so as to provide a smooth
a.iL 040 i : ﬁ density of states, thereby ensuring that coupling of Rydberg
SR A i series associated with different states of the core occurs
0.2 ‘\ /"5\ /’ 4 throughout and is not limited to accidental resonances. The
0 L:J'L\ R TR R J long-range nature of the anisotropic coupling means that Ry-
0 100 200 300 400 500 600 dberg states of very differemts can strongly interactFigs.
2, 3, 8, and 9and this too favors interseries coupling. Meth-
t (ns) odologically, the long-range nature of the coupling requires

that realistic computational studies include states of high

FIG. 16. Time evolution for an initial state in the=0 series  the different Rydberg series. The long times needed for the
shown vs time in nanoseconds on a linear scale. Same conditions population to uniformly sample the available phase space
in Fig. 9. Shown are the populations of three different groups of(Figs. 13—15 and J)7means that the role of the dipolar cou-
states in thg =0 series, where the states are classified according tpling is more readily experimentally explored in the time
their value ofl, as indicated. The Stark oscillations are clearly domain rather than spectroscopically.
evident.
that even higheM states are not immune to interseries cou- ACKNOWLEDGMENTS
pling. This should be detectable by means of rotational state- We thank H.-J. Dietrich, A. Held, J. Jortner, E. W.
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that both thej=0 and 1 series are above the Inglis-Teller
limit. B=1.9842 cm*. Shown are the populations in the two
series for initial states ai=154, which in the absence of a
field are nearly isoenergetic with=113 of thej=1 series
and forn=153, which in the absence of a field is quite de- 1. Definitions
tuned from states of the=1 series. The initial states used
differ also_m the value of (I=(_),1,2,3. It. IS evident that_ wave functions of bound hydrogeniclike states in a coordi-
when the field is above the Inglis-Teller limit for both series nate representation is used:
the coupling is evenly spread and that the local variations

APPENDIX: NUMERICAL COMPUTATION OF RADIAL
MATRIX ELEMENTS IN A HYDROGENIC BASIS

The following conventior{31] on the form of the radial

have been smoothed. 1 n,! V2[ op\ A1
Sa(N=IRu(N) =7 —] L
a’v\I'(v+Ar+1) av r
VII. CONCLUDING REMARKS )
r r
The coupling of the Rydberg electron to a dipolar molecu- X PP ex;{ 2l (AL)

lar core was found to be important, particularly so at times

much longer than the orbital period of the electron. Due towhere)\ is a real numbek>—1: v is the “principal” quan-

the long-range nature of the interaction, the coupling affect?um numbery=n.+1+1, which need not be an integer;
— ’ [

(a non-negative integgis the radial quantum number, which

1 ' . , is equal to the number of nodes R, (r). a=#%/uZe?,
| RSO NP S wherepu is the reduced mass aidis the charge on the core.
0.8+ P_, ® - In atomic units and for the case of singly charged doree
i /= 1 =7=1 and u~1. L{?(x) is the generalized Laguerre
0.6 i 1 polynomial
0.4 } . N
- 1 -1)™ [N+
02| P® 1 L@(x)= > % (N_:])xm. (A2)
0 [ .—ﬁ 1 ¢ ."w‘l—m.w MM i m=0 .
0 1 2 3 4 5 6

The radial wave functions as defined above are orthonormal
log, [t (ns)]

J’ dr S, (r)S,\(r)=46,,, if v'=v=0(mod 1)
FIG. 17. Time evolution when the dc electric field is above the 0

Inglis-Teller limit for both seriegtime is in nanoseconds on a lgg (A3)
scalg. For six different initial states, with small and large detun-

ings, the time evolution is essentially the same. and are solutions of the radial ScHinger equation
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%2 d> A(\+1) Z€ uz%* N

_ _ (—D" _
ﬂWJrW ~ t 557,251 =0. Lf\,z“l)(x):—N! L[l (x—r{(N=N)y, (A7)
(A4)

For integer values ok=I and »=n, S, (r) are hydrogenic r\* being theith root of the polynomiaL {**(x). This
radial wave function] being the angular momentum. At a form does not suffer from numerical cancellation of errors
general nonintegex, S,,(r) are the radial wave functions and provides the best possible numerical accuracy.

that appear, for instance, within the framework of the model Golub [71] noted that the roots of classical orthogonal
of Rydberg states in the presence of a digd®-51 and are  polynomials are eigenvalues of the corresponding recurrence
sometimes interpreted as hydrogeniclike states with a quarielations. After renormalization of the generalized Laguerre

tum defects=I—\, | being the nearest integer 1o polynomials
The identity (4) is derived by using bott{A4) and the
corresponding radial equation f&,, (r). Premultiplying N4 2\ +1) ~12
(A4) by S,.,.(r) and integrating over yields the desired PN:( N ) LMY (A8)

result when the definitiofA5) below is used.

and with following definitions of column vectorp,t
and symmetric tridiagonal NXN matrix AMNM: p
Radial matrix elements of an operator diagonal in coordi-=col[ Py(x),P1(X), ... ,Pn_1(X)], t=col0,0,...,
nate representation are defined as usual by an—1nPn(X¥)], and AMNV),=a"M, the recurrence rela-
tions (A6) can be recast in the matrix form

2. Computation of radial elements

(V’)\’|f(r)|y)\)=fmdr S (NHNSA().  (A5)
0 aNNZZ(N+)\+1),

For computations requiring a large number of matrix ele-
ments and when an accuracy of about 1% is sufficient, the ann-1=an-1n=—[N(N+2\+1)]"2 (A9)
method due to Zimmermaet al. [27,3Q is sufficient, par-
ticularly if | is belown/2. This method is based on the Nu-
merov integration of the radial Scldimger equation com-
bined with a simple form of numerical quadrature. For high ]
values ofn and particularly ifl is also high, the Numeroy If X is & root of Py(x), x=r {**, thent=col(0,0, . .. ,0 and
method calls for additional care or another method is neededrd. (A9) takes the form of the matrix eigenvalue problem,
The method we propose is more expensive in computeW'th rim being e|genvaluesNof the s%/mrlnetnc tridiagonal ma-
time but provides a far higher accuracy. The method is base#liX A ). Hence the roots M of L(NH )(x) can be deter-
on the reliable computation of the generalized Laguerrénined very accurately by employing stable procedures for
polynomials, which are used {#1) so that the evaluation of diagonalization, such as imtql2 @ispPAck [72]. Given the
the radial matrix elements is done \id4) using quadrature. Necessity of generating the wave function on a dense grid,
The method is based on the recurrence relations for generdh€ diagonalization step does not appreciably increases the

AMNMp 4+ t=xp.

ized Laguerre polynomial@quation 22.7.12 of Ref70]) cost of the computation. _

In order to obtain accurate matrix elements, the accuracy

|_§)2k+1>(x):1, of the numerical wave function should be matched by the

accuracy of the numerical quadrature. We used for this pur-
LA D(x)=2(A+1)—x, (A6)  Ppose the adaptive procedures dqdag and dqdagi from the

IMSL standard library, which are based on the Gauss-Kronrod

Lf\f“l)(x)={[2(N+)\)—X]L§\,2ffl)(x) {gllgféniréabling automatic adjustment to within the required

—(N+ 2)\)L(N21‘§1)(x)}/N The accuracy of the matrix elements obtained by the two

variants was checked by comparing the value of the left-hand

and we present two variants, depending on how these relside and the right-hand side of the identity given in Eg.at
tions are used to generate the polynomials. The closed forrmteger values of andl’ and by computation of the identity
(A2) cannot be used for computer calculation of Laguerre(4) at integer and noninteger values bbfand|’. The or-
polynomial of high orderdN because successive terms alter-thonormalization condition¢A3) and the known diagonal
nate in sign. Straightforward summation of the power serieglementg31,73 provide additional and complementary tests
(A2) on a machine with a finite relative precisigdouble  for accuracy. Such tests were conducted over a wide range of
Precision €achine=2 22=2.2X10 1% results in excessive values ofy, ¥/, A, and\’: 3<w, '<500, —3<\<v—1, and
roundoff noise due to numerical cancellation of individual —3<\'<v'—1 for f(r)=r¥ k=-3,—2,0,1,2. These tests in-
terms. Already fon=100 and =0, the noise is 31 orders of dicate that the relative accuracy of the matrix elements was
magnitude larger than the accurate result. typically better than 10'* and in all the tests was better than

The first variant is to compute the Laguerre polynomials10 2 The higher accuracy is expected for the second vari-
with high accuracy directly using the recurrence relationsant, based otiA9). At the highn’s of interest and fot <n
(A6). The second variant combines the recurrence relationthe accuracy of the fast Numerov method due to Zimmerman
with the multiplicative form of Laguerre polynomials et al. [27] was found to be of the order of 1%.
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3. Limitations of the near-threshold approximation 0.05
for the radial wave functions '

For states just below the threshold for ionization it is sug-
gestive to use the Bessel function approximafi®] for the
radial wave functions. This is particularly convenient for
such cases as a dipolar coupling where the integration of
(AB) is analytic. Unfortunately, as will now be discussed, the
method is not accurate for dipolar coupling at any but the
lowestl’s.

The near-threshold approximation is valid for weakly -0.05
bound states when attention is centered on low values lof
is then possible to use the approximation

VS/ZSux(r)—’(Z/r)1/232>\+1[(8r)1/2]1 (A10)

VA2 vAs (vv)¥?

0.04

0.03

valid for v—oo, while r and \ are finite. It is important to
note that the Bessel function approximati@0) is the first
term in a convergent series expansion and that higher terms
in the series can be obtained using equations 22.5.4 and
13.3.7 of Ref[70]. The reason for making this point is that
radial matrix elements computed usii§10) can vanish
identically, whereas the exact results do not. When this hap- -0.01
pens it simply means that the next term in the expansion is
not a correction, but the leading contribution to the matrix
element.

Using the near-threshold Bessel function approximation rig. 18, Dipolar coupling matrix elemenin=154 plotted
(A10) in (A5) leads to an analytical expression for the dipo- against theeffective final angular momentum’ for (a) \=3 and
lar coupling[48] (b) A=29. Solid line, precise numerical integration; dashed line, the

. , analytical approximatior{A11) obtained using the near-threshold
2 sifm(A—\")] Bessel function approximation for the radial wave functions. The
SEON+HN+1) w(N—=\) important matrix elements are those whare\’ (modJ) is quite
(A11) small compared to unity. This region is emphasizean whereas
the inset shows the full range.

0.02

0.01

VAL r 2 Ivas (vv)?

(v'N'[r2lun)~ 37,

The most striking aspect of this result is thahif\'(mod1)

is quite small compared to unity then the matrix element is ) ) _
negligible. The condition is quite common for all Rydberg {0 unity and that even whekis small, the absolute error in
states but those Of |OW6|§B because at h|ghé|"s the quan- the range of interest is Compal’able to the aVerage Strength of

tum defect is very small so that=\ and the transitions of the coupling.

interest are those df\l|=1. In fact(see Fig. 18 the exact By plotting the integrand ofA3) one can see that the
matrix element does not vanish. Rather, the leading contrishortcoming of the approximatiog11) is due to the long-
bution is made by the next term neglected 410). range nature of the coupling. The exact wave function is

Figure 18 provides a comparison between the exact rephase shifted with respect to the Bessel function. For a cou-
sults (solid line) and the approximatioAll) (dashed ling  pling with a long range this leads to an accumulation of the
for a low and an intermediate value affor n=154 and error. Moreover, since the phase of the exact wave function
n’'=113. It is seen that wheN/n is not small compared to varies with the energy and witk, the error is not constant.
unity, the error is considerable. Most of the coupling termsThe near-threshold approximation is more satisfactory for
of importance in the Hamiltonian fall in this range. Note alsoshort-range coupling. In the present problem it correctly ac-
that in both panels of Fig. 18, the error is worst in the rangecounts for the role of the quantum defects a&n when
of interest, i.e., whem—\'(mod1) is quite small compared A—\'(modJ) is not small.
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