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High Rydberg states about a dipolar molecular core can exhibit special features due to the exceptionally long
range of the electrical anisotropy of the core. Unlike all other, more localized, couplings of the Rydberg
electron to the ion, here the interaction is not shielded by the centrifugal barrier. The influence of the core even
on states of the electron with higher angular momentuml and the significant matrix elements between states
that differ considerably in the principal quantum numbern make this problem worthy of separate consider-
ations. Using specialized computational techniques~both analytical and numerical! for the exact evaluation of
the relevant matrix elements, the role of both inter- and intra-Rydberg series coupling is discussed. The
importance of the latter~i.e., the coupling of the Rydberg electron to the rotation of the core! is emphasized.
Special attention is given to the role of an external dc electrical field that is different in the present problem in
that it does not significantly dilute the strength of the electron-core interaction. A positively charged core can
have a dipole moment~defined with respect to its center of mass! larger than that of neutral polar molecules,
particularly if the charge is localized. Hence the interseries and intraseries dynamics discussed in this paper can
give rise to experimentally measurable special effects.@S1050-2947~96!01112-2#

PACS number~s!: 31.15.2p, 33.80.Rv, 03.65.Ge, 34.50.Gb

I. INTRODUCTION

The power of selective pulsed field ionization of high
Rydberg states for providing high-resolution spectra of mo-
lecular and cluster ions has recently been demonstrated
@1–9#. In addition, by varying the delay of the ionizing pulse,
time-resolved studies, from several nanoseconds to many mi-
croseconds, can be achieved@9–13#. The initially excited
state can undergo complex, multi-time-scale dynamics dur-
ing such intervals that are very long compared to the~itself
long! orbital period of the Rydberg electron@14#. The rather
weak couplings that can be important over such long times
also mean that the role of external perturbations, which are
otherwise often of marginal importance, need to be examined
@12,13,15–26#.

In this paper we consider the special features that are to
be expected for molecular Rydberg states when the central
ionic core has a dipolar anisotropy. The range of such an
interactionr22 ~wherer is the distance from the electron to
the center of mass of the core! is comparable to that of the
centrifugal barrier in the orbital motion of the electron. Un-
like the case of more localized electron-core couplings, the
centrifugal barrier is far less effective in shielding the elec-
tron from the dipolar anisotropy. Electrons with angular mo-
mentuml as high as, roughly, 0.5n can still be coupled. In
particular, this means that a dc electric field does not act so

as to significantly reduce the electron-core coupling by in-
ducing mixing of l states. A not so intuitively obvious fea-
ture of the long-range potential is that it can preferentially
and effectively couple orbitals with rather different values of
n. This is particularly expressed when we consider in-
terseries couplings, that is, changes inn accompanied by
changes in the rotational statej of the core.

The numerical results that we present are obtained by an
exact diagonalization of the Hamiltonian using a zeroth-
order basis spanning a finite-energy band. Two alternative
zeroth-order bases are used to describe the orbital motion of
the electron. One is the familiar hydrogenic one. For this
case, an external dc electrical field, if present, must be
treated as part of the perturbation. The alternative, discussed
in Sec. IV, is to include the dc field as part of the zeroth-
order description.

The discussion of the results is based on the properties of
the matrix elements of the coupling between the zeroth-order
states of the electron. It is therefore important that these ma-
trix elements are correctly evaluated, particularly so since we
argue that large changes in quantum numbers are possible.
Analytical and numerical results are presented to support the
conclusions. The Appendix provides a detailed discussion of
the recursion procedure that we use. This method has been
validated against analytical results~when the agreement is
within the accuracy of the computer! and also using wave
functions generated by Numerov integration@27–30# and the
two sets of numerical results agree to within 1%. The impor-
tance of large changes in the quantum numbers and the range
of the coupling being comparable to the centrifugal barrier
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mean that the near-threshold Bessel approximation for the
radial wave functions of highn @31# is not sufficient even on
qualitative grounds. The numerical procedures discussed in
the Appendix of this paper are not limited to a dipolar cou-
pling and have also been used to generate the Stark matrix
elements needed below and also for the quadrupolar anisot-
ropy, which is discussed in detail elsewhere.

The special features of the dipolar matrix elements imply
that this coupling is not important for low and intermediate
molecular Rydberg states. The reason is theDn dependence
of the coupling, which is weak in theDn!n limit. Detailed
results demonstrating this effect are provided in Secs. II and
IV below. Whenn is low, the most nearly isoenergetic state
of another series hasn8 comparable ton. This is the Born-
Oppenheimer regime. The interseries dipolar coupling is im-
portant precisely in the higher-n regime, which is being cur-
rently explored by ZEKE~zero electron kinetic energy!
spectroscopy.

Besides the special feature expected for the dipolar cou-
pling, there is another reason for our interest. It is likely that
this coupling is stronger and more common than one might
expect on the basis of the magnitude of typical dipoles of
neutral polar molecules. The point is that, for ZEKE spec-
troscopy of neutral parents, the dipole in question is the di-
pole of the positively charged core about which the Rydberg
electron revolves. Unless the core is homonuclear, this di-
pole, which is defined with respect to the center of mass~and
not the center of charge! of the core, can be of the order of
more than 1 a.u. This will be particularly the case for poly-
atomic molecules that contain a side group where the charge
will be localized.

The theoretical interest in dipolar coupling is about as old
as the interest in autoionization of molecules@32–38#. The
present work differs in several respects from the earlier stud-
ies. One practical difference is that we are primarily inter-
ested in high-n Rydberg states. It is then reasonable to use a
zeroth-order basis, where each rotational state of the core has
its own series of Rydberg states, rather than the use of a
Born-Oppenheimer basis. Within that basis we compute ma-
trix elements using exact radial wave functions~rather than
using a Bessel approximation! and diagonalize the Hamil-
tonian within a band of quasi-isoenergetic states. An impor-
tant point about the zeroth-order basis is that it contains more
than one series~i.e., more than one rotational state of the
core! so that we examine both intra- and interseries coupling.
We also include the intraseriesn and l Stark mixing due to
an external dc field. As we shall point out in detail below,
each one of these seemingly technical points has qualitative
implications for the dynamics. Two conclusions that are im-
portant enough to note are in particular the following.~i! The
role of the dc field is not primarily to dilute the coupling
strength @15,23,39–41#. Dilution is important for all the
other, more localized, electron-core interaction and even the
r23 quadrupolar coupling is qualitatively different from the
dipolar one@42#. ~ii ! The ~interseries! coupling of the elec-
tron to the rotation of the core is not negligible.

Section II examines the matrix elements of the dipolar
interaction. The rest of the paper hinges upon the two main
qualitative results of this section.~i! The matrix elements do
not necessarily decline as the orbital angular momentum of
the electron increases. Indeed, on the average, the coupling

strength is roughly constant up tol /n of about 0.3.~ii ! While
the coupling is strictly zero ifn5n8 and is very small when
n2n8 is small, asn2n8 increases the coupling increases
both in the hydrogenic and in the parabolic zeroth-order
states. In the hydrogenic basis, the coupling reaches a plateau
and then finally decreases. The height of the plateau is higher
for lower l and the value ofn8 for which it is reached de-
creases withl . On the other hand, in the parabolic states,
there is a monotonic increase asn8 decreases and the mag-
nitude of the coupling is smaller for loweruku parabolic
states. In both zeroth-order bases, the dipolar coupling takes
significant values for finiten2n8 values. The simpler prob-
lem of intraseries coupling is discussed in Sec. III and the
behavior of the dipolar coupling in parabolic states in Sec.
IV. Section V discusses the implications for the importance
of inter series coupling and for the role of an external dc
field. Particular attention is given to the case when the field
is above the Inglis-Teller limit@30#. This is the limit when
the Stark manifold of states of differentn’s begin to overlap
so that the density of states reaches its uniform valuen4 ~in
a.u.!. The n25 scaling of this onset means that it occurs at
quite low fields for high Rydberg states. Numerical results
for the temporal evolution are given in Sec. VI. Conclusions
are given in Sec. VII. The Appendix provides the details of
the two versions of the recursion method used to generate
accurate matrix elements whenn and alsol are high.

II. RADIAL MATRIX ELEMENTS
OF THE DIPOLAR COUPLING

The selection rules for the dipolar coupling, determined
by the angular part of the interaction, imply that radial matrix
elements are only required for changes ofl of 61. These
selection rules are identical for those for absorption of light
as can be seen from the so-called acceleration form of the
radiative matrix elements@43#. For a hydrogenic electron
H05p2/221/r of position and momentumr andp

r /r 352 i @H0 ,p#5@H0 ,@H0 ,r ##, ~1!

where the square bracket denotes the commutator. Taking
matrix elements of both sides,

^n8l 8m8ud•r /r 3unlm&5 1
4 ~n8222n22!2^n8l 8m8ud•r unlm&,

~2!

whered is the dipole moment of the core. When the coupling
of the electron is to a molecular core, the selection rule form
is that for either change inl ,Dm50,61. The identity also
shows the long-range nature of the dipolar coupling and the
wide range ofn’s that can be coupled.

The matrix elements are, as usual@44–46#, expressed as a
product of a radial and an angular term

^n8l 8m8ud•r /r 3unlm&5d^n8l 8u1/r 2unl&•^ l 8m8ud̂• r̂ u lm&,
~3!

where the caret denotes the unit vector. The angular terms
are standard analytical integrals@43#, but note that them
dependence is such that theDm561 terms are about a factor
of 2 smaller than theDm50 ones. Since the totalM is con-
served, the changes inm of the electron are compensated by
corresponding changes in the orientation quantum number of
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the core. This compensation is not possible when the cou-
pling is due to an external dc field. A Stark mixing has
strictly an intraseries character.

The experience with radiative matrix elements is that they
require accurate radial wave functions for their evaluation
@31#. The recursion procedure discussed in the Appendix was
found to be very accurate. It was checked using analytical
results for both diagonal and off-diagonal matrix elements.
In particular, the identity@47#

@ l ~ l11!2 l 8~ l 811!#^n8l 8u1/r 2unl&5~n8222n22!^n8l 8unl&
~4!

was found useful for this purpose. As discussed in the Ap-
pendix, the recursion method was also compared with a
purely numerical procedure using radial wave functions gen-
erated by a Numerov integration. Except at very high values
of bothn and l , where the recursion procedure is to be pre-
ferred, the two methods agree with the Numerov procedure
being accurate to approximately 1%. The recursion method
is very accurate, but inefficient, so that the Numerov method
can be used as a practical alternative. See the Appendix for
more details.

When the binding energy~21/2n2! of the electron is
small compared to the potential and/or the centrifugal ener-
gies, the radial wave function can be approximated as a
Bessel function@31#. Approximate analytical expressions for
the radial matrix elements derived using such Bessel radial
wave functions were found not to be quite satisfactory. For
large changes in the principal quantum number, these results
are, as is to be expected, unreliable. Further details on the
comparison are provided in the Appendix.

Figure 1 shows the dependence of the radial matrix ele-
ments onl for givenn andn8. There are two possible tran-
sitions for a given l ,D l561. For n2n8.0, the
D l[l 82l511 terms are smaller and decrease withl ~Fig.
1!. TheD l521 terms are bigger and initially increase with
increasingl . The sum of the two terms is nearly constant up
to l /min~n,n8! of about 0.3 and decreases thereafter. The
midpoint is atl /min~n,n8!.0.5. The magnitude of the cou-

pling is n dependent also because of the energy term in Eq.
~2!. In Fig. 1, the matrix elements are shown multiplied by
n3, the density of statesr in the absence of an external dc
field. The dimensionless parameter 2Vr is discussed in Sec.
V below and provides a measure of the average coupling
strength. Figure 2 shows, vsl , the magnitude of the radial
matrix elements for coupling of two nearly isoenergetic Ry-
dberg states that belong to distinct series~j50 and 1! in
NO1. Here the matrix elements are shown multiplied byn4,
the density of states~or quasi degeneracy! in the presence of
a dc field.

The dependence of the radial matrix element on the
change in the principal quantum numbern is shown in Fig.
3. From the identity~4! the matrix element vanishes forDn
50. The phase mismatch between radial wave functions of
similar values ofn lead to a matrix element that is small
whenDn is small. However, asn2n8 increases, the radial
matrix does reach significant values. The coupling reaches a
plateau and then decreases as min(n,n8)→ l . The position of
the plateau inn8 occurs for larger values ofDn and its height
is higher asl decreases. It is this variation that is not cap-
tured when the matrix element is approximated using the
Bessel wave functions@48# that are otherwise realistic at
very high n’s. See Fig. 18 below for more details on this
point.

The matrix element forDn changes is relevant to both
inter- and intraseries coupling. For a given series, the small
value of the dipolar coupling for adjacent states means that
its role will be small. Coupling of states of the same series
that differ very much in their values ofn is not important
because these states will differ considerably in their energy.
This is no longer true for coupling of states that belong to
different series where the electronic energy mismatch can be
made up by the difference in the rotational energy of the
core. An additional reason why interseries dipolar coupling
can be significant is that the large changes inn are possible
for a wide range of values ofl ~cf. Fig. 2!.

FIG. 1. Matrix elements of the dipolar coupling betweenn5154
andn85113 vs l computed by the recursion method discussed in
the Appendix. The matrix elements are shown multiplied byr5n3,
the density of states in the absence of an external electrical dc field.
The reason for this choice is that the dimensionless parameter
g52Vr is discussed in Sec. V as the measure of the average cou-
pling strength in the absence of an external field. Shown are the two
possible transitions corresponding tol 85l61 ~dots! and the sum of
the two matrix elements~solid line!. Note the very wide range inl
over which the coupling extends.

FIG. 2. Matrix elements of the dipolar coupling between pairs of
states of differentn’s in NO vs l . The states chosen are all about
isoenergetic when they belong to two different series built upon the
j50 and 1 rotational states of NO1 ~B51.9842 cm21!. The matrix
elements are shown multiplied by the density of statesr5n4 in the
presence of an electrical field. Note, however, thatV is a product of
the radial matrix element by an angular factor that is an expectation
value of a cosine of an angle and hence this additional factor is
below unity. Therefore Rydberg states of higher but not very high
n’s are not strongly coupled.
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III. INTRASERIES DIPOLAR COUPLING

The coupling of Rydberg states for a given rotational state
of the core has been studied by Zon@49# by averaging the
Hamiltonian for the Rydberg electron

H5H01H rot1d•r /r 3 ~5!

over the rotational state. Earlier studies@50,51# used a resting
dipole. The eigenvalue problem for the Hamiltonian~5! in a
given state ofH rot separates into an angular and radial parts.
There is a problem for very lowl ’s, a problem that has been
recognized early on@33,34,38,52# in that states of very lowl
can penetrate too much into the core up to distances@53#
where the approximation of the interaction in a multipole
expansion is physically not realistic. Typically, forl>4, the
Hamiltonian~5! is realistic.

The model leads to a quantum-defect-like eigenvalue

E521/2~nr1l11!2, ~6!

wherenr is the radial quantum number andl is annr inde-
pendent noninteger parameter, which at highl’s is essen-
tially l . This shows that, as expected on the basis of the
radial matrix elements~Figs. 1 and 3!, the intraseries dipolar
coupling is limited, particularly so at higherl’s, and that for
any but the lowestl ’s the states exhibit a single purel char-
acter.

For the highn’s of interest in this paper, an external dc
electric field is typically above the Inglis-Teller limit 3n5F
~a.u.!>1 @30# and can induce a more extensive mixing of the
zeroth-order hydrogenic states not only inl ~Stark splitting!
but also inn. The role of the electric field is qualitatively
similar to that expected in the absence of a dipole because
above the Inglis-Teller limit the field matrix elements are, for
ordinary dipoles~1 D50.393 a.u.!, bigger than the dipolar
coupling ~Fig. 4!. The semiquantitative argument is as fol-
lows. The matrix element on the right-hand side of Eq.~2! is
also that for Stark mixing of the hydrogenic states if we

interpretd as the external dc field. Since the fore factor~the
square of the energy difference! is of the order of~Dn/n3!, it
follows that the ratio of the internal dipolar coupling to the
external field of magnitudeF is (Dn/n3)2d/F. If the field is
above the Inglis-Teller limit, it follows that the field matrix
element dominates. As emphasized in Fig. 4, the electric
field couples not only states of givenn but also mixes in
adjacent Rydberg states.

In the computational examples we consider a diatomic
ionic core in aS electronic state such as NO1. The intraser-
ies dipolar coupling is then absent and only the dc field can
mix the zeroth-order states. When the electronic state of the
core carries angular momentum or for a core that is a sym-
metric top, the coupling does not vanish. However, with or
without the presence of an external dc field, the anisotropic
coupling is not a major effect in the dynamics of high Ryd-
berg states. Precisely because of the long-range nature of this
interaction it acts, in a given series, as an additional contri-
bution to the centrifugal term. Unlessl is very low and/or the
dipole is large@54–56#, the effect is small. The physically
important manifestations of the long-range interaction are in
the interseries effects.

IV. DIPOLAR COUPLING IN PARABOLIC STATES

The field-induced~intraseries! coupling is often discussed
@15,23,39,41# as the cause of lifetime elongation in high

FIG. 3. Matrix elements of the dipolar coupling between a state
of given n5154, l520, 30, 40, andl 85 l21 vs n8. The matrix
elements are shown multiplied by the density of statesr5n4 in the
presence of an electrical field. Note the vanishing of the coupling
for n5n8 and the low value whenDn is small. The peaking of the
coupling for a fairly large value ofDn ~which increases with de-
creasing values ofl ! means that two different Rydberg series cor-
responding to two different states of the core will experience dif-
ferent coupling strengths depending on the energy difference of the
two states of the core and ofn; cf. Fig. 2.

FIG. 4. Stark matrix elements~3107/a.u.! for a field of 0.1
V/cm, ~a! as a function ofl and~b! vsn. The Stark coupling, due to
the external dc field, connects only zeroth-order states of the same
Rydberg series. This is due to the conservation ofM , the projection
of the total angular momentum. On the other hand, for the dipolar
coupling due to the core, the change inml can be compensated by
a change inmj so that interseries coupling is possible.
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Rydberg states. In a time-independent picture this is often
termed a dilution effect: The field mixes low- and higher-l
states so that the weight of low-l states in an eigenstate is, on
the average, proportional to 1/n. @We shall, however, note
~cf. Fig. 5 below! that systematic and wide variations about
the average are the rule.# In time-dependent language, the
periodic modulation ofl by the field means that the fraction
of time that the system spends in lowl ’s is reduced by a
factor proportional to 1/n ~see Fig. 16 below!. The dipolar
coupling, which is effective in the range 0<l /n<0.5, will
not, however, be significantly reduced by this depletion of
the occupancy of the low-l states. It remains true that the
field significantly reduces the fraction of time the system
spends in low-l states, but the higher-l states can still be
effectively coupled by the dipolar interaction.

The mixing of the dipolar coupling strength induced by an
external dc field can be discussed using the zeroth-order
parabolic@30,31# n,k,m states. The parabolic states corre-
spond to the Stark eigenstates when the intraseriesn mixing
induced by the field is neglected. In this case, the Stark ma-
trix elements are proportional to the strength of the fieldF
and the Stark eigenstates are field-independent linear combi-
nation of the zeroth-order hydrogenicl states of common
valuen andm @30#. The relation between the parabolic states
unkm& and the hydrogenic statesunlm& is

unkm&5 (
l50

n21

^nlmunkm&unlm&, ~7!

where ^nkmunlm& are the 3j Clebsch-Gordan coefficients
@30,57#. The weights in thel states of three parabolick states
differently localized inl are plotted in Fig. 5. In the upper
panel plotted is the most localized inl , highest-k state uku
5153, which is localized up tol530 in the region where the
dipolar coupling in thel states is maximum~see Fig. 1!. A
parabolic stateuku5135 localized up tol5 l 0 , wherel 0'80
is the range of the dipolar coupling in thel state basis, is
shown in the middle panel and the most delocalized inl
parabolic stateuku51 ~with a maximum in highl , but distrib-
uted over the whole range ofl values! in the lower panel.
Parabolic statesk and 2k have the same distributions of
weights.

In the parabolic states, the dipolar matrix elements take
the form

^n8k8m8ur22unkm&5 (
l 850

n821

(
l50

n21

^n8k8m8un8l 8m8&

3^n8l 8m8ur22unlm&^nlmunkm&,

d l l 8561,dmm850, ~8!

where ^nlur22un8l 8& are the matrix elements in the hydro-
genic zeroth-order states plotted in Figs. 1–3. These matrix
elements~n5154 andn85113! are plotted in Fig. 6 as a
function ofk8 for the threen5154 parabolick states shown
in Fig. 5. For a given value ofk, the coupling is well local-
ized within 5–8 values ofk8. The value ofk8,km8 that corre-
sponds to the maximum is approximately given bykm8 /kmax8
5k/kmax, with kmax5n212umu. As expected, states ofk and
2k give symmetrical profiles with respect tok850.

As can be seen from Fig. 6, there is a correlation between
the l content of the parabolic state and the strength of dipolar
the coupling: parabolic states essentially localized inl larger
than l 0 ~'80! have a significantly smaller coupling~by an
order of magnitude! than parabolic states localized in lowl .
This correlation can be understood by looking at how diluted
the coupling strength of ann Stark state of a givenk is with
respect to the zeroth-order quantum numberl of the hydro-
genicn8 states. The relevant matrix elements for this purpose
are

^nkmur22un8lm8&5 (
l 850

n21

^nkmunl8m&^nl8mur22un8lm8&,

d l l 8561, dmm850. ~9!

These dipolar matrix elements@Eq. ~9!# for the three para-
bolic states plotted in Figs. 5 and 6~n5154, uku5153,135,1,
andn85113! are plotted in Fig. 7 as a function ofl . Their
behavior with respect tol can be predicted from the behavior

FIG. 5. Weightsz^nkunl& z2 of the parabolic statesuku5153,135,
1 ~m50! as a function of the zeroth-orderl states forn5154 @Eq.
~7!#. The highest parabolic stateuku5153 ~upper panel! is the most
localized in l and is spread over the region inl for which the
coupling strength in the hydrogenic basis is maximum~cf. Fig. 1!.
The stateuku5135 ~middle panel! covers the full range of the dipo-
lar coupling ~up to l /n50.7!. The lowest parabolic stateuku51
~lower panel! is the most delocalized inl and has the largest
weights in the regionl /n>0.7.
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of the hydrogenic radial matrix elements^nlur22un8l61&
~Fig. 1! and thel content of then5154 uku states plotted in
Fig. 5. When the range of theuku state inl is smaller thanl 0
~'80!, the range of the dipolar matrix element^nkur22un8l &
in l is governed by the range of theuku state~Fig. 7, upper
panel! and the coupling strength is large. On the other hand,
when the extension of theuku state inl is larger thanl 0'80,
the range of the dipolar matrix element^nkur22un8l & in l is
limited by l 0 ~middle and lower panels of Fig. 7!, so that the
coupling is significantly smaller. Parabolic states2k andk
have the same absolute valuez^nkur22un8l & z. Their ampli-
tudes differ by a sign.

In Fig. 8, the dipolar matrix elementsz^nkur22un8k8& z are
plotted as a function ofuku for two values ofn8, n85140 and
113. The chosen value ofk8 is that which corresponds to the
largest magnitude of the matrix element~cf. Fig. 6!. Lower-
uku states, mostly localized in the rangel> l 0, have a lower
coupling strength. In agreement with Fig. 9 below, a larger
value of n8 corresponds to a smaller dipolar coupling
strength. What also appears from Fig. 8 is that, due to the
long range of the dipolar interaction, there is no significant
dilution of the dipolar coupling strength induced by the field.
Of course, all the parabolic states get some coupling
strength, while in the hydrogenic states basis, only states up
to l /min~n,n8!.0.5 ~wheren is small! are coupled. How-
ever, by comparing Fig. 8 with Figs. 2 and 3, it can be seen
that the average coupling strength is of the same order of
magnitude in thel or in the k basis set. This is unlike the
case of the quadrupolar interaction, which is localized in
low-l values in hydrogenic states~for the quadrupolar inter-
action, l 0 is about 10!. In parabolic states, the average cou-
pling strength of a quadrupolar term indeed is reduced, by
approximately a factor 1/n on the average, because of the
dilution due tol mixing.

To conclude this section, we show that significant cou-
pling persists at largeDn in parabolic states too. This is
illustrated in Fig. 9, where the dipolar matrix elements
z^nkur22un8k8& z for the parabolic statesn5154 and uku
5153,135,1, plotted as a function ofn8, are seen to increase
with Dn. This monotonic increase is due to the mixing of the

hydrogenicl states, for which the dipolar coupling reaches
higher magnitudes and occurs at lower-n8 values for lower
values ofl ~see Fig. 3!. From Eq.~8!, it can be seen that the
orthogonality relation forDn50 ~which is not clearly seen
because of the logarithmic scale! remains valid for the para-
bolic states. Note that parabolic states used in this section are
a zeroth-order description in that they take only thel mixing
into account. Above the Inglis-Teller limit, the intraseriesn
mixing due to the field~which is included in Fig. 12 and in
the dynamical computations presented in Sec. VI below!
leads to a more uniform distribution of the coupling strength.

V. INTERSERIES DIPOLAR COUPLING

We discuss, for simplicity, two series of bound Rydberg
states, built on different rotational states of the core and
coupled by the dipolar interaction. The difference in rota-
tional energy means that in a given band of quasi-
isoenergetic zeroth-order states one series is denser than the
other, where the zeroth-order Hamiltonian isH01H rot @cf.
Eq. ~5!#. In the presence of an external dc field, we add to the

FIG. 6. Dipolar matrix elementsz^nkur22un8k8& z @Eq. ~8!# be-
tween parabolic statesn5154, uku5153,135, 1, andn85113 as a
function of k8. The matrix elements of a givenk value are well
localized ink8 around a valuekm8 approximately given bykm8 /kmax8
5k/kmax, with kmax5n212umu. The matrix elements are shown
multiplied byn4, the density of states in a given Rydberg series in
the presence of an external field, as in Figs. 2 and 3.

FIG. 7. Dipolar matrix elements between parabolic states
n5154 anduku5153,135, 1, and hydrogenic statesn85113 as a
function of l @Eq. ~9!#. In the upper panel, the extent of significant
dipolar coupling is governed by thel range of the high-uku state~cf.
Fig. 5, upper panel!, while for the loweruku states of the middle and
lower panels, it is governed by the range of the dipolar coupling in
the nl basis set~cf. Fig. 1!. As in Figs. 2, 3, and 6, the matrix
elements are shown multiplied byr5n4, the density of states of a
given Rydberg series in the presence of an external dc field.
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Hamiltonian of Eq.~5! the intraseries Stark coupling~leading
to both l andn mixing!.

For two series of Rydberg states there are three energetic
parameters, say, the interseries couplingV and the density of
states in the two seriesdE( i ), i51,2. The extent of the in-
terseries coupling is, on the average, characterized therefore
by the magnitude of two dimensionless coupling parameters.
These can be taken to beg i52V/dE( i ) @58#.

The strong coupling limit isg.1, whereas the sparse cou-
pling limit is the opposite. The reason is that, as in other

areas of dynamics,gi is the mean number of states of series
i that are within the range of the coupling of a state in the
other series. Sincen is high it is typically the case that
g1.g2 is the most common situation below the threshold for
rotational autoionization and in the presence of a dc field one
has g1.1.g2. Under such circumstances the transfer of
population in one direction is effective but much less so in
the other direction.

So far we have discussed the average behavior that is
expected when the density of states varies essentially
smoothly and continuously. That is, however, not necessarily
the case when the electrical field is so weak that for one~or
both! series the Stark manifolds of adjacent Rydberg states
do not overlap.

The key role of the field for interseries coupling is due to
the dependence of the coupling parameter on the density of
states. In the absence of a dc field, most states of givenn are
essentially degenerate, except for those of lowestl ’s, which
are split by the quantum defect. There are therefore gaps in
the distribution of states in energy and on the average it is
unlikely to find a state of the other series within the coupling
range 2V of a state of the first series. Once the field is above
the Inglis-Teller limit the states are about uniformly spread
in energy.„While a further increase of the field will push
states of a givenn farther apart, states ofDn561 will move
into the energy range@cf. Fig. 4~b!# so that the density of
Rydberg states will not change significantly@59#.… We thus
have thatdE( i ) in a.u.5n23 for an isolated molecule orn24

in the presence of a field above the Inglis-Teller limit@60#.
The resulting increase in the coupling strength is, at highn’s,
of two orders of magnitude. Note also that the onset of this
strong coupling is already at rather weak fields
F~V/cm!51.7143109/n5. When several Rydberg series are
coupled, the values ofn within a given energy band rapidly
declines asj increases.~Recall that two isoenergetic states of
adjacent series differ in energy by 2B j8.! Eventually one will
reach a series that is below the Inglis-Teller limit. The de-
tailed discussion given in connection with Figs. 13, 15, and
17 below is then needed.

In the presence of a field the zeroth-order states of givenl
will be ~Stark! mixed as discussed in Sec. IV. For a more
localized electron-core coupling, this will diluteV by a fac-
tor proportional to 1/n, which will about cancel the increase
in the density of coupled states. However, and as already
noted in Secs. II~cf. Fig. 1! and IV, for a dipolar coupling
the dependence of the coupling matrix element onl is quali-
tatively different so that the primary role of the field is to
increase the coupling parameter due to its influence on the
density of states.

The magnitude of the interseries coupling is quite sensi-
tive to the magnitude of the rotational constantB of the core
and to the rotational state. Figure 10 shows that value ofn8
that is degenerate with a given value ofn, for the two series
j21 and j ,

n8225n2224B~a.u.! j .

Effective interseries coupling requires~cf. Figs. 3 and 9! that
the change inn is large compared to 1. Hence one needs that
1!Dn'4B jn3,n or, using the condition that strong cou-
pling requiresV/dE.1,

FIG. 8. Variation of the dipolar matrix elements
z^nkur22un8k8& z as a function ofk for n5154 andn85140 ~dashes!
and 113~full lines!. As shown in Fig. 10 below, these values ofn8
correspond to isoenergetic states in the Rydberg series built upon
the j51 rotational states of the core for rotational constants of
B50.48 and 1.9842 cm21, respectively. The latter is the value for
NO1. The value ofk8 corresponds to the largest matrix element
~see Fig. 6! and varies withn8. The matrix elements are multiplied
by n4, the density of states in a given Rydberg series in the presence
of an external dc field. The strength of the coupling increases with
Dn ~see Fig. 9 below!. By comparing with Fig. 2 for the matrix
elementsn5154 andn85113, it can be seen that there is no dilu-
tion of the coupling strength due to the external dc field. The value
of g52Vr is of the same order of magnitude in thel and in thek
basis.

FIG. 9. Dipolar matrix elements~multiplied byn4! for a givenk
andn5154 as a function ofn8 on a log10 scale. The chosen value of
k8 corresponds to the largest matrix element~see Fig. 6! and varies
with n8. For n85154, the matrix elements are zero, in agreement
with the orthogonality relation. Significant coupling strength is ob-
tained for the whole range ofDn values.
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~4B j /Vn!.1 ~10!

for strong coupling in the presence of a field.
The discussion so far has emphasized on the average be-

havior. Particularly in the sparse coupling limitg,1, where
the density of states is very nonuniform, there can be con-
siderable local variations in the interseries energy spacing~or
‘‘detuning’’ ! from one state to the next one of the same
series. Figure 11 provides a graphical demonstration of this
point. Shown is the spacing, for consecutive states of a given
series, between the state to the state nearest in energy of the
otherseries. To emphasize the wide local variations, the de-
tunings are plotted on a logarithmic scale. Effective local
coupling requires that 2V be large compared to these detun-
ings. The order of magnitude of the radial matrix element~in

a.u.! is less than 8. Hence, in the absence of a field, unless
the dipole moment is large compared to 1 a.u., it is typically
the case that only every so often is the local coupling effec-
tive. On the average, it is not. Figure 11 shows the detunings
in the absence of a field so the conclusion that the coupling is
occasionally effective but otherwise is not is consistent with
the coupling being, on the average, weak. It requires a field
to reduce the detunings. When the field is above the Inglis-
Teller limit of both series, the average is also the local be-
havior.

Figure 11 also shows the importance of the condition
~10!. The bigger the value of 2B j , the more common the
occurrence of low detunings. We reiterate that Fig. 11 is a
‘‘worst case’’ scenario as it is in the absence of a field.

The local variations in the effective interseries coupling
are reflected in the nature of the wave function. Plotted in
Fig. 12 are the weight of the zeroth-order state of a givenj in
the other series. In the absence of the field, when the cou-
pling is weak, the coupling is quite regular and occurs only
when there is a near degeneracy of the two series. Once a
field is present, the variation is more extreme and occurs
throughout@61,62#. The details of the computations in Fig.
12 are those of Fig. 15 below.

VI. DYNAMICS

The Hamiltonian~5! with, in addition, the intraseriesl
andn coupling matrix elements due to an external dc electric
field was numerically diagonalized, using the conservation of
M to reduce the size of the matrix. Thereby the survival

FIG. 10. Value ofn8 of the Rydberg state in the series built on
j that is about isoenergetic with a staten of the seriesj21 vs n.
The results are shown for different values of the rotational constant
B ~in cm21! and for different values ofj . The energy difference
between the two series is 2B j and if this is too small,Dn is not
large and the coupling~cf. Fig. 3! is not large. See also Fig. 6.

FIG. 11. Small energy difference~the detuning is in a.u. on a
log10 scale! between two nearly isoenergetic Rydberg states that
belong to two adjacent Rydberg series vs the energy~3106/a.u.! in
the lower series2~1/2n2!1B~a.u.! ( j21) j , shown for three values
of B ~in cm21! and j ~cf. Fig. 10!. These detunings will be closed in
the presence of a dc field, but in its absence the dipolar coupling
~Figs. 1–3! needs to overcome the energy mismatch if the coupling
is to be effective.

FIG. 12. Interseries coupling of two Rydberg series~n5154,
j50 andn5113, j51! in the ~a! absence and~b! presence of a dc
field ~0.0197 V/cm, which is the Inglis-Teller onset forn5154!.
The wave functions are determined by diagonalization of the
Hamiltonian in the subspaceM50. Shown is the weight of the
zeroth-order state of the ‘‘other’’ series for the different eigenstates
arranged in order of increasing energy.
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probability of the initial state uC(t)u2[z^c~0!uc(t)& z2
5^c(t)uQuc(t)&, whereQ is a projection on the initial state,
and also the occupation probabilityP(t) of any other state
w i , Pi(t)5z^w i uc(t)& z25^c(t)uw i&^w i uc(t)&, or group of
statesP(t)5( iPi(t) can be evaluated. The computations
were at an energy below the threshold for rotational autoion-
ization so that only discrete-discrete interseries coupling is
possible@63–65#. Even so, when the coupling is effective the
interseries coupling can be defacto dissipative@66,67#.

Figure 13 compares the transfer between two series for
two values of the dipole of the core~d51 and 2 a.u.! for a
field ~0.056 V/cm! that is above the Inglis-Teller limit for
both series.B51.9842 cm21. The initial state isn5125,
j50, and l51 and the figure shows the occupation of all
zeroth-order states ofj50 and of a nearly isoenergetic set of
statesn5100 andj51 in the other series. The computation
is for M50. Note that there are more states ofj51 because
for M50 all values ofmj are accessible. The transfer is
complete on a time scale of about 100 ns, which is compa-
rable to the minimal time delay that is usually possible in
ZEKE experiments@68#. At energies above threshold for ro-
tational autoionization, a population transfer of 10–20 % to
lower n’s will amply suffice to provide a long-time compo-
nent as observed in typical ZEKE experiments.

At longer times the evolution is essentially dissipative.
We provide several backups for this claim. First consider the
intraseries dynamics~Fig. 14!. Shown is the population in
different groups ofj50 states, classified according to the
value of l . As expected from the breadth of the Stark split-
ting ~1.3631027 a.u. or a period of 33 ns forn5154 and
F50.0197 V/cm, 1 a.u.55.1423109 V/cm! by approxi-
mately 10ms, the population in thej50 series is about uni-
form in the sense that the population in a group of states is
proportional to the number of states in the group. Next, con-
sider two different initial states, one in thej50 series as in
Fig. 9 ~n5154, j50, and l50! and the other in thej51
series~n5113, j51, andl50!. Since the density of states is
higher in thej51 series~because of the extra degeneracy of
the rotational states!, the transfer is more extensive in the
j50→j51 direction~Fig. 15!. By about 300 ns~for a dipole
of 1 a.u.! the distribution of populations among the two se-
ries has reached a steady state. Note that comparing Figs. 14
and 15, the interseries coupling reaches a plateau first.

The time evolution seen in Fig. 13–15 is modulated. To
show that this is due to Stark oscillations@69#, a linear time
scale is used in Fig. 16. Unlike the case of localized cou-
pling, here the Stark modulation ofl does not quench the
coupling, but does cause it to vary with the Stark period. Of
course, the oscillations are possible becausel is not a good
quantum number in the presence of a field and the zeroth-
order states are chosen to be hydrogenic~i.e., of given l !.
Because in the linear Stark regime the splittings of the states
are equidistant, there is a correspondence between the clas-
sical description wherel is modulated by the Stark frequency
@41# and the quantum-mechanical time evolution.

A point that was checked is the role ofl . The results
shown in Fig. 12~b! were repeated, but when coupling was
allowed only for states withl.4. This had hardly any effect.
In Fig. 13 the time evolution was recomputed when all states
of l<4 were assigned a zero interseries coupling. This had a
negligible effect. The results shown in Figs. 12–16 are all for
M50. The computations were repeated for higher values of
M so as to verify that there are no essential changes. This is
to be expected because increasing the value ofM cuts the
lowest value ofl that can contribute. These results suggest

FIG. 13. Time evolution for the initial staten5125 andl51 of
the j50 series shown vs time in nanoseconds on a log10 scale.Pj (t)
is the population in all the zeroth-order states of thej th series. The
higher the dipoled, the more extensive the transfer.

FIG. 14. Population in different groups of states all ofj50 and
n5154, but with different ranges ofl , as indicated for an initial
state j50, n5154, andl52 plotted vs time in nanoseconds on a
log10 scale. The transfer to thej51 series is allowed for, yet by 104

ns the populations have reached a steady state reflecting the number
of quantum states in each group.

FIG. 15. Time evolution for two different initial states in the
j50 and 1 series, respectively, shown vs time in nanoseconds on a
log10 scale. Initiallyl50. The transfer is more extensive in thej50
to j51 direction because there are more nearly isoenergetic quan-
tum states in thej51 series.
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that even higherM states are not immune to interseries cou-
pling. This should be detectable by means of rotational state-
selective pulsed field ionization.

The role of the dc electric field is shown in Fig. 17. The
computation uses states with several adjacent values ofn in
the j50 series and a somewhat higher field~0.1 V/cm! so
that both thej50 and 1 series are above the Inglis-Teller
limit. B51.9842 cm21. Shown are the populations in the two
series for initial states ofn5154, which in the absence of a
field are nearly isoenergetic withn5113 of the j51 series
and forn5153, which in the absence of a field is quite de-
tuned from states of thej51 series. The initial states used
differ also in the value ofl ~l50,1,2,3!. It is evident that
when the field is above the Inglis-Teller limit for both series
the coupling is evenly spread and that the local variations
have been smoothed.

VII. CONCLUDING REMARKS

The coupling of the Rydberg electron to a dipolar molecu-
lar core was found to be important, particularly so at times
much longer than the orbital period of the electron. Due to
the long-range nature of the interaction, the coupling affects

also states of higher orbital angular momentum, up tol /n
'0.5 ~see Fig. 1 and the Appendix!. Therefore, the presence
of a weak dc field does not dilute the strength of this cou-
pling. Indeed, for a dc field above the Inglis-Teller limit
@3n5F ~a.u.!.1# the field acts so as to provide a smooth
density of states, thereby ensuring that coupling of Rydberg
series associated with different states of the core occurs
throughout and is not limited to accidental resonances. The
long-range nature of the anisotropic coupling means that Ry-
dberg states of very differentn’s can strongly interact~Figs.
2, 3, 8, and 9! and this too favors interseries coupling. Meth-
odologically, the long-range nature of the coupling requires
that realistic computational studies include states of highl of
the different Rydberg series. The long times needed for the
population to uniformly sample the available phase space
~Figs. 13–15 and 17! means that the role of the dipolar cou-
pling is more readily experimentally explored in the time
domain rather than spectroscopically.
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APPENDIX: NUMERICAL COMPUTATION OF RADIAL
MATRIX ELEMENTS IN A HYDROGENIC BASIS

1. Definitions

The following convention@31# on the form of the radial
wave functions of bound hydrogeniclike states in a coordi-
nate representation is used:

Snl~r ![rRnl~r !5
1

a1/2n S nr !

G~n1l11! D
1/2S 2ran D l11

Lnr
~2l11!

3S 2ran DexpS 2
r

an D , ~A1!

wherel is a real numberl.2 1
2; n is the ‘‘principal’’ quan-

tum numbern5nr1l11, which need not be an integer;nr
~a non-negative integer! is the radial quantum number, which
is equal to the number of nodes inRnl(r ). a5\2/mZe2,
wherem is the reduced mass andZ is the charge on the core.
In atomic units and for the case of singly charged core\5e
5Z51 and m'1. L N

(a)(x) is the generalized Laguerre
polynomial

LN
~a!~x!5 (

m50

N
~21!m

m! S N1a
N2mD xm. ~A2!

The radial wave functions as defined above are orthonormal

E
0

`

dr Sn8l~r !Snl~r !5dn8n if n82n50~mod 1!

~A3!

and are solutions of the radial Schro¨dinger equation

FIG. 16. Time evolution for an initial state in thej50 series
shown vs time in nanoseconds on a linear scale. Same conditions as
in Fig. 9. Shown are the populations of three different groups of
states in thej50 series, where the states are classified according to
their value of l , as indicated. The Stark oscillations are clearly
evident.

FIG. 17. Time evolution when the dc electric field is above the
Inglis-Teller limit for both series~time is in nanoseconds on a log10
scale!. For six different initial states, with small and large detun-
ings, the time evolution is essentially the same.
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S 2
\2

2m

d2

dr2
1

l~l11!

2mr 2
2
Ze2

r
1

mZ2e4

2\2n2 DSnl~r !50.

~A4!

For integer values ofl5l and n5n, Snl(r ) are hydrogenic
radial wave function,l being the angular momentum. At a
general nonintegerl, Snl(r ) are the radial wave functions
that appear, for instance, within the framework of the model
of Rydberg states in the presence of a dipole@49–51# and are
sometimes interpreted as hydrogeniclike states with a quan-
tum defectd5l2l, l being the nearest integer tol.

The identity ~4! is derived by using both~A4! and the
corresponding radial equation forSn8l8(r ). Premultiplying
~A4! by Sn8l8(r ) and integrating overr yields the desired
result when the definition~A5! below is used.

2. Computation of radial elements

Radial matrix elements of an operator diagonal in coordi-
nate representation are defined as usual by

^n8l8u f ~r !unl&5E
0

`

dr Sn8l8~r ! f ~r !Snl~r !. ~A5!

For computations requiring a large number of matrix ele-
ments and when an accuracy of about 1% is sufficient, the
method due to Zimmermanet al. @27,30# is sufficient, par-
ticularly if l is belown/2. This method is based on the Nu-
merov integration of the radial Schro¨dinger equation com-
bined with a simple form of numerical quadrature. For high
values ofn and particularly ifl is also high, the Numerov
method calls for additional care or another method is needed.

The method we propose is more expensive in computer
time but provides a far higher accuracy. The method is based
on the reliable computation of the generalized Laguerre
polynomials, which are used in~A1! so that the evaluation of
the radial matrix elements is done via~A4! using quadrature.
The method is based on the recurrence relations for general-
ized Laguerre polynomials~equation 22.7.12 of Ref.@70#!

L0
~2l11!~x!51,

L1
~2l11!~x!52~l11!2x, ~A6!

LN
~2l11!~x!5$@2~N1l!2x#LN21

~2l11!~x!

2~N12l!LN22
~2l11!~x!%/N

and we present two variants, depending on how these rela-
tions are used to generate the polynomials. The closed form
~A2! cannot be used for computer calculation of Laguerre
polynomial of high ordersN because successive terms alter-
nate in sign. Straightforward summation of the power series
~A2! on a machine with a finite relative precision~double
precision «machine5225252.2310216! results in excessive
roundoff noise due to numerical cancellation of individual
terms. Already forn5100 andl50, the noise is 31 orders of
magnitude larger than the accurate result.

The first variant is to compute the Laguerre polynomials
with high accuracy directly using the recurrence relations
~A6!. The second variant combines the recurrence relations
with the multiplicative form of Laguerre polynomials

LN
~2l11!~x!5

~21!N

N! )
i51

N

~x2r i
~N2l!!, ~A7!

r i
Nl being thei th root of the polynomialL N

(2l11)(x). This
form does not suffer from numerical cancellation of errors
and provides the best possible numerical accuracy.

Golub @71# noted that the roots of classical orthogonal
polynomials are eigenvalues of the corresponding recurrence
relations. After renormalization of the generalized Laguerre
polynomials

PN5SN12l11
N D 21/2

LN
~2l11! ~A8!

and with following definitions of column vectorsp,t
and symmetric tridiagonal N3N matrix A(Nl): p
5col@P0(x),P1(x), . . . ,PN21(x)#, t5col@0,0, . . . ,
aN21NPN(x)], and (A(Nl))NM[aNM, the recurrence rela-
tions ~A6! can be recast in the matrix form

aNN52~N1l11!,

aNN215aN21N52@N~N12l11!#1/2, ~A9!

A~Nl!p1t5xp.

If x is a root ofPN(x), x5r i
Nl, then t5col~0,0, . . . ,0! and

Eq. ~A9! takes the form of the matrix eigenvalue problem,
with r i

Nl being eigenvalues of the symmetric tridiagonal ma-
trix A(Nl). Hence the rootsr i

Nl of L N
(2l11)(x) can be deter-

mined very accurately by employing stable procedures for
diagonalization, such as imtql2 ofEISPACK @72#. Given the
necessity of generating the wave function on a dense grid,
the diagonalization step does not appreciably increases the
cost of the computation.

In order to obtain accurate matrix elements, the accuracy
of the numerical wave function should be matched by the
accuracy of the numerical quadrature. We used for this pur-
pose the adaptive procedures dqdag and dqdagi from the
IMSL standard library, which are based on the Gauss-Kronrod
rules, enabling automatic adjustment to within the required
tolerance.

The accuracy of the matrix elements obtained by the two
variants was checked by comparing the value of the left-hand
side and the right-hand side of the identity given in Eq.~1! at
integer values ofl and l 8 and by computation of the identity
~4! at integer and noninteger values ofl and l 8. The or-
thonormalization conditions~A3! and the known diagonal
elements@31,73# provide additional and complementary tests
for accuracy. Such tests were conducted over a wide range of
values ofn, n8, l, andl8: 1

2,n, n8<500,21
2,l<n21, and

2 1
2,l8<n821 for f (r )5r k, k523,22,0,1,2. These tests in-

dicate that the relative accuracy of the matrix elements was
typically better than 10214 and in all the tests was better than
10212. The higher accuracy is expected for the second vari-
ant, based on~A9!. At the highn’s of interest and forl,n
the accuracy of the fast Numerov method due to Zimmerman
et al. @27# was found to be of the order of 1%.
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3. Limitations of the near-threshold approximation
for the radial wave functions

For states just below the threshold for ionization it is sug-
gestive to use the Bessel function approximation@31# for the
radial wave functions. This is particularly convenient for
such cases as a dipolar coupling where the integration of
~A6! is analytic. Unfortunately, as will now be discussed, the
method is not accurate for dipolar coupling at any but the
lowest l ’s.

The near-threshold approximation is valid for weakly
bound states when attention is centered on low values ofr . It
is then possible to use the approximation

n3/2Snl~r !→~2/r !1/2J2l11@~8r !1/2#, ~A10!

valid for n→`, while r and l are finite. It is important to
note that the Bessel function approximation~A10! is the first
term in a convergent series expansion and that higher terms
in the series can be obtained using equations 22.5.4 and
13.3.7 of Ref.@70#. The reason for making this point is that
radial matrix elements computed using~A10! can vanish
identically, whereas the exact results do not. When this hap-
pens it simply means that the next term in the expansion is
not a correction, but the leading contribution to the matrix
element.

Using the near-threshold Bessel function approximation
~A10! in ~A5! leads to an analytical expression for the dipo-
lar coupling@48#

^n8l8ur22unl&'
2

n3/2n83/2~l1l811!

sin@p~l2l8!#

p~l2l8!
.

~A11!

The most striking aspect of this result is that ifl2l8~mod1!
is quite small compared to unity then the matrix element is
negligible. The condition is quite common for all Rydberg
states but those of lowestl ’s because at higherl ’s the quan-
tum defect is very small so thatl'l and the transitions of
interest are those ofuD l u51. In fact ~see Fig. 18!, the exact
matrix element does not vanish. Rather, the leading contri-
bution is made by the next term neglected in~A10!.

Figure 18 provides a comparison between the exact re-
sults ~solid line! and the approximation~A11! ~dashed line!
for a low and an intermediate value ofl for n5154 and
n85113. It is seen that whenl/n is not small compared to
unity, the error is considerable. Most of the coupling terms
of importance in the Hamiltonian fall in this range. Note also
that in both panels of Fig. 18, the error is worst in the range
of interest, i.e., whenl2l8~mod1! is quite small compared

to unity and that even whenl is small, the absolute error in
the range of interest is comparable to the average strength of
the coupling.

By plotting the integrand of~A3! one can see that the
shortcoming of the approximation~A11! is due to the long-
range nature of the coupling. The exact wave function is
phase shifted with respect to the Bessel function. For a cou-
pling with a long range this leads to an accumulation of the
error. Moreover, since the phase of the exact wave function
varies with the energy and withl, the error is not constant.
The near-threshold approximation is more satisfactory for
short-range coupling. In the present problem it correctly ac-
counts for the role of the quantum defects atl!n when
l2l8~mod1! is not small.
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FIG. 18. Dipolar coupling matrix element~n5154! plotted
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