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A sophisticated theoretical description of the electronic states of americium has been hindered by the need
to treat the half-filled 5f shell. We present hereab initio calculations for americium on a multiconfiguration
Dirac-Fock level. The calculations were possible because only the dominant configuration state functions were
used. The results give a reasonable description of the energy of the electronic ground states for the various total
angular momenta and parity of americium. The results indicate some corrections for the spectroscopic assign-
ments.@S1050-2947~96!00212-0#

PACS number~s!: 31.15.Ar

I. INTRODUCTION

During the past 25 years the relativistic multiconfigura-
tion Dirac-Fock~MCDF! method for atoms proved to be a
powerful method for obtaining a description of the ground
state as well as excited states of complicated many-electron
atoms @1–10#. From the work to generate atomic MCDF
computer programs, two programs emerged that are now
generally available and can be used to perform calculations
for a large number of atoms and ions. One of these is the
program by Desclaux@11# and the other is by Grant and
Quiney @12,13#. Several nonrelativistic codes are also avail-
able, but they are for application to low atomic number at-
oms only.

Most of the applications have been made at the level of
the inclusion of all possible configuration-state functions
@14# that can be constructed from a specified set of valence
single-particle orbitals. In many cases, such as in the middle
of the transition elements series, inclusion of all possible
configuration-state functions is at the borderline of or even
beyond available computer capabilities. This situation is
even worse for the elements in the middle of the lanthanides
and actinides series. For these elements the full application
of the MCDF method is far from practical on current com-
puters.

To treat such systems as the lanthanide and actinide ele-
ments, we used a subset of the configuration-state functions
that can be constructed from a specified set of valence single-
particle orbitals. An example of such a treatment is presented
here. This is the treatment of the 5f element americium for
which the dominant electron configuration is (5f )7(7s)2.
There are other reasons to treat americium. Apparently, only
the 5f and 7s valence orbitals have been used in calculations
for americium@15#. No 6d or 7p orbitals have been used.
The 6d and 7p orbitals are energetically close to the 5f and
7s orbitals, thus their contribution to the ground-state wave
function is expected to be significant.

The method of choosing the configuration-state functions
is described in Sec. II. The Desclaux code was used to obtain
MCDF results. Results are presented and discussed in Sec.
III. Section IV contains some conclusions.

II. METHOD

The MCDF method is well known and was formulated
over 25 years ago@12#. We used the MCDF computer pro-
gram that was written by Desclaux@11# to perform the cal-
culations. The americium nucleus was treated as a point
charge. The Breit interaction was determined using first-
order perturbation. The self-energy and vacuum polarization
energy were not included. Further calculations have shown
that including the self-energy and vacuum polarization en-
ergy does not significantly change the transition energies
presented below. This finding is in agreement with results
presented in Ref.@6#. A conclusion presented in Ref.@6# is
that self-energy and vacuum polarization energy has little
effect on the fine-structure splittings.

An excellent summary of the MCDF method is given in
Ref. @13#. The total wave functionc of a relativistic many-
electron atom is represented as a sum of configuration-state
functions. The wave function is given by

c5(
i51

N

ai u~F! i&,

whereN is the number of configuration-state functions used
to construct the total wave function andai is the configura-
tion coefficient for configuration-state functioni , u~F!i&. The
configuration weights that will be used below are the squares
of the configuration coefficients. A configuration-state func-
tion is an eigenfunction of the total andz component of the
angular momentum operators that consists of a linear com-
bination of Slater determinants@16#. Results improve as the
completeness of the basis set increases, so as many
configuration-state functions are used in calculations as is
practical. The Slater determinants are constructed from
single-particle relativistic atomic orbitalswj , which are
eigenfunctions of angular momentum and parity. Each Slater
determinant corresponds to a configuration of electrons in
single-particle orbitals.

In the MCDF method both the coefficientsai and the
single-particle orbitalswj are optimized with respect to the
minimum of the total energy of the whole atom. Two
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TABLE I. Electron orbital configurations for the first choice for the wave-function basis set for americium. The seven numbers in the
parentheses give the number of electrons in the seven single-particle orbitals 5f * , 5f , 6d* , 6d, 7s, 7p* , and 7p.

Total
angular
momentum
and parity Choice 1

Total
angular
momentum
and parity Choice 1

~12!
2 ~5,2,0,0,2,0,0!, ~5,2,1,0,1,0,0!, ~6,1,0,1,1,0,0!

~5,2,2,0,0,0,0!, ~6,1,1,1,0,0,0!, ~6,1,0,2,0,0,0!
~5,2,0,0,0,2,0!, ~5,2,0,0,0,1,1!, ~5,2,0,0,0,0,2!
~6,0,0,0,2,1,0!, ~5,1,0,0,2,0,1!, ~6,0,1,0,1,1,0!
~5,1,0,1,1,1,0!, ~6,0,1,0,1,0,1!, ~6,0,0,1,1,0,1!
~6,0,2,0,0,1,0!, ~6,0,1,1,0,1,0!, ~6,0,0,2,0,1,0!
~6,0,2,0,0,0,1!, ~6,0,1,1,0,0,1!, ~6,0,0,2,0,0,1!
~5,1,0,0,0,2,1!, ~6,0,0,0,0,1,2!, ~5,1,0,0,0,0,3!

~ 32!
2 ~5,2,0,0,2,0,0!, ~6,1,1,0,1,0,0!, ~6,1,0,1,1,0,0!

~6,1,2,0,0,0,0!, ~6,1,1,1,0,0,0!, ~6,1,0,2,0,0,0!
~5,2,0,0,0,2,0!, ~6,1,0,0,0,1,1!, ~6,1,0,0,0,0,2!
~5,1,0,0,2,1,0!, ~6,0,0,0,2,0,1!, ~6,0,1,0,1,1,0!
~6,0,0,1,1,1,0!, ~6,0,1,0,1,0,1!, ~6,0,0,1,1,0,1!
~6,0,2,0,0,1,0!, ~6,0,1,1,0,1,0!, ~6,0,0,2,0,1,0!
~6,0,2,0,0,0,1!, ~6,0,1,1,0,0,1!, ~6,0,0,2,0,0,1!
~6,0,0,0,0,2,1!, ~6,0,0,0,0,1,2!, ~6,0,0,0,0,0,3!

~ 52!
2 ~5,2,0,0,2,0,0!, ~6,1,1,0,1,0,0!, ~6,1,0,1,1,0,0!

~6,1,2,0,0,0,0!, ~6,1,1,1,0,0,0!, ~6,1,0,2,0,0,0!
~5,2,0,0,0,2,0!, ~6,1,0,0,0,1,1!, ~6,1,0,0,0,0,2!
~5,1,0,0,2,1,0!, ~5,1,0,0,2,0,1!, ~6,0,1,0,1,1,0!
~6,0,0,1,1,1,0! ~6,0,1,0,1,0,1!, ~6,0,0,1,1,0,1!
~6,0,2,0,0,1,0!, ~6,0,1,1,0,1,0!, ~6,0,0,2,0,1,0!
~6,0,2,0,0,0,1!, ~6,0,1,1,0,0,1!, ~6,0,0,2,0,0,1!
~5,1,0,0,0,2,1!, ~6,0,0,0,0,1,2!, ~5,1,0,0,0,0,3!

~ 72!
2 ~6,1,0,0,2,0,0!, ~6,1,1,0,1,0,0!, ~6,1,0,1,1,0,0!

~6,1,2,0,0,0,0!, ~6,1,1,1,0,0,0!, ~6,1,0,2,0,0,0!
~6,1,0,0,0,2,0!, ~6,1,0,0,0,1,1!, ~6,1,0,0,0,0,2!
~5,1,0,0,2,1,0!, ~5,1,0,0,2,0,1!, ~5,1,1,0,1,1,0!
~6,0,0,1,1,1,0!, ~6,0,1,0,1,0,1!, ~6,0,0,1,1,0,1!
~5,1,2,0,0,1,0!, ~6,0,1,1,0,1,0!, ~6,0,0,2,0,1,0!
~6,0,2,0,0,0,1!, ~6,0,1,1,0,0,1!, ~6,0,0,2,0,0,1!
~5,1,0,0,0,2,1!, ~5,1,0,0,0,1,2!, ~5,1,0,0,0,0,3!

~ 252 !2 ~3,4,0,0,2,0,0!, ~4,3,1,0,1,0,0!, ~4,3,0,1,1,0,0!
~4,3,2,0,0,0,0!, ~5,2,1,1,0,0,0!, ~5,2,0,2,0,0,0!

~3,4,0,0,0,2,0!, ~4,3,0,0,0,1,1!, ~4,3,0,0,0,0,2!

~ 12!
1 ~5,2,0,0,1,1,0!, ~5,2,0,0,1,0,1!, ~5,2,1,0,0,1,0!

~6,1,1,0,0,0,1!, ~6,1,0,1,0,1,0!, ~6,1,0,1,0,0,1!
~5,1,1,0,2,0,0!, ~5,1,0,1,2,0,0!, ~6,0,2,0,1,0,0!
~6,0,1,1,1,0,0!, ~6,0,0,2,1,0,0!, ~5,1,3,0,0,0,0!
~6,0,2,1,0,0,0!, ~6,0,1,2,0,0,0!, ~6,0,0,3,0,0,0!
~6,0,0,0,1,2,0!, ~6,0,0,0,1,1,1!, ~6,0,0,0,1,0,2!
~5,1,1,0,0,2,0!, ~6,0,1,0,0,1,1!, ~6,0,1,0,0,0,2!
~5,1,0,1,0,2,0!, ~6,0,0,1,0,1,1!, ~6,0,0,1,0,0,2!

~ 32!
1 ~5,2,0,0,1,1,0! ~6,1,0,0,1,0,1!, ~6,1,1,0,0,1,0!

~6,1,1,0,0,0,1!, ~6,1,0,1,0,1,0!, ~6,1,0,1,0,0,1!
~6,0,1,0,2,0,0!, ~5,1,0,1,2,0,0!, ~6,0,2,0,1,0,0!
~6,0,1,1,1,0,0!, ~6,0,0,2,1,0,0!, ~6,0,3,0,0,0,0!
~6,0,2,1,0,0,0!, ~6,0,1,2,0,0,0!, ~6,0,0,3,0,0,0!
~5,1,0,0,1,2,0!, ~6,0,0,0,1,1,1!, ~6,0,0,0,1,0,2!
~6,0,1,0,0,2,0!, ~6,0,1,0,0,1,1!, ~6,0,1,0,0,0,2!
~5,1,0,1,0,2,0!, ~6,0,0,1,0,1,1!, ~6,0,0,1,0,0,2!

~ 52!
1 ~6,1,0,0,1,1,0!, ~6,1,0,0,1,0,1!, ~6,1,1,0,0,1,0!

~6,1,1,0,0,0,1!, ~6,1,0,1,0,1,0!, ~6,1,0,1,0,0,1!
~5,1,1,0,2,0,0!, ~6,0,0,1,2,0,0!, ~6,0,2,0,1,0,0!
~6,0,1,1,1,0,0!, ~6,0,0,2,1,0,0!, ~5,1,3,0,0,0,0!
~6,0,2,1,0,0,0!, ~6,0,1,2,0,0,0!, ~6,0,0,3,0,0,0!
~5,1,0,0,1,2,0!, ~6,0,0,0,1,1,1!, ~6,0,0,0,1,0,2!
~5,1,1,0,0,2,0!, ~6,0,1,0,0,1,1!, ~6,0,1,0,0,0,2!
~6,0,0,1,0,2,0!, ~6,0,0,1,0,1,1!, ~6,0,0,1,0,0,2!

~ 72!
1 ~6,1,0,0,1,1,0!, ~6,1,0,0,1,0,1!, ~6,1,1,0,0,1,0!

~6,1,1,0,0,0,1!, ~6,1,0,1,0,1,0!, ~6,1,0,1,0,0,1!
~5,1,1,0,2,0,0!, ~5,1,0,1,2,0,0!, ~5,1,2,0,1,0,0!
~6,0,1,1,1,0,0!, ~6,0,0,2,1,0,0!, ~5,1,3,0,0,0,0!
~6,0,2,1,0,0,0!, ~6,0,1,2,0,0,0!, ~6,0,3,0,0,0,0!
~5,1,0,0,1,2,0!, ~5,1,0,0,1,1,1!, ~5,1,0,0,1,0,2!
~5,1,1,0,0,2,0!, ~6,0,1,0,0,1,1!, ~6,0,1,0,0,0,2!
~5,1,0,1,0,2,0!, ~6,0,0,1,0,1,1!, ~6,0,0,1,0,0,2!

approximations were made in choosing the single-particle
orbitals used. First, the number of single-particle orbitals that
should be included is infinite, so the first approximation in
every MCDF calculation is the choice of the specific basis. A
natural choice in the numerical MCDF code@11,14# are
single-particle atomic wave functions. The calculation
should include all of those wave functions that have their
maxima in the region of the valence shell. Highly excited
orbitals are usually left out.

Second, configuration-state functions that contain excita-
tions of occupied inner-shell orbitals contribute, but they are
usually left out because of impracticability and convergence
problems that often occur in such calculations. We therefore
restrict ourselves to the single-particle orbitals 5f , 7s, 6d,

and 7p as the valence orbitals. All the inner orbitals from 1s
to 6p are taken as occupied and not involved in the explicit
MCDF procedure. In addition, we do not consider here
higher orbitals such as 8s and 7d.

Since we are using a relativistic treatment, the valence
orbitals used in the MCDF treatment are 5f * , 5f , 7s, 6d* ,
6d, 7p* , and 7p, where the asterisk denotes the orbital with
total angular momentum equal toL2 1

2 and the orbital with-
out the asterisk has a total angular momentum equal toL1
1
2. HereL is the orbital angular momentum. For example, the
orbitals 5f * and 5f are also denoted as 5f 5/2 and 5f 7/2, re-
spectively. In the case of americium the 7 valence orbitals
are occupied by 9 electrons and the radon core has 86 elec-
trons. The problem for americium is now well defined:
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TABLE II. Electron orbital configurations for the second and third choices for the wave-function basis set for americium. The seven
numbers in the parentheses give the number of electrons in the seven single-particle orbitals 5f * , 5f , 6d* , 6d, 7s, 7p* , and 7p.

Total
angular
momentum
and parity Choice 2 Choice 3

Total
angular
momentum
and parity Choice 2 Choice 3

~12!
2 ~6,0,0,0,2,1,0! ~6,0,0,0,2,1,0!

~5,1,0,0,2,1,0! ~5,1,0,0,2,1,0!
~4,2,0,0,2,1,0! ~4,2,0,0,2,1,0!
~3,3,0,0,2,1,0! ~6,0,1,0,1,1,0!
~2,4,0,0,2,1,0! ~6,0,1,0,1,0,1!
~1,5,0,0,2,1,0! ~6,0,0,1,1,0,1!
~0,6,0,0,2,1,0! ~6,0,2,0,0,1,0!

~6,0,1,1,0,1,0!
~6,0,0,2,0,1,0!
~6,0,2,0,0,0,1!
~6,0,1,1,0,0,1!
~6,0,0,2,0,0,1!
~6,0,0,0,0,1,2!

~ 32!
2 ~6,0,0,0,2,0,1! ~6,0,0,0,2,0,1!

~5,1,0,0,2,0,1! ~5,1,0,0,2,0,1!
~4,2,0,0,2,0,1! ~4,2,0,0,2,0,1!
~3,3,0,0,2,0,1! ~3,3,0,0,2,0,1!
~2,4,0,0,2,0,1! ~6,0,1,0,1,1,0!
~1,5,0,0,2,0,1! ~6,0,0,1,1,1,0!
~0,6,0,0,2,0,1! ~6,0,1,0,1,0,1!

~6,0,0,1,1,0,1!
~6,0,2,0,0,1,0!
~6,0,1,1,0,1,0!
~6,0,0,2,0,1,0!
~6,0,2,0,0,0,1!
~6,0,1,1,0,0,1!
~6,0,0,2,0,0,1!
~6,0,0,0,0,2,1!
~6,0,0,0,0,1,2!
~6,0,0,0,0,0,3!

~ 52!
2 ~6,0,1,0,1,1,0! ~6,0,1,0,1,1,0!

~5,1,1,0,1,1,0! ~5,1,1,0,1,1,0!
~4,2,1,0,1,1,0! ~4,2,1,0,1,1,0!

~6,0,0,1,1,1,0!
~6,0,1,0,1,0,1!
~6,0,0,1,1,0,1!
~6,0,2,0,0,1,0!
~6,0,1,1,0,1,0!
~6,0,0,2,0,1,0!
~6,0,2,0,0,0,1!
~6,0,1,1,0,0,1!
~6,0,0,2,0,0,1!
~6,0,0,0,0,1,2!

~ 72!
2 ~6,1,0,0,2,0,0! ~6,1,0,0,2,0,0!

~5,2,0,0,2,0,0! ~5,2,0,0,2,0,0!
~4,3,0,0,2,0,0! ~4,3,0,0,2,0,0!
~3,4,0,0,2,0,0! ~3,4,0,0,2,0,0!
~2,5,0,0,2,0,0! ~2,5,0,0,2,0,0!
~1,6,0,0,2,0,0! ~1,6,0,0,2,0,0!
~0,7,0,0,2,0,0! ~0,7,0,0,2,0,0!

~6,1,1,0,1,0,0!
~6,1,0,1,1,0,0!
~6,1,2,0,0,0,0!
~6,1,1,1,0,0,0!
~6,1,0,2,0,0,0!
~6,1,0,0,0,2,0!

~6,1,0,0,0,1,1!
~6,1,0,0,0,0,2!

~ 252 !2 ~3,4,0,0,2,0,0! ~3,4,0,0,2,0,0!
~4,3,1,0,1,0,0!
~4,3,0,1,1,0,0!
~4,3,2,0,0,0,0!
~5,2,1,1,0,0,0!
~5,2,0,2,0,0,0!
~3,4,0,0,0,2,0!
~4,3,0,0,0,1,1!
~4,3,0,0,0,0,2!
~3,4,0,0,0,0,2!

~ 12!
1 ~5,1,1,0,2,0,0! ~5,1,1,0,2,0,0!

~4,2,1,0,2,0,0! ~4,2,1,0,2,0,0!
~3,3,1,0,2,0,0! ~3,3,1,0,2,0,0!
~2,4,1,0,2,0,0! ~5,1,0,1,2,0,0!
~1,5,1,0,2,0,0! ~5,1,3,0,0,0,0!
~0,6,1,0,2,0,0! ~5,1,1,0,0,2,0!

~5,1,0,1,0,2,0!
~ 32!

1 ~6,0,1,0,2,0,0! ~6,0,1,0,2,0,0!
~5,1,1,0,2,0,0! ~5,1,1,0,2,0,0!
~4,2,1,0,2,0,0! ~4,2,1,0,2,0,0!
~3,3,1,0,2,0,0! ~6,0,2,0,1,0,0!
~2,4,1,0,2,0,0! ~6,0,1,1,1,0,0!
~1,5,1,0,2,0,0! ~6,0,0,2,1,0,0!
~0,6,1,0,2,0,0! ~6,0,3,0,0,0,0!

~6,0,2,1,0,0,0!
~6,0,1,2,0,0,0!
~6,0,0,3,0,0,0!
~6,0,0,0,1,1,1!
~6,0,0,0,1,0,2!
~6,0,1,0,0,2,0!
~6,0,1,0,0,1,1!
~6,0,1,0,0,0,2!
~6,0,0,1,0,1,1!
~6,0,0,1,0,0,2!

~ 52!
1 ~5,1,1,0,2,0,0! ~5,1,1,0,2,0,0!

~4,2,1,0,2,0,0! ~4,2,1,0,2,0,0!
~3,3,1,0,2,0,0! ~3,3,1,0,2,0,0!
~2,4,1,0,2,0,0! ~2,4,1,0,2,0,0!
~1,5,1,0,2,0,0! ~5,1,3,0,0,0,0!
~0,6,1,0,2,0,0! ~5,1,0,0,1,2,0!

~5,1,1,0,0,2,0!
~ 72!

1 ~5,1,0,1,2,0,0! ~5,1,1,0,2,0,0!
~4,2,0,1,2,0,0! ~5,1,0,1,2,0,0!
~3,3,0,1,2,0,0! ~4,2,0,1,2,0,0!

~3,3,0,1,2,0,0!
~5,1,2,0,1,0,0!
~5,1,3,0,0,0,0!
~5,1,0,0,1,2,0!
~5,1,0,0,1,1,1!
~5,1,0,0,1,0,2!
~5,1,1,0,0,2,0!
~5,1,0,1,0,2,0!
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construct all configuration-state functions that have 9 elec-
trons in the 7 valence orbitals and have a given total angular
momentum and parity. This leads to a very large number of
configuration-state functions. Even with the restriction of
state functions to eigenfunctions of the parity and total an-
gular momentum operators, the number of configuration-
state functions is too large to be handled by current comput-
ers and this is the reason why no full-scale MCDF
calculations exist for americium and other such elements.

Our choice 1 for the americium configuration-state func-
tions includes configurations with every allowable distribu-
tion of 2 or 3 electrons in the 7s, 6d* , 6d, 7p* , and 7p
orbitals. The distribution of the remaining 7 or 6 electrons in
the 5f * and 5f orbitals are restricted. The restriction consists
of selecting the allowed configurations with a maximum
number of electrons in the 5f * orbital. Choice 1 is given in
Table I as a function of the total angular momentum. Each
configuration in choice 1 is denoted by a set of seven ordered
numbers. For example, the set~6,1,1,0,1,0,0! denotes the
configuration (5f * )6(5 f )1(6d* )1(6d)0(7s)1(7p* )0(7p)0.
Choice 1 is only a first approximation and, as it will be
shown in Sec. III, does not lead to results that are suitably
accurate, so other choices need to be considered.

The configuration in a choice-1 set with the largest weight
is a function of the total angular momentum. This configu-
ration for a given total angular momentum will be called the
principal configuration for that total angular momentum. A
principal configuration has a specific number of electrons in
the 5f * and 5f orbitals and a specific number in the 7s, 6d* ,
6d, 7p* , and 7p orbitals. Choice-2 basis sets contain the
principal configuration plus configurations that are derived
from the principal configuration by changing the distribution
of electrons in the 5f * and 5f orbitals with the number of
electrons in the 7s, 6d* , 6d, 7p* , and 7p orbitals fixed.
Choice-3 basis sets contain the principal configuration plus
all of the allowed configurations that are derived from the
principal configuration by changing the distribution of elec-
trons in the 7s, 6d* , 6d, 7p* , and 7p orbitals with the
number of electrons in the 5f orbitals fixed plus some of the
configurations that are derivable from the principal configu-
ration by changing the distribution of electrons in the 5f *
and 5f orbitals with the number of electrons in the 7s, 6d* ,
6d, 7p* , and 7p orbitals fixed. The number of configura-
tions selected for choice 3 is influenced by the computation
time required to obtain energies using it. Several hundred
hours of computation time were required for some choices.
Choices 2 and 3 for the wave-function basis set for ameri-
cium as a function of total angular momentum are presented
in Table II. Table III contains the number of configuration-
state functions that are associated with choices 1, 2, and 3 as
a function of total angular momentum and parity.

For any large angular momentum, the number of
configuration-state functions that can be constructed with 9
electrons in the 5f , 7s, 6d, and 7p shells becomes small
enough that a calculation that uses all of these configuration-
state functions can be performed. Results from this calcula-
tion can be compared with the results from using the
choice-1, -2, and -3 basis sets. For the value of the total
angular momentum equal to~ 252 !2 only 196 configuration-
state functions are obtained when 7 electrons are in the 5f
shell. A full-scale MCDF calculation with this basis set for

neutral americium leads to a total energy of 827 617.482 eV.
The choice-3 basis gives a total energy of 827 617.394 eV.
In this case the choice-3 basis contains only 27
configuration-state functions. The energy from the choice-3
basis set differs by just 0.09 eV from the full MCDF value.
Of course, this comparison is not a proof of the reliability of
the choice-3 basis sets, but it is a strong argument in favor of
some degree of reliability of the results that we obtain with
the configuration-state functions of choice 3.

III. RESULTS

Using the configuration-state functions that we described
in Sec. II, we were able to perform various MCDF calcula-
tions for neutral americium. Table IV shows the ground-state
values of the total energy as a function of the total angular
momentum for neutral americium with choices 1, 2, and 3
for the basis functions. Choice 1 for the basis set was used
only to determine the dominant weights of the various
configuration-state functions in order to find out which
configuration-state functions should be included in choices 2
and 3. It is interesting that the choice-1 basis set yields a

TABLE III. Number of configuration-state functions used in the
MCDF calculations for the neutral americium atom for the three
choices of subsets discussed in the text.

Total
angular
momentum
and parity

Number of configuration-state functions
Choice 1 Choice 2 Choice 3

~12!
2 61 33 19

~ 32!
2 39 107 79

~ 52!
2 53 102 117

~ 72!
2 86 50 68

~ 252 !2 21 1 27
~ 12!

1 47 56 38
~ 32!

1 48 107 41
~ 52!

1 48 139 130
~ 72!

1 93 115 175

TABLE IV. Total energies obtained using the basis sets given in
Tables I and II.

Total
angular momentum
and parity

Energy ~eV!

Choice 1 Choice 2 Choice 3

~12!
2 2827 621.9022827 621.9862827 622.481

~ 32!
2 2827 620.9982827 621.2562827 621.618

~ 52!
2 2827 620.6272827 620.8922827 621.283

~ 72!
2 2827 620.2072827 623.6252827 623.642

~ 252 !2 2827 617.1472827 616.8662827 617.394
~ 12!

1 2827 621.8222827 622.3872827 622.501
~ 32!

1 2827 622.4932827 623.0712827 623.159
~ 52!

1 2827 622.0552827 622.7772827 622.786
~ 72!

1 2827 621.2782827 621.8722827 622.130
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ground state with a positive parity and with the total angular
momentum equal to3

2. This clearly demonstrates that
choice-1 basis sets are not suitable. In column 3 of Table IV
the results for the total energies are given for choice 2. Col-
umn 4 lists the results for the total energies using choice 3.
To show that the configurations that give the dominant con-
tributions are different for different values of the total angu-
lar momentum, the weights of the one, two, or three domi-
nant configurations are given in Table V. Note that only the
spectroscopic assignment of the ground-state configuration
with (5 f )7(7s)2 is in agreement with the calculated results.
The calculated results indicate that the assignments are prob-
ably (5f )6(6d)1(7s)1(7p)1, (5f )6(6d)1(7s)2, and
(5 f )6(6d)1(7s)2 for the lowest-energy states with a total
angular momentum and parity of~ 52!

2, ~52!
1, and~72!

1, respec-
tively. To see the results on a relative scale we have listed in
Table VI the calculated total energies for several total angu-
lar momentum eigenvalues relative to the ground-state eigen-
value. The experimental values@17,18# for the energy levels
of neutral americium along with the spectroscopic assign-
ments of these configurations are given also.

It is difficult to assess the accuracy of the calculated re-
sults on the basis of a comparison with experimental results
since only a few experimental values are available. The com-
parison of the calculated and experimental values for the
energies for a total angular momentum and parity of~ 52!

1 and
~ 72!

1 indicates that one or both of these experimental absorp-
tion lines may have been misassigned. This follows because
the uncertainty in the differences between calculated values
of the same parity in Table VI is probably less than 0.5 eV
and the experimental value for a total angular momentum
and parity of~52!

1 minus the experimental value for a total

angular momentum and parity of~72!
1 is not within 0.5 eV of

the corresponding value that is determined from calculated
transition energies. This experimental difference and the cor-
responding difference based on calculations is 0.27 and
20.65 eV, respectively. The estimate of 0.5 eV for the un-
certainty of the differences between transition energies of the
same parity in Table VI is based on the performance of the
MCDF method with Breit interactions for some excitation
energies of the lanthanide elements@10#. The results for en-
ergies show that the choice-3 basis sets usually give the best
results. Further work indicated that good results are obtain-
able for total angular momentum values of9

2 and
11
2 , but these

require very long computation times. The computation time
decreases for total angular momentum values that are greater
than 11

2 .

IV. CONCLUSION

We have performed the largest quantum-mechanical cal-
culations yet completed for the neutral atom of americium on
the relativistic MCDF level. We have considered three
choices for the basis set. The first basis was used to deter-
mine which configuration-state functions should be included
in the largest calculations. The configurations included are
the dominant ones. The second choice made it clear that it is
important to include more than one distribution of the elec-
trons in the 6d, 6d* , 7s, 7p* , and 7p subshells. The third
choice gave the most accurate results. The basis functions for
choice 3 are given in Table II. Although we were only able
to consider a certain subspace of the possible configuration-
state functions, the comparison with the few experimental
results that are available shows a quantitative agreement with
the experiment. This seems to be the first large-scale MCDF
calculation on anf element with 9 valence electrons.
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TABLE V. Term symbols and dominant electron configuration
of the lowest-energy states of americium as a function of the total
angular momentum. For the calculated energies the weights of sev-
eral dominant configurations are given. No term symbols are asso-
ciated with the calculated values.

Total
angular
momentum
and parity

Experiment
Calculations

Term Configuration
Dominant

configurations Weight

~12!
2 ~6,0,0,0,2,1,0! 0.71

~4,2,0,0,2,1,0! 0.15
~32!

2 ~6,0,0,0,2,0,1! 0.70
~4,2,0,0,2,0,1! 0.17

~52!
2 10D5/2 (5 f )7(5d)1(7s)1 ~6,0,1,0,1,1,0! 0.61

~4,2,1,0,1,1,0! 0.15
~72!

2 8S7/2 (5 f )7(7s)2 ~4,3,0,0,2,0,0! 0.62
~5,2,0,0,2,0,0! 0.17

~12!
1 ~5,1,1,0,2,0,0! 0.77

~3,3,1,0,2,0,0! 0.14
~32!

1 ~6,0,1,0,2,0,0! 0.74
~4,2,1,0,2,0,0! 0.17

~52!
1 (5 f )7(7s)1(7p)1 ~5,1,1,0,2,0,0! 0.42

~4,2,1,0,2,0,0! 0.29
~3,3,1,0,2,0,0! 0.11

~7/2!1 10P7/2 (5 f )7(7s)1(7p)1 ~5,1,0,1,2,0,0! 0.67
~3,3,0,1,2,0,0! 0.14

TABLE VI. Experimental@17,18# and calculated energy differ-
ences between several total angular momentum eigenvalues and the
ground-state eigenvalue. The calculated values were obtained using
the choice-3 basis sets.

Total Angular
Momentum and
Parity

Experiment Calculations
Energy~eV!Term Energy~eV!

~ 12!
2 1.16

~32!
2 2.02

~52!
2 10D5/2 1.95 2.36

~72!
2 8S7/2 0 0

~12!
1 1.14

~32!
1 0.48

~52!
1 2.21 0.86

~72!
1 10P7/2 1.94 1.51
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