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Garrison and Wright showed that upon undergoing cyclic quantum evolution a metastable state acquires
both a geometric phase and a geometric decay probability. This is described by a complex geometric phase
associated with the cyclic evolution of two states and is closely related to the two-state formalism developed
by Aharonovet al.Applications of the complex geometric phase to the Born-Oppenheimer approximation and
the Aharonov-Bohm effect are considered. A simple experiment based on the optical properties of absorbing
birefringent crystals is proposed.@S1050-2947~96!06112-4#

PACS number~s!: 03.65.Bz

In quantum mechanics a state is defined up to an arbitrary
phase. However, phase differences have physical meaning.
Therefore if a state evolves in such a way that
uc(T)&5eiauc(0)&, the phaseeia can be measured. The re-
markable property discovered by Berry in the case of adia-
batic evolution@1# and subsequently generalized by Aha-
ronov and Anandan~AA ! to arbitrary evolution@2# is that the
phaseeia contains not only a dynamical term but also a
purely geometric term, the Berry or AA phase, which de-
pends only on the geometry of the circuit described by
uc(t)& in Hilbert space betweent50 and t5T. It is the
holonomy acquired byuc(t)& when it is parallel transported
around the circuit@3#. Explicitly it takes the form

fAA52 i ln^c~0!uc~T!&1 i E
0

T

dt^c~ t !u] tc~ t !&, ~1!

where the second term is the subtraction of the dynamical
phase.

Berry’s and AA’s phase have been well verified experi-
mentally in such diverse contexts as optics, NMR, and mo-
lecular physics@4–7#. They have also surfaced in a wide
variety of theoretical contexts@7#. Berry’s phase has been
generalized to cyclic evolution of degenerate states@8# and to
nonadiabatic evolution@9#.

A generalization that has received little attention is Gar-
rison and Wright’s~GW! application to metastable states
@10#. Garrison and Wright considered a metastable state
which undergoes cyclic evolution. They showed that if the
metastable system has not decayed during the timeT, then its
stateuc(T)& coincides with the original stateuc(0)& up to a
phase, which can as expected be decomposed into a dynami-
cal and a geometrical term. However, a new feature arises in
this case, namely, the probability for the metastable state not
to decay during the cyclic evolution can also be decomposed
into a dynamical and a geometrical factor. This is described
by a complex geometric ‘‘phase,’’ the real part of which
corresponds to the geometric phase and the imaginary part to
the geometric decay probability. The complex geometric
phase is associated with the cyclic evolution of two states,
contrary to the AA phase, which is associated with the cyclic
evolution of one state.

Recently Aharonov and co-workers have shown how to
describe quantum systems in terms of two states, one evolv-

ing towards the future and one evolving towards the past
@11–13#. In particular they showed that measured quantities
that in the conventional one-state approach are real become
complex in the two-state approach. It has also been shown
that measurements on metastable systems naturally fit into
the two-state formalism@14#. It is therefore natural that the
geometric quantity associated with the cyclic evolution of
the metastable states is described by the cyclic evolution of
two states and that it is complex.

Garrison and Wright~GW! illustrated how the complex
geometric phase arises in the case of an excited atom in a
cyclically varying laser field. The purpose of this paper is to
further analyze the properties of the complex geometric
phase and to propose several contexts of theoretical or ex-
perimental interest in which the complex geometric phase
arises. In the Born-Oppenheimer approximation in the pres-
ence of metastable systems it can be realized as a complex
vector potential for the slow degrees of freedom. This could
have applications when calculating the lifetime and energy
levels of excited electronic-vibrational-rotational spectra of
molecules. In the Aharonov-Bohm effect it gives rise to to-
pological decay probabilities in addition to the usual topo-
logical phase. Finally we suggest a simple experimental
scheme in which to verify Garrison and Wright’s complex
geometric phase, which is based on the optical properties of
absorbent birefringent crystals.

Let us first recall Garrison and Wright’s derivation of the
complex geometric phase. The time evolution of a meta-
stable system is

uc~ t !&5expS 2 i E
0

t

dtHeffD uc~0!&1~decay products!,

~2!

whereHeff is the effective Hamiltonian, which acts on the
metastable state@15#. The most interesting situation arises
when there are several coupled metastable states that are
nearly degenerate. For a review of some physical systems in
which this occurs, see@16#. We shall denote the space of
metastable statesH. One can then consider thatHeff acts
only inH. The eigenvaluesv i of Heff are complex~we shall
suppose them nondegenerate!. The left and right eigenvec-
tors of Heff (^f i uv i5^f i uHeff and Heffuc i&5v i uc i&) each
form a nonorthogonal basis ofH. They obey the mutual
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orthogonality condition̂ f i uc j&5d i j ^f i uc i&, which follows
from the double equality ^f i uHeffuc j&5v i^f i uc j&
5v j^f i uc j&. Using this orthogonality condition we can ex-
pressHeff as

Heff5(
i

v i

uc i&^f i u
^f i uc i&

. ~3!

Let us now suppose thatHeff is slowly changing with
time. The amplitude for the metastable state not to decay is
the solution of the effective Schro¨dinger equation
i ] tuc&5Heff(t)uc&. We can decomposeuc& into the basis of
instantaneous eigenkets

uc&5(
i
ai~ t !expS 2 i E

0

t

dtv i~ t ! D uc i~ t !&.

Inserting this expression into the effective Schro¨dinger equa-
tion and taking the scalar product with^f i u yields

] tai1ai
^f i u] tc i&

^f i uc i&
52(

jÞ i
ajexpS 2 i E

0

t

dt~v j2v i ! D
3

^f i u] tc j&

^f i uc i&
. ~4!

For a sufficiently slowly varying Hamiltonian the right-hand
side of this equation can be neglected~see discussion below!.
Thus if the initial stateuc(0)& coincides with the eigenstate
uc i&, in the adiabatic limit the solution of the effective Schro¨-
dinger equation is

uc~ t !&5expS 2 i E t

dtv i D
3expS 2E t

dt^f i u] tc i&/^f i uc i& D uc i~ t !&. ~5!

When Heff has evolved cyclically the second factor is a
purely geometric quantity associated with the cyclic evolu-
tion of the metastable state:

fGW
i 5 i E

0

T

dt
^f i u] tc i&

^f i uc i&
5
i

2E0
T

dt
^f i u] tc i&2^] tf i uc i&

^f i uc i&

1] tln^f i~ t !uc i~ t !&. ~6!

The conditionsuc i(T)&5uc i(0)& and ^f i(T)u5^f i(0)u im-
ply that the boundary term in the second equality vanishes.
Further manipulation yields an expression forfGW, which is
independent of the choice of phase in the definition of
^f i(t)u and uc i(t)&:

fGW
i 52

i

2
ln

^c i~0!uc i~T!&

^f i~T!uf i~0!&
1

i

2E0
T

dt
^f i u] tc i&2^] tf i uc i&

^f i uc i&
.

~7!

This expression exhibits the symmetric role of^f i u and
uc i& and shows explicitly thatfGW

i is associated only with
the cyclic evolution of the two states and not with the struc-
ture of the effective Hamiltonian. Thus Eq.~7! is the gener-

alization of geometric phases to systems described by two
states@11#. When the two states coincide one recovers the
AA phase Eq.~1!.

The real part offGW
i is the geometric phase and the

imaginary part yields the geometric decay probability. There
is, however, an important difference between the real and
imaginary parts offGW. Indeed the geometric phase
@5Re(fGW)# is defined only for cyclic evolution. On the
other hand, the geometric decay probability@5Im(fGW)# is
defined even for noncyclic evolution. This is because the
decay probability is defined at all times. One verifies that the
imaginary part of Eq.~7! is a geometric quantity even for
noncyclic evolution since it is independent of the choice of
phase for̂ f i u anduc i& and it is independent of the reparam-
etrization of the path. In this paper we shall mostly consider
the case of cyclic evolution for which the analogy with Ber-
ry’s phase is closest.

For cyclic evolution, the integral in Eq.~7! is around a
contour, denotedC, in the product,H^H, of the space of
metastable states. It can be reexpressed as the integral of a
complex two-form over any surface]C with C as boundary

fGW5E E
]C
dxa`dxbBab , ~8!

Bab5
^]bfu]ac&

^fuc&
2

^]bfuc&^fu]ac&

^fuc&2
2~a↔b!. ~9!

Garrison and Wright illustrated this formula in a particular
case for whichfGW could be interpreted as a complex solid
angle, in generalization of Berry’s result.

Let us return to the condition of validity of the adiabatic
approximation in Eq.~4!. This is not straightforward because
the right-hand side of Eq.~4! contains exponentially growing
terms~since thev i are complex!. However, it was shown in
@17# that in the case of Hermitian Hamiltonians the ampli-
tude for nonadiabatic transitions is exponentially small.
Since the formal expression for the nonadiabatic transitions
is the same in both cases, the adiabatic approximation will be
valid provided Re(v i2v j ) is much larger than the other
frequencies that appear in this problem.

It is interesting to also consider the opposite limit wherein
the timeT it takesHeff to change cyclically is much less than
uv i2v j u21 ~but T must nevertheless be long enough to en-
sure that the concept of an effective Hamiltonian remains
valid at all times!. Then Heff can be reexpressed as
Heff5v( i uc i&^f i u/^f i uc i&. In this case the cyclic time evo-
lution is given by the operator

expS 2 i E
0

T

dtHeffD 5e2 ivtT̂expS i E
0

T

dtA~ t ! D
A~ t !5 i(

i , j
uc i&

^f i u] tc j&

^f i uc i&
^f j u, ~10!

where T̂ is the time ordering operator.A(t) is a ‘‘non-
Hermitian non-Abelian gauge potential,’’ which generalizes
to metastable states the non-Abelian gauge potential found
by Wilczek and Zee@8# in the case of cyclic evolution of
degenerate states.
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We now consider several applications of the complex
geometric phase. We first recall that the Berry phase was
originally introduced in the context of the Born-
Oppenheimer approximation where it appears as a nontrivial
vector potential for the slow degrees of freedom@18#. In a
similar way one can consider the Born-Oppenheimer ap-
proximation for a system composed of rapid but metastable
particles coupled to a slow system. The total Hamiltonian for
such a system is

Heff5
P2

2M
1V~Q!1heff~q,Q!, ~11!

where q is the fast degree of freedom andQ is the slow
degree of freedom. Letuc i(q,Q)& and ^f i(q,Q)u be the in-
stantaneous eigenstates of the rapid Hamiltonianheff(q,Q).
Postulating a wave function of the form
uC&5ux i(Q)&uc i(q,Q)&, one obtains forux i& the equation

F 1

2M
@P2Ai~Q!#21Vi~Q!G ux i&5V i ux i&, ~12!

whereV i is the complex energy of the eigenstate and

Vi~Q!5V~Q!1v i~Q!1
1

2M S ^f i u]Q
2c i&

^f i uc i&
2

^f i u]Qc i&
2

^f i uc i&
2 D ,

Ai~Q!52 i
^f i u]Qc i&

^f i uc i&
. ~13!

The complex vector potentialAi(Q) that arises in this case
could have measurable effects on the lifetimes and energy
levels of excited electronic-vibrational-rotational molecular
states@7#.

Among the most interesting problems that can be ana-
lyzed using the concept of geometric phase are the
Aharonov-Bohm~AB! @19# and Aharonov-Casher~AC! @20#
effects. In this case the phases are purely topological, i.e.,
they depend only on the winding number of the trajectory.
We shall show that in the presence of metastable particles
there is also a topological decay probability, i.e., a decay
probability that depends only on the winding number of the
trajectory. This feature arises because the AB or AC phase
becomes complex in the presence of decaying particles.

Let us recall the AC effect~for reasons that will be dis-
cussed below, this would be easier to realize experimentally
than the AB effect!. It consists of a particle with a magnetic
moment moving in the presence of a charged line. The
charged line is taken along thez axis. The Hamiltonian for
the particle is@20#

H5
1

2m
@p1mza~r !#

21V~r !, ~14!

wheremz is the projection of the magnetic moment along the
z axis. In the cylindrically symmetric gaugea(r ) takes the
form

au5
ru

2p
, ar5az50, ~15!

wherer is the charge per unit length of the charged line and
u is the angle around thez axis in cylindrical coordinates.
Consider the amplitude for the particle to go from
P15(r 1 ,u1 ,z1) to P25(r 2 ,u2 ,z2) in time t. We express it
using the Feynman path integral and decompose the sum
over paths in terms of the winding number of the path:

K~P2 ,P1 ,t !5E D~x!eiS~x,m!

5eimzr~u22u1!/2p(
n

Kn
0~P2 ,P1 ,t !e

imzrn,
~16!

where

Kn
05E

paths with winding number5n
D~x!eiS~x,m50! ~17!

is the contribution of paths with winding numbern when
m50. The factoreimrn is the AC phase. It affects interfer-
ences between contributions with different winding number.

Let us now turn to the case when the particle with mag-
netic moment is metastable. Suppose that there are several
nearly degenerate metastable states. Then as before there is
an effective Hamiltonianheff

internal that acts in the space of
metastable states. The left and right eigenstates ofheff

internal

will be denoted^f i
intuuc i

int& and their eigenvaluev i . The
essential point in the derivation of the complex AC phase is
that if the particle is in the eigenstateuc i

int& and if the cou-
pling of the magnetic moment to external systems is suffi-
ciently weak and slowly varying, then the effective value of
the magnetic moment of the particle is~the proof is given
below, see also@14#!

m i5
^f i

intumuc i
int&

^f i
intuc i

int&
. ~18!

This expression form i is nontrivial if the magnetic moment
operatorm does not commute withheff

internalwhereuponm i can
be complex. If the conditions form to be effectively given by
Eq. ~18! are satisfied, the amplitude for the particle to go
from P1 to P2 and not to decay can be expressed in analogy
with Eq. ~16! as

K~P2 ,P1 ,t, no decay!5eimz
i r~u22u1!/2p

3(
n

Kn
0~P2 ,P1 ,t !e

imz
i rn.

~19!

As before there is a topological phase given byeiRe(mz
i )rn.

There is also a topological decay probability given by

e2Im(mz
i )rn, which depends only on the winding number of

the path. In addition there is an overall geometric decay

probability e2Im(mz
i )r(u22u1)/2p, which depends on the angle

betweenP1 andP2 but is independent of the details of the
path betweenP1 andP2.
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We now derive this result in a more rigorous fashion.
When the particle is metastable one must add to the Hamil-
tonian equation~14! the effective Hamiltonian governing the
internal state of the particle

Heff5
1

2m
@p1mza~r !#

21V~r !1heff
internal, ~20!

with a once more given by Eq.~15!. Let us postulate a so-
lution of the effective Schro¨dinger equation of the form
uC i&5x i(r )uc i

int&e2 iv i t. Inserting this ansatz into the effec-
tive Schrödinger equation and taking the scalar product with
^f i

intu yields

2 i ] tx i5S 1

2m
~p2mz

i a!21V~r ! Dx i , ~21!

where we have neglected a term of the form

~e2a2/4m2!~^f i umz
2uc i&/^f i uc i&2mz

i2!.

One can further verify that nonadiabatic transitions are con-
trolled by terms of the form

~^f j umzuc i&/^f i uc i&!@~a•p!/m#e2 i ~v i2v j !t

and

~^f j umz
2uc i&/^f i uc i&!~a2/2m!e2 i ~v i2v j !t.

All these terms can be neglected when the particle is suffi-
ciently far from the line of charge~so thata is small! and is
moving sufficiently slowly~so thatp is small!. It is then
legitimate to replacem by its effective valuem i . The solution
for x i is then~in the WKB approximation!

x i5e2 iEi texpS i E r
~p1mz

i a!•dr D ~22!

and one obtains a similar expression for the ket^F i u solution
of the effective Schro¨dinger equationi ] t^F i u5^F i uHeff . To
make a connection with the geometric phase, consider the
case of cyclic evolution and insert^F i u anduC i& into Eq.~7!
to yield

fGW5 R ~p1mz
i a!•dr5nmz

i r1 R p•dr , ~23!

wheren is the winding number of the trajectory.

Several remarks are in order. First, recall that whereas the
geometric phase is defined only for cyclic evolution, the geo-
metric decay probability is not. However, the decay prob-
ability is topological even for noncyclic evolution since it
depends only on the end points of the trajectory and the
winding number, not on the details of the trajectory. Second,
note thata was taken in the cylindrically symmetric gauge.
As shown in@21# this is the simplest gauge to use when the
magnetic moment operator does not commute with the full
Hamiltonian. The analysis in other gauges is possible but
more complicated and necessitates the introduction of non-
conventional commutation relations. Third, in order to obtain
topological decay probabilities in the AB effect it would be
necessary to take the solenoid to consist of one metastable
particle. This is probably very difficult to realize experimen-
tally. ~It is obviously impossible to have an effective com-
plex electric charge since charge is a conserved quantity!.

We now consider howfGW could be measured in optical
experiments. We recall that one of the simplest ways to mea-
sure Berry’s phase is to pass polarized light through a coiled
optical fiber. The cyclic change in propagation direction of
the light implies a cyclic change in polarization direction and
hence a geometric phase that can be materialized as a rota-
tion of the direction of polarization of the light after exiting
from the fiber@4#. A simple generalization of this scheme
would be to use an optical fiber made up of absorbing dich-
roic material. In such media the different polarizations are
absorbed at different rates and therefore the polarization
eigenstates are in general nonorthogonal@22#. The coils of
the fiber will then give rise to a cyclic change in polarization
direction and hence to a geometric phase and a geometric
attenuation of the beam.

An alternative approach would be to change cyclically the
composition of the absorbing dichroic material through
which the light is passing. For instance, consider a beam of
polarized light that passes through vacuum and two different
absorbing dichroic crystalsA andB ~note thatB could con-
sist of the same crystal asA but rotated through an angle
u). If the beam passes successively through vacuum,A,
vacuum,B, vacuum thenfGW50. However, if the sequence
is vacuum,A, B, vacuum then the polarization eigenstates
describe a nontrivial circuit andfGWÞ0. A comparison of
the two sequences allowsfGW to be measured. In this ex-
periment the different interfaces play a similar role to the
successive reflections in@5#.

I would like to thank Y. Aharonov, S. Popescu, and L.
Vaidman for very helpful discussions and comments about
this work.
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