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Time dependence for barrier penetration is considered in the phase space. An asymptotic phase-space
propagator for nonrelativistic scattering on a one-dimensional barrier is constructed. The propagator has a form
universal for various initial state preparations and local potential barriers. It is manifestly causal and includes
time-lag effects and quantum spreading. Specific features of quantum dynamics which disappear in the stan-
dard semiclassical approximation are revealed. The propagator may be applied to calculation of the final
momentum and coordinate distributions, for particles transmitted through or reflected from the potential bar-
rier, as well as for elucidating the tunneling time problem.@S1050-2947~96!04312-0#

PACS number~s!: 03.65.Ca, 03.65.Nk

I. INTRODUCTION

Observable properties of quantal systems, such as energy
levels and transition probabilities, are mostly related to sta-
tionary states. Meanwhile, the time dependence of physical
processes is also described by quantum theory and may be of
considerable interest. An important class of effects is various
barrier penetration~tunneling! processes. The transition
probabilities are usually obtained by means of the time-
independent~energy! methods, in particular, in the semiclas-
sical approximation~see, e.g., in Refs.@1,2#!. As soon as one
gets the complete solution in the energy representation, the
time evolution is obtained straightforwardly, in principle, in
terms of the inverse Laplace transform. However, the evalu-
ation of the large-time asymptotics may be an intricate job. A
source of the trouble is in the very statement of the problem.
If we insist that the particle was on one side of the barrier in
the beginning, the state cannot be described by the plane
wave, which is the eigenstate of the momentum operator.
Thus the initial energy is never free of an uncertainty. The
uncertainty may be made smaller if the particle is delocalized
in space, so one has to start far enough from the barrier, and
to detect the result long enough after the start in order to be
sure that the particle has left the potential domain com-
pletely. It is clear, however, that the problem needs a special
theoretical analysis.

The time dependence of tunneling processes has been at-
tracting attention for decades. A controversial question is
that of the tunneling time and the effect of causality on the
particle propagation@3–12#. New experimental techniques
enable detailed measurements performed on electromagnetic
wave packets transmitted through optical or microwave ana-
logs of quantum potential barriers@13–18# There are some
theoretical concerns about the validity of the semiclassical
approximation in processes, such as tunneling, which have
no classical counterparts, because the effect of quantal fluc-
tuations must get a proper account. Therefore a consistent
time-dependent formalism for tunneling is hardly redundant.

Barrier penetration processes and their time dependence
were investigated by numerical, experimental, and analytic
methods in a number of works, e.g.,@19–30#. The literature
contains specific examples of barriers and wave-packet
shapes. Our purpose was to consider a general case, with no

assumptions on the initial state preparation or on the form of
the ~local! potential barrier. Barrier penetration is described
sometimes by means of the imaginary time method@31–36#
In the present approach, the process is described in real
space-time, even though we exploit analytical properties in
the complex energy plane, especially for causality argu-
ments.

The method applied here is an investigation of the time
evolution of the Wigner phase-space distribution@37#. In this
way, we can consider any initial state, not necessarily pure,
which is important for applications to experiments. Besides,
cumbersome oscillations of the wave functions are not in-
volved. The Wigner function was used successfully in many
problems of quantum theory, and its properties were consid-
ered, e.g., in Refs.@38–47#. Carruthers and Zachariasen, in
their review of quantum collision theory with phase-space
distributions @38#, considered cross sections for scattering
processes in three dimensions, inclusive reactions within a
second quantization approach, inclusive multiparticle pro-
duction processes in the ultrarelativistic domain, and many
other processes but discussed neither quantum jumps nor
barrier penetration. Various other approaches have been tried
recently@48–52# to describe quantum dynamics in terms of
the Wigner function. The asymptotic analysis of Wigner
functions in scattering is of particular importance@53#. The
time evolution of the Wigner function was considered previ-
ously mainly within the semiclassical approximation@54–
56#. As was shown by Berry@57#, the semiclassical approxi-
mation for stationary Wigner functions describing bound
states is given by the Airy function, its spread from the clas-
sical d function being the first-order quantum effect. Propa-
gation of wave packets was discussed in a number of works;
it was noted in particular that the spreading in the coordinate
is not a specific quantal effect@58#. Within the semiclassical
approximation the quantal features of the long-time evolu-
tion were attributed to the interference between amplitudes
corresponding to different classical paths@59#. Our point is
to emphasize the difference between the genuine quantum
dynamics and the semiclassical approximation for classically
forbidden processes where no classical paths exist, so quan-
tum dynamics is not reduced just to a smearing around clas-
sical paths, or to an interference between them.

The Wigner function was applied to tunneling by Balazs
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and Voros@60# for parabolic potential barrier. The equiva-
lence of Wigner’s integro-differential equation to Liouville’s
classical equation is in an apparent conflict to tunneling for
that potential. The puzzle is solved as soon as it is realized
that the initial Wigner function cannot be chosen arbitrarily,
if the potential does not vanish asymptotically. Physically
available states correspond to Wigner distributions extended
in the momentum, so real classical trajectories transport the
particle above the barrier. The Wigner function for the para-
bolic potential was constructed explicitly, and the transmis-
sion and reflection coefficients were obtained, within a quali-
tative picture of tunneling where the difference between
classical and quantum mechanics lies mainly in the initial
state preparation.

For sufficiently broad incident momentum distributions,
the classical paths enable the particle to overcome the bar-
rier, and the semiclassical approach can indeed be used
@61,62#. However, if the barrier potential is localized, the
incident wave packet~or the Wigner function! can be pre-
pared with an arbitrarily definite energy, and no classical
paths would be responsible for the tunneling. In that situation
the barrier penetration must be a result of an essential differ-
ence between the quantum and classical dynamics.

Purely quantal effects and their role in scattering pro-
cesses have also been considered in the phase-space formal-
ism. In the ‘‘Wigner-trajectory’’ approach@8,63–65# each
phase-space point in the initial Wigner distribution is propa-
gating along a definite trajectory. If the third- and higher-
order derivatives of the potential vanish, the Wigner trajec-
tories coincide with the classical paths. Otherwise, the
Wigner trajectories are defined with a modified ‘‘quantum’’
potential and are not classical. For a system in an energy
eigenstate~i.e., in the stationary barrier problem!, the time-
shift invariance implies that the trajectories are the ‘‘equi-
Wigner curves’’ which are lines of constant values of the
Wigner function. That approach seems rather problematic
@66,67#. The effective ‘‘potential’’ may be singular, the
Liouville theorem is violated, and quantum jumps@68,69#
can hardly be included. In another approach, quantum cor-
rections to classical dynamics are interpreted as finite mo-
mentum jumps between classical paths@68#. Negative quasi-
probabilities appear in the the calculation which distinguish
the quantum treatment from the classical theory. The phase-
space points are smeared to finite domains and do not propa-
gate along continuous trajectories.

We consider the phase-space evolution kernel@70#, which
is the fundamental solution of the dynamical equation for the
Wigner function. In classical theory, the evolution kernel is
the fundamental solution of the Liouville equation and
equals thed function restricted to classical trajectories. In the
semiclassical approximation in classically allowed regions
one can get the Airy function. For the barrier penetration, an
explicit expression is obtained and it is shown that it is not
reduced to the semiclassical approximation. From that point
of view, the barrier penetration is an essentially quantal pro-
cess.

In Sec. II the phase-space propagator~the evolution ker-
nel! is defined, and some of its properties are given. Section
III shows the relation between the time evolution and the
S-matrix formalism in the momentum representation. The
large-time asymptotics for the space-time propagator is de-

rived in Sec. IV. The result is an integral representation in
terms of scattering amplitudes. The exact result for the nar-
row potential barrier is presented in Sec. V. The semiclassi-
cal approximation is considered in Sec. VI, and its validity is
discussed. Some technical aspects are considered in the Ap-
pendixes: the accuracy of the large-time asymptotics, the
projections into coordinate and into momentum space, and
the exact result for the cosh22 potential barrier. These exact
results are compared to the various approximations, each of
which is shown to be adequate for different parameters.

The units used in the paper are\51, and 2m51 for the
particle mass.

II. THE PHASE-SPACE PROPAGATOR

In general, any quantum state is described by a density
matrix r̂, which can be represented by its matrix elements,
say, in the coordinate representation,^q8ur̂uq&, or by its
Weyl symbol ~the Wigner function @37#! r(x), where
x[(q,p),

r~q,p![E
2`

` K q1
h

2 Ur̂Uq2
h

2 L e2 iphdh. ~1!

For a given Hamiltonian Ĥ, the evolution operator
Û(t)[exp(2iĤt) determines the time evolution of the state:
r̂ t5Û(t) r̂0Û

†(t). Respectively, the time evolution of the
Wigner function is given by an integral kernel, i.e., the
phase-space propagator,

r t~x!5E Lt~x,x0!r0~x0!dx0 . ~2!

Heredx5dqdp, andLt is a real function which satisfies the
following identities:

Lt~q,p;q0 ,p0!5L2t~q0 ,2p0 ;q,2p!,

E dxLt~x,x0!515E dx0Lt~x,x0!,

Lt11t2
~x,x0!5E dx8Lt2~x,x8!Lt1~x8,x0!. ~3!

For example, the probabilities to detect the system in the
coordinateq or in the momentump at a timet after it was
prepared in the state given byr0(x) are given, respectively,
by the integrals

Pt~q!5E
2`

`

dpr t~q,p!

5E
2`

`

dpE
2`

`

dq0E
2`

`

dp0Lt~q,p;q0 ,p0!r0~q0 ,p0!,

~4!

Pt~p!5E
2`

`

dqr t~q,p!

5E
2`

`

dqE
2`

`

dq0E
2`

`

dp0Lt~q,p;q0 ,p0!r0~q0 ,p0!.

~5!
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The quasidistributionr(x) is normalizable and satisfies a set
of conditions owing to the positive definiteness of the density
matrix, for instance,

E @r~x!#2dx<
1

2p
F E r~x!dxG2. ~6!

~The equality takes place if the state is pure.! Other condi-
tions are more intricate. Qualitatively, the distribution cannot
be localized to domains of areas less than 2p\ by the order
of magnitude. The function is not necessarily positive every-
where, but the domains of negativity must be small enough.

The phase-space propagator Lt is expressed in terms of
the matrix elements ofÛ(t), e.g., the coordinate~or momen-
tum! propagators, as follows from~1!,

Lt~q,p;q0 ,p0!5
1

2pE2`

`

dhE
2`

`

dh0e
i ~ph2p0h0!

3 K q2
h

2 UÛ~ t !Uq02 h0

2 L
3 K q1

h

2 UÛ~ t !Uq01 h0

2 L
[

1

2pE2`

`

dsE
2`

`

ds0e
i ~qs2q0s0!

3 K p1
s

2 UÛ~ t !Up01 s0

2 L
3 K p2

s

2 UÛ~ t !Up02 s0

2 L . ~7!

For any Hamiltonian, quadratic inx, r t(x) is the solution
of the classicalLiouville equation. In that case the classical
equations of motion are linear, as well as the Heisenberg
equations. The solution is linear:x5Rtx0, whereRt is an
x-independent matrix, andLt(x;x0)5d(x2Rtx0). In par-
ticular, for the nonrelativistic free motion one has

Lt~q,p;q0 ,p0!5d~p2p0!d~q2vt2q0!, ~8!

wherev5p/m is the particle velocity.
For nonlinear systems, effects specific for quantum dy-

namics result in deviations ofLt from thed function.

III. TIME DEPENDENCE IN THE MOMENTUM
REPRESENTATION

As soon as the HamiltonianĤ has no explicit time depen-
dence, the evolution operator can be written as the Laplace
transform of the resolvent:

Û~ t ![e2 i tĤ5
1

2p i EG`

Ĝ«e
2 i t«d«, Ĝ«[~Ĥ2«!21

~9!

whereG` is the usual integration contour in the complex«
plane, running above the real axis.

We shall consider a nonrelativistic particle of mass
m51/2 scattered from a localized one-dimensional and time-

independent potential barrier. The Hamiltonian is
Ĥ5Ĥ01V̂, where Ĥ05 p̂2 is the kinetic energy operator.
The basis of the normalized momentum eigenstatesuk& will
be used, so

Ĥ0uk&5k2uk&, ^kuk0&5d~k2k0!. ~10!

Introducing the transition operatorT̂« , one has

Ĝ«5Ĝ«
~0!2Ĝ«

~0!T̂«Ĝ«
~0! , Ĝ«

~0![~Ĥ02«!21. ~11!

The momentum propagator is now given by

^kuÛ~ t !uk0&5
1

2p i EG`

^kuĜ«uk0&e2 i t«d«

5d~k2k0!e
2 i tk22

1

2p i EG`

d«e2 i t«

3
^kuT̂«uk0&

~k22 ig2«!~k0
22 ig2«!

. ~12!

The infinitesimal positive quantityg is introduced here to
specify the integral near the poles due to the free propaga-
tors. The integration contourG` may be deformed to run
around the positive real axis, as the exponential vanishes in
the lower half plane and̂kuT̂«uk0& has singularities only for
the real values of« corresponding to physical energy values.
The kinematic poles are isolated, leaving an integral along
the real positive axis,

^kuÛ~ t !uk0&5expS 2
i

2
t~k21k0

2! D
3Fd~k2k0!2

eit j

2j
^kuT̂«uk0&u«5k2

1
e2 i t j

2j
^kuT̂«uk0&u«5k

0
22Jt~k,k0!G , ~13!

wherej5 1
2(k0

22k2) and

Jt~k,k0!5
1

p
PE

«0

`

d«e2 i t [«2~1/2!~k21k0
2
!]
Im@^kuT̂«uk0&#

~«2k2!~«2k0
2!
.

~14!

At two zeroes of the integrand denominator the integral is
taken in the sense of its principal value.~Here«0 is a thresh-
old energy value. With no bound states«050, otherwise it is
the lowest boundstate energy.!

In order to calculate explicitly the time-dependent propa-
gator for a given potential, the transition operator matrix el-
ements for this potential should be known on and off the
energy shellk25«5k0

2. For scattering problems, one needs
the large-time asymptotics, where the matrix elements are
reduced to the energy shell because of the known fact of the
theory of distributions,

lim
t→`

ei jt/j5 ipd~j!. ~15!
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The integral in ~14! vanishes, as t→`, because
Im@^kuT̂«uk0&# is smooth and the integral is converging. In
general,Jt5 O(t21/2). ~The proof is given in Appendix A.!

The result is expressed in terms of a unitary 232 matrix
S,

^kuÛ~ t !uk0&_̂e2 ik2t2kd~k22k0
2!Snn0

, SS†5I , ~16!

where k5uku5uk0u, I is the unit 232 matrix, and
n[k/k561. TheS-matrix elements are related to elements
of the T̂ operator on the energy shellk2[«,

Snn0
~k!5dnn0

2
ip

k
^nkuT̂un0k&. ~17!

These are the probability amplitudes for transmission
through and reflection from the potential region. The ampli-
tudes can be expressed in terms of two analytical functions
a(k) andb(k),

S~k!5
1

a S 1 b

2b̄ 1D , uau22ubu251. ~18!

These functions are defined for Rek.0 by the asymptotics
of the solution of the stationary Schro¨dinger equation,

p̂2y1Vy5k2y,

y2~q!_̂H e2 ikq, q→2`,

ae2 ikq1beikq, q→`.
~19!

The functionsa(k) andb(k) have the analytical continua-
tion to the left half plane by

a~2k̄ !5a~k!, b~2k̄ !5b~k!. ~20!

The analytical properties of these functions in the complex
k plane have been investigated previously@71#. It was
shown, in particular, that for any finite-range and positive
potential they can be expressed in terms of twoentire func-
tionsa(«) andb(«),

a~k![12a~«!/2ik, b~k![b~«!/2ik. ~21!

Thus the only singularities ofS(k) are poles due to zeroes of
a(k) which are all in the lower half of thek plane. More-
over,a andb are bounded for Imk.0, so that lima51 and
limb50, asuku→` in the upper half plane. If the potential
has an exponential decrease asq→6`, the functionsa and
b may have infinite series of poles. Besides, for symmetric
barriers, whereV(2q)5V(q), one has a realb(«) and
purely imaginaryb(k)52b(2k).

IV. THE LARGE-TIME ASYMPTOTICS

In order to get the large-time asymptotics for the phase-
space propagator, we set the amplitudes from~16! into Eq.
~7!. Using the following property of thed function:

2ukud~k22k0
2!5d~k2k0!1d~k1k0!, ~22!

one gets the result

Lt~q,p;q0 ,p0!_̂d~p2p0!T~p0 ,r1!1d~p1p0!R~p0 ,r2!

1
2

p
ReF b~p02p!

a~p02p!a~p01p!

3e2i ~q0p2qp0!14ipp0tG . ~23!

Herer65q012p0t7q; i.e., the differences between the free
classical trajectory and actual positions of the transmitted
particle (r1) and the particle reflected from the origin
(r2). The first two terms describe transmission and reflec-
tion from the potential barrier. The third term represents an
interference between transmitted and reflected waves and is
responsible for quantum fluctuations at the barrier region. It
is irrelevant for large timet, if the wave packet was prepared
in free space with a narrow momentum distribution@72#.

The functions representing the transmission and reflection
probabilities are given by the Fourier integrals

T~p0 ,r1!5
1

2pE2`

1` e2 isr1ds

a~ 1
2s1p0!a~ 1

2s2p0!
, ~24!

R~p0 ,r2!5
1

2pE2`

1`b~ 1
2s1p0!b~ 1

2s2p0!e
2 isr2ds

a~ 1
2s1p0!a~ 1

2s2p0!

1
1

2pE2p0
1` B~p0 ,s!ds

a~ 1
2 s1p0!a~ 1

2s2p0!
, ~25!

where

B~p0 ,s![@b~ 1
2s1p0!1b~2 1

2s2p0!#

3@b~ 1
2s2p!e2 isr21b~2 1

2s1p!eisr2#.

~26!

The result is obtained in the following way. We assume that
p0.0, so Lt in Eq. ~7! gets contributions from three seg-
ments in thes axis, which are proportional to products of the
S-matrix elements, as follows:

sP~2`,22p0!, ~22p0,2p0!, ~2p0 ,1`!,

T}S22S11, S11S11, S11S22,

R},S21S12, S12S12, S12S21. ~27!

The arguments arep1 1
2s in the first factor andp2 1

2s in the
second factor. TheS matrix is given in Eq.~18!, and the
complex conjugation is taken on the real axis by means of
Eq. ~20!, inverting the signs of the arguments. Thus the in-
tegral is given in terms of analytical functions with the gen-
eral properties determined by the Schro¨dinger equation.

Evidently,Lt is real and respects the reciprocity principle,
due to the time-inversion invariance@cf. also Eq.~3!#:

Lt~x,x0!5L2t~x0 ,x!. ~28!

Note that the result is translationally invariant; namely, for
q→q2c the quantitiesr1 anda(k) remain invariant, while
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r2→r222c andb(k)→b(k)e2ikc. The second integral in
Eq. ~25! vanishes, ifV(q)[V(2q), since in that case
b(k)52b(2k) andB(p,s)[0. Thetotal transmission and
reflection probabilities~for a given initial momentump) are
given by integration,

T~p!5E
2`

1`

T~p,r !dr5ua~p!u22,

R~p!5E
2`

1`

R~p,r !dr5ub~p!/a~p!u2. ~29!

The integral representations in Eqs.~24! and ~25! are
manifestly causal. ForV(q)>0, it was proven@71# that the
only singularities of the transmission amplitudes, and there-
fore of the integrand, are due to zeroes ofa(k), which are all
in the lower complex half plane. Ifr1,0, i.e., if q is ahead
of the free propagation coordinate, the exponent for Ims
.0 is decreasing, so the integration contour may be de-
formed to the upper half plane and the only contribution
would be from` wherea→1, leading toT5d(r1), as in
free motion~8!. For r1>0, the integral can be evaluated by
means of residues in the lower half plane. Each zero of
a(k) gives rise to a pair of poles in the integrand of~24! and
~25!. ThusT andR can be expressed as a sum over theS-
matrix singularities. The transmission propagator is given by

T~p,r1!5d~r1!2u~r1!(
n

Re$Cn~p!exp@ i2r1~p2kn!#%,

~30!

wherekn are zeroes ofa(k) andCn(p) are determined by
the corresponding residues, andu(r ) is the step function
(50 for r,0 and51 for r.0). Two examples are given
below: the d-potential barrier~Sec. V! and the modified
Pöschl-Teller potential~Appendix C!. In general, contribu-
tions from purely imaginary poles have the form of that for
thed barrier, Eq.~33!. The functional dependence on the lag
distancer1 is universal, thoughCn and kn depend on the
potential. As Imkn,0, the second term inT(p,r1) is an
exponentially decreasing and oscillating function ofr1 .
Thus the transmitted Wigner function equals a freely propa-
gating Wigner function modulated by exponentially decreas-
ing and oscillating deformations. Due to the oscillations the
deformations do not have a definite sign. However, their
dominant contribution is negative because clearly the trans-
mitted wave packet must be smaller than the freely propa-
gating one. The result of superimposing slowly propagating
destructive deformations on a freely propagating wave
packet is primarily to remove from the wave packet portions
of its delayed part.

Note that Eq.~30! was derived under the assumption
V(q)>0. In order to consider the case whereV(q)<0, in
some regions, the influence of bound states must be consid-
ered.

V. NARROW POTENTIAL BARRIER

Let us consider thed-potential barrier

Vd~q!5v0d~q!, ~31!

for which theS-matrix elements are given by

ad~k!512v0/2ik, bd~k!5v0/2ik. ~32!

There is one pair of poles in the integrands in~24! and~25!,
and the integrals are calculated by the residue theorem, lead-
ing to

Td~p,r1!5d~r1!2u~r1!2v0A11~v0/4p!2e2v0r1

3cos~2pr11g!,
~33!

Rd~p,r2!5u~r2!
v0
2

2p
e2v0r2sin~2pr2!,

whereg5arctan(v0/4p). The total transmission probability,
given by Eq.~29!, is

T~p!512
v0
2

v0
214p2

.

Thed potential has a simple explicit solution also off the
energy shell,

^kuT̂duk0&5
v0

2p~11v0/2A2«!
, ~34!

independently ofk andk0. Thus one can evaluate the non-
asymptotic time dependence of Eq.~14!,

Jt
d~k,k0!5

v0
2

4pA2 i t
e~ i /2!t~k21k0

2
!F W~ 1

2v0A2 i t !

~k21 1
4v0

2!~k0
21 1

4v0
2!

1
1

k22k0
2 SW~Ai tk2!

k21 1
4v0

2
2
W~Ai tk02!
k0
21 1

4v0
2 D G , ~35!

whereW(z) is a function related to the probability integral
@73#,

W~z!5zw~z![ze2z2@12erf~2 iz!#

_̂
i

Ap
S 11

1

2z2
1O~z24! D . ~36!

In the large-time asymptotics, fort@max$v0
22,k0

22,k22%, Jt
d

vanishes ast23/2, more rapidly than in the general case since
the transition matrix elements in Eq.~34! are insensitive to
separation from the energy shell~cf. Appendix A!. The result
is

Jt
d5

exp@~ i /2!~k21k0
2!t#

2~ ipt !3/2k2k0
2 1O~ t25/2!. ~37!

As can be shown by means of the double Fourier transform
in k andk0, the expression in Eq.~35! agrees with the evo-
lution kernel for thed potential in the coordinate representa-
tion, obtained previously@21#.
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VI. SEMICLASSICAL APPROXIMATION

The transmission amplitude can be expressed as an expo-
nent:a(k)[exp@iS(k)#. The transmission propagator of Eq.
~24! is then given by

T~p,r !5
1

pE0
`

dscosFsr1SS p1
s

2 D1SS 2p1
s

2 D G .
~38!

Note thatS(2k)52S(k), by virtue of the analytical con-
tinuation.

In the semiclassical approximation one has the eikonal
formula,

S~k!5kE
2`

1`

@12A12k22V~q!#dq. ~39!

Is this approximation adequate for the calculation of
T(p,r )? We will now show that while it is adequate for the
calculation of the total transmission probability and for trans-
mission above the barrier, it cannot be applied uniformly for
all values ofr . In particular, it fails to give the correct space-
time dependence in the deep-tunneling regime.

The total transmission probability is obtained by integrat-
ing T(p,r ) in r . At larger the vicinity ofs50 is dominating
in the integral, so one can use Eqs.~38! and~39! and apply a
series expansion in the exponent. Forp2,V0[max@V(q)#,

S~p!1S~2p!522i I , I[E AV~q!2p2dq. ~40!

The integral is on the segment whereV(q).p2, andI is real.
That leads to the familiar semiclassical expression for the
transmission probability,T5exp(22I).

In classically allowed processes, i.e., for transmission
above the barrier,p2.V0. Applying Eq.~39! for these cases
gives an approximation whereS is real anduau51, so the
transmission is complete. Expanding the exponent around
s50 and retaining terms up to the order ofs3, one gets an
Airy function for T(p,r ). This is consistent with the semi-
classical approximation for Wigner functions describing
bound states which are also Airy functions@57#.

The integral in Eq.~38! can sometimes be calculated by
the stationary-phase method. Positions of the critical points
of the integrand are given by the equation

2r11S8~ 1
2s1p!1S8~ 1

2s2p!50.

For positiver1 , the critical points of the exponent may take
place at reals, and their positions depend on the magnitudes
of r1 and p. If these critical points appear in the region
where the semiclassical approximation is valid, one can
make use of Eq.~39!,

S8~k!5E
2`

1`F12
k

Ak22V~q!
Gdq. ~41!

Fairly accurate results in some domains in the (p0 ,r1) plane
are then obtained in the framework of the WKB approach.

For k2.V0 Eq. ~41! has a classical meaning; namely,
S8(k)52v(tV2t0), wherev[2k is the initial particle ve-

locity, andtV andt0 are the times of flight in the presence of
the potential barrier and in free space. Hence in cases of
transmission above the barrier Eq.~38! can be interpreted in
the following way. Treatings as a quantum fluctuation of
the incident momentum, one can note thatr1 equals the lag
due to the barrier, averaged between two classical trajecto-
ries, their mean momentum being equal top.

This approximation scheme fails for negative values, as
well as for positive but small values ofr .

It was shown in Sec. IV that for positive potentials the
principle of causality manifests itself in the fact that
T(p,r )[0 for r,0. This property, which was proven by the
exact quantum treatment, is violated when Eq.~38! is substi-
tuted in Eq.~39! as demonstrated for an example in Appen-
dix C. The discrepancy is due to the fact that the analytical
properties of the quantum transmission amplitude are not
preserved by the eikonal formula. Unlike the exact solution,
the approximate functiona(k) of Eq. ~39! is not meromor-
phic, sinceS(k)/k has a branch point atk25V0. The viola-
tion of causality here is an artifact of a wrong semiclassical
approximation.

At positive, smallr1 the region of largeusu contributes
substantially, and one may not expand arounds50. Here
too an Airy function approximation would fail. However, the
high-energy asymptotics can be used, wherek→`,
a~k!;1, and

S~k!_̂
v0
2k

, v0[E
2`

1`

V~q!dq. ~42!

Consider, for example, the domain where

r1p>1, p/v0!1, r1p
2/v0!1. ~43!

The inequalities mean that~i! the domain is consistent with
the uncertainty relation,~ii ! the process is a deep under-
barrier tunneling, and~iii ! the asymptotics of Eq.~42! can be
used. The corresponding critical points are given by

s0
252v0 /r1@p2. ~44!

The contribution from the critical pointss56s0 is

T~p,r1!5
1

pE0
`

cosS r1s1
2v0
s Dds

_̂
~2v0r1!1/4

r1Ap
cosS 2A2v0r11

p

4 D . ~45!

This result is an alternative semiclassical approximation
which is adequate for small positive lag distances in the
deep-tunneling regime. It is quite different from the Airy
function. Furthermore, the standard semiclassical approxima-
tion for the total transmission of Eq.~40! cannot be recov-
ered from it by integration, which is hardly surprising, since
the domain given by inequalities~43! is not dominating in
tunneling as a whole. Rather, smallr1 represent the most
rapid signal transport.
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VII. SUMMARY AND CONCLUSION

The phase-space propagator for a general local one-
dimensional potential barrier has a universal form; it is given
by a sum over singularities of theS matrix. It conserves
energy, is manifestly causal, and shows certain features spe-
cific for quantum theory.

At large times, the initial Wigner function is split into
three parts: the reflected bundle, the transmitted bundle, and
a transient group which can be neglected if the incident par-
ticle was prepared with a narrow momentum distribution.
The resulting probabilities have a momentum dependence,
which causes the known effects, such as dispersion and for-
ward attenuation. Asymptotically, after the particle leaves
the interaction region, the time evolution of the Wigner func-
tions is just the coordinate translation with constant classical
velocities. As different parts of the Wigner function are
translated with different velocities, the evolution of the
phase-space distribution goes on, and the actual experiment
results may depend on the detector position, in particular, on
its distance from the barrier region.

The coordinate dependence of the propagators is universal
for any local potential. The propagators are functions of the
lag distance, which is the difference between the free motion
and the current coordinate. At large lag distances, the prob-
ability has an exponential decrease and is oscillating as a
result of quantum interference effects. The decrease rate and
the oscillation frequency are determined by positions of
poles of the transition amplitudes in the complex energy
plane. The coefficients and the phase shifts depend on details
of the barrier shape and on the initial momentum. Of course,
the phase-space propagator is not ad function. Each point in
the initial Wigner function gives rise to disconnected do-
mains in the final distribution. This is a purely quantal effect
in the barrier penetration dynamics.

The standard semiclassical approximation can be used for
evaluation of the total transmission probability, obtained by
integration of the wave packet outside the potential domain.
It is hardly adequate, however, for a description of the time
dependence of the process, since the analytical properties
representing the causality in the energy representation are not
maintained properly.

In contrast to classical theory, individual phase-space tra-
jectories cannot be traced in quantum theory. The principle
of causality is not violated by quantum theory, and no infor-
mation can be transported faster because of the barrier. The
problem of the signal transport and the time delay is planned
to be the subject of a future paper@74#.
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APPENDIX A: OFF-ENERGY-SHELL CORRECTIONS
IN THE LARGE- t ASYMPTOTICS

The transition operator of Eq.~11! has the following gen-
eral property:

T̂2T̂†5T̂@Ĝ«
~0!2~Ĝ«

~0!!†#T̂†, ~A1!

which leads, in particular, to theS matrix unitarity. Hence
one has for the discontinuity of the matrix element in Eq.
~14!

Im^kuT̂uk0&5
p

2k
D~k;k,k0!,

D~k;k,k0!5 (
n561

^kuT̂unk&^k0uT̂unk&, ~A2!

wherek5«1/2. As a function ofk, D is regular. Besides, it
has the following general property of positive definiteness:

E
2`

` E
2`

`

D~k;k,k0! f ~k! f ~k0!dk0dk>0, ~A3!

for any integrable complex functionf (k). In particular,
D(k;k,k)>0 for all k.

The ‘‘half-on-shell’’ transition amplitudes present in~A2!
are expressed in terms of solutionsy6(x) of the Schro¨dinger
equation ~19!, satisfying the complementary asymptotical
conditions, as given in Ref.@71#,

^kuT̂unk&5
1

8pkaE2`

`

dxe2 i ~k2nk!x
„~k22k2!

3~h18 h22h1h28 !1V~x!

3$@~21n!k2k#y1~x!e2 ikx

1@~22n!k1k#y2~x!e1 ikx%…, ~A4!

whereh6(x)[y6(x)2e6 ikx→0 for x→6`. It is evident
from the integral representation that the transition amplitudes
are regular functions ofk, and they are proportional tok at
k25k2. ~Note thatka is finite atk50.!

Finally, the off-energy-shell correction is given by the
following equality ~we assume, for simplicity, that there are
no bound states!:

Jt~k,k0!5expS i2 t~k21k0
2! DPE

0

`

e2 i tk2
D~k;k,k0!dk

~k22k2!~k22k0!

_̂O~ t21/2!. ~A5!

The large-t asymptotics of the integral is determined by the
behavior ofD at k→0.

APPENDIX B: PROJECTIONS TO MOMENTUM SPACE
AND TO COORDINATE SPACE

One can get a better understanding of the phase-space
propagator by integrating in order to return either to the co-
ordinate or the momentum representations. In particular, we
will show that neglecting the interference term in the large-
time asymptotics is consistent with the results of these pro-
jections.

Consider the phase-space propagator for a symmetric bar-
rier, including the third term.@In this appendixA(p)[1/
a(p) andB(p)[b(p)/a(p)#:
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Lt~q,p;q0 ,p0!_̂d~p2p0!
1

2pE2`

`

dseis~q01tp0 /m2q!AS p02 s

2 DA* S p01 s

2 D1d~p1p0!
1

2pE2`

`

dseis~q01tp0 /m1q!

3BS p02 s

2 DB* S p01 s

2 D1
1

p
@ei2[qp02~q01tp0 /m!p]B* ~p02p!A~p1p0!1c.c.#. ~B1!

The probability of having a final momentump is

Pt~p!5E
2`

`

dqE
2`

`

dq0E
2`

`

dp0Lt~q,p;q0 ,p0!r0~q0 ,p0!

5uA~p!u2E
2`

`

dq0r0~q0 ,p!1uB~2p!u2E
2`

`

dq0r0~q0 ,2p!1@B* ~2p!A~p!1B~2p!A* ~p!#E
2`

`

dq0r0~q0,0!,

~B2!

where the order of integration was changed, and use was made of the identity*dqeisq52pd(s). If the initial Wigner function
has a well defined momentum, thenr0(q0,0)50, and the last term vanishes, giving

Pt~p!5uA~p!u2P0~p!1uB~2p!u2P0~2p!. ~B3!

The probability of finding the particle in the final coordinateq is given by

Pt~q!5E
2`

`

dpE
2`

`

dq0E
2`

`

dp0Lt~q,p;q0 ,p0!r0~q0 ,p0!

5E dq0dp0r0~q0 ,p0!
1

2pE dseis~qf2q!AS p02 s

2 DA* S p01 s

2 D1E dq0dp0r0~q0 ,p0!
1

2pE dseis~qf1q!

3BS p02 s

2 DB* S p01 s

2 D1E dq0dp0r0~q0 ,p0!S ei2qp02p E d~2p!e2 i2pqfB* ~p02p!A~p1p0!1c.c.D ,
qf[q01

p0
m
t. ~B4!

If the time is large enough so thatqf→` for every (q0 ,p0) for which r0(q0 ,p0)Þ0, the integrands oscillate rapidly, giving
Pt(q)→0 except forq;qf or q;2qf . Again, the last term does not contribute.

APPENDIX C: MODIFIED PO¨ SCHL-TELLER POTENTIAL BARRIER

The modified Po¨schl-Teller~PT! potential barrier,

VPT~q!5
v0/2s

cosh2~q/s!
, ~C1!

wherev0 ands are constants, is an example for a local potential barrier which enables an explicit solution and a test of the
various approximations. The known solution@1# is

aPT~k!5 i
@G~12 isk!#2

skGS 121v2 isk DGS 122v2 isk D , bPT~k!52 i
cospv

sinhpsk
, ~C2!

wherev5 1
2A122sv0; it is real if the barrier is narrow.

The singularities of the transmission amplitude are simple poles atsk52 i (n1 1
26v), n50,1, . . . . The phase-space

propagator is given by an infinite sum of the residues. For large timet the result is
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Lt
PT~q,p;q0 ,p0!_̂d~p2p0!T PT~r1 ,p0!1d~p1p0!RPT~r2 ,p0!,

T PT~r1 ,p0!5d~r1!1u~r1!@Ft~n,v!1Ft~2n,v!1Ft~n,2v!1Ft~2n,2v!#, ~C3!

RPT~r2 ,p0!5u~r2!@Fr~n,v!1Fr~2n,v!1Fr~n,2v!1Fr~2n,2v!#1u~2r2!@Fs~n,v!1Fs~2n,2v!#,

wheren[2p0s and

Ft~n,v!5
2G~2v!G~ in!G~ in12v!

sG~2 1
21v!G~ 1

21v!G~2 1
21 in1v!G~ 1

21 in1v!
expS ~ in12v21!

r1

s D
3 4F3S 1

22v, 322v, 322 in2v, 122 in2v

122v,12 in,12 in22v
;expS 22

r1

s D D ,
Fr~n,v!5

22G~2v!G~ in!G~ in12v!G~ 1
22 in2v!

s@G~ 1
21v!#2G~ 1

22v!G~2 1
21v!G~2 1

21 in1v!

3expS ~ in12v21!
r2

s D 4F3S 3
22v, 122v, 322 in2v, 122 in2v

122v,12 in,12 in22v
;expS 22

r2

s D D ,
Fs~n,v!52v0

2s
G~ 3

21 in1v!G~ 3
21 in2v!G~212 in!

G~ 1
21v!G~ 1

22v!G~11 in!

3expS ~ in12!
r2

s D 4F3S 3
21v, 322v, 321 in1v, 121 in2v

2,11 in,21 in
;expS 2r2

s D D . ~C4!

FIG. 1. The transmission propagatorT as a function of the~finite and positive! lag distance,2r /s[(q2q02tp0 /m)/s: ~i! the solid line:
exact propagator for the PT barrier, Eq.~55! ~for sp050.2 andsv050.375);~ii ! the gray line: the propagator for thed barrier, Eq.~31! ~for
v0 /p51.875); ~iii ! the dashed line: the semiclassical approximation of Eq.~45!. Note: The d term present at the front in the exact
propagators, Eq.~30!, is not shown in curves~i! and ~ii !.
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Here 4F3 are the generalized hypergeometric functions@75#,

4F3S j1 ,j2 ,j3 ,j4

l1 ,l2 ,l3
;z D 5 (

n50

`
zn

n!

~j1!n~j2!n~j3!n~j4!n
~l1!n~l2!n~l3!n

,

~C5!

and (j)n[G(j1n)/G(j). The series are convergent, as long
as uzu,1.

Two complementary approximations were considered in
Secs. V and VI. In the limit of a narrow barriers→0 while
v05const, and thed-function barrier disscused in Sec. V is
reproduced. In this limit the exact propagator, given by the
series in Eqs.~C4! reduces to thed propagator of Eq.~33!.
On the other hand, in the domains where the inequalities~43!
hold the deep-tunneling semiclassical approximation of Eq.
~45! can be applied. In Fig. 1 we present an example for a
transmission propagator in the deep-tunneling regime.
Namely, a PT barrier withsp050.2 andsv050.375. the
exact propagator is calculated and compared to the two ap-
proximations. As long asr is not too small the propagator for
the d barrier is an excellent approximation. Forr50 the
exact propagators are singular. This singularity is smeared by
the approximation of Eq.~45!.

For small momenta,k!k0[Av0/2s, the WKB semiclas-
sical approximation for the amplitude gives

asc
PT~k!'expF2ps~k02k!1 isk lnS k0

2

k2 21D
1 isk0ln

k01k

k02kG . ~C6!

An Airy function is obtained by substituting this expression
in the integral forT and expanding the exponent in the inte-
grand to a power series ins,

T sc
PT'e22ps~k02p0!~3w3!

21/3Ai @~3w3!
21/3~r12w1!#,

w152slnS k0
2

p0
2 21D , w35

sk0
2~k0

223p0
2!

12p0
2~k0

22p0
2!2

. ~C7!

As s→`, the Airy function approaches thed function,

T sc
PT;e22ps~y2p0!dFq012p0t1slnS k0

2

p0
2 21D 2qG .

~C8!

The result looks like an advance in time, violating causality.
This is an artifact of a wrong semiclassical approximation.
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