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Quantum tunneling in the Wigner representation
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Time dependence for barrier penetration is considered in the phase space. An asymptotic phase-space
propagator for nonrelativistic scattering on a one-dimensional barrier is constructed. The propagator has a form
universal for various initial state preparations and local potential barriers. It is manifestly causal and includes
time-lag effects and quantum spreading. Specific features of quantum dynamics which disappear in the stan-
dard semiclassical approximation are revealed. The propagator may be applied to calculation of the final
momentum and coordinate distributions, for particles transmitted through or reflected from the potential bar-
rier, as well as for elucidating the tunneling time probl¢®1050-294{®6)04312-(

PACS numbd(s): 03.65.Ca, 03.65.Nk

I. INTRODUCTION assumptions on the initial state preparation or on the form of
the (local) potential barrier. Barrier penetration is described
Observable properties of quantal systems, such as energpmetimes by means of the imaginary time metf@t-36
levels and transition probabilities, are mostly related to stain the present approach, the process is described in real
tionary states. Meanwhile, the time dependence of physicalpace-time, even though we exploit analytical properties in
processes is also described by quantum theory and may be iife complex energy plane, especially for causality argu-
considerable interest. An important class of effects is variousnents.
barrier penetration(tunneling processes. The transition = The method applied here is an investigation of the time
probabilities are usually obtained by means of the time-evolution of the Wigner phase-space distributi@]. In this
independentenergy methods, in particular, in the semiclas- way, we can consider any initial state, not necessarily pure,
sical approximatiorgsee, e.g., in Ref$1,2]). As soon as one Wwhich is important for applications to experiments. Besides,
gets the complete solution in the energy representation, theumbersome oscillations of the wave functions are not in-
time evolution is obtained straightforwardly, in principle, in volved. The Wigner function was used successfully in many
terms of the inverse Laplace transform. However, the evaluproblems of quantum theory, and its properties were consid-
ation of the large-time asymptotics may be an intricate job. Aered, e.g., in Refd.38—47. Carruthers and Zachariasen, in
source of the trouble is in the very statement of the problemtheir review of quantum collision theory with phase-space
If we insist that the particle was on one side of the barrier indistributions [38], considered cross sections for scattering
the beginning, the state cannot be described by the plar@ocesses in three dimensions, inclusive reactions within a
wave, which is the eigenstate of the momentum operatorsecond quantization approach, inclusive multiparticle pro-
Thus the initial energy is never free of an uncertainty. Theduction processes in the ultrarelativistic domain, and many
uncertainty may be made smaller if the particle is delocalizedther processes but discussed neither quantum jumps nor
in space, so one has to start far enough from the barrier, arfaarrier penetration. Various other approaches have been tried
to detect the result long enough after the start in order to beecently[48—57 to describe quantum dynamics in terms of
sure that the particle has left the potential domain comthe Wigner function. The asymptotic analysis of Wigner
pletely. It is clear, however, that the problem needs a specidlinctions in scattering is of particular importani&s]. The
theoretical analysis. time evolution of the Wigner function was considered previ-
The time dependence of tunneling processes has been awsly mainly within the semiclassical approximatifsd—
tracting attention for decades. A controversial question i56]. As was shown by Berr{57], the semiclassical approxi-
that of the tunneling time and the effect of causality on themation for stationary Wigner functions describing bound
particle propagatiorj3—12. New experimental techniques states is given by the Airy function, its spread from the clas-
enable detailed measurements performed on electromagnesical § function being the first-order quantum effect. Propa-
wave packets transmitted through optical or microwave anagation of wave packets was discussed in a number of works;
logs of quantum potential barrief43—18 There are some it was noted in particular that the spreading in the coordinate
theoretical concerns about the validity of the semiclassicais not a specific quantal effef58]. Within the semiclassical
approximation in processes, such as tunneling, which havapproximation the quantal features of the long-time evolu-
no classical counterparts, because the effect of quantal flu¢ion were attributed to the interference between amplitudes
tuations must get a proper account. Therefore a consistegbrresponding to different classical paffi®]. Our point is
time-dependent formalism for tunneling is hardly redundantto emphasize the difference between the genuine quantum
Barrier penetration processes and their time dependenalynamics and the semiclassical approximation for classically
were investigated by numerical, experimental, and analyti¢orbidden processes where no classical paths exist, so quan-
methods in a number of works, e.§1.9—-30. The literature tum dynamics is not reduced just to a smearing around clas-
contains specific examples of barriers and wave-packedical paths, or to an interference between them.
shapes. Our purpose was to consider a general case, with no The Wigner function was applied to tunneling by Balazs
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and Voros[60] for parabolic potential barrier. The equiva- rived in Sec. IV. The result is an integral representation in
lence of Wigner's integro-differential equation to Liouville’s terms of scattering amplitudes. The exact result for the nar-
classical equation is in an apparent conflict to tunneling forow potential barrier is presented in Sec. V. The semiclassi-
that potential. The puzzle is solved as soon as it is realizegal approximation is considered in Sec. VI, and its validity is
that the initial Wigner function cannot be chosen arbitrarily, discussed. Some technical aspects are considered in the Ap-
if the potential does not vanish asymptotically. PhysicallyPendixes: the accuracy of the large-time asymptotics, the
available states correspond to Wigner distributions extendeBrojections into coordinate and into momentum space, and

in the momentum, so real classical trajectories transport thi!e €xact result for the cosh potential barrier. These exact

particle above the barrier. The Wigner function for the para/€Sults are compared to the various approximations, each of

bolic potential was constructed explicitly, and the transmisWhich is s.hown to .be adequate for different parameters.
The units used in the paper aie=1, and 2n=1 for the

sion and reflection coefficients were obtained, within a quali- .
tative picture of tunneling where the difference betweenP2rticle mass.
classical and quantum mechanics lies mainly in the initial

For sufficiently broad incident momentum distributions,
the classical paths enable the particle to overcome the b
rier, and the semiclassical approach can indeed be us
[61,62. However, if the barrier potential is localized, the
incident wave packefor the Wigner functioj can be pre-
pared with an arbitrarily definite energy, and no classica
paths would be responsible for the tunneling. In that situation
the barrier penetration must be a result of an essential differ- p(q,p)= f_
ence between the quantum and classical dynamics.

Purely quantal effects and their role in scattering pro-for a given HamiltonianH, the evolution operator
cesses have also been considered in the phase-space forngy) = exp(—ifit) determines the time evolution of the state:
ism. In the “Wigner-trajectory” approach8,63—-68 each  ~ " .\~ "t velv. the time evolution of the
phase-space point in the initial Wigner distribution is propa-"!: U(t)poU (1). Respectively, the ti volution

. s ) . : Wigner function is given by an integral kernel, i.e., the
gating along a definite trajectory. If the third- and higher- hase-space bropagator
order derivatives of the potential vanish, the Wigner trajec—p P propagator,
tories coincide with the classical paths. Otherwise, the
Wigner trajectories are defined with a modified “quantum” Pt(X):f L(X,X0) po(Xo)dXo - 2
potential and are not classical. For a system in an energy
eigenstatdi.e., in the stationary barrier problénthe time- Heredx=dqdp, andL, is a real function which satisfies the
shift invariance implies that the trajectories are the “equi-following identities:

Wigner curves” which are lines of constant values of the L(q.p: Y=L _ (G, — Po:G,— D)

Wigner function. That approach seems rather problematic tl4:P:90.Po) =L ~1{Go.~ Po: 4. ~P),
[66,67. The effective “potential” may be singular, the
Liouville theorem is violated, and quantum jumps8,69 f det(x,x0)=1=f dXoL(X,Xg),

can hardly be included. In another approach, quantum cor-

rections to classical dynamics are interpreted as finite mo-

mentum jumps between classical pafé8]. Negative quasi- Ltl+t2(X’X0):f dX'Le, (X, X)L (X", Xo). 3
probabilities appear in the the calculation which distinguish

the quantum treatment from the classical theory. The phaséor example, the probabilities to detect the system in the
space points are smeared to finite domains and do not propaoordinateq or in the momentunp at a timet after it was
gate along continuous trajectories. prepared in the state given lpy(x) are given, respectively,

We consider the phase-space evolution kef7i@], which by the integrals
is the fundamental solution of the dynamical equation for the .
Wigner function. In classical theory, the evolution kernel is _
theg fundamental solution of theyLiouviIIe equation and Pl@)= | dppda.p)
equals thes function restricted to classical trajectories. In the . . .
semiclassical approximation in classically allowed regions _ .
one can get theFpriry function. For the barr)i/er penetratiogn, an J_mdpf_mdqof_mdpoLt(q,p,qo,po)po(qo,po),
explicit expression is obtained and it is shown that it is not
reduced to the semiclassical approximation. From that point
of view, the barrier penetration is an essentially quantal pro- %
cess. Pt(p):f ddpi(q,p)

In Sec. Il the phase-space propagdtbe evolution ker- o
nel) is defined, and some of its properties are given. Section % % %
Il shows the relation between the time evolution and the =j dQJ d%f dpoL+(4,P;do.Po)Po( o, Po)-
S-matrix formalism in the momentum representation. The I o
large-time asymptotics for the space-time propagator is de- 5)

In general, any quantum state is described by a density
natrix p, which can be represented by its matrix elements,

y, in the coordinate representatiqm’|p|q), or by its
Weyl symbol (the Wigner function[37]) p(x), where
r=(a.p),

[

7|~ 7\
<Q+§‘Pq—§>e P7d 7. @

4
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The quasidistributiom(x) is normalizable and satisfies a set independent  potential ~barrier. The Hamiltonian is
of conditions owing to the positive definiteness of the densityH = Ho+V, whereHy,=p? is the kinetic energy operator.
matrix, for instance, The basis of the normalized momentum eigenstgkewill

1 ) be used, so
(00 Fx= 5| | (s © :
f 2m Holk)=K?[k), (k|ko)=d(k—ko). (10
(The equality takes place if the state is pur@ther condi- . - -
tions are more intricate. Qualitatively, the distribution cannotlntmducmg the transition operatdr,, one has
be localized to domains of areas less thami2by the order 6. =GO_GOT GO GO=(H,—e)l (11
of magnitude. The function is not necessarily positive every- & e e TeTe e 0T &)
where, but the domains of negativity must be small enoug . .
The phase-space propagator, lis expressed in terms of hThe momentum propagator is now given by
the matrix elements dfl (t), e.g., the coordinatér momen- . 1 ~ _
tum) propagators, as follows frorfl), (k|U(t)|k0>=ﬁj (k|G,|ko)e ™ **de
I,
L (q pqo po): ifoc dnjm dnoei(p"/_pOWO) L2 1 .
B EHe 27 ) o o = 8(k—kg)e ™' _ﬁfr dee 'te
x<q—§]‘ —%> (KT ko) .
(K=iy—e)(kg—iy—e)’
7|~ 7o
X{a+5|UM®)|Go+ 5 The infinitesimal positive quantity is introduced here to
specify the integral near the poles due to the free propaga-
1 tors. The integration contour.,, may be deformed to run

da’J’ dope' (47~ %00

=or around the positive real axis, as the exponential vanishes in
the lower half plane an¢k|T,|ko) has singularities only for
| o+ g 0 6/ po+ 90 the regl valur_as of Corresp_onding to phy_sical energy values.
P 2 (1) Po 2 The kinematic poles are isolated, leaving an integral along
the real positive axis,
g|~ (0]
><<|0 5>V (D[Po 2>- (7)

<k|U(t)|ko>=exp< - IEt(k2+ k3)
For any Hamiltonian, quadratic ix, p(x) is the solution

of the classicalLiouville equation. In that case the classical

equations of motion are linear, as well as the Heisenberg

equations. The solution is lineax=R;Xy, whereR; is an

x-independent matrix, and (x;xg) = 8(Xx—RXg). In par-

ticular, for the nonrelativistic free motion one has

oité

X a(k—ko>—2—§<kltlko>lezkz

—ité .
+ 25 <k|Ts|k0>|skg_Jt(klkO)}! (13)

L+(9.p:0o.Po) = 8(P—Po) (q—vt—do), ®  whereg=1(k2—k?) and

wherev =p/m is the particle velocity.
For nonlinear systems, effects specific for quantum dy- (K, ko) = _Pf deefit[af(l/Z)(szrk )]
namics result in deviations @f; from the § function. £g

Im[(k|T,[ko)]
(e—k)(e—k§) "

(14
I1l. TIME DEPENDENCE IN THE MOMENTUM

REPRESENTATION At two zeroes of the integrand denominator the integral is

taken in the sense of its principal valfeleree is a thresh-
As soon as the Hamiltoniad has no explicit time depen- old energy value. With no bound states=0, otherwise it is
dence, the evolution operator can be written as the Laplacehe lowest boundstate enerpy.
transform of the resolvent: In order to calculate explicitly the time-dependent propa-
gator for a given potential, the transition operator matrix el-

G,=(H-s)"?
€)

wherel’,, is the usual integration contour in the complex
plane, running above the real axis.

~ n 1 ~ )
— o itH _ —ite
U(t)=e > erGae de,

We shall consider a nonrelativistic particle of mass
m=1/2 scattered from a localized one-dimensional and time-

ements for this potential should be known on and off the
energy shelkzzszkg. For scattering problems, one needs
the large-time asymptotics, where the matrix elements are
reduced to the energy shell because of the known fact of the
theory of distributions,

lime'é/é=imd(&).

t—ow

(15



54 QUANTUM TUNNELING IN THE WIGNER REPRESENTATION 4755
The integral in (14) vanishes, ast—x, because

L I} ; ) X(S - ,r +5 + R ,f,
Im[(k|T,|ko)] is smooth and the integral is converging. In (0 Pio.Po) = (P~ Po)Z(Po,F-+) + &(p+ Po)R(Po I -)

general J,= O(t~*?). (The proof is given in Appendix A. 2 b(po—p)
s The result is expressed in terms of a unitary 2 matrix B P Po—P)a(Po+p)
! i 2i(qop—dpg) +4ippot
<k|U(t)|k0)><ef"‘2t2k5(k2—kg)SWO, sS=1, (16 X e21(doP—dPo ot | 23
where x=|k|=]|ko|, | is the unit 2<2 matrix, and Herer.=qo+2pet+q;i.e., the differences between the free
v=k/k=+1. TheS-matrix elements are related to elementsclassical trajectory and actual positions of the transmitted
of the T operator on the energy shaif=e, particle ¢.) and the particle reflected from the origin

(r_). The first two terms describe transmission and reflec-
i - tion from the potential barrier. The third term represents an
Syug(K) =6y~ 7<VK|T|V0K>- (17 interference between transmitted and reflected waves and is
responsible for quantum fluctuations at the barrier region. It
These are the probability amplitudes for transmissions irrelevant for large time, if the wave packet was prepared
through and reflection from the potential region. The ampli-in free space with a narrow momentum distribut{@i2].
tudes can be expressed in terms of two analytical functions The functions representing the transmission and reflection

a(x) andb(x), probabilities are given by the Fourier integrals
1/{1 b ) ) 7 ) 1 [+ e '"vdo (24)
== — , —|b|7=1. 18 Tv)=5- )
S0=3| p 1) lIlel 18 Pol T 2 ) Ao+ poatio—po)
These functions are defined for Re 0 by the asymptotics h(l 1 “ior_
of the solution of the stationary Schinger equation, R(Po,F_)= ir b(zo+Po)b(z0—pg)e ' ~do
- 2 2m)-=  a(30+po)alzo—Ppo)
Py +Vy=ky, ( d
1 (+= B ,o)do
—ikq A 1 po 1 ’ (25)
/& 5 d=== 19 27 ) 2po a(3 o+ po)al3 o — Po)
Y-(DF) gerinay bexd, gq—oo. 19
where
The functionsa(x) andb(«) have the analytical continua-
tion to the left half plane by B(Po,0)=[b(30+Ppg)+b(—30—po)]
a(—x)=a(k), b(—x)=b(k). (20) X[b(30-p)e """~ +b(—zo+p)e-].
The analytical properties of these functions in the complex (26)

« plane have been investigated previou$l]. It was
shown, in particular, that for any finite-range and positive
potential they can be expressed in terms of emtire func-
tions a(e) and B(e),

The result is obtained in the following way. We assume that
po>0, soL; in Eqg. (7) gets contributions from three seg-
ments in ther axis, which are proportional to products of the
S-matrix elements, as follows:

a(k)=1—a(e)l2ik, b(k)=B(e)l2k. (21 se(—®—-2g), (—2P0200), (2Pos+),

Thus the only singularities &(«) are poles due to zeroes of

a(«) which are all in the lower half of the plane. More- TxS__Si4, Si+Siy, SiiS -,
over,a andB are bounded for Im>0, so that lina=1 and
limb=0, as|«|—< in the upper half plane. If the potential Re,S_.S,_, S,_S,_, S,_S_,. (27

has an exponential decreasegas *+ o, the functionse and L ] L
B may have infinite series of poles. Besides, for symmetricl he arguments ang+ 3¢ in the first factor angp— ;0 in the
barriers, whereV(—q)=V(q), one has a reaf(e) and second factor. Th& matrix is given in Eq.(18), and the

purely imaginaryb(«) = —b(— «). complex conjugation is taken on the real axis by means of
Eq. (20), inverting the signs of the arguments. Thus the in-
IV. THE LARGE-TIME ASYMPTOTICS tegral is given in terms of analytical functions with the gen-

eral properties determined by the Sdfirmer equation.
In order to get the large-time asymptotics for the phase- Evidently,L; is real and respects the reciprocity principle,
space propagator, we set the amplitudes ffd®) into Eq.  due to the time-inversion invariang¢ef. also Eq.(3)]:
(7). Using the following property of thé function:
L+(X,X0) =L —(X0,X). (28)
2|k| 8(k?—k3)= 8(k—ko) + 8(k+kq), (22

Note that the result is translationally invariant; namely, for

one gets the result g—(g—c the quantities , anda(x) remain invariant, while



4756 M. S. MARINOV AND BILHA SEGEV 54

r_—r_—2c andb(x)—b(x)e?*®. The second integral in for which theS-matrix elements are given by
Eqg. (25 vanishes, ifV(q)=V(—q), since in that case

b(x)=—b(— «) andB(p,o)=0. Thetotal transmission and a’(k)=1—vol2ik, b’(k)=vyl2ik. (32)
reflection probabilitiegfor a given initial momentunp) are
given by integration, There is one pair of poles in the integrandg24) and(25),
and the integrals are calculated by the residue theorem, lead-
+o H
T(p)=J7 Tp,rydr=la(p)| 2, ngto
T(p,r )= 8(r )= 0(r ) 200\1+ (vo/4p)?e Vo'
+ 00
R(p)=J R(p,r)dr=|b(p)/a(p)|?. (29) Xcog2pr.+y),
2
The integral representation_s in Eg24) and (25 are R3(p,r_)= a(r,)ﬂ e U0 -sin(2pr_),

manifestly causal. Fov(q)=0, it was prover{71] that the 2p

only singularities of the transmission amplitudes, and there-

fore of the integrand, are due to zeroesi0k), which are all  where y=arctan{y/4p). The total transmission probability,
in the lower complex half plane. f, <0, i.e., ifq is ahead  given by Eq.(29), is

of the free propagation coordinate, the exponent forrIim

>0 is decreasing, so the integration contour may be de- vg
formed to the upper half plane and the only contribution T(p)=1—U2+—4pz.

would be frome wherea—1, leading to7=§(r,), as in °

free motion(8). Forr =0, the integral can be evaluated by Thg 5 potential has a simple explicit solution also off the
means of residues in the lower half plane. Each zero Ofanergy shell,

a(«) gives rise to a pair of poles in the integrand(®4) and

(25). Thus7 and R can be expressed as a sum over $he

matrix singularities. The transmission propagator is given by (k|'AI'5| ko) = vo

2m(l+uvpl2y—¢) ’

(39

Zp.ry)=o(ry) = 0(r+)§n: Re{Cn(p)exri2r.(p—xn)]}, independently ok andk,. Thus one can evaluate the non-
(30) asymptotic time dependence of EG4),

where k,, are zeroes of(«) andC,(p) are determined by 2 1 —i

the corresponding residues, amdr) is the step function Jf(k,ko):L_eW)t(kz*ké) W(GvoV—it)

(=0 forr<0 and=1 for r>0). Two examples are given 4my—it (K24 305) (K5 +5v5
below: the &-potential barrier(Sec. Vj and the modified

Paschl-Teller potentialAppendix Q. In general, contribu- 1 [ W(itk?)  W(\itkd)

tions from purely imaginary poles have the form of that for + K2—k5\ K2+ 12 B K2+ Ly?2 ' (39

the & barrier, Eq.(33). The functional dependence on the lag
distancer , is universal, thougiC, and «,, depend on the ; : I
potential. As Imk, <0, the second term I(p.r.) is an \[/\;rg]:)reW(z) is a function related to the probability integral
exponentially decreasing and oscillating function rof . '

Thus the transmitted Wigner function equals a freely propa-

_ 52 .
gating Wigner function modulated by exponentially decreas- W(z)=zw(z)=ze *[1-erf(—iz)]
ing and oscillating deformations. Due to the oscillations the i 1
deformations do not have a definite sign. However, their =__ — —4
: o . 1+52+0(z77) . (36)
dominant contribution is negative because clearly the trans- Jm 2z

mitted wave packet must be smaller than the freely propa-

gating one. The result of superimposing slowly propagatingn the large-time asymptotics, fa»max{vaz,kgz,k—z}, Jf
destructive deformations on a freely propagating wavesanishes as™ %2 more rapidly than in the general case since
packet is primarily to remove from the wave packet portionsthe transition matrix elements in E6B4) are insensitive to

of its delayed part. separation from the energy shé&f. Appendix A. The result
Note that Eq.(30) was derived under the assumption js

V(q)=0. In order to consider the case wharéq)<o, in
some regions, the influence of bound states must be consid- 5 exp[(i/2)(k2+k§)t]

ered. J; 217 VA

+0(t75?). (37)

V. NARROW POTENTIAL BARRIER .
oW PO As can be shown by means of the double Fourier transform

Let us consider thé-potential barrier in k andk,, the expression in Eq35) agrees with the evo-
lution kernel for thed potential in the coordinate representa-
Vo(q)=v,8(q), (31) tion, obtained previouslj21].
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VI. SEMICLASSICAL APPROXIMATION locity, andr, and 7 are the times of flight in the presence of
the potential barrier and in free space. Hence in cases of
IOf??;msmission above the barrier E§8) can be interpreted in
the following way. Treatings as a quantum fluctuation of
the incident momentum, one can note thatequals the lag
due to the barrier, averaged between two classical trajecto-

The transmission amplitude can be expressed as an ex
nent: a(k)=exdiS(«)]. The transmission propagator of Eq.
(24) is then given by

1 (- o o
T(p,r)= ;j doCOS{ ar+S( p+ 5 +S| —p+ > ries, their mean momentum being equalpto
0 This approximation scheme fails for negative values, as
(38) well as for positive but small values of
Note thatS(— «)= —S(«), by virtue of the analytical con- It was shown in Sec. IV that for positive potentials the
tinuation. principle of causality manifests itself in the fact that
In the semiclassical approximation one has the eikonaf(P.r)=0 forr<0. This property, which was proven by the
formula, exact quantum treatment, is violated when B#) is substi-
tuted in Eq.(39) as demonstrated for an example in Appen-
+oo - dix C. The discrepancy is due to the fact that the analytical
S(K)ZKLCD [1-V1-«2V(g)]da. (39 properties of the quantum transmission amplitude are not

preserved by the eikonal formula. Unlike the exact solution,
Is this approximation adequate for the calculation ofthe approximate functioa(x) of Eg. (39) is not meromor-
7(p,r)? We will now show that while it is adequate for the Phic, sinceS(«)/« has a branch point at*=V,. The viola-
calculation of the total transmission probability and for trans-tion of causality here is an artifact of a wrong semiclassical
mission above the barrier, it cannot be applied uniformly forapproximation.
all values ofr . In particular, it fails to give the correct space- At positive, smallr, the region of larggo]| contributes
time dependence in the deep-tunneling regime. substantially, and one may not expand around0. Here

The total transmission probability is obtained by integrat-too an Airy function approximation would fail. However, the
ing 7(p,r) in r. At larger the vicinity of =0 is dominating  high-energy asymptotics can be used, wheke-,
in the integral, so one can use E(38) and(39) and applya a(x)~1, and
series expansion in the exponent. B8K Vy=max{V(g)],
n

Si0=52, o= | Vianda (42

S(p)+S(—p)=—2il, szvv(q)—pqu- (40

The integral is on the segment whafég)>p?, andl isreal.  Consider, for example, the domain where

That leads to the familiar semiclassical expression for the

transmission probabilityT = exp(—2l). r.p=1, plvg<l, r p4ve<l. (43
In classically allowed processes, i.e., for transmission

above the barriep?>V,. Applying Eq.(39) for these cases

gives an approximation wher® is real and|a|=1, so the

transmission is complete. Expanding the exponent aroun

o=0 and retaining terms up to the order®t, one gets an

Airy function for 7(p,r). This is consistent with the semi-

classical approximation for Wigner functions describing 5 5

bound states which are also Airy functiof&7]. oo=2vo/r . >p-. (44)
The integral in Eq(38) can sometimes be calculated by

the stationary-phase method. Positions of the critical pointThe contribution from the critical points = + o is

of the integrand are given by the equation

The inequalities mean thét) the domain is consistent with
the uncertainty relation(ii) the process is a deep under-
arrier tunneling, andii) the asymptotics of Eq42) can be

used. The corresponding critical points are given by

1 (- 2v
2r,+S'(30+p)+S'(30—-p)=0. T(p,r+)=;f cos<r+o-+ TO)da
0
For positiver , , the critical points of the exponent may take (2001 . )14
place at reabr, and their positions depend on the magnitudes xv‘J—JfCOE( 2\2v,r . + Al (45)
of r, and p. If these critical points appear in the region roNm 4
where the semiclassical approximation is valid, one can
make use of Eq(39), This result is an alternative semiclassical approximation

which is adequate for small positive lag distances in the
S,(K):f+°° 1— K dq (41) deep-tunneling regime. It is quite different from the Airy
Cw \/m ' function. Furthermore, the standard semiclassical approxima-

tion for the total transmission of E¢40) cannot be recov-
Fairly accurate results in some domains in thg,(,) plane ered from it by integration, which is hardly surprising, since
are then obtained in the framework of the WKB approach. the domain given by inequalitie@3) is not dominating in

For k>>V, Eq. (41) has a classical meaning; namely, tunneling as a whole. Rather, smal|l represent the most
S' (k)= —v(ry— 70), Wherev =2k is the initial particle ve- rapid signal transport.
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VIl. SUMMARY AND CONCLUSION which leads, in particular, to th8 matrix unitarity. Hence

one has for the discontinuity of the matrix element in Eq.
The phase-space propagator for a general local on%-l4)

dimensional potential barrier has a universal form; it is given
by a sum over singularities of th& matrix. It conserves A -
energy, is manifestly causal, and shows certain features spe- Im(k| T|ko) = =—D(«;k,ko),
cific for quantum theory. 2K

At large times, the initial Wigner function is split into
three parts: the reflected bundle, the transmitted bundle, and . _ ~ PSR
a transient group which can be neglected if the incident par- D(k:k.ko) = V:Eﬂ (k[ T[vr)Ckol Tlwec), (A2)
ticle was prepared with a narrow momentum distribution.
The resulting probabilities have a momentum dependencgyhere k=12 As a function ofx, D is regular. Besides, it
which causes the known effects, such as dispersion and fofgas the following general property of positive definiteness:
ward attenuation. Asymptotically, after the particle leaves
the interaction region, the time evolution of the Wigner func- 0 [oo -
tions is just the coordinate translation with constant classical f f D(x;k, ko) f(k)f(kg)dkydk=0, (A3)
velocities. As different parts of the Wigner function are el
translated with different velocities, the evolution of the i _ )
phase-space distribution goes on, and the actual experimeff @ny integrable complex functiori(k). In particular,

results may depend on the detector position, in particular, oP(K;k"f‘)zo for all k,-, L _
its distance from the barrier region. The “half-on-shell” transition amplitudes present(A2)

The coordinate dependence of the propagators is universal€ expressed in terms of solutions(x) of the Schrainger
for any local potential. The propagators are functions of the€duation (19), satisfying the complementary asymptotical
lag distance, which is the difference between the free motiofonditions, as given in Ref71],
and the current coordinate. At large lag distances, the prob-
ability has an exponential decrease and is oscillating as a (k|‘i’|VK): 1 fw dxe1k=rx(( 2 k2
result of quantum interference effects. The decrease rate and 8mkal
the oscillation frequency are determined by positions of
poles of the transition amplitudes in the complex energy X(nm-—nynl)+V(X)
plane. The coefficients and the phase shifts depend on details —ikx
of the barrier shape and on the initial momentum. Of course, X{L2+ ) x=Kly. (e
the phase-space propagator is nét fanction. Each point in +[(2—v)k+ k]yf(x)eHKX}), (A4)
the initial Wigner function gives rise to disconnected do-
mains in the final distribution. This is a purely quantal effectwhere 7. (x)=y. (x) —e*"**~0 for x— * . It is evident

in the barrier penetration dynamics. from the integral representation that the transition amplitudes
The standard semiclassical approximation can be used fgjre regular functions ok, and they are proportional te at

evaluation of the total transmission probability, obtained byk2—= .2 (Note thatxa is finite atk=0.)

integration of the wave packet outside the potential domain. Finally, the off-energy-shell correction is given by the

Itis hardly adequate, however, for a description of the timefollowing equality (we assume, for simplicity, that there are
dependence of the process, since the analytical propertig® hound states

representing the causality in the energy representation are not
maintained properly. i

In contrast to classical theory, individual phase-space tra-Jt(k,ko)=exr<§t(k2+ kg)
jectories cannot be traced in quantum theory. The principle
of causality is not violated by quantum theory, and no infor-
mation can be transported faster because of the barrier. The
problem of the signal transport and the time delay is planne
to be the subject of a future papét4].

wae_ith D(K;k,ko)dK
(k=K ("= ko)

=O(t™1?). (A5)

c1’he larget asymptotics of the integral is determined by the
behavior ofD at k—0.
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- 1 (= i o(Qg+tpg /M—q) ) ax g 1 (= i (0 +tpg /M+q)
L4(0,P;G0,P0) = 8(p—pPo)5— | doe! 7@ Pl DAl py— = |A*| pot = |+ 8(p+po)5— [ doel7doTiPoimTa

1
‘B + 2 20990 @0+ 50 MBIB (py— p)A(p + py) + . BY)

_(TB* +0
Po 2 Po 2

The probability of having a final momentumis

P~ [ da| dap | dpotta.pido.po)nolopo)
= IA(p)szldqepo(qe,pHIB(— p)lzf:dqepo(qo,— p)+[B*(—~p)A(p) +B(~ p)A*(p)]f:qupo(qo,O),
(B2)

where the order of integration was changed, and use was made of the idieltfi#y9=275( o). If the initial Wigner function
has a well defined momentum, thgg(gy,0)=0, and the last term vanishes, giving

Pup)=|A(P)|*Po(p) +|B(—p)|?Po(—p). (B3)

The probability of finding the particle in the final coordinatds given by
Pq)= f_wdpf_wdQOf_wdpoLt(q,piQO'po)Po(%-po)

= | da.d i doelo@i—aa g A* i dand i doelotdita)
do poPo(Qo,po)zﬂ_ oe Po~ 5 po+2 + do poPo(Qo,po)zﬂ_ oe

o

X —
B Po+ 5

eiquO .
+j d%dpopo(%apo)(?j d(2p)e™'?PUB* (py— p)A(p+ Po) +C.C.

A
Po 2

Po
gf=(o+ mt- (B4)

If the time is large enough so thgt— o for every @q,pg) for which pg(dg,po) # 0, the integrands oscillate rapidly, giving
P:(q)—0 except forq~q; or g~ —g;. Again, the last term does not contribute.

APPENDIX C: MODIFIED PO SCHL-TELLER POTENTIAL BARRIER
The modified Pechl-Teller(PT) potential barrier,

Uo/ZS

VPT(q)= CosR(als)” (CD

wherev, ands are constants, is an example for a local potential barrier which enables an explicit solution and a test of the
various approximations. The known solutifi] is

[T(1-isk)]? cosTw

PT )i PT oy — i
a (k) =i b (x)= ' Sinhmsk’

(C2

r L i r L i |
SK E-i-w ISk E w—ISK

wherew= 31— 2svy; it is real if the barrier is narrow.
The singularities of the transmission amplitude are simple polescat—i(n+3+ ), n=0,1, ... . The phase-space
propagator is given by an infinite sum of the residues. For large tithe result is
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0

FIG. 1. The transmission propagatbas a function of théfinite and positivelag distance;-r/s=(q—qo—tpe/m)/s: (i) the solid line:
exact propagator for the PT barrier, E§5) (for spy=0.2 andsv = 0.375);(ii) the gray line: the propagator for thebarrier, Eq.(31) (for
vo/p=1.875); (iii) the dashed line: the semiclassical approximation of @§). Note: The 6 term present at the front in the exact
propagators, Eq.30), is not shown in curves) and(ii).

LE'(d,p;do, o) = 8(p—po) T P(r 1 ,po) + 8(p+po) R7T(r —,po),
TPI(r, ,po)=08(r)+ 0(r [ F(v,0)+ F(—v,0)+ F(v,— )+ F(—v,— )], (C3
REUr —,po)=6(r )[F(v,0)+ F(—v,0)+ F(v,— o)+ F(—v,— )]+ 6(—1 [ Fv,0) + F(—v,~ w)],
wherev=2p,s and

2T (20)T (i )T (i v+ 2w) p( _ r+>
F(v,w)= : . exp (iv+2w—1)—
sI'(—3+o)l(G+w)(—3+ivto)l(3+ivto) S

i—wi-wi-iv-wi-iv-w r.
X 4F3 ) ) exp —2—| |,
1-2w,1-iv,1-iv—2w S

B -2 o) (i) (iv+20) T (3—iv—w)
_S[F(%-f—w)]zr(%—w)r(—%-f—w)r(—%-i—iv-f— )

—wi-wi-iv-wi-iv-ow r_
) ) exp —2—| |,
1-2w,1-iv,1-iv—2w

Fi(v,w)

r_

FEG+ivto)lG+iv-w)l(—1-iv)
FG+w)l(3—w)(1+iv)

] r_ twi-witivtoeitiv-ow 2r_
X ex (Iv+2)? 4F3 o 1ty 2tin ;ex < (C9

F(v,w)= 21)(2)5
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Here ,F5 are the generalized hypergeometric functiprs|,

(fl,§2,§3,§4 ) i " (fl) (€2)n(&3)n(Ea)n
4F3 P

)\1,)\2,)\3 )n( 2)n()\3)n (, )
C5

and ¢),=
as|¢|<1.

Secs. V and VI. In the limit of a narrow barriee~0 while

vo=const, and theS-function barrier disscused in Sec. V is
reproduced. In this limit the exact propagator, given by the T

series in Eqs(C4) reduces to theS propagator of Eq(33).
On the other hand, in the domains where the inequalitigs

hold the deep-tunneling semiclassical approximation of Eq.
(45) can be applied. In Fig. 1 we present an example for a
regime

transmission propagator in the deep-tunneling
Namely, a PT barrier withrsp,=0.2 andsvy=0.375. the

exact propagator is calculated and compared to the two ap-
proximations. As long as is not too small the propagator for

the & barrier is an excellent approximation. Fo=0 the

exact propagators are singular. This singularity is smeared by

the approximation of Eq45).
For small momentax < ko= /v (/2s, the WKB semiclas-
sical approximation for the amplitude gives

I'(é+n)/T(€). The series are convergent, as long

4761

2
K
ECT(K)~exp[ — 7s(Kko— K)+iSK|n(;g—1)

Kot K

+iskgln (Co)

Ko

An Airy function is obtained by substituting this expression

Two complementary approximations were considered irin the integral for7 and expanding the exponent in the inte-

grand to a power series in,

~e 2T 0P0)(3p3) THRAI[(3¢3) THAT L — 1),

2
K

( 0 SKS( KS— 3p(2))
¢1=-—sIn| ——1 1202 2—pD)2"
Po

C
12p5(xo— po) (€

) $P3=

As s—oo, the Airy function approaches th&function,

T~ e 27m(v=P0) 5 o+ 2pgt +sIn

Ko
~1|-q|.
s

(C8)

The result looks like an advance in time, violating causality.
This is an artifact of a wrong semiclassical approximation.
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