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We derive a general limit on the fidelity of a quantum channel conveying an ensemble of pure states. Unlike
previous results, this limit applies to arbitrary coding and decoding schemes. This establishes in full generality
the quantum noiseless coding theorem, formerly obtained only for the special case of unitary decoding
schemes.@S1050-2947~96!06611-5#
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I. QUANTUM ENCODING AND DECODING

One of the central problems in quantum information
theory@1# is the transmission of pure quantum states from a
sender to a receiver using the least possible channel re-
sources. Suppose Alice generates the stateuai& of the system
Q with probability pi . This is encoded by some~possibly
mixed! stateWi of the channel systemC ~generally of
smaller Hilbert-space dimension thanQ) and delivered to
Bob, who performs a decoding operation giving a statewi of
Q. We assume that no ‘‘noise’’ is present in the system
except that introduced in the coding and decoding processes.
Letting p i5uai&^ai u, this may be represented by

p i→Wi→wi .

The decoded statewi is not necessarily required to equal
p i exactly; it will suffice for Alice and Bob if the inputs and
outputs are sufficiently close to each other. The ‘‘closeness’’
of the input and output states is measured by theaverage
fidelity F̄:

F̄5(
i
piF~p i ,wi !, ~1!

whereF(p i ,wi)5Trp iwi is the probability thatwi will pass
a test that checks its identity againstp i . Alice and Bob will
succeed in their task ifF̄ is close to unity, and fail if it is not.
Our problem is to characterize the minimal channel re-
sources, i.e., the minimal dimension of the support of the
statesWi , which are necessary and sufficient for high fidel-
ity transmission@2,3#.

This process of retrieving faithful copies of the input
states from the states of the channel has applications in quan-

tum cryptography, where nonorthogonal states represent en-
crypted classical information@4,5#, and in problems of effi-
cient information storage and retrieval for quantum
computers@6#.

The decoding operationWi→wi must be accomplished
without any ‘‘side information’’—i.e., the only information
possessed by Bob about the input state is his knowledge of
the message ensemble and the coding procedure that pre-
pares the channelC. Bob’s decoding procedure must be a
dynamical evolution that is specified apart from the state on
which it acts. On the other hand, we make no such assump-
tion about Alice’s encoding operation, so that the association
p i→Wi is completely arbitrary. Indeed we generally allow
Alice to have knowledge of the identities of the specific in-
put states and she is therefore able to effect arbitrary encod-
ings. In contrast, Bob is unable to reliably identify the~gen-
erally nonorthogonal! channel statesWi @7,8# so his decoding
procedure is restricted by the laws of quantum mechanics as
described in Sec. III below.

Note that the encoding procedure here is more general
than the scenario in which Alice is required to encode the
input stateswithout knowledge of their identities~knowing
only their a priori distribution!. In this situation the allow-
able encodingsp i→Wi are no longer arbitrary but subject to
restrictions analogous to those on Bob’s decoding proce-
dures.~This is in contrast@8,9# to the corresponding situation
with classicalsignals which may always be reliably identi-
fied without disturbance.! A remarkable consequence of the
quantum noiseless coding theorem, and its converse de-
scribed below, is that the minimal channel resources for high
fidelity transmission in this situation are asymptotically the
sameas those for the case where Alice is able to apply arbi-
trary encoding processes, i.e., knowledge of the identity of
the input states does not lead to any reduction of channel
resources. Indeed in@2,3# an explicit encoding scheme is
described which achieves~asymptotically! the minimal chan-
nel resources and this scheme operates without knowledge of
the identity of the input states~being dependent only on their
a priori distribution!.

The quantum noiseless coding theorem proved in@2,3#
relates the achievable average fidelityF̄ to the size of the
channel system. This size is given in terms of the number of
two-level systems, orqubits, that comprise the channel when

*Permanent address: De´partement IRO, Universite´ de Montréal,
C. P. 6128, Succursale centre-ville, Montre´al, Québec, Canada H3C
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coding is performed on large blocks of signals drawn iden-
tically from the original message ensemble.1 Suppose we
have input statesp i with probabilitiespi , as before, and let
r5( i pip i be the density operator describing the input en-
semble. The von Neumann entropy ofr is given by

S~r!52Trr logr, ~2!

where the base of the logarithm is 2. Then the quantum
noiseless coding theorem states:

Let e,d.0, and supposeS(r)1d qubits are available in
the channel per input state. Then for all sufficiently large
N, there exists a coding and a decoding scheme which trans-
mits blocks ofN states with average fidelityF̄.12e.

In other words, the von Neumann entropy is a measure of the
channel resources~in qubits! sufficient to transmit quantum
states with arbitrarily high average fidelity. It is important to
note that the fidelity of interest is the fidelity of theentire
block of N input states. A converse to the theorem has also
been given.

Let e,d.0, and supposeS(r)2d qubits are available in
the channel per input state. Then for all sufficiently large
N, for any coding and decoding scheme for blocks ofN
states, the average fidelity satisfiesF̄,e.

This converse states that the von Neumann entropy is a mea-
sure of the channel resourcesnecessaryto transmit quantum
states with high average fidelity for the entire block.

In this formulation, the converse refers to all possible
coding-decoding schemes. However, the proof given in@2#
and @3# implicitly assumes that the decoding scheme is
unitary—that is, that the mapWi→wi is a unitary mapping
from the channel’s Hilbert space into the Hilbert space of the
decoded signals. There are still other possibilities that must
be considered. For example, the decoding scheme might in-
volve a measurement, the discarding of an entangled sub-
system, or any other process allowed within the the laws of
physics. The converse of the quantum noiseless coding theo-
rem cannot be established in full generality without consid-
ering all conceivable decoding schemes. Indeed in the Ap-
pendix we present a simple example containing all the salient
features of this problem that shows forparticular ~nonopti-
mal! encodings it is possible for nonunitary decodings to
provide higher fidelity than any unitary decoding scheme.
Therefore, the issue of real concern for the converse is
whether such nonunitary decoding schemes add any power
to optimal encodings.

Our aim in this paper is to complete the general proof of
the converse of the quantum noiseless coding theorem by
establishing a lemma that links the average fidelityF̄ of the
decoded signal states to the size of the channel system and to

properties of the density operatorr of the ensemble of input
states. This fidelity lemma may also prove useful in other
contexts.

II. FIDELITY

Supposer1 andr2 are density operators describing states
of a quantum systemQ. We can always imagine that these
mixed states arise by a partial trace operation from pure
states of an extended systemQA. That is, there are states
u1& and u2&, called ‘‘purifications’’ of r1 andr2, for which

r15TrAu1&^1u

r25TrAu2&^2u.

We define~as in @10#! the fidelityF(r1 ,r2) by

F~r1 ,r2!5maxu^1u2&u2, ~3!

where the maximum is taken over all purificationsu1& of
r1 andu2& of r2. Thus the fidelity is the largest squared inner
product between purifications of two density operators. This
definition provides a generalization to mixed states of the
natural squared inner product measure of fidelity for pure
states.

Basic properties of this notion of fidelity are described in
detail in @10# and we note the following.

~i! 0<F(r1 ,r2)<1 and F(r1 ,r2)51 if and only if
r15r2.

~ii ! F(r1 ,r2)5F(r2 ,r1).
~iii ! If one of the statesr1 is a projectionp1, i.e., apure

state, then we have the more direct expression

F~p1 ,r2!5Trp1r2 .

~A general expression for arbitrary mixed states is given in
@10# but this is not required in the present work.!

~iv! In defining the fidelity for mixed states, it is sufficient
to fix any one of the purificationsu1& of r1 and take the
maximum ofu^1u2&u2 over arbitrary purificationsu2& of r2.

We can extend the definition of fidelity from normalized
states to subnormalized states~in which Trr1,1) in an ob-
vious way, by requiring that the purifications have the same
normalization:̂ 1u1&5Trr1.

We now establish a useful inequality for fidelity. Letr1,
r2, and r3 be states, and letF125F(r1 ,r2), etc. We will
require that Trr351, butr1 andr2 may be subnormalized.
Then

F13<F2312~12AF12!12A2AF23~12AF12!. ~4!

This implies that ifF12 is close to unity andF23 is close to
zero, thenF13 must also be close to zero.

The proof is not difficult. We construct purifications for
our states with these properties:

~i! The inner product̂1u2& is real and non-negative.
~ii ! F125^1u2&2,
~iii ! F135u^1u3&u2.
This can be done by the following procedure. We fix

u1& and chooseu2& and u3& so that F125u^1u2&u2 and
F135u^1u3&u2. Next we adjust the phase ofu2& to satisfy the
first condition. Clearly,F23>u^2u3&u2.

Let ux&5u2&2u1&. Then

1Of course, the description of the channel in terms of qubits is
mere convenience. Any channel described by a Hilbert space of
dimensiond is equivalent for our purposes to logd qubits.
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^xux&5^1u1&1^2u2&22^1u2&<2~12AF12!.

~Strict equality need not hold becauser1 and r2 may be
subnormalized.! Furthermore,

AF135u^1u3&u5u^2u3&2^xu3&u<u^2u3&u1u^xu3&u<AF23

1A^xux&<AF231A2~12AF12!.

Thus

F13<F2312~12AF12!12A2AF23~12AF12!

as we wished to prove.
We note in passing that, if we relax the condition that

Trr351, we arrive at a more general inequality for subnor-
malized states:

F13<F231 2Trr3~12AF12!12A2 Trr3AF23~12AF12!.

III. CHANNEL SIZE AND FIDELITY

The ‘‘size’’ of the channel systemC is specified by the
dimensiond of the Hilbert space describingC. If C is com-
posed ofM qubits, thend52M. This means that in the pro-
cess

p i→Wi→wi

the channel statesWi are operators on ad-dimensional Hil-
bert space. For convenience, we will imagine that theWi
actually act on a d-dimensional subspace of the
n-dimensional Hilbert space describing the systemQ. ~We
could always modify our decoding procedure so that the
channel states were first unitarily moved into the output sys-
temQ and then subjected to a more general decoding pro-
cess. TheWi states would then be the unitary images of the
channel states inQ’s Hilbert space.!

We are now ready to state our result. Imagine that an
ensemble of pure states ofQ ~in which the statep i appears
with probability pi) is described by a density operator
r5( i pip i . Letl i be the eigenvalues ofr, listed in descend-
ing order ~so thatl1>•••>ln), and let ul i& be associated
eigenvectors.

Fidelity lemma:Suppose the dimension of the Hilbert
space for the channel isd, and write

(
i51

d

l i5h.

Then, for any encoding and decoding procedures,F̄,6h.
To prove this lemma, we first note that

h5(
i51

d

l i>dld11 ,

so thatld11<h/d. Now we construct a projection operator

L5 (
i5d11

n

ul i&^l i u,

which is the projection onto the subspace spanned by the
eigenvectors corresponding to then2d smallest eigenvalues
of r. We useL to project the input statesp i into ~subnor-
malized! statesp̃ i

p̃ i5Lp iL

r̃5(
i
pip̃ i5LrL.

The largest eigenvalue ofr̃ is justld11.
Our plan is as follows.~For heuristic purposes and later

application, we have in mind a situation withh small.! First,
we will show that the original input statesp i are, on average,
close to the projected statesp̃ i . Then we will show that the
average ofF(p̃ i ,wi) is small for all possible coding-
decoding schemes. Using the fidelity inequality in Eq.~4!
above, we will conclude that the average ofF(p i ,wi) must
therefore be small. The qualitative phrases ‘‘close to’’ and
‘‘small’’ will be quantified by the value ofh.

Anticipating somewhat, we first find a lower bound for
the average of thesquare rootof F(p i ,p̃ i). Recall that
p i5uai&^ai u.

(
i
piAF~p i ,p̃ i !5(

i
piATrp iLp iL

5(
i
piA^ai uLuai&^ai uLuai&

5(
i
pi^ai uLuai&5TrrL512h. ~5!

We wish the decoding procedure to be as general as pos-
sible. Therefore we only require that the procedure be speci-
fiable independently of the stateWi to which it is applied,
and that it is an allowable quantum dynamical evolution. The
most general dynamical evolution possible in quantum me-
chanics is a trace-preserving completely positive map on the
space of density operators@11#. Such a map can always be
modeled by a unitary interaction between the systemQ and
an ancilla systemA ~initially in some standard pure state
uf0&), after whichA is discarded. We can therefore write

wi5TrAU~Wi ^ uf0&^f0u!U† ~6!

for some unspecified unitaryU.
We can use this general form to find an upper bound for

the average ofF(p̃ i ,wi). Note that, althoughp̃ i is subnor-
malized, it is still an operator of rank 1, and thus we can
write the fidelity as Trp̃ iwi . Let Gd be the projection onto
the d-dimensional subspace occupied by the channel states
Wi . Then, writing the trace over theQ Hilbert space as
TrQ , etc.,
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F~p̃ i ,wi !5(
i
piTrQp̃ i~TrAU~Wi ^ uf0&^f0u!U†!

5(
i
piTrQA~p̃ i ^1A!U~Wi ^ uf0&^f0u!U†

<(
i
piTrQA~p̃ i ^1A!U~Gd^ uf0&^f0u!U†

5TrQA~ r̃ ^1A!U~Gd^ uf0&^f0u!U†.

Now, every eigenvalue ofr̃ ^1A is an eigenvalue ofr̃. Fur-
thermore, the operatorU(Gd^ uf0&^f0u)U† is a projection
onto ad-dimensional subspace. The trace will therefore be
less than or equal to the sum of thed largest eigenvalues of
r̃ ^1A , which in turn can be no larger thandld11

(
i
piTrQp̃ iwi<dld11<dS h

d D5h. ~7!

We now find an upper bound forF̄ by applying the fidel-
ity inequality in Eq.~4! to each term in the average

We will bound the averagesX̄, Ȳ, andZ̄ separately.
We have already boundedX̄ in Eq. ~7!.

X̄5(
i
piXi5(

i
piTrQp̃ iwi<h.

Similarly, the bound forȲ follows from Eq.~5!.

Ȳ5(
i
piYi52S 12(

i
piAF~p i ,p̃ i ! D 52h.

To find an upper bound forZ̄, we use these two results to-
gether with the Schwarz inequality

Z̄5(
i
piZi52(

i
piAXiYi<2A(

i
piXiA(

j
pjYj

<2A2h.

Therefore,

F̄5X̄1Ȳ1Z̄<h12h12A2h,6h,

which is what we wished to establish.
We point out once again that no assumption has been

made about the encoding procedurep i→Wi . This may be
completely arbitrary. We do not require that it be accom-
plished by a process that is ‘‘blind’’ to the input statep i ,
that is, by a completely positive map. This means that we are
allowing Alice to be completely cognizant of the identity of

the input she is representing in the channel, even though it
may be one of a nonorthogonal~and hence imperfectly dis-
tinguishable! set.

We note finally that the boundF̄,6h is quite likely to be
loose. For example, in@2# and @3#, where the decoding
scheme was assumed to be unitary, a bound ofF̄<h was
derived. This bound for unitary decoding is achieved by a
very natural coding-decoding scheme—Wi is the renormal-
ized projection ofp i into the subspace corresponding to
r ’s largestd eigenvalues and the unitary decoding is just the
identity. Denoting the projector onto this subspace byGd ,
the fidelity may be written~taking the sum to excludei such
thatp i are orthogonal toGd , which make zero contribution
to average fidelity no matter how they are encoded!

F̄5(
i
pi TrS p i

Gdp iGd

Trp iGd
D5(

i
pi

^ai uGduai&^ai uGduai&
^ai uGduai&

5(
i
pi^ai uGduai&5TrrGd5h.

Nevertheless, the bound of 6h suffices for proving the con-
verse of the quantum noiseless coding theorem.

IV. QUANTUM CODING

Suppose the input statep i of Q occurs with probability
pi , so that the ensemble of inputs is described by
r5( i pip i , as above. Further suppose that a long sequence
of N such inputs, generated independently, is available. The
ensemble ofN sequences of input states is then described by

For sufficiently largeN, the structure ofrN is characterized
by a typical subspaceTN @2,3#.

The typical subspace may be described as follows. Fix
e,d.0. Then for sufficiently largeN, there exists a subspace
TN spanned by eigenstates ofrN such that~i! if P is the
projection ontoTN , then

TrPrNP.12e;

~ii ! if ul& is an eigenstate ofrN with eigenvaluel, and
ul&PTN , then

22N[S~r!1d],l,22N[S~r!2d] .

Now suppose that a sequence ofN inputs is encoded
somehow into a set of qubits, so thatS(r)22d qubits are
used per input. The Hilbert space describing the channel of
N@S(r)22d# qubits will have dimensiond52N[S(r)22d] .
The channel states are used in some decoding procedure to
produce an output state ofN copies ofQ.

According to our fidelity lemma, we can bound the fidel-
ity of this process by calculating the sum of the largestd
eigenvalues ofrN. We will denote this bySd . This sum
must certainly be smaller than the sum of all of the eigen-
values outside the typical subspaceTN plusd times the larg-
est eigenvalue insideTN . That is,
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Sd,e1d22N[S~r!2d]5e12N[S~r!22d]22N[S~r!2d]

5e122Nd.

For sufficiently largeN, Sd,2e. Thus, by our fidelity
lemma,F̄,12e. Letting d5d8/2 ande5e8/12, we find that
if S(r)2d8 qubits are available per input, then for suffi-
ciently largeN the average fidelityF̄,e8. This establishes
the converse to the quantum noiseless coding theorem for the
most general sorts of coding and decoding schemes.
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APPENDIX

We demonstrate here, by explicit example, that decoding
schemes more general than the set of unitary ones can be of
some benefit in situations of nonoptimal coding.

Consider three signal statesua0&, ua1&, andua2& which are
all real positive linear combinations of three fixed orthonor-
mal vectors, so that we may picture them as vectors in the
positive octant ofR3. The states form three edges of a regu-
lar tetrahedron with the origin as their common vertex, and
thus are all 60° apart. The statesua0& andua1&, in particular,
are assumed to be in the positive quadrant of thex-y plane,
each vector having an angle of 15° between itself and the
nearest axis. The prior probabilities for the signal states are
0.49, 0.49, and 0.02, respectively. The encoding scheme as-
sociates the orthogonal projectorsW0 andW1 onto thex and
y axes, respectively, with the statesua0& and ua1&. It associ-
ates the density matrix

W25
1
2 ua0&^a0u1

1
2 ua1&^a1u,

corresponding to an equal mixture ofua0& andua1&, with the
state ua2&. Note that the set of encoded states has a two-
dimensional support, i.e., a support smaller than that contain-
ing the signal states.

Because the signal stateua2& has such a small prior prob-
ability, the symmetry of this encoding should make it clear
that the best unitary decoding scheme will be only slightly
different fromnot decoding at all.~Actually, detailed calcu-
lation demonstrates that the optimal unitary decoding is to
rotate the encoded states by 0.791° towardua2&, but this only
changes the average fidelity in the fourth significant figure.!
Making this approximation, the average fidelity for this de-
coding scheme is

F̄5 230.493cos215°10.023cos260°5 0.919.

However there exists a simple nonunitary decoding
scheme that achieves a better fidelity than this. Since some of
the signals are encoded in orthogonal alternatives, it is plau-
sible that a decoding device can use a measurement to gather
information about the signal and use that information to pro-
duce decoded states that are closer, on average, to the origi-
nals. In particular, the decoding device can do the following.
It first measures the observable corresponding to thex-y
axis. If the outcome isx, it outputs the statew05p0; if the
outcome isy, it outputs the statew15p1. Thus in the cases
thatQ was actually prepared inua0& or ua1&, the transmis-
sions will have perfect fidelity. In the case thatua2& was the
actual signal state, the fidelity of the transmission will still be
cos260°50.25. Therefore the average fidelity for this non-
unitary decoding scheme isF̄50.985, and this certainly
beats the unitary scheme.

This simple example demonstrates that in some cases in-
volving particular nonoptimalencoding schemes, it is pos-
sible for nonunitary decoding to increase the fidelity of a
quantum channel. Nevertheless the converse of the quantum
noiseless theorem implies that nonunitary decodings provide
no asymptotic advantage over unitary decoding schemes in
the problem of minimizing of channel resources over all pos-
sible coding-decoding schemes.
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