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General fidelity limit for quantum channels
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We derive a general limit on the fidelity of a quantum channel conveying an ensemble of pure states. Unlike
previous results, this limit applies to arbitrary coding and decoding schemes. This establishes in full generality
the quantum noiseless coding theorem, formerly obtained only for the special case of unitary decoding
schemes[S1050-2947@6)06611-3

PACS numbsgps): 03.65.Bz, 05.30-d, 89.70:+c

I. QUANTUM ENCODING AND DECODING tum cryptography, where nonorthogonal states represent en-

One of the central problems in quantum informationc.rypted. classicgl informatiop,5], and iq problems of effi-
theory[1] is the transmission of pure quantum states from gent information  storage  and  retrieval for quantum

sender to a receiver using the least possible channel r&oMPuters6l. , _
sources. Suppose Alice generates the $tajeof the system The decoding operatioltV;—w; must be accomplished

Q with probability p;. This is encoded by somg@ossibly without any “side information'j—i.e., the pnly_ information
mixed state W, of the channel systenC (generally of possessed by Bob about the input state is his knowledge of

smaller Hilbert-space dimension th&) and delivered to the message ensemble and the_coding procedure that pre-
Bob, who performs a decoding operation giving a statef ~ Pares the channdl. Bob’s decoding procedure must be a
Q. We assume that no “noise” is present in the systemdynamical evolution that is specified apart from the state on
except that introduced in the coding and decoding processewhich it acts. On the other hand, we make no such assump-

Letting 7 =|a;)(&|, this may be represented by tion about Alice’s encoding operation, so that the association
mi— W, is completely arbitrary. Indeed we generally allow
mi—Wi—w;. Alice to have knowledge of the identities of the specific in-

) ) ) put states and she is therefore able to effect arbitrary encod-
The decoded states; is not necessarily required to equal ings. In contrast, Bob is unable to reliably identify twen-

7r; exactly; it will suffice for Alice and Bob if the inputs and erally nonorthogonaichannel state®/; [7,8] so his decoding

outputs are sufficiently close to each other. The “closeness’ocequre is restricted by the laws of quantum mechanics as
of the input and output states is measured by akierage

o described in Sec. Il below.
fidelity F: Note that the encoding procedure here is more general
than the scenario in which Alice is required to encode the
F_ZE pF(m W), (1) input sta_lteswit_ho.ut I_<no.wle.dge of thgir idenyitiessknowing
i only their a priori distribution. In this situation the allow-
able encodingsr;— W, are no longer arbitrary but subject to
whereF (7r; ,w;) = Trm;w; is the probability thatv; will pass  restrictions analogous to those on Bob’s decoding proce-
a test that checks its identity against. Alice and Bob will  dures.(This is in contrasf8,9] to the corresponding situation
succeed in their task F is close to unity, and fail if it is not. ~ with classicalsignals which may always be reliably identi-
Our problem is to characterize the minimal channel refied without disturbancg A remarkable consequence of the
sources, i.e., the minimal dimension of the support of theguantum noiseless coding theorem, and its converse de-
statesW,; , which are necessary and sufficient for high fidel- scribed below, is that the minimal channel resources for high
ity transmissior{2,3]. fidelity transmission in this situation are asymptotically the
This process of retrieving faithful copies of the input sameas those for the case where Alice is able to apply arbi-
states from the states of the channel has applications in quatfary encoding processes, i.e., knowledge of the identity of
the input states does not lead to any reduction of channel
resources. Indeed if2,3] an explicit encoding scheme is
*Permanent address: partement IRO, Universitele Montral, ~ described which achievéasymptotically the minimal chan-
C. P. 6128, Succursale centre-ville, MomteQuévec, Canada H3C ~ Nel resources and this scheme operates without knowledge of
337. the identity of the input statdbeing dependent only on their

"Permanent address: School of Mathematics and Statistics, Un@ Priori distributior)._ _ _
versity of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA,  The quantum noiseless coding theorem proved23]

England. relates the achievable average fideliyto the size of the
*Permanent address: Department of Physics, Kenyon Collegghannel system. This size is given in terms of the number of
Gambier, Ohio 43022. two-level systems, ogubits that comprise the channel when
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coding is performed on large blocks of signals drawn idenjproperties of the density operatprof the ensemble of input
tically from the original message ensembl&uppose we states. This fidelity lemma may also prove useful in other
have input statesr; with probabilitiesp;, as before, and let contexts.

p=2;p;m be the density operator describing the input en-

semble. The von Neumann entropy @is given by l. FIDELITY

Supposep; andp, are density operators describing states
@) of_a quantum syster. We can always imagine that these
mixed states arise by a partial trace operation from pure
states of an extended syste@A. That is, there are states

Wh.ere the bage of the logarithm is 2. Then the quantumi) and|2), called “purifications” of p; and p,, for which
noiseless coding theorem states:
p1=Tral1)(1]

S(p)=—Trplogp,

Let €,6>0, and suppos&(p) + & qubits are available in
the channel per input state. Then for all sufficiently large p2=Tra|2)(2].
N, there exists a coding and a decoding scheme which trangye define(as in[10]) the fidelity F(py,p,) by
mits blocks ofN states with average fidelity>1—e.
F(p1,p2)=max(1|2)|?, 3)

In other words, the von Neumann entropy is a measure of thghere the maximum is taken over all purificatiofi of
channel resourceSn qubits sufficient to transmit quantum ;, and|2) of p,. Thus the fidelity is the largest squared inner
states with arbitrarily high average fidelity. It is important to product between purifications of two density operators. This
note that the fidelity of interest is the fidelity of tremtire  definition provides a generalization to mixed states of the
block of N input states. A converse to the theorem has als@atural squared inner product measure of fidelity for pure
been given. states.

Basic properties of this notion of fidelity are described in
Let €,6>0, and suppos&(p) — & qubits are available in detail in[10] and we note the following.
the channel per input state. Then for all sufficiently large () 0<F(p1,p2)<1 and F(p1,p;)=1 if and only if
N, for any coding and decoding scheme for blocksNof  pP1= p2.

states, the average fidelity satisfles: e. (i) F(p1.p2) =F(p2.p1). o .
(iii ) If one of the statep, is a projections,, i.e., apure

This converse states that the von Neumann entropy is a meat-ate’ then we have the more direct expression

sure of the channel resourcescessaryo transmit qguantum
states with high average fidelity for the entire block.
In this formulation, the converse refers to all possible(A general expression for arbitrary mixed states is given in
coding-decoding schemes. However, the proof givef2ln  [10] but this is not required in the present work.
and [3] implicitly assumes that the decoding scheme is (iv) In defining the fidelity for mixed states, it is sufficient
unitary—that is, that the mapV;—w; is a unitary mapping to fix any one of the purification§l) of p, and take the
from the channel’s Hilbert space into the Hilbert space of thenaximum of|(1]2)|? over arbitrary purification$2) of p,.
decoded signals. There are still other possibilities that must We can extend the definition of fidelity from normalized
be considered. For example, the decoding scheme might istates to subnormalized stat@s which Trp;<1) in an ob-
volve a measurement, the discarding of an entangled sulyious way, by requiring that the purifications have the same
system, or any other process allowed within the the laws oformalization:(1|1)=Trp;.
physics. The converse of the quantum noiseless coding theo- We now establish a useful inequality for fidelity. Lef,
rem cannot be established in full generality without consid-,, and ps be states, and I&€;,=F(p;,p,), etc. We will
ering all conceivable decoding schemes. Indeed in the Aprequire that Tp;=1, butp,; andp, may be subnormalized.
pendix we present a simple example containing all the salienthen
features of this problem that shows fparticular (nonopti-
mal) encodings it is possible for nonunitary decodings to _ / _
provide higher fidelity than any unitary decoding scheme. Fis=Fast 2(1-F1) +2V2VF o 1-VF1). (4
Therefore, the issue of real concern for the converse iFhis implies that ifF , is close to unity andF,3 is close to
whether such nonunitary decoding schemes add any poweero, thenF,; must also be close to zero.
to optimal encodings. The proof is not difficult. We construct purifications for
Our aim in this paper is to complete the general proof ofour states with these properties:
the converse of the quantum noiseless coding theorem by (i) The inner product1|2) is real and non-negative.
establishing a lemma that links the average fiddfitpf the (i) F1o=(1]2)?,
decoded signal states to the size of the channel system and to (iii ) F,5=|(1|3)|2.
This can be done by the following procedure. We fix
|1) and choose|2) and |3) so that F,=[(1|2)|?> and
10f course, the description of the channel in terms of qubits isF;5=|(1|3)|2. Next we adjust the phase [#) to satisfy the
mere convenience. Any channel described by a Hilbert space dirst condition. ClearlyF ,5=|(2|3)|2.
dimensiond is equivalent for our purposes to ldgubits. Let [x)=]2)—|1). Then

F(my,p2)=Trmp,.
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(X|x)=(1]1)+(2|2)—2(1]2)=<2(1- JVEL). so that\ 4, 1< #n/d. Now we construct a projection operator
(Strict equality need not hold becauge and p, may be A En: A
subnormalized.Furthermore, _i=d+1| (il

_ _ _ - - which is the projection onto the subspace spanned by the
\/F_B (2[3)=1(213) = (I3} = K23} + [xI3) = \F 23 eigenvectors corresponding to the-d smallest eigenvalues
+ (x|x>$\/F_23+ ,/2(1_ \/F_lz) of p. We useANto project the input states; into (subnor-
malized states;
Thus

%i:A’JTiA

Fio=Fos+2(1=VF 1) +2V2VF o 1- VF1) o
P=§i: pimi=ApA.

as we wished to prove. _ _
We note in passing that, if we relax the condition thatThe largest eigenvalue @fis justAg. .

Trps=1, we arrive at a more general inequality for subnor- Our plan is as follows(For heuristic purposes and later
malized states: application, we have in mind a situation withsmall) First,

we will show that the original input states are, on average,
close to the projected states. Then we will show that the
Fia<Fay3t+ 2Trp3(1— \/F_12)+2\/2 TrpgVF 51— \/F_lz) average ofF(7,w;) is small for all possible coding-
decoding schemes. Using the fidelity inequality in E4).
lIl. CHANNEL SIZE AND FIDELITY above, we will conclude that the averageFdfm; ,w;) must
therefore be small. The qualitative phrases “close to” and
The “size” of the channel syster® is specified by the “small” will be quantified by the value ofy.

dimensiond of the Hilbert space describing. If C is com- Anticipating somewhat, we first find a lower bound for
posed ofM qubits, thend=2M. This means that in the pro- the average of thesquare rootof F(m;, 7). Recall that
cess = |ai){(al.

mi—Wi—w,

Z piVF( in):Z pivTrmAmA

the channel stated/; are operators on d-dimensional Hil-
bert space. For convenience, we will imagine that e =2 pi(alAla)(aiAlay)

actually act on a d-dimensional subspace of the '

n-dimensional Hilbert space describing the syst@m(We

could always modify our decoding procedure so that the =2 pialAla)=TrpA=1-7. (5
channel states were first unitarily moved into the output sys- '

tem Q and then subjected to a more general decoding pro- \we wish the decoding procedure to be as general as pos-
cess. Thew; states would then be the unitary images of thesihle, Therefore we only require that the procedure be speci-
channel states iQ’s Hilbert space. _ fiable independently of the staW®; to which it is applied,

We are now ready to state our result. Imagine that amng that it is an allowable quantum dynamical evolution. The
ensemble of pure states @ (in which the stater; appears most general dynamical evolution possible in quantum me-
with probability p;) is described by a density operator chanics is a trace-preserving completely positive map on the
p=Zip;m; . Let\; be the eigenvalues gf, listed in descend-  space of density operatofd1]. Such a map can always be
ing order (so that\;=---=\,), and let|\;) be associated modeled by a unitary interaction between the sys@rand
eigenvectors. an ancilla systemA (initially in some standard pure state

Fidelity lemma: Suppose the dimension of the Hilbert |4 ) after whichA is discarded. We can therefore write
space for the channel & and write

W, =TraU(Wi® | o) (o) ) UT (6)

d
2 Ni=7. for some unspecified unitary.

=1 We can use this general form to find an upper bound for
the average of (7 ,w;). Note that, althoughr; is subnor-
malized, it is still an operator of rank 1, and thus we can
write the fidelity as T#r;w;. Let I'y be the projection onto

d the d-dimensional subspace occupied by the channel states
7]:2 Ni=dhg,q, W;. Then, writing the trace over th@® Hilbert space as

i=1 Trg, etc,,

Then, for any encoding and decoding procedu%ﬁn.
To prove this lemma, we first note that
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the input she is representing in the channel, even though it
may be one of a nonorthogon@nd hence imperfectly dis-
tinguishabl¢ set. L

We note finally that the bound<6 # is quite likely to be
loose. For example, if2] and [3], where the decoding
scheme was assumed to be unitary, a boun& sfy was
derived. This bound for unitary decoding is achieved by a
very natural coding-decoding schem&—is the renormal-
ized projection of#; into the subspace corresponding to
p’s largestd eigenvalues and the unitary decoding is just the
] _ ) identity. Denoting the projector onto this subspacelby,
Now, every eigenvalue g®1, is an elgeTnyaIue 075 FUr- the fidelity may be writteritaking the sum to excludiesuch
thermore, the operatdd (I'q®|$o){bo[)U" is a projection  hat - are orthogonal td'y, which make zero contribution

onto ad-dimensional subspace. The trace will therefore bgg average fidelity no matter how they are encoded
less than or equal to the sum of tdargest eigenvalues of

p®1,, which in turn can be no larger thah 4, ,

F(mi ,Wi)=2 PiTromi (TraU(Wi® | o) (ol )UT)
:Ei: PiTroa(T® L) U(W,® | do){ o )UT

sEi PiTroA(T® L) U(T4® | o) (ho|)UT

=Troa(P®1a)U(T4® | o) o) U™

B CHRERETINED
_Ei P @l a)

T

— Fd’ﬂird
7 F_El P r iTrWiFd)

q/=" (7)

> piTrQ"ﬁiwisdAstd(
I
o :Zi pi(ailTgla)=Trpl'y= 7.
We now find an upper bound fét by applying the fidel-

ity inequality in Eq.(4) to each term in the average

F(m,w)<sF(@;,w)+ 2(1 = VF(7;,7;))

X:

1

Y

1

+2V2F (7 w) (1= VF(m;,77,)).
N T

We will bound the average)?,_ Y, andZ_separater.
We have already boundediin Eq. (7).

Nevertheless, the bound ofs6suffices for proving the con-
verse of the quantum noiseless coding theorem.

IV. QUANTUM CODING

Suppose the input state; of Q occurs with probability
p;, so that the ensemble of inputs is described by
p=2ipim;, as above. Further suppose that a long sequence
of N such inputs, generated independently, is available. The

ensemble oN sequences of input states is then described by
N
Sttt

pN=p® < ®p.
X Z PiXi Z PiTrQmWi= 7. For sufficiently largeN, the structure op" is characterized
by atypical subspacédy [2,3].

The typical subspace may be described as follows. Fix
€,6>0. Then for sufficiently larg&l, there exists a subspace
Ty spanned by eigenstates p¥ such that(i) if II is the
projection ontoZy, then

Similarly, the bound fov follows from Eq.(5).
Y= pivizz(l—Ei piVF(, ﬁ"n))zzn.

To find an upper bound faZ, we use these two results to- TripNIT> 1~ ¢;

gether with the Schwarz inequality

Z_:Z piZiIZZ pi XiYi$2\/§i: PiX; \/Ej: P;Y;j

$2\/§77.

Therefore,

(i) if |\) is an eigenstate g™ with eigenvaluex, and
IN) e 7y, then

2-NI[S(p)+ 6] )\ <2~ NIS(p)— 4]

Now suppose that a sequence Nfinputs is encoded
somehow into a set of qubits, so tha¢p) —245 qubits are
used per input. The Hilbert space describing the channel of
N[S(p)—26] qubits will have dimensiord=2NS(»)~29
The channel states are used in some decoding procedure to
which is what we wished to establish. produce an output state df copies ofQ.

We point out once again that no assumption has been According to our fidelity lemma, we can bound the fidel-
made about the encoding procedure—W,. This may be ity of this process by calculating the sum of the largest
completely arbitrary. We do not require that it be accom-eigenvalues opN. We will denote this by 4. This sum
plished by a process that is “blind” to the input state, must certainly be smaller than the sum of all of the eigen-
that is, by a completely positive map. This means that we argalues outside the typical subspafeplusd times the larg-
allowing Alice to be completely cognizant of the identity of est eigenvalue insid&y. That is,

F=X+Y+2Z< n+2n+ 2\/577<677,
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S, 4 < e+ d2 NISP ~ 8 = ¢4 QNIS(p) 28]~ N[S(p) ~ 4] corresponding to an equal mixture |af) and|a,), with the
Ns state|a,). Note that the set of encoded states has a two-
=et2 77 dimensional support, i.e., a support smaller than that contain-

. - ing the signal states.

For sufficiently IargeN, 34<2e. Thus, by our: fidelity Because the signal sta®,) has such a small prior prob-
lemma,F<12e. Letting 6= 6'/2 ande=€'/12, we find that  4pjlity, the symmetry of this encoding should make it clear
if S(p)— 46" qubits are available per input, then for suffi- that the best unitary decoding scheme will be only slightly
ciently largeN the average fidelity-<e'. This establishes different fromnot decoding at all(Actually, detailed calcu-
the converse to the quantum noiseless coding theorem for thetion demonstrates that the optimal unitary decoding is to

most general sorts of coding and decoding schemes. rotate the encoded states by 0.791° towagd, but this only
changes the average fidelity in the fourth significant figure.
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However there exists a simple nonunitary decoding
"scheme that achieves a better fidelity than this. Since some of
the signals are encoded in orthogonal alternatives, it is plau-
sible that a decoding device can use a measurement to gather
information about the signal and use that information to pro-
APPENDIX duce decoded states that are closer, on average, to the origi-

We demonstrate here, by explicit example, that decodin al_s. In particular, the decoding device can do_the following.
schemes more general than the set of unitary ones can be bffI'St measures the observable corresponding to e
some benefit in situations of nonoptimal coding. axis. If the outcome is, it outputs the statevo=o; if the

Consider three signal statks,), |a,), and|a,) which are outcome isy, it outputs the statev, = ;. Thus in the cases
all real positive linear combinations of three fixed orthonor-that Q was actually prepared ifao) or |a;), the transmis-
mal vectors, so that we may picture them as vectors in th&ions will have perfect fidelity. In the case thab) was the
positive octant oft3. The states form three edges of a regu_actual signal state, the fidelity of the transmission WI|! still be
lar tetrahedron with the origin as their common vertex, anoco_5260°:0-25-. Therefore the average fidelity for this non-
thus are all 60° apart. The stateg) and|a,), in particular, ~ unitary deco_dlng scheme iB=0.985, and this certainly
are assumed to be in the positive quadrant ofxtheplane,  beats the unitary scheme.
each vector having an angle of 15° between itself and the This simple example demonstrates that in some cases in-
nearest axis. The prior probabilities for the signal states ar¥0lving particular nonoptimalencoding schemes, it is pos-
0.49, 0.49, and 0.02, respectively. The encoding scheme aglble for nonunitary decoding to increase the fidelity of a
sociates the orthogonal projectdtg andW; onto thex and ~ guantum channel. I_\levgrtheless the converse of .the quantum
y axes, respectively, with the states) and|a;). It associ- noiseless theorem implies that nonunitary decodings provide

ates the density matrix no asymptotic advantage over unitary decoding schemes in
the problem of minimizing of channel resources over all pos-
W,=3|ag)(aol + 3]a){(ay], sible coding-decoding schemes.
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