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We consider a realization of quantum computing using polarized photons. The information is encoded in two
polarization directions of the photons and two-quantum-bit operations are performed using a conditional
Faraday effect. We investigate the performance of the system as a computing device.
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I. INTRODUCTION

After the early discussion of quantum computing@1–3#,
the field has attracted much attention because Shor@4# has
shown that the famous problem of integer factorization can,
in principle, be speeded up considerably by quantum data
manipulation techniques. Quantum information is encoded
on quantum bits~‘‘qubits’’ !, which can be in any superposi-
tion state of the classical bit values zero and one. Conse-
quently registers consisting of several qubits can be encoded
to superpositions of initial values, which will then be pro-
cessed in parallel. Although the determination of all output
values contained in the superposition would be no faster than
obtaining them by classical computation, certain global prop-
erties of the output superposition can be efficiently extracted,
and algorithms utilizing this information speeded up expo-
nentially. The recent work on quantum computation has been
reviewed, e.g., in@5,6#.

Any two-state quantum system can serve as a qubit. To
implement quantum logic, we have to be able to build a
quantum gate which changes the state of a target qubit de-
pending on the state of a control qubit. Once we know how a
single quantum logic gate for two incoming bits can be real-
ized, we can build up all necessary computations using this
universal basic gate@7–11#. Many realizations of quantum
computing have been suggested; at present the most promis-
ing ones seem to be ions trapped electrodynamically@12# or
in a cavity @13#. Also the use of single atoms and cavity
modes@8#, solid state structures@14#, and Ising systems@15#
have been proposed. Experimental successes of an ion-trap
quantum gate@16# and of conditional quantum logic with
cavity photons@17# have been reported.

Polarized photons can be used to code quantum informa-
tion, see, e.g.,@18–20#. In recent work@21#, one of us con-
sidered the possible use of photon polarization states to carry
quantum information, and proposed a model to realize quan-
tum logic by interaction via an atom. The advantage is that
polarized photons provide a natural two-state basis with no
additional Hilbert space components that may constitute
losses of the coding. The polarization coding allows for easy
gating on successful detection; in contrast, in the alternative
coding to the zero and one photon Fock states, the informa-

tion carried by the vacuum state is hard to distinguish from a
failed detection. Photon coding in general allows long
dephasing times and the possibility to transfer information
from one device to another through fibers. The purpose of
this paper is to investigate how realistic this suggestion is by
numerical integration of the unitary time evolution of a semi-
realistic situation. To make the system fully realistic, the
effect of dissipative processes would have to be taken into
account.

In the scheme considered in this paper, information is
coded in the linear polarization directions of a photon, the
x direction corresponding to the logical zero, they direction
to the logical one. To realize a basic two-qubit gate, we have
to be able to affect rotations and phase shifts of the target
qubit state conditioned on the control qubit state. A condi-
tional rotation in the linear polarization basis corresponds to
a conditional phase shift in the circular polarization basis. In
this paper we work in the circular polarization basis and
show how to get phase shifts by a conditional Faraday effect.
This allows us to realize rotations in the linear basis. Further-
more, conditional phase shifts in the linear basis can be per-
formed by switching between the linear and circular bases
before and after the gate. This can be done with the help of
retardation plates. For a more detailed explanation of the
basics of the scheme, see@21#.

The gating process considered in this paper is a Faraday
phase rotation of the elliptically polarized photon state
(a1a1

† 1a2a2
† )u0&,1 which is gated by the presence of a

second photonb6
† . These are supposed to selectively trans-

fer population from the atomic ground stateu0& in Fig. 1 to
the levelsu61&. Because each photona6

† is affected by only
one transitionu61&→u2& it becomes modified by the popu-
lation transferred by the photonsb6

† . If we keep the transi-
tion u61&→u2& off resonance, the atom acts as a dielectric
only and hence the relative phases ofa6

† are modified; this
implies a turning of the axis of the elliptically polarized state
(a1a1

† 1a2a2
† )u0&. As explained above, this allows the

gated application of an arbitrary unitary transformation.
In this paper we are looking at two different cases. Case I

corresponds to Fig. 1 whenD150. Here both transitions

*Also at the Academy of Finland.

1In our notationun&[un&atom̂ uvacuum&fields, i.e., only the label
for the atomic energy levels (n) is written explicitly.
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u0&→u61& are in resonance and both photonsa6
† experience

a modified phase. The situation is symmetric: ifb1
† is present

alone we achieve a phase shift exactly opposite in sign to
that caused by the presence ofb2

† only.
In case II we detune one of the transitions,u0&→u11&

say; see Fig. 1. Then only the presence of the resonant pho-
ton b1

† affects the phase of thea† photons. This corresponds
to a gate where the presence of the stateb2

† u0& does nothing.
Most gates discussed earlier in the literature are of this type.

In this paper we are going to discuss the performance of
the model above by direct integration of the time evolution,
which allows us to compute the quantities characterizing its
performance as a quantum gate. The model is introduced in
detail in Sec. II, and the results of the numerical integrations
are presented in Sec. III. In Sec. IV we discuss the results
and show as a summarizing example how well our model
can realize a gate where the state of the target bit is condi-
tionally reversed.

II. THE QUANTUM GATE MODEL

A. Setting up the problem

The four-level system shown in Fig. 1 is described by the
Hamiltonian

H5V2~a1
† a11a2

† a2!1V1~b1
† b11b2

† b2!

1v2u2&^2u1v11u11&^11u1v12u21&

3^21u1v0u0&^0u1l1~b2u11&

3^0u1b1u21&^0u1H.c.!

1l2~a2u2&^21u1a1u2&^11u1H.c.!. ~1!

In case I we assume that the statesu61& are degenerate and
that the transitionsu0&→u61& are at resonance,

D1
I 5v162v02V150. ~2!

The transitionsu61&→u2& are assumed detuned, i.e.,

D2
I 5v22v02V12V25v22v162V2 ~3!

is nonzero. These relations are shown in Fig. 1.
In case II we lift the degeneracy of the levelsu61& by

settingv11Þv12 . Then the transitionu0&→u21& is taken
at resonancev122v05V1 but the detunings

D1
II5v112v02V1 , ~4!

D2
II5v22v02V12V2 ~5!

are nonzero. The transitionu11&→u2& is detuned by

D285v22v112V25D2
II2D1

II . ~6!

This is assumed well off resonance too.
The initial state is taken to be the disentangled form

uC in&5~a1a1
† 1a2a2

† !~b1b1
† 1b2b2

† !u0&, ~7!

where u0& denotes the ground state of the atom and the
vacuum of the fields~see Introduction!. The coefficients are
in general complex numbers normalized to unity.

We propagate the state vector~7! to the timet with the
Hamiltonian~1! and write the final state as

uCout&5e2 iHt uC in&5(
i51

9

Ci u i &, ~8!

where we have numbered the basis states according to the set

$u1&,u2&,u3&, . . . ,u9&%

5$u2&,a1
† u11&,a1

† u21&,a2
† u11&,a2

† u21&,a1
† b1

† u0&,

a1
† b2

† u0&,a2
† b1

† u0&,a2
† b2

† u0&%. ~9!

Initially the atom is in the ground state, i.e., the coefficients
$C6 ,C7 ,C8 ,C9% are prepared nonvanishing. Of these, the
Hamiltonian couples in case IC6 to C3 (a1

† b1
† u0& to

a1
† u21&) andC9 to C4 (a2

† b2
† u0& to a2

† u11&) only; in case
II C6 to C3 only. In these subspaces the system can be
solved exactly, and performing a rotating wave approxima-
tion with respect to the frequencyv01V11V2 we obtain in
case I

C9~ t !5cos~l1t !C9~0!1 isin~l1t !C4~0!, ~10!

C6~ t !5cos~l1t !C6~0!1 isin~l1t !C3~0!. ~11!

In case II only~11! remains valid. Choosing the interaction
time such thatl1t5p, we find that the probabilities are re-
stored in these subspaces.

We are now left in case I with a five-dimensional
subspace $u1&,u2&,u5&,u7&,u8&%5$u2&,a1

† u11&,a2
† u21&,

a1
† b2

† u0&,a2
† b1

† u0&% with the matrix elements

H115v22v02V12V2 , ~12!

l25H125H155H215H51, ~13!

l15H275H585H725H85. ~14!

In case II the subspace is seven dimensional containing in
addition to the above the basis vectorsu4&5a2

† u11& and
u9&5a2

† b2
† u0&, with the matrix elements

H225v112v02V12V2 , ~15!

l15H495H94. ~16!

FIG. 1. The four-level system used in the gated Faraday effect.
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The numerical calculations are performed in these five- and
seven-dimensional subspaces. The final state is then pro-
jected to the subspace of interest, where the atom is in the
ground state and both photons are present.

After the interaction, the state~8! is available for mea-
surements. In the ideal situation, the initial photons would
have been restored to the radiation field. This is desired be-
cause the information resides in these photons, and they
should be available for subsequent computational operations.
We can ensure that they have been returned by observing
that the atom is back in its ground stateu0& by projecting the
final state on this. Namely, after the interaction, the atom is
available for inspection; a measurement of its state no longer
affects the outcome of the process. We write this state after
an observation,uC0&5u0&^0uCout&, as

uC0&5S C11

a1b1
eiw11a1a1

† 1
C21

a2b1
eiw21a2a2

† Db1b1
† u0&

1S C12

a1b2
eiw12a1a1

† 1
C22

a2b2
eiw22a2a2

† D
3b2b2

† u0&. ~17!

We have introduced the amplitudes and phases of the new
coefficients asCi j e

iw i j ( i , jP$2,1%).
A measure of the efficiency of the process is the probabil-

ity

P05 z^0uCout& z25uC11u21uC12u21uC21u21uC22u2.
~18!

A small value ofP0 makes the process inefficient, but once
the stateu0& has been observed on the atom, the expressions
in the brackets of ~17! give the effect on the state
(a1a1

† 1a2a2
† )u0& conditioned on the presence of the pho-

tonsb6
† on the lower transitions. These expressions contain

the effect of the gating action of the system. In all cases
investigated in this paper, however,P0 has been found to
deviate from unity by less than 1%.

B. Gating performance

If the coefficients

h i j5
Ci j

ua ib j u
~19!

in ~17! are close to unity, the interaction only adds the phases
w i j ; the polarization of thea

† field has been changed by the
interaction. If we define the initial phasesw6

a 5arg(a6) and
w6
b 5arg(b6), we can denote the phase changes by

w̄65~w161w262w1
a 2w2

a !/22w6
b , ~20!

Dw65~w162w262w1
a 1w2

a !/2. ~21!

We now write the final state~17! in the form

uC0&5$ei w̄1~h11e
iDw1a1a1

† 1h21e
2 iDw1a2a2

† !b1b1
†

1ei w̄2~h12e
iDw2a1a1

† 1h22e
2 iDw2a2a2

† !

3b2b2
† %u0&.

When we choose the initial coefficientsa6 ,b6 real, the
phases~20! and~21! simplify; in Sec. III.B., we are going to
discuss the influence of the phase on the gating performance.

In case I, the symmetry requires thatw̄15w̄2 and
Dw152Dw2[Dw. In case II, we assert that
w12;w22.0, which implies w̄2.0 and Dw2.0. We
may consider the four-dimensional subspace
$a2

† b2
† u0&,a1

† b2
† u0&,a2

† b1
† u0&,a1

† b1
† u0&%. Assuming now

that all coefficientsh i j are unity, we obtain in the symmetric
case the ideal transformation

U I5ei w̄F eiDw 0 0 0

0 e2 iDw 0 0

0 0 e2 iDw 0

0 0 0 eiDw

G . ~22!

In the detuned case II, we obtain

U II;F 1 0 0 0

0 1 0 0

0 0 ei ~ w̄11Dw1! 0

0 0 0 ei ~ w̄12Dw1!

G . ~23!

This is a phase transformation of the bit denoted bya6
† in-

duced by the presence of the photonb1
† .

III. NUMERICAL INTEGRATIONS

A. ‘‘Classical’’ input states

We are now going to consider the performance qualities
of the model system as a gated bit transformation. The input
to the calculation is the initial state~7!. To begin we choose
the ‘‘classical’’ case when only one of the input states is
present. In the symmetric case I, the choice of state is not
important, cf.U I , but for case II, we need to look at the
statesa2

† b1
† u0& anda1

† b1
† u0&. First we choose to discuss the

single input statea2
† b1

† u0& with a25b151.
As stated above, the interaction time is chosen such that

t5p/l1; in the calculations we choosel151. For large de-
tunings

limv2→`h215 limv2→`

C21

ua2b1u
51, ~24!

but the phase shiftDw goes to zero. In case I, the numerical
investigations show that we can retainh21

2 .0.9 if we
chooseD2

I .5. For D2
I 55 we find Dw1.10°. This is

achieved withl251; larger phases can be achieved by in-
creasingl2 , but the restoring of the population suffers. For
l2<1.5 we can achieveDw1>15° andh21

2 .0.75. The
results can be illustrated in a graph plottingDw1 as a func-
tion of h21

2 with the detuning as a parameter. For the sym-
metric case I, this is done in Fig. 2~a!. As we can see, for
D2
I .5, no dependence on detuning is seen. The correspond-

ing results for case II are shown in Fig. 2~b!. Here the de-
pendence on detuning is much stronger; however, for large
values of detuning,D1

II515 and D2
II530, we can reach

Dw1>43° withh21
2 >0.9. Thus the operation of this gate is
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much more efficient, as is to be expected. For larger values
of D1

II the results tend to become independent of the detun-
ing.

We now choose to look at the casel252.5 and
D2530. For case I this givesDw1.10° andh21

2 .0.90. In
case II it givesDw1.10° andh21

2 .0.99. In order to see
where the missing population goes in case I, we plot the
populations of the statesa2

† b1
† u0&, a2

† u0&, a1
† u0&,

a1
† b2

† u0&, andu2& in Fig. 3. At time t5p, the population of
a2
† b1

† u0& is restored to 90% but the missing population is on
the levela1

† b2
† u0&. This is mediated through the off-resonant

transitionu21&→u2&→u11& which proceeds at the effective
Rabi rate (l2

2/D2
I );6.25/30. With time, this increases the

population of the statea1
† u11&, as can be seen in Fig. 3; this

increase is modulated at the ratel1 by the population pulsa-
tions on levela2

† u21&. This effect can be decreased by in-
creasingD2@l2

2. In case II, the population of the level
a2
† b1

† u0& is restored to better than 99% and the population in
the statesa1

† u11& anda1
† b2

† u0& remains below 1023.
Here we have looked at the behavior for the single two-bit

input statea2
† b1

† u0&. In the symmetric case I, this state con-
tains all the information necessary, see Eq.~22!. For case II
one should really examine also the input statea1

† b1
† u0& sepa-

rately; its phase shifts are not the same, see Eq.~23!. How-
ever, we are going to investigate the superposition quantum
state next, and from that investigation all necessary informa-
tion follows.

B. Quantum input states

After having described the ‘‘classical’’ inputs, where each
two-bit pure state has been treated separately, we now turn to
consider the genuine quantum situation described by the in-
put state~7!. The performance of the system acting on this
state is, of course, essential for its usefulness as a quantum
computing device.

An input consisting of a pair of two-level systems con-
tains four degrees of freedom: the four complex numbers
involved lose two parameters to the over-all phase and two
to the normalization conditions. It is still difficult to display
the results of a four-parameter input space, and hence we
start by considering only real coefficients in Eq.~7!. The
influence of the phasesw6

a , w6
b will be discussed below.

We are thus left with two real parameters, one for each
input bit. We choose to display our results as functions of

a2
2 512a1

2 ~25!

for the two cases

ub1&5
1

A2
~b1

† 1b2
† !u0&, ~26!

ub2&5SA32 b1
† 1

1

2
b2
† D u0&. ~27!

We want to introduce a quality factor for the use of a system
like this in computations. The performance is close to ideal,
when the parameterh i j.1. However, when either one of the
input parametersa i ,b j becomes close to zero, any minute
value in the corresponding coefficientCi j is likely to cause a
large valueh i j . Thus we want to consider the retention of
that producta ib j which is the largest. A value close to unity
here signals a good performance. To test this idea we con-
sider the variables

h21
2 ~a2

2 >0.5!, h12
2 ~a2

2 <0.5!. ~28!

FIG. 2. The phase shiftDw1

as a function ofh21
2 for several

values of the detuningsD2
I , D2

II ;
some values of l2 used are
marked. In all figures~a! corre-
sponds to case I,~b! to case II
whereD1

II5D2
II/2.

FIG. 3. The populations of the basis states as functions of time
~case I!.
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Another measure of the efficiency of the process can be
given by the retention of the ratio between the two compo-
nentsb6

† in Eq. ~17!. This starts fromub1 /b2u2 and if re-
tained the parameter

R5S uC11u21uC21u2

uC12u21uC22u2D S b2

b1
D 2 ~29!

should be close to unity. The retention parameterR for case
I and the inputsub1& andub2& are shown in Fig. 4~a! together
with the corresponding quality factor in Eq.~28!. In Fig. 4~b!
the same parameters are shown for the asymmetric case II.
As we can see, the retention parameterR is at its worst about
70%; in case II it is better than 90%. In case I, the quality
factor~28! is good to within 90% and in the asymmetric case
II to better than 95%.

Finally we want to return to the question of the influence
of the initial phases. These do affect the outcome, but their
influence seems to be smaller than the influence of the mag-
nitudes. We consider the achieved phase shifts as functions
of the superposition coefficientsa andb. In Fig. 5 we plot
the phase shiftsDw6 againsta2

2 in the asymmetric case II

shown forub1& andub2&. For ub1&, we also consider the case
when the initial phasew1

a is set to the valuew1
a 5p/4. The

behavior is close to ideal; in the rangea2
2 P(0.1,0.9), nearly

ideal behavior is observed,Dw1.9.5° and uDw2u,0.4°.
The effect of the initial phase is small. In the symmetric case
I, the behavior was found to be less optimal: we saw only a
small difference for the twob states, but fora2

2 in the range
(0.1,0.9) the phase shift changed from 30° to 10°. Thus in
case I, the magnitude of the angle remains considerable but it
does depend on the value ofa. We have not carried out a
systematic investigation of the influence of the phase factors;
the results reported here indicate that they cause no drastic
changes. If needed, their effects can easily be evaluated us-
ing the method presented here.

IV. CONCLUSION

As a conclusion, we discuss how well a quantum gate can
be realized in our model. We choose to look at a gate which
changes the value of the target bit whenever the control bit
has the value one. Based on the considerations above, we
conclude that the asymmetric case II is better suited to work
as a gate. Its performance can easily be improved from the
results presented above by increasingD2

II , D1
II , andl2 in a

suitable way. Here we use the parametersD2
II570, D1

II565,
l256.85,l152, andt5p: this enables us to approximate
the transformationU II to the accuracy 1023 with a phase
shift of 60°. This has to be applied three times in sequence in
order to get a phase shift of 180° in the circular polarization
basis, which is needed to flip the value of the target bit in the
linear polarization basis. After performing suitable transfor-
mations between the circular and linear bases~see@21#!, we
obtain as the final result the transformationC:

C5F 0.995e2 i33° O~1023! O~1022! O~1022!

O~1023! 0.995e2 i33° O~1022! O~1022!

O~1022! O~1022! O~1023! 20.997

O~1022! O~1022! 20.997 O~1023!

G .
We see that the gate can be realized in this case to the accu-
racy 1022. The relative phase difference betweene2 i33° and

FIG. 4. The retentionR and
the quality factor~28! as functions
of a2

2 , for ub1& ~solid lines! and
ub2& ~dotted lines!.

FIG. 5. The phase shiftsDw6 as functions ofa2
2 , for ub1& ~solid

lines! and ub2& ~dotted lines!. The shiftDw1 is shown also for the
case of a nonzero initial phasew1

a ~case II!.
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21 could be cancelled by applying another gate transforma-
tion. This transformation together with the transformation
C would then produce the standard controlled-NOT gate.
The performance of a quantum gate is often characterized by
the so-called fidelity parameter@22#, which is the modulus
squared of the overlap between the desired and actual output
states of the gate. For the transformationC the order of mag-
nitude estimate for the fidelity isu0.99711022E11023Eu2,
whereE is an error amplitude which depends on the input
state, and is always greater than or equal to24. Thus even
in the worst possible case this gives 0.91; an average over all
possible input states would give a bigger number.

The present scheme has been found to perform reasonably
well as a computing device. It is naturally not good enough
to be an element of a computer network of realistic size, but
none of the suggestions in the literature satisfies this criterion
yet, although many of them are very promising and have
been demonstrated to work at the one-gate level. The
controlled-NOT quantum logic gate has been realized experi-
mentally using an ion trap system@16#. The achieved accu-
racy in the performance of the gate in this experiment was
about 80%. Conditional phase shifts of the order 10°–20°
were observed in the experiments reported in Ref.@17#. The
basic idea of how to realize conditional logic in this experi-

ment, viz., to let two light fields interact via an atom, is
similar to ours, but, for example, the atomic transitions uti-
lized are of a different type.

The performance of our scheme can be improved by se-
quential application of theb† and a† photons, with final
restoration of theb† state by a third pulse. Such a scheme
seems to require perfectly controlled pulses, which we regard
as even more unrealistic than the model we have investi-
gated. To implement our method in a multistep computation
we assume all initial information to be coded in a set of field
modes residing uncoupled in the same cavity. During their
coherence time, we shoot through the cavity volume a se-
quence of suitably chosen atoms which couple the photon
pairs, i.e., perform the two-qubit operations. To affect all
possible unitary transformations, the cavity has to be rather
complicated, containing a suitable arrangement ofl plates to
give access to all desired polarization states. Also the atoms
have to be able to couple just the desired modes at each stage
of the calculation. This and the restrictions imposed by loss
rates and decoherence times pose extremely strict limitations
on the computations possible. If several cavities are neces-
sary, the dissipative effects on photons transferred between
them raise further problems. However, such difficulties seem
to afflict other schemes suggested too. Which one can be
optimized the most remains an experimental challenge.
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