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Quantum logic using polarized photons
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We consider a realization of quantum computing using polarized photons. The information is encoded in two
polarization directions of the photons and two-quantum-bit operations are performed using a conditional
Faraday effect. We investigate the performance of the system as a computing device.
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[. INTRODUCTION tion carried by the vacuum state is hard to distinguish from a
failed detection. Photon coding in general allows long
After the early discussion of quantum computirig-3], dephasing times and the possibility to transfer information
the field has attracted much attention because $hlohas from one device to another through fibers. The purpose of
shown that the famous problem of integer factorization canthis paper is to investigate how realistic this suggestion is by
in principle, be speeded up considerably by quantum dataumerical integration of the unitary time evolution of a semi-
manipulation techniques. Quantum information is encodedealistic situation. To make the system fully realistic, the
on quantum bitg"qubits™ ), which can be in any superposi- effect of dissipative processes would have to be taken into
tion state of the classical bit values zero and one. Consesccount.
quently regiSterS ConSiSting of several qu|tS can be encoded In the scheme considered in this paper, information is
to superpositions of initial values, which will then be pro- coged in the linear polarization directions of a photon, the
cessed in parallel. Although the determination of all output, Girection corresponding to the logical zero, thelirection

values contained in the superposition would be no faster thap, the |ogical one. To realize a basic two-qubit gate, we have
obtaining them by classical computation, certain global propi, e aple to affect rotations and phase shifts of the target

erties of the output superposition can _be efficiently extracteoéubit state conditioned on the control qubit state. A condi-
and algorithms utilizing this information speeded up expo-

) . tional rotation in the linear polarization basis corresponds to
”e’?t'a”y- The recent work on guantum comptitation has beea conditional phase shift in the circular polarization basis. In
reviewed, e.g., if5.6] .. _this paper we work in the circular polarization basis and
. Any two-state quantum system can serve as a qu.'t' Tghow how to get phase shifts by a conditional Faraday effect.
implement quantum logic, we have to be able to build

t te which ch the state of a t t aubit ;This allows us to realize rotations in the linear basis. Further-
quantum gate which changes the staté of a target qubit degqe  conditional phase shifts in the linear basis can be per-

pgnding on the state of a control qybit. ane we know how Formed by switching between the linear and circular bases
single quantum logic gate for two incoming bits can be real.'before and after the gate. This can be done with the help of

'Ze.d’ we can .bu'ld up all necessary c_omputauons using thIFetardation plates. For a more detailed explanation of the
universal basic gatg7—11. Many realizations of quantum basics of the scheme, k2]

_computing have been_ suggested; at present the_most PrOMIS- The gating process considered in this paper is a Faraday
Ing ones seem to be ions trapped glectrodynamlcﬁamﬂmr. phase rotation of the elliptically polarized photon state
in a cavity [13]. Also the use of single atoms and cavity (a,a +a_a)|0),! which is gated by the presence of a

moded[ 8], solid state structurgd.4], and Ising systemgl5] + )
have been proposed. Experimental successes of an i0n_tr?s‘esrcsgguﬁ):t?écr)]m;rtoﬁ]Ttrﬁmzsztgrrﬁisléjpr)gl?r?sdstt;mfeilr??i;ehl/ :(r)ans-

uantum gatg16] and of conditional quantum logic with )
2avity phogt,ones[[ﬂ]] have been reportedc.] g the levels = 1). Because each photmi is affected by only

Polarized photons can be used to code quantum inform&2"€ transition| = 1)—|2) it becomes modified by the popu-
tion, see, e.g[18-20. In recent work/21], one of us con- lation transferred by the photorhé . If we keep the transi-
sidered the possible use of photon polarization states to carf§Pn |+ 1)—|2) off resonance, the atom acts as a dielectric
quantum information, and proposed a model to realize quarPnly and hence the relative phasesadf are modified; this
tum logic by interaction via an atom. The advantage is thatmplies a turning of the axis of the elliptically polarized state
polarized photons provide a natural two-state basis with ncﬁa+a1+a_aT_)|0>. As explained above, this allows the
additional Hilbert space components that may constitutggated application of an arbitrary unitary transformation.
losses of the coding. The polarization coding allows for easy In this paper we are looking at two different cases. Case |
gating on successful detection; in contrast, in the alternativeorresponds to Fig. 1 wheA;=0. Here both transitions
coding to the zero and one photon Fock states, the informa-

Yn our notation|v)=|v) yom®|VaCUUM s, i.€., ONly the label
*Also at the Academy of Finland. for the atomic energy levelsvf is written explicitly.

1050-2947/96/546)/4701(6)/$10.00 54 4701 © 1996 The American Physical Society



4702 PAIVI TORMA AND STIG STENHOLM 54
AY=w,— wo— Q- Qy 5
A » .
} : are nonzero. The transitign- 1) —|2) is detuned by
Ab=w,—w —Q,=A5— Al (6)

This is assumed well off resonance too.
The initial state is taken to be the disentangled form

(7)

Viy=(a,al+a_a")(B,bl+8_b")|0),
FIG. 1. The four-level system used in the gated Faraday effect. | = (a2 J(B:DL+A | )

where |0) denotes the ground state of the atom and the

|0y—| 1) are in resonance and both photarisexperience
a modified phase. The situation is symmetri(bﬁ;f is present

vacuum of the field¢see Introduction The coefficients are
in general complex numbers normalized to unity.

alone we achieve a phase shift exactly opposite in sign to We propagate the state vect@h to the timet with the

that caused by the presencehdf only.
In case Il we detune one of the transition8)— |+ 1)

Hamiltonian(1) and write the final state as

9

say; see Fig. 1. Then only the presence of the resonant pho-

ton bl affects the phase of the’ photons. This corresponds

to a gate where the presence of the sbiIEO) does nothing.

Most gates discussed earlier in the literature are of this typevhere we have numbered the basis states according to the set
In this paper we are going to discuss the performance of

the model above by direct integration of the time evolution,{|1),|2),|3), ..., 9)}

which allows us to compute the quantities characterizing its

performance as a quantum gate. The model is introduced in ={|2),a’|+1),a’|-1),a"|+1),a’|-1),a b’ |0),

detail in Sec. Il, and the results of the numerical integrations

are presented in Sec. Ill. In Sec. IV we discuss the results 9

and show as a summarizing example how well our model

can realize a gate where the state of the target bit is condinitially the atom is in the ground state, i.e., the coefficients

|qjout>:eith|q,in>:izl Ci|i>1 (8)

alb'|0),a’ b’ |0),a" b'|0)}.

tionally reversed.

IIl. THE QUANTUM GATE MODEL
A. Setting up the problem

{C,C;,Cq,Cq} are prepared nonvanishing. Of these, the
Hamiltonian couples in case Cg to C; (alb’|0) to
a'|-1)) andCq to C, (a'b'|0) toa’ |+1)) only; in case
Il Cg to C5 only. In these subspaces the system can be
solved exactly, and performing a rotating wave approxima-

The four-level system shown in Fig. 1 is described by thetion with respect to the frequenay,+ Q4+ Q, we obtain in

Hamiltonian

H=0,a'a,+a'a )+Q,blb,+b'b_)
+w,[2)(2[+ w4 [+ 1N (+ 1]+ w;-|-1)
X (= 1]+ wo|0){0| + N y(b_|+1)
X {0|+b,|—1){(0|+H.c.)

+No(a_|2)(—1|+a,|2)(+1|+H.c). 1

In case | we assume that the staftesl) are degenerate and
that the transition$0)— |+ 1) are at resonance,

A|1=w1i—wo—ﬂl=0. (2)
The transitiong = 1)—|2) are assumed detuned, i.e.,
AY=wr— 0= U~ D=0~ 01—, 3

is nonzero. These relations are shown in Fig. 1.

In case Il we lift the degeneracy of the levels 1) by
settingw; . # w;_ . Then the transitio0)—|—1) is taken
at resonance; - — wg=1{)4 but the detunings

(4)

Il
A= w1~ wo—Qy,

case |

Co(t)=COg A\ 1t)Cq(0)+isin(A,1)C4(0),  (10)

Ce(t)=cog\1t)Cg(0) +isin(\1t)C3(0). 11
In case Il only(11) remains valid. Choosing the interaction
time such that ;t= 7, we find that the probabilities are re-
stored in these subspaces.

We are now left in case | with a five-dimensional
subspace  {|1),[2),|5).7).18)}={[2),a}[+1),a" |- 1),
alb’|0),a’ b’ |0)} with the matrix elements

Hii=wo— 0= Q- O, (12
Ap=Hpp=His=Hy=Hsy, (13
N1=Hy7=Hsg=H7,=Hgs. (14

In case Il the subspace is seven dimensional containing in

addition to the above the basis vectdy=a'|+1) and

|9)=a’ b’ |0), with the matrix elements
Hoo= 011 —wo— 01—y, (15

A1=Hyo=Hgy. (16)
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The numerical calculations are performed in these five- antlVhen we choose the initial coefficients. ,8.. real, the
seven-dimensional subspaces. The final state is then prphase<20) and(21) simplify; in Sec. Ill.B., we are going to
jected to the subspace of interest, where the atom is in théiscuss the influence of the phase on the gating performance.
ground state and both photons are present. In case |, the symmetry requires that,=¢_ and
After the interaction, the stat€8) is available for mea- Agp,=—A@¢_=A¢. In case |Il, we assert that
surements. In the ideal situation, the initial photons wouldp, _~¢__=0, which impliese_=0 and A¢_=0. We
have been restored to the radiation field. This is desired benay  consider  the four-dimensional subspace
cause the information resides in these photons, and theja" b’ |0),a’ b"|0),a’ b’ |0),a’ b’ |0)}. Assuming now
should be available for subsequent computational operationghat all coefficientsy; are unity, we obtain in the symmetric
We can ensure that they have been returned by observingase the ideal transformation
that the atom is back in its ground st by projecting the

final state on this. Namely, after the interaction, the atom is glhe 0 0 0
available for inspection; a measurement of its state no longer 0 e ide 0
affects the outcome of the process. We write this state after U=e¢ B (22)
i ' 0o 0 'be 0
an observation,¥,)=|0)(0| ¥ ,.», as e _
c 0 0 0 et
— T+ e T —t e T T
Vo) a+,8+e Tresas a_By e ra_a’ |5.bi|0) In the detuned case Il, we obtain
C,_ . _
+| = e¢+-a,al + e¢-a_al 10 0 0
a.f- a_p- 0 1 0 0
X B_b'|0). (17 Ui=lo o gi(¢:+aey) 0 : (23
We have introduced the amplitudes and phases of the new 0 0 0 gl(e:—8es)

coefficients asC;je'¢ii (i,je{—,+}). o , - i
A measure of the efficiency of the process is the probabilThis is a phase transformation of the bit denotedafyin-

ity duced by the presence of the photmh
Po=KO[W odl*=|C 4 |*+|C._|?+|C_.|?+|C__|.
(18) Il. NUMERICAL INTEGRATIONS
A small value ofPy makes the process inefficient, but once A. “Classical” input states

the statg0) has been observed on the atom, the expressions W ing t ider th ‘ lt
in the brackets of(17) give the effect on the state € are now going 1o consider the performance quaiiies

(a+a1+a,ai)|0) conditioned on the presence of the pho- of the model system as a gated bit transformation. The input

tonsb' the | ¢ i Th . ¢ .to the calculation is the initial stai). To begin we choose
onsb.. on the lower transitions. 1hese expressions contally,q «qassical” case when only one of the input states is

Fhe ef_fect of_the _gatmg action of the system. In all Caseﬁ)resent. In the symmetric case I, the choice of state is not
mve_stlgated n _th|s paper, however, has been found to important, cf.U,, but for case Il, we need to look at the
deviate from unity by less than 1%. statesa’ b, |0) anda’ b'|0). First we choose to discuss the
single input stata’ b’ |0) with a_=,=1.
As stated above, the interaction time is chosen such that
If the coefficients t=a/\q; in the calculations we choosg = 1. For large de-
tunings

B. Gating performance

nij = i
Vel

(19 .
M =My 7 =1, (24)
in (17) are close to unity, the interaction only adds the phases -
@ij ; the polarization of tha' field has been changed by the put the phase shifh ¢ goes to zero. In case I, the numerical

interaction. If we define the initial phased =arg(e.) and  investigations show that we can retaiyf , >0.9 if we

¢ =arg(8.), we can denote the phase changes by choose AL>5. For A,=5 we find Ap,=10°. This is
— a  a b achieved witha,=1; larger phases can be achieved by in-
==(prato @i —¢0)2—¢o, (20 creasing\,, but the restoring of the population suffers. For
A,<1.5 we can achievé\¢,=15° and >, >0.75. The
- _ _ . a a 2 @+ -+
Ape=(psr—o-=—pitol)l2 (2D results can be illustrated in a graph plotting . as a func-

tion of »? , with the detuning as a parameter. For the sym-

We now write the final stat in the form . o 9
L metric case |, this is done in Fig(&. As we can see, for

|q,o>:{ei;+(77++eimp+a+al‘r+ 7]7+e7iA¢+a7ai)B+b1 A'2>5, no dependence on detuning is seen. The correspond-
B ing results for case Il are shown in Fig(b2 Here the de-
+elo-(p,_ete-a,al +y__e g _al) pendence on detuning is much stronger; however, for large

. values of detuningA!=15 and A}=30, we can reach
X B_bl}|0). A, =43° with »2 , =0.9. Thus the operation of this gate is
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20° 70°
60° -
16°
50°
FIG. 2. The phase shifA¢,

o
12 as a function ofy® , for several

40°

Apy Ap, values of the detuningd}, A} ;
8° 30° some values of\, used are
R marked. In all figures(a) corre-
20 sponds to case I(b) to case Il
4 - whereAl =A}/2.
A 00 00
(a) i () n

much more efficient, as is to be expected. For larger valuegtely; its phase shifts are not the same, see(E8). How-

of A} the results tend to become independent of the deturever, we are going to investigate the superposition quantum

ing. state next, and from that investigation all necessary informa-
We now choose to look at the case,=2.5 and tion follows.

A,=30. For case | this giveA ¢, =10° ands? , =0.90. In

case Il it givesAp,=10° and5* . =0.99. In order to see B. Quantum input states

where the missing populatlonfgqres n case , we plot the  After having described the “classical” inputs, where each
populations of the statesa'b}[0), a’[0), al[0),  two-bit pure state has been treated separately, we now turn to
al b’ |0), and|2) in Fig. 3. At timet=, the population of consider the genuine quantum situation described by the in-
a' b’ |0) is restored to 90% but the missing population is onput state(7). The performance of the system acting on this
the levela’ b' |0). This is mediated through the off-resonant state is, of course, essential for its usefulness as a quantum
transition| — 1)—|2)—|+ 1) which proceeds at the effective computing device.

Rabi rate §3/Ab)~6.25/30. With time, this increases the ~ An input consisting of a pair of two-level systems con-
population of the stata1|+1>, as can be seen in Fig. 3; this f[ains four degrees of freedom: the four complex numbers
increase is modulated at the rate by the population pulsa- involved lose two parameters to the over-all phase and two
tions on levela’ |~ 1). This effect can be decreased by in- to the normalization conditions. It is still difficult to display

creasingA2>)\§. In case II, the population of the level the results of a four-parameter input space, and hence we

a' b’ |0) is restored to better than 99% and the population irotart by considering only real coefficients in &q). The

a b o\ R
the statesa1|+1) andaﬂbHO) remains below 10°. influence of the phaseg: , ¢- will be discussed below.

Here we have looked at the behavior for the single two-bit we are thus left with two real parameters, one .for each
. tot . . input bit. We choose to display our results as functions of
input statea’ b' |0). In the symmetric case |, this state con-
tains all the information necessary, see E). For case Il al=1— 012+ (25)
one should really examine also the input s&ié’. |0) sepa-
for the two cases

1 T T T T T T 1
L\l b} joi. § |B1)= ﬁ<b1+bi>|0>, (26)
0.8 o - 7
i ] V3 t Ly
o b \: : ] |B2)=| 5 b2+ 5b_|[0). (27)
| fab| -1y
I | We want to introduce a quality factor for the use of a system
04 : : : like this in computations. The performance is close to ideal,
Mo B | +1yY ] when the parametey;; =1. However, when either one of the
02 ! '-_f PR W VA input parametersy; ,3; becomes close to zero, any minute
i 12) d,_+b'- 0) o value in the corresponding coefficie@y; is likely to cause a
o L2 AT o N f large valuen;; . Thus we want to consider the retention of
0 1 2 3 4 5 6 that producte; 8; which is the largest. A value close to unity

here signals a good performance. To test this idea we con-
sider the variables

FIG. 3. The populations of the basis states as functions of time

(case ). 7% . (a®2=05), 7°_(a?<0.5). (28
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1.3 T T T T T T T T T
1.2
11f
1
FIG. 4. The retentiorR and
0.9 the quality factor(28) as functions
_ - of &2, for |B,) (solid lineg and
0.8 1 b |8,) (dotted liney.
0.7 ] i
0.6 | I ! ] \ 1 \ ! ! 0.92 ] guality factor, ! 1 | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) ot (b) of

Another measure of the efficiency of the process can behown for|8,) and|B,). For|B,), we also consider the case
given by the retention of the ratio between the two compoiwnhen the initial phase? is set to the valued = 7/4. The
nentsb’ in Eq. (17). This starts from8, /B_|? and if re-  behavior is close to ideal; in the rangé e (0.1,0.9), nearly

tained the parameter ideal behavior is observedyp,=9.5° and|A¢_|<0.4°.
The effect of the initial phase is small. In the symmetric case
|C. . 2+]C_4|?\(B_\? I, the behavior was found to be less optimal: we saw only a

R= IC._|?+|C__]?/\ B+ (29 small difference for the twgB states, but for? in the range

(0.1,0.9) the phase shift changed from 30° to 10°. Thus in

should be close to unity. The retention param&edor case  case |, the magnitude of the angle remains considerable but it
| and the input$3,) and|B,) are shown in Fig. @) together ~ does depend on the value af We have not carried out a
with the corresponding quality factor in EQ®8). In Fig. 4(b) systematic investigation of the influence of the phase factors;
the same parameters are shown for the asymmetric case “’]e results reportEd here indicate that they cause no drastic
As we can see, the retention paramdRes at its worst about  changes. If needed, their effects can easily be evaluated us-
70%; in case Il it is better than 90%. In case I, the qualityind the method presented here.

factor(28) is good to within 90% and in the asymmetric case
Il to better than 95%.

Finally we want to return to the question of the influence
of the initial phases. These do affect the outcome, but their As a conclusion, we discuss how well a quantum gate can
influence seems to be smaller than the influence of the mage realized in our model. We choose to look at a gate which
nitudes. We consider the achieved phase shifts as functionshanges the value of the target bit whenever the control bit
of the superposition coefficients and 8. In Fig. 5 we plot  has the value one. Based on the considerations above, we
the phase shiftd ¢ againste in the asymmetric case Il conclude that the asymmetric case Il is better suited to work

as a gate. Its performance can easily be improved from the
results presented above by increasisif, A!, and), in a

IV. CONCLUSION

10° T suitable way. Here we use the parametbs=70, A} =65,
r'ﬁ 1 N>=6.85,\1=2, andt=m: this enables us to approximate
gL Aps i the transformatiorlJ,, to the accuracy 10° with a phase
i \90“ _x ) shift of 60°. This has to be applied three times in sequence in
o order to get a phase shift of 180° in the circular polarization
6 . basis, which is needed to flip the value of the target bit in the
. linear polarization basis. After performing suitable transfor-
el 4 mations between the circular and linear base[21]), we
| j obtain as the final result the transformation
0L . :
| A 0.99% 3" 0(107%) 0(10°%) 0O(10 ?)
o o T ” T:J 0(10°%)  0.99% 3% 0O(1072) 0O(1072)
0 0.2 0.4 0.6 0.8 1 -

0(10°?) 0(10°%) 0103 -0.997|
0(10°?) 0(10°2)  —0.997 0O(10°3)

at

FIG. 5. The phase shifts ¢ as functions of?, for |B1) (solid
lines) and|B,) (dotted lines. The shiftAe, is shown also for the We see that the gate can be realized in this case to the accu-
case of a nonzero initial phagé (case ). racy 10 2. The relative phase difference betwesr*® and
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—1 could be cancelled by applying another gate transformament, viz., to let two light fields interact via an atom, is
tion. This transformation together with the transformationsimilar to ours, but, for example, the atomic transitions uti-
C would then produce the standard controlled-NOT gatelized are of a different type.

The performance of a quantum gate is often characterized by The performance of our scheme can be improved by se-
the so-called fidelity paramet¢22], which is the modulus quential application of théo and a’ photons, with final
squared of the overlap between the desired and actual outpigstoration of theb” state by a third pulse. Such a scheme
states of the gate. For the transformat®the order of mag- S€€ms to require perfe_ct!y controlled pulses, which we regar_d
nitude estimate for the fidelity i0.997+ 10 2E+10 3E[2, &S éven more unrealistic than the model we have investi-
whereE is an error amplitude which depends on the mputgated. To implement our method in a multistep computation

state, and is always greater than or equak-t. Thus even we assume all initial information to be coded in a set of field

in the worst possible case this gives 0.91; an average over Iodes residing uncoupled in the same cavity. During their
> WOrst p > 9 S 9 oherence time, we shoot through the cavity volume a se-
possible input states would give a bigger number.

uence of suitably chosen atoms which couple the photon
The present sgheme h_as be(_an found to perform reasonab&irs, i.e., perform the two-qubit operations. To affect all
well as a computing device. It is naturally not good enoughy,ssible unitary transformations, the cavity has to be rather
to be an element of a computer network of realistic size, bu omplicated, containing a suitable arrangemen pfates to
none of the suggestions in the literature satisfies this criteriogi\,e access to all desired polarization states. Also the atoms
yet, although many of them are very promising and haveyaye to be able to couple just the desired modes at each stage
been demonstrated to work at the one-gate level. Thef the calculation. This and the restrictions imposed by loss
controlled-NOT quantum logic gate has been realized experirates and decoherence times pose extremely strict limitations
mentally using an ion trap systef6]. The achieved accu- on the computations possible. If several cavities are neces-
racy in the performance of the gate in this experiment wasary, the dissipative effects on photons transferred between
about 80%. Conditional phase shifts of the order 10°—-20%hem raise further problems. However, such difficulties seem
were observed in the experiments reported in RET]. The  to afflict other schemes suggested too. Which one can be
basic idea of how to realize conditional logic in this experi- optimized the most remains an experimental challenge.
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