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Time of arrival in quantum mechanics
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We study the problem of computing the probability for the time of arrival of a quantum particle at a given
spatial position. We consider a solution to this problem based on the spectral decomposition of the particle’s
(Heisenbery state into the eigenstates of a suitable operator, which we denote as the “time-of-arrival”
operator. We discuss the general properties of this operator. We construct the operator explicitly in the simple
case of a free nonrelativistic particle and compare the probabilities it yields with the ones estimated indirectly
in terms of the flux of the Schdinger current. We derive a well-defined uncertainty relation between time of
arrival and energy; this result shows that the well-known arguments against the existence of such a relation can
be circumvented. Finally, we define a “time representation” of the quantum mechanics of a free particle, in
which the time of arrival is diagonal. Our results suggest that, contrary to what is commonly assumed, quantum
mechanics exhibits a hidden equivalence between indeperitier® and dependen(position variables,
analogous to the one revealed by the parametrized formalism in classical mechanics.
[S1050-294{@6)03911-X

PACS numbegs): 03.65.Bz, 03.65.Ca, 04.66m

[. INTRODUCTION bilistically. Let 7r(T)dT be the probability that the particle is
detected at detector locatiohwithin the time intervall and
Consider the following experimental arrangement. A par-T+dT. Thus
ticle moves in one dimension, along tkexis. A detector is
placed in the positiox=X. Let T be the time at which the J’
particle is detected, which we denote as the “time of ar-
rival” of the particle atX. Can we predicT from the knowl-
edge of the initial state of the particle? is the probability that the particle is detected between the
In classical mechanics, the answer is simple. Letime T, and the timeT,. How can we computer(T) from
X(t;Xo,Po) be the general solution of the equations of motionthe quantum state, e.g., from the particle’s wave function
corresponding to initial position and momentxgandpy at  (x) att=0?
t=0. We obtain the time of arrival as follows. We invert The importance of this problem has been stressed by oth-
the functionx=x(t;Xp,po) With respect tot, obtaining the ers. Mielnik[1] refers to it as “a dark spot in the perfection
functiont(x;Xg,po). The time of arrivalT at X of a particle  of quantum scheme.” Smitf2] begins with the following:

T2
w(T)dT (2)
T1

with initial dataxg, andpg is then “It is surprising that the current apparatus of quantum me-
chanics does not include a simple representation for so emi-
T=t(X;Xo,Po)- (1) nently observable a quantity as the lifetime of metastable

entities.” In a similar vein, Wernef3] states, “There is a
strange discrepancy between many theoretical accounts of
Two remarks are in order. First,tifx;Xo,po) is multivalued, measurement in quantum mechanics and the typical mea-
we are only interested in its lowest value, since the particle isurement carried out in a laboratory. On the one hand every
detected the first time it gets ¥. Second, for certain values counter clicks at a certain time, and frequently these times
of Xq andpy, it may happen thaX is outside the range of the are quite important for the evaluation of an experiment, e.g.,
functionx(t;Xo,Po). This indicates that the detector¥will  a correlation experiment. On the other hand, operators de-
never detect a particle with that initial state. The time ofscribing the probability that a counter responds during a
arrival is a physical variable that, in a sense, can take twgiven time interval are rarely discussed in quantum mechan-
kinds of values: either a real numbé&re R or the value ics textbooks.”
“ T=never.” Notice that in the latter case, the quanfity To the best of our knowledge, this question has not re-
formally computed fron{1) turns out to be complex. Thus a ceived a complete treatment in the standard literature on
complexT from (1) (for givenX,Xq,pe) means that the par- quantum mechanics. In this literature, the problem has been
ticle with initial datax,,pg is never detected &£. variously referred to as the “tunneling time problem,” the
In quantum mechanics, the problem is surprisingly harder:time of arrival problem,” or the “screen problem.” The
In this case the time of arrival can be determined only probaexisting literature appears to be vast, and we do not intend to
give a complete review.
Allcock [4] has given a proof of the nonexistence of a

:Electronic address: norbert@phyast.pitt.edu time-of-arrival operator on the usual Hilbert space of quan-
Electronic address: rovelli@pitt.edu tum mechanics. The problem of computing the time of de-
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ner. For instance, the probabilityn time) of detecting a it “clicks.” The problem is not just academic: It is related to
decay product, say a particle escaping the potential of ¢he problem of computing the full probability distributidas
nucleus, can be obtained from the time evolution of the probepposed to the expectation vajufor the tunneling time
ability that the particle is still within the confining potential. through a potential barrier. This problem has relevance, for
Alternatively, one can treat the detector that measures thimstance, in computing rates of chemical reactitee, for
time of arrival quantum mechanically and compute the probexample,[15]). Second, the problem bears directly on the
abilities for the positions of the detector pointer at a laterinterpretation of quantum theories without Newtonian time
time; in this way one can trade a measurement of the time df19,20 and thus on quantum gravity; we shall briefly com-
arrival for a measurement of position at a late fixed time. ment on this issue in closing.

Apart from the above apparently undeveloped ideas, vari- This paper is the first of a sequence of two. Here we
ous concrete approaches have been taken. One of the earliégivelop a general theory for the time-of-arrival operator and
is that of the time operator as the energy derivative operatostudy the free nonrelativistic particle case in detail. In a com-
Wigner considered the problem of relating the energy derivapanion papef21], we investigate a technique for the explicit
tive of the wave function’s phase shift to the scattering delaytonstruction of the time-of-arrival operator in more general
of a particle[5]. This approach, later developed by Sniifh  cases, we extend our formalism to parametrized systems, and

and othergsee, for instance6]), gives the average delay, e study some less trivial models: a particle in an exponen-
but fails to provide the full probability distribution of the 5 potential and a cosmological model.

time of arrival. Kijowski[7] obtained a probability distribu- In Sec. Il we give a general argument, based on the su-
tion, but not on the usual Hilbert space; thus the interpreta- . - . ’ -

tion of the wave function in terms of familiar quantities is perposition principle, for the existence of an operaftdthe

obscure. Piron discussed the probl¢&), sketching ideas time-of-arrival operatgr SUCh_FhatW(T) .can.be obtained
related to the ones developed here. From the Wigner distrifo™ the spectral decomposition @f(x) in eigenstates of
bution, Wernef9] obtained a quasiprobability, which, how- T, in the usual manner in which probability distribution are
ever, is not positive definite. Ideas related to the ones presbtained in quantum theoryl. has peculiar properties that
sented here were also explored by Olkhovekgl.[10], but  distinguish it from conventional quantum observables. We
in this case too only the average time of arrival was obtainegjive a general argument based on the correspondence prin-
and not its full probability distribution. More recently, ciple indicating thafl can be expressed in terms of position
Marinov and Segey11] have applied this approach to cal- 4ng momentum operators by the inverse of the classical
culate tunnelling times. Muget al.[12], as well as Kijowski equations of motion Eq(1). This does not suffice in fixing
[7], gst'imated the time-of'- arrivgl proba'bili_ty density.f'r om th‘.ethe operator, since factor-ordering ambiguities can be seri-
S_chrmlmger current density. This densn_y IS not positive defl'ous. The problem of the actual construction of the operator
nite and the approach has been otherwise criticized, e.g., - . . i

T in more general systems will be addresse@@i]. In Sec.

[1]). Werner took a mathematical approaf®13] to the Y= !
problem of the construction of “screen observables,” i.e. 11l we study an explicit form of the operator in the case of a

observables on timelike hypersurfacEs. Among more "free _n.onrelativistic particle. .We diagon_alize the ‘operator,
“space-time” approaches, Maro[fL4] has calculated prob- prc_)\_/ldlng a general expression for the tlme—of—arrlval_prob—
abilities for particle detection in space-time regions, et~ 2Pility densityzr(T). In particular, we calculater(T) explic-
unreasonablyfinds them to be very sensitive to the model of itly for a Gaussian wave packet. In Sec. IV we discuss some
detection. Kumar[15] studied the quantum first-passage conseguences of our construction. We notice that thg exist-
problem in a path-integral approach, but did not obtain £NC€ of the operator implies that t_he quantum mechamc; ofa
positive probability density. The problem has been studied iff€€ particle can be expressed in a “time-representation”
the framework of Hartle’s generalized quantum mechanic®@sis. We derive time-energy uncertainty relations. We con-
[16] by using sum over histories methods. Various attempt§!ude in Sec. V with a general comment on the equivalence
in this direction and discussions of difficulties can be foungP€tween time and position variables suggested by our results.
in Ref.[17]. See also the recent paper Rdfg] for a discus- In the Appendix we study whether the probability distri-
sion of the problem and for references; in particular, RefPution we computed is reasonable, by comparing it with the
[18] discusses the difficulties one has to face in trying to®n€ estimated indirectly using the Sctinger current. We
computesequencesf times of arrival: an important problem find that the two agree within second order in the de Broglie
that, however, we do not address here. As stressed by Hartfgdvelength of the particle. The probability computed from
in [18], generalized quantum mechanigsneralizes‘usual the Schrdinger current cannot be physmally correct to all
quantum mechanics”; here, on the other hand, we are inteierders because it is not positive definite; whether or not the
ested in the question whethe(T) can be computed within Probability distribution computed witfT is physically cor-
the mathematical framework of conventiortdhmiltonian ~ rect to all orders is a question that can perhaps be decided
quantum mechanics. experimentally.

We see two reasons of interest for discussing the problem
of computing time of arrival in quantum mechanics. First, it
is a well-posed problem in simple quantum theory and there Il. TIME OF ARRIVAL: GENERAL THEORY
must be a solution. Echoing Smit8], we do not expect that
guantum mechanics could fail to predict a probability distri-
bution that can be experimentally measured by simply plac- Consider the quantum analog of the experimental situa-
ing a detector at a fixed position and noting the time at whiction sketched at the beginning of the paper: A particle is in

A. Incomplete spectral family P(T)
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“TP(T)dT ®)

—

x=X. LetT be the time at which the particle is detected. Let
m,(T)dT be the probability that the particle is detected be-
tween timesT and T+dT. Let ¢ and ¢ be two quantum o, that an eigenstate of this operator with eigenvalue
states such that both,(T) and m4(T) have supportin the ;.14 pe a(generalizeli state detected precisely at tirfe
intervall = (T, T+AT). Consider the state formed as the lin- jovever, there is an important difference from usual self-
ear combinatiorays+b¢ (wherea andb are any two com-  4qigint quantum-mechanical observables that must be ad-

12 2_
plex numbers witha|*+[b]*=1). dressed before doing so. (A) is the spectral family of a
According to the superposition principle, if a measurable, -

quantity has a definite valug, when the system is in the self-adjoint operatoh, then
statey and valuex ;, when the system is in the stafe then Foo ~
a measurement of such a quantity in the statetb¢ will f P(A)dA=1, )
yield eithern , or A4 (with respective probabilitiefa|? and *
|b|?) [22]. If we assume the general validity of the superpo- ~ . . )
sition principle, we must then expect that the probability dis-Where 1is the identity operator. On the other hand, define
tribution 7,4, p4(T) will have support in the interval P by
(T, T+AT) as well. Therefore, the stateg¢g such that

m,(T) has support on a given intervias- (T, T+AT) form a Pr= f+wP(T)dT' @)

linear subspace of the state space. We can therefore define a % ’

projection operatoP, as the projector on such a subspace. )

The superposition principle could fail for the time of ar- there is no reason fdP to be the identity. If it is not, we say
rival. However, we would be surprised if it did. Notice that that the spectral family?(T) is “incomplete.”
the question car(probably easily be decided experimen-  |ncompleteness occurs because it is not true that any state
tally. Perhaps an experiment testing the validity of the superis certainly detected at some time. Most likely, there are
position principle in this contest could have some intereststates that are never detected, given that such states exist in
Here we assume that the principle holds, and thus the prane classical theory as well. Th@®projects on the subspace
jectorsPr 1. 7 are well defined. _ _ HgeectedOrmed by the states in which the particle is detected

By their very definition, the projectors satisyP;=P;if 4 some time aX and (- P) is the projector on the sub-
the mterngJ is contalneq |'n_the intervdl and P,P;=0 if SPACEH, over qerectedOf States in which the particle is never
the two intervals are disjoint. Then one can show thalyerecteq ax. The fact that those two classes of states form
Piy;=Pi+P;, and it follows that the operato8, can be  oh4qonal linear subspaces follows from the superposition
written in terms of a family of'spectral projectorsP(T) as principle again.

T+AT ThusT is properly defined by6) on HyetecteqOnly. If we
PT,TMT:f P(T")dT'. €)) define the time-of-arrival operator k) on the entire state
T space, then we have the awkward consequence that the states
in the range ofP(T=0) and the ones iMHyever detected®'®
The (spectral family P(T) contains all the information both annihilated byl. Namely, T does not distinguish the
needed to compute(T). Indeed, from the definition given states in which the particle is detectedlat O from the ones
and using again the superposition principle, we have easilyin which it is never detected.

The full information that we need in order to compute
m(T) is contained in the incomplete spectral fanfyT) or,
equivalently, in the two mutually commuting operatdps
andT, whereT is a self-adjoint operator on the Hilbert space
Thus the probability distributionT(T) can be obtained in 3, — Range(). Notice that
terms of the spectral familf?(T) in the same way in which

an initial stateyy att=0 and a particle detector is placed at . J—+
T_

T T) =P 4). 4

all probability distributions are obtained in quantum mechan- ~ (y] 75-]-75| )
ics. Indeed, recall that iAA is the self-adjoint quantum opera- e — 9
tor corresponding to the observable quantiy then the (WPl

probability distribution ,(A) of measuring the valué on
the statey is (#|P(A)|¢), whereP(A) is the spectral family
associated t@\, namely,

is the expected time of arrival in those states that are detected
at all and is thus @onditionalexpectation value.

As defined in (6), T annihilates all states in
Hnever detected It IS Useful to replace this definition by fixing
the following convention for the action ofT on
Hrever detected W€ defineT on the entire state space, by
mimicking what happens in classical mechanics: We choose
- - (arbitrarily, at this stagea (diagonalizablg action of T on

B. Operators T and P> Hrever detecteWith @ complex(nonreal spectrum, with the

One may be immediately tempted to define a “time-of- understanding that any complex eigenvalue be interpreted as

arrival operator” in analogy witl{5) as “the particle is never detected.” If we use this convention,

A:J AP(A)dA. (5)
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the operatorT is not self-adjoint, but it may still have a in the time of arrival of the particle at a given valueasfe of
complete and orthogonal basis of eigenstéteshaps after a the phase space coordinates, gay(Since the coordinates
regularization; see laterThe reason for such a convention Z' are arbitrary,z' can be any combination of dynamical
(which we postulate from now omwill be given below; its  variables) To compute the time of arrival(Z) atz'=Z, we
utility will be particularly clear in[21]. solve the first equation of the systeihl)
C. Partial characterization of T from its classical limit Zl(ZI()"[) =Z (12)
In the preceding subsection we have argued on genergity respect tot, obtainingt(Z;z,). The time of arrival
grounds that a time-of-arrival operafdrgiving the time-of-  T(z) is then given by
arrival probability distribution should exist. How can we
construct the operatdr from the knowledge of the dynamics T(2)=t(Z;Z). (13
of the system? Let us work in the Heisenberg picture. The
quantum theory is defined by the Heisenberg state space, in Now, in the quantum theory, the integration constayts
which states do not evolve. Lét be a Heisenberg state. The correspond to Heisenberg operat&idgs Equation(10) is im-

elementary operators are Heisenberg position opergjor mediately generalized by “quantizing(13) as
and the momentum operat@y, representing position and

momentLAJm at =AO. Since all operators can be constructed in T(2)=t(Z;Z) (14)
terms ofx, andpy, we expect to be able to expregsas an

operator function o, and po. A key requirement ol is  \here again the operatdi(Z) is given only up to the order-
that it yield the correct results in the classical lifltohr's  jng,

correspondence principlelf so, the dependence @f on X, Before concluding this section, we add an important com-
and p, should reduce to the classical dependencd @in  ment on the seemingly puzzling ca¥e<0, namely, when

Xo and pg in the classical limit. This indicates that the de- the detection time igarlier thant=0. In the classical case,
pendence of the operatdr on X, and p, is given by some the particle can be detected without being disturbed, but not
ordering of the function(1), which, we recall, was obtained so in quantum mechanics; therefore one might wonder about
by inverting the solutionx(t;x,,pg) of the classical equa- the meaning of a detection &< 0 for a particle that has a

tions of motion. Thus we should have that certain state at time=0. The difficulty is avoided by choos-
. o ing the definition of “state” appropriate to the present con-
T=t(X;Xo,Po), (100  text. Consider the classical case fibg§.andp, fix a unique

solution of the equations of motion. This solution could be

where an ordering has to be chosen. ThaumberX, we  characterized by the valuessxofndp at any other time or by
recall, is the position of the detector. Notice at this point theany two other constants of the motion. The definition of
usefulness of the convention that complex eigenvalues reptjme of arrival” that avoids the problem of detection before
resent nondetection: This can go through naturally in thgyreparation is the following. We are interested in the arrival
classical limit. Equatior{10) does not suffice in general for time of a particle that is moving according to thenique
characterizing uniquely because the correct physical order-solution of the equations of motion characterized by the fact
ing of the operator function can be highly nontrivial. In the that att=0 the particle is atx, and p, if not disturbed.
companion papef21], we investigate a technique for con- Analogously, in quantum mechanig@sis the time of arrival
structing the operatdF(X) and fixing ordering ambiguities. of a particle that at an earlier tinte(arbitrarily in the past

In order to emphasize the dependence of the time-ofwas in the(Schralingep state#(t) uniquely characterized
arrival operatofT on the positiorX of the detector, we will, by the fact that, if not disturbed, it would evolve to the state

from now on, write the operator d&X). Analogously, we ~ #(0) att=0. In Sec. V we shall describe a general way of
will denote the spectral family of projectors associated todealing with this situation. _

T(X) asP(T;X) and the probability distribution of the time 10 Summarize, in this section we have put forth two
of arrival atX as(T;X). physical hypotheses.

The construction above can be easily generalized to sys-
tems withn degrees of freedom. A classical state of such By
system is described by a point in th@-Bimensional phase
spacel’, with coordinateZ',i=1, ...,2n}. The dynamics Y — .
is generated by the Hamiltoniat(z'). The Hamilton equa- T =CUPTX)N9), (19
tions of motion aredZ(t)/dt={z',H}. The general solutions
to these equations can be written as

(i) The probability for the time of arrivalr(T;X), an
perimentally measurable quantity, can be computed by

where P(T;X) are the projectors on the real component of
the spectrum of a diagonalizable operaf¢K). The states in

Zi(t):Zi(Zio,t), i=1,...,, (12) the span of the nonreal component of the spectrurm(of)

are never detected at

wherez, are 2h independent integration constants. In par- (i) The operatofT(X) is given by a suitable choice of
ticular, we may choose as integration constajjtthe values ~ Ordering from the equation
of Z att=0, Z'(0). Theabove equations enable us to com- . o
pute the state of the system at any titm&Ve are interested T(X)=t(X;Xg,Po) (16)
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or, in general, Eq(14). problem is serious; but in simple cases such as the free par-
. o ) ] . ticle, we see from(20) that the natural ordering suffices.
The first hypothesis is motivated by our confidence in the \ye explore here the possibility that in the case of a free
general validity of the superposition principle. The secondyarticle a natural ordering suffices for the time-of-arrival op-
hypothesis is motivated by our confidence in the corresponarator as well. Namely, we study the choice of a symmetric
dence principle. In the next section we investigate some Oydering for the operatofl9). We thus define, tentatively,
the implications of these hypotheses and we illustrate the
construction and the use of the operaldiX) in a simple - mX 1.1
case. More interesting models, with nontrivigl operator, T(X):= f)_o_m_\/ﬁ—xo\/__ﬁ' (22)
will be presented in the companion pag2d]. 0 0
In order to study this operator, let us choose a concrete
Ill. TIME OF ARRIVAL OF A FREE PARTICLE representation for the Hilbert space, namely, a basis. It is

. R L . .__convenient to use the momentum basis that diagonalizes
Consider a nonrelativistic free particle in one dimension.~

Dynamics is generated by the Hamiltonidn=p%/2m. The Po, because th'$ basis m"?‘kes the dgflnltlon offi/simpler. .
. i . : Thus we work in the Heisenberg-picture momentum basis.
solutions of the classical equations of motion are

The states are represented as functigfis)  L2(R) and the

Po elementary operatorg, andp, are given by

X(t;XO:po):EH'Xo- (17)

. . d .

Xoep(K) =i qp oK), poegp(k)=riky(k). (23

The inversion of these yields the time at which a particle that

att=0 has initial position and momentury,,po is detected | terms of the above operators, we have, for example, the
at the positiorX [as in Eq.(1)], Heisenberg position operat(20)

m(X—Xg)

T(X)=t(X;Xo,Po) = 0o

(18) X(t)= h—r:t-i—i %(. (24)

Notice that up to problems at the pojms=0 (problems with |, this representation, the operafbfX) given in (22) is
which we shall deal extensively lajethe particle is always

detected. In particulafT(X) is never complex. This greatly . 1 d1 mX

simplifies the setting, since we may disregard the complica- T(X)ep(k)=| —i 7 Tak B TR K #(k). (295

tions arising from the existence @finite) regions of phase Ve dk Jk

space in which the particle is not detected. I )
Let us consider the usual quantum theory of a free par£We _always take the principal value of the square root:

ticle. We work in the Heisenberg picture. We have Heisen-\/E:",/W| for k<0.) ) A

berg (nonevolving statesy and time-dependent Heisenberg ~ Notice that the one-parameter family of operat®(x)

position and momentum operatokt),p(t), expressed in an be generated unitarily via translations

terms ofX, and p,. Following the ideas of Sec. Il, we ex- - XA kX

plore the hypothesis that the quantum probability distribution T(X)=e 7T (0)e™". (26)

m(T;X) of the time of arrival atX of the particle can be

computed in terms of an operatd(X) defined by a suitable

ordering of the(formal) operator function

Therefore it is sufficient to study the operafdrO), namely,
we do not lose generality by assuming the detector to be at
the origin. We thus seK=0 from now on and drop the
. m(X— %) explicit X dependence
T(X)= — 2. (19
& T=Fo)=-i2 Ld1 27
= == =0 —=.

Notice that the Heisenberg position operator is ik dk Jk

A o Po . We will be interested in the operators corresponding to other
X(t): :e'H“ﬁxoe*'H“ﬁ:Eon, (200 positions of the detector later on.
In the momentum representation, the eigenvalue equation

to be compared witl{17): Though rarely emphasized, clas- for T
sical and quantum dynamics are generically related by the

equation TMH=TT) (28)
(1) =X(t:%,Po), 21) becomes

where the right-hand side is an operator function correspond- Toa-(K) = —i m i i i K) =Ta(k 29

ing to an ordering of the solutiox(t;x,,p,) of the classical gr(k) "% Jk dk \k gr(k)=Tgr(k), (29

equations of motion. In general, E@1) is of scarce use for
solving the quantum dynamics, since the associated orderinghere we have introduced the notation
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gr(k)=(k|T) (30) occur atpy=0. The modified time of arrival can perhaps be
R interpreted as the outcome of a measurement by an apparatus
for the momentum representation of the eigenstaf€.dfhe  arbitrarily similar to a perfect detector, but which does not
eigenvalue equation is easily solvgd each half of the real allow the particle to stand still.
line (k+0)] by Let us introduce an arbitrary small positive numher

Consider a one-parameter family of real bounded continuous
)= 00+ . B(—k h K iA Tk odd functionsf (k) that approach ¥ pointwise. More pre-
gr(k)=[a; 0(k)+a_6(—k)] Vo mVkexn -/
where 4(k) is the characteristic function of the positive half

cisely, we require
of the real line andw.. are constants independent kf In
order to fix the relation between. anda_, let us act on #0 forall k#0. (35

o1(k) by T.A simple calculation shows

31

1
fE(k)=E for |k|>e€

For instance, we may choose

A ) m 8(k) ) 1
Togr(k)=Tgr(k)—i mm(mﬂa,). (32 = X for |k|>e

e %k for |k|<e.

(36)

Thus, in order to satisfy the eigenvalue equation, it is neces-

sary that Using this, we define the regulated time-of-arrival operator
a_=ia, . (33 &

At this point, we encounter a difficulty. The operator we T :_iT f (k)i f(K) 37)

have constructed doe®t have a basis of orthogonal eigen- ¢ ht e Tdkt e

states. This pathology destroys the possibility of givinthe . .
interpretation we want. In the next subsection we show tha® P& compared with the unregulated operd@i). Notice

the eigenstates &f are not orthogonal and we discuss a WaytAhat on any state.with .supp.ort ¢k|> € the operatord . and
out from this difficulty. T are equal. Their action differs only on the component of a

state with arbitrary low momentum. As we shall see, the
probability distribution for the time of arrivair(T) com-
_ _ ) uted fromT, will turn out to beindependent o€ for states
. Asimple calculation shows that for any two eigenstates olyjth support away fronk=0, reinforcing the credibility of
T with eigenvalues and T’ the regulation procedure we are using. i
. P Let us study the operatdr,. A key point is thaflT . com-
<T|T'>EJ dkg(K)gr(K)= _f dk2elifl2mKk*(T’ =T) mutes with® (k) =sgn() =k/|k|. Thus we can choose a ba-
— 2mmJo sis of solutions of the eigenvalue equation Tgrformed by
1 functions ofk that have support on positive or negatike
(34 only. Now T, is a linear differential operator and since
f.(k)—0 ask—0, there is no continuity condition on its

The eigenstates fail to be orthogonal. One can also see thgigenstates &=0. These two related properties lead to a

T as defined above has no self-adjoint extensions by noticing. o< oY in the spectrum. For each eigenvalubere are
; iy i J y Bvo eigenstates, which we choose as having support in the
that its deficiency indices are unequal.

This difficulty stalled us for some time and various at- k>0 andk=0 regions, respectively, namely
tempts to circumvent the problem failed. A way out was then T IT,+).=T|T, +)
suggested by Maro[R23]. The idea is to seek an operator that e Je v e

A. Difficulties with T and a regulation

:5(T—T’)—%ﬁ.

in the classical limit would not reproduce the time of arrival

exactly, but would rather reproduce a quantity arbitrary close TdT,=)e=TIT, ), (38)
to the time of arrival. Namely, we want to approximate theWhere

time of arrival with a different quantity, free from patholo-

gies. It is easy to trace the above pathology to the singular (K|T,+).=0 for k<0,

behavior of 1k atk=0. Even classically, a state wik=0 is

physically disturbing: Either the particle is never detected or (k|T,—).=0 for k>0. (39)

the particle may stably sit over the detector. Therefore, we
seek a small modification dfL8) such that no divergences We introduce the notation

97 (K =(KIT, =), (40)
IAnother approach to obtaining this result is to integrate the ei- R
genvalue equation in a small region around0. One then obtains  for the momentum representation of the eigenstatés ofA
the same continuity conditio(83) on g+(k). simple calculation shows that these are
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71 AT (K B. Time-of-arrival probability density
1 (K)=0(=k)\/ zwmfexf{ i HL Ed k’[fe(k')]l) : Following the general theory of Sec. I, if the particle is in
€ N (41) the Heisenberg stat¢(k), the probability densityr(T) of
the time of arrival is the modulus square of the projection of
Explicitly, for |k|= e we have the state on th& eigenstates of the time-of-arrival operator.

Since these are doubly degenerate, we have in the present
h iAT
97 (K =0(xk) \/5—vk ex;{—(kz—ez)
! 2mm 2m (T =T, + WP + [T~ 9P (48)

case
In order to derive various properties of these eigenstatedf we assume that the support ¢g{k) does not contairtan
it is convenient to introduce new coordinates on the right-arbitrarily small finite regiorlk|<¢é around the origin, we
and left-hand sides of the real line as can chooses<§ and, using the explicit forn{42) of the
eigenstates, we obtain the following expression#dil):

k 1
Z5 (k)= dk —— 43 % i 2_¢2
(k) f (43 A Uodk&e’(p(lm(:m € ))t//(k)

+e fe(k’) W(T)zz—
H 2_ 2
fj) dk\/E exp( M) (k)

. (42

2

In the region|k|>¢, Z*(k)=(k?— €)/2. In what follows
we do not need the specific form &* in the region +
|k|<e. Note first that on each side, the Jacobian of the co-

ordinate transformation is nonvanishing forle# 0 and thus ) ) )
the new coordinates are strictly monotonic. At the pointsNotice that thee dependence gives only a phase that disap-
lk|=¢, Z*(k=+€)=0, respectively. Furthermore, since pears when we take the absolute value squared, namely,

|f (k)| —0 rapidly enough ask|—0, we see that botd™

2
. (49

mm
2m

. . % ° iThk? 2
e (—,). In terms of these coordinates, the eigenstates are -
( ) g a(T)=5_— fo dkvk eXp( e )¢(k)
+ + fi 1 i + 0 Tﬁk2 2
9T (Z2%)= _ gl (iImTZ (44) J I
T N2 Fkz) +| | _dkvkexg Z——|u(k)| |. (50

and the Hermitian inner product between two states is We thus have the result that for the states that do not include
an amplitude for zero velocity, the time-of-arrival probability
R T T RN . distribution computedwith e sufficiently smal) with the
_de FkZMgk(Z) HK(ZT)). regulated operatof .(x) is independent frone.
(45) The two terms in(50) correspond to the left and right
moving components of the state. Therefore, we have imme-
From (44) and (45), the orthogonality of the eigenstates is diately that the probabilityr ™ (T) [and 7 (T)] that the par-
manifest: ticle is detected inX=0 while moving in the positiveor
negative direction is

(W)= 2

E<T’ 77|T,177,>s: 677,77'5(T_T,)' (46) . 2 2
N to K iThk
In the new coordinates, completeness too is manifest. We 7 (T)= 2mm| Jo dkyvk ex 2m y(k)| . (D
can get the same result in ttkerepresentation with a little
work: Finally, the result generalizes immediately to the case in
which the detector is not placed in the origin but rather in an
” dT(K|T, T, 7K’ arbitrary positionX. The eigenstates of the operafoy(X)
7];’_ _ATKIT, 7) T, 7lK") )
T[T, £ X)=T[T, =;X). (52)
h o 1 . )
=—> f AT ———e/W/MT@ =27k are obtained using the unitary translation operator
2mmS ) Jf (k) LK) I using unitary i p
T, ;X) =e /"X T, =) (53)
_y 029 -27K") e e
7 (K V(K yielding
S(k—K')6( nk Irx(K)=(K|T, =:X) =e™ " g7 (k). (54)
- ( ) 0(7k) — S(k—K). 47 TiX T

7 10271 9K[NE (k)Y (k') The projectors considered in Sec. Il are given by

Since it has a complete orthogonal basis(géneralizeyl P(T;X)=|T, +;X) (T, +; X[ +|T, = X) T, X[
eigenstates with real eigenvaluds, is self-adjoint. (55
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The probability density of being detected at tirfieby a (T, +:X|¢)
detector inX that detects particles traveling with positive o \ s . e
(negative velocity is _\/E 4 - 522 2 'ﬁ_T
=Vl 252 e 2 *I'(5/4)| 67+ om
=(T;X) o fimdk\/i p(imkz 'kX)zp(k) 2
ri X = ex —I .
2mm| Jo 2m X4 [28%ko+i(X—Xg)]
(56)

Equation(56) represents our final result for the probability
distribution of the time of arrival aX of a free quantum
particle. This probability distribution should be compared
with experiments(As is typical in standard quantum me- + 77( 52+
chanics, we have considered ideal measurements with perfect

detector efficiencies. In a realistic situation, one should of

course take into consideration a model of the detector as X
well. For example, Mugaet al. [12] have modeled the ab-

sorption process by complex potentials, which is perhaps

more realistic than the ideal measurements considered) here. T=3X[y)

5 3 [26%Kg+i(X—Xg)]?
4'2" 487+ 2iATIm

AT [26%kg+i(X—Xg)]?
2m | ¥ T 47 2iATIm

1 1 [28%ke+i(X—x%0)]?
4 2" 48+2iATIm )“ (61)

% 52 1/4 AT —5/4
- - 8%3 N
C. Time of arrival of a Gaussian wave packet = \[E( 25773) e 7 ol (5/4)(—i)| o°+ %)
As an example of an application of the above result, we
compute_the probability distributi_on for the tim_e of arrival of x{ —[26%ko+i(X—Xg)]
a Gaussian wave packet. Consider a Gaussian wave packet

5 3 [26%kg+i(X—Xg)]?

t=0 and moving, say, to the right. In the standard -2
4’2" 45°+2ihT/m

Schralinger-picture position representation, let this wave
packet be given by the normalized solution of the Sehro

localized about a point, say, to the left of the origin at time (

H 2 H 2
dinger equation 5 lﬁ_T [26%Ky+i(X—Xg)]
., TN o | R T iR Tm
2\ 1/4 —k5é 2 H _ 2
X,t)= d © 0 e [29 k°+'(.x Xo)] 1 1 [28%Ke+i(X—Xg)]?
YO =| 77 i 457+ 2iktim i e (62
\/52+m 4 2’ 45%+2iATIm :

(57)

where we have ignored the component$kin< e sincee can
be taken arbitrarily smallf®(n,m;z)=,F;(n;m;z) is the
Kummer confluent hypergeometric functionf(n,a;z)
" =L%(2) is the nth generalized Laguerre polynomial, and
(p(t))=fky, (Ap(t))=5=, (58)  I'(n) is the Euler gamma functiohThe probability distribu-
26 tion is then given by(48). The expression above for the
probability distribution of the time of arrival of a Gaussian
[ 25,2 wave packet is a bit heavy; in order to unravel its content, we
(X(1))y=xo+7nikot/m, (Ax(t))=6\/1+ 255 have expanded it in powers of small quantities in the Appen-
(59) dix and we have plotted the total probability density
7(T;X) at various detector positionéin Fig. 1[choosing a
Gaussian statg57) with xo=-5, ky=20, §=0.5, and
f=m=1]. To begin with, the term corresponding to nega-
tive velocities is exponentially small; indeed, it derives from
the scalar product of a Gaussian wave packet concentrated
around a positivek with a function having support on
k<0.
o\ 14 The total detection probability density at tinfefor the
lﬂ(k)=<—) ex] — (K—kg)262— ikxo]. (60) detector in positiorX is a function(more precisely, it is a
™ density inT) on theT-X plane. This function is concentrated
around the classical trajectory of the partické=x,
The envelope of this wave function is a Gaussian of width+ pyT/m, with a (quantum spread inT that increases with
1/6 centered ak. the spread of the wave packet, namely, with the distance of
Using the theory developed, we can compute the projecthe detector from the initial state.
tion of this state on the eigenstates of the time-of-arrival In the Appendix we compare our result with the probabil-
operator. We assume here thatcan be taken arbitrarily ity density obtained indirectly using the ScHinger prob-
close to 0.(See[24] for the relevant integralsWe obtain ability density. We find good agreement within second order

Expectation values are

If we choosexg|> 6, |ko| 6>1, x,<0, andk,>0, this state
represents a particle well localized to the left of the origin
and with a well-defined positive momentum at titre0. In
the Heisenberg-picture momentum representat8), this
state is given by
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.5 |4(x,t)|?dx is the probabilityin spacethat the particle hap-
pens to be between the positionsandx+dx at timet, as
opposed to being elsewhera timet, whereas the quantity
|~ (T,X)|?d T is the probabilityin timethat the particle hap-
pens to arrive between timés and T+dT at the position
X, as opposed to reaching X at some other tirmhe two
basedT,=;X). and|x;t) are two well-definedgeneralized
one-parameter families pbases in the Hilbert space, but
they are distinct.

In particular, the two basdd, +;X). and|x;t) have dis-
tinct dimensions becausgy(x,t)|?dx and |4*(T,X)|2dT
must both be dimensionless probabilities. Thus the transfor-

0.8 mation factor betwee(il, +;X) and|x;t) has the dimension

of the square root of a velocity. Indeed, let us write the two

(generalizeg states explicitly in the Heisenberg momentum

representation. Restricting ourselveskts 0 and takinge to

zero for simplicity, we have fronf42)

FIG. 1. Time-of-arrival probability densities(T;X), plotted at
the detector position¥X=—5,—3,—1,1,3,5.

in the de Broglie wavelength of the particle and we discuss .

the order of the discrepancies. Thus our result is reasonable (K|T,+:X) = /ﬁ\/Eex%'h_Tkz_ ikX) (64)
to leading order. Whether or not it is physically correct to all e 27 Vm 2m '
orders is a question that can perhaps be decided experimen-

tally. A discrepancy with an experimental result may indicatewhile, as it is well known,

an incorrect ordering of the time-of-arrival operator or a

more general difficulty with our approach. 1 it
(K|x,t)= \/ —expg =—k?—ikx]|. (65)
2 2m

IV. DISCUSSION

A. Time representation Therefore, takingtk=X andt=T we have
Anytime we have a self-adjoint operator in quantum me-
chanics, we may define a representation that diagonalizes _ rk
this operator. Namely, we may choose the eigenbasis of the (KIT,+:5X) = \ 7 (KIxt). (66)

operator as our working basis on the theory’s Hilbert space.

Nothing prevents us from doing so With“ the operators physical understanding of the curiougk/m factor
T(X) as well. Let us therefore introduce a “time-of-arrival {hat characterizes the eigenstates of the time-of-arrival opera-
representation,” or, for short, a “time representation.” We (o can be obtained as follows. Consider a well-localized
fix an e and define wave packet traveling with velocity =%ky,/m. We have
approximately| = (T,X)|>~v|¢(x,t)|2. Now consider the
¢§(T,X)::E(T,i;x|¢>=f dk.gr.x(K)¢(k). (63  x-tplane. The wave functiok(x,t) is significantly different
from zero on a band around the classical trajectory. The clas-

Clearly, we can do quantum mechanics in #{&(T,X) rep- sical trajectory is a straight line W|th_ a slope given _by the
relocity v. The ratio between a vertical and an horizontal

resentation as well as we do quantum mechanics in the pd- ' X , i
d P ection of the band is therefore preciselyThus, in order to

sition, momentum, or energy representations. Since th both ! babilii lzed 1o 1 when i
eigenstates,gy (k) have support on positivk, we must have oth total probabilities normalize o lw en Integrat-
' ing along at=const or ax=const line, the probability den-

. + . .
interpret ¢, (T,X) as the amplitude for the particle to be sity in space and the probability density in time must be

detected by a detector placed>ain an infinitesimal neigh- ) ;

. - related by a factow. This hypothesig66) has also been
borhood of T coming from the left andy, (T.X) as the 040 1 “ijowski[7], who used it to obtain a probability
amplitude to be detected Atin a neighborhood of coming  jistribution similar to(50).

from the right. _ . _ In Fig. 2 we have plotted the usual Sctiger probabil-
What is the relation between thg (T,X) amplitude and ity density inx, w(x;t)=|#(x,t)|2, at various times, for the

the conventional Schainger wave function/(x,t)? Notice  same state used for Fig. 1. The time-of-arrival probability
that the first is defined by, (T, X)=L(T,%:;X|¢), where  gensities arey=7k,/m times as large as the Sckinger

T, =;X) is an eigenstate df (X) with eigenvalueT, while  gensities for values ok=x and T=t near the classical tra-
the second can be viewed as defined dx,t) =(x;t[#),  jectory.

where|x;t) is the eigenstate of the operatqt) with eigen-
valuex. At first sight, the two seem to be related to the same
guantity (up to thee and the distinction between the two
directions of the velocity They both refer to probabilities of Position-momentum uncertainty relations are of wide use
being detected at some space point and at some time. How quantum mechanics and can be cleanly derived from the
ever, this naive observation is very misleading. The quantitformalism on very general grounds. The commutation rela-

B. Time-energy uncertainty relation
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hZ
(AT)*(AE)*= Z[l_<¢/|he(k)|w>]2' (71

Now

il = [ akuno= [ akuz 72

For all statesy(k) as in Sec. Ill B, whose support lies en-
tirely outside an arbitrarily small regiofk| < ¢ around the
origin, and for alle< 8, we havef€ dk|#|>=0. Thus, for
all such states with support away from the origin, we have

h
ATAE= - (73
FIG. 2. Schrdinger probability densitiesr(x;t) for position, 2

lotted at time¢=0,0.1,0.2,0.3,0.4,0.5. - .
P for all sufficiently smalle. Note that we have defined the

. nan oA _ standard mathematical uncertainties as defined for the posi-
tions [x,p]=i%1 imply AxAp=#/2. Time-energy uncer- tjon and momentum operators and t{@8) is subject to the

tainty relations are of wide use as we#.g., between the  giangard interpretation of the product of the uncertainties of
width of a spectral line and the lifetimebut their general 0 noncommuting operators.

deriygtion is notoriously'tricky. If one tries to reproduce the  \yith varying degrees of rigor, it is manifest that the vari-
position-momentum derivation for the time-energy case byyys “time as energy derivative” approaches cited in the In-
assuming the existence of an operafosuch that troduction yield the desired uncertainty relati§8).

[T.H]=—ixl (67)

. C. Definition of state in quantum mechanics
from which

Finally, let us return to the problem we briefly discussed
ATAE=A/2 (68)  atthe end of Sec. ll, which is the interpretation of the time of
arrival T when T<0, namely, when the detection time is
would follow, then one would clash against a well-known earlier than the timé=0 at which the initial state is given.
nonexistence theorem fof. The theorem states that the We have suggested that in this case the correct interpretation
commutation relationEA,é]=iﬁi between two self-adjoint of T is the following.T is the detection time for a state that
~ N arbitrarily in the past was in a state that would have evolved
operatorsA and B implies that the spectrum of both opera-

. . . to the t=0 initial state if undisturbed. A cleaner way of
tors is the real line, However, the spectrum of the Hamll'dealin with the general situation is to make use of a full
tonian is bounded from below in all reasonable systems 9 9 y

heref . N q _ time-independent notion of “state” and a fully time-
Therefore a time operatdr satisfying(67) oes not exist on independent version of phase space and quantum state space.
the usual Hilbert space. See, €4], for a rigorous proof.

his th iaht h b h ; hich This can be done as follows. Consider first classical mechan-
. This t eorem mig t ave been the reason for WRICN dc5 | et us denote a single solution of the equation of motion
time-of-arrival operator has virtually never been considere s a “physical history” of the systen(A physical history

n quankt)um mechanics. In fact, it is OI;[EI’]_ state_dhtr;]at t'l;neshould not be confused with the histories considered in sum-
cr?nnot €an opera:ctoLm quanturzn mﬁc anics, with the a Or&/er-histories theories: A physical history here is a history
theorem as a proof. Here we show how one can rgorously,isqing the equations of motiorLet I'y be the space of
derive time-energy uncertainty relations for a quantum PaAlhese physical histories. A point i, represents an entire

ticle and how the existence df, circumvents the theorem.  ayolution of the systeml’ can be coordinatized by then2

The commutation relations betwedn and the Hamil- ntegration constants. We ask for the time of arrival at of
tonian are easy to compute. In the momentum representatiq system following one of the motions ;. This time of
we have arrival is given by(13). The key to the matter is that there is
o . no need to choose a time in order to specify a physical his-
[Te,H]=—1(1—hk)), (69  tory.
In quantum mechanics we can define the Hilbert space
where "Hs of the solutionsof the Schrdinger equation. A vector in
g represents an entirgguantum motion of the system,
h.(k)=1—kf (k). (70)  without reference to any particular time. The conventional

Heisenberg operators are definedg. The operatof14)
The functionh (k) vanishes forlk|>e¢, and in the small is properly defined oft{s. We may choose to represent the
interval where it has support, it is boundgdy 1, if we  Vectors inHg by means of the value that the Sctimger
choosef (k) as in(36), which we do for simplicity. For the  state would tagéif undisturbed at t=0; therefore it makes
particle in the statey(k) the uncertainty relations are then sense to defin& as a function of the operatoxg andp, that
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are defined on the statestatO. evolution in terms of the functiong 7) andx(r) of an arbi-

In this regard, it is interesting to notice that the original trary parameter. In more elegant and general mathematical
definition of the “Heisenberg picture Hilbert space” given terms, there are formulations of mechanics, e.g., the presym-
by Dirac in the first edition of his book22] is the definition  plectic formulation, in which the distinction between depen-
of Hg given above. It is only later that the Heisenberg picturedent and independent variables is inessential; see, for in-
Hilbert space came to be mostly identified with the statestance, Arnold’s classic text[26]. A parametrized
space at a fixed tim@oth interpretations of{5 can be found representation is commonplace in special relatiishere
in the literaturg. A crucial advantage of using the definition T is calledx®) since it allows manifest Lorentz covariance.
of Hs given here is that this definition can be extended to It is commonly stated that this equivalence between inde-
systems without Newtonian time at 4ll9,20,23. We will  pendent(time) and dependent variables is lost is quantum
exploit this point of view in[21]. mechanics. The arguments in support of this claim are com-

mon in the quantum gravity literature and take various

forms. For instance, it is said that the wave function must be
V. CONCLUSION: X< T EQUIVALENCE normalized by integrating ix and cannot be normalized by
IN QUANTUM THEORY integrating int. Or it is said that probabilities are always

Let us summarize our results. We have considered thBrobabilities of different outcomes happening at the same
problem of computing the time of arrival of a quantum time, never at the same position. It. is our impression that
particle at a positioiX. Relying on the general validity of the these claims are misleading. The mistake is to assume that
superposition principle, we have argued that the probabilithex—t equivalence has to be realized as an equivalence in
distribution for T can be obtained by means of an operatorthe arguments of the Schtimger wave functiony(x,t).
T. This operator is, in general, not self-adjoint. However, it ~1he conventional formulation of quantum mechanics in
admits an orthogonal basis of eigenstates. The eigenstatté&ms of the Schiinger wave function/(x,t) hasalready
with real eigenvalues correspond (generalizeyl states for broken thex«<t equivalence. Indeed, it is a formulation tai-
which the detection time is sharp. The eigenstates with comlored to answer the followingexperimental question: What
plex eigenvalues correspond to states that are never detectdslthe probability of the particle beingere now as opposed

The time-of-arrival operator is partially characterized byto that of beingelsewhere no® The corresponding represen-
its classical limit, which fixes its dependence on the positiontation diagonalizes the Heisenberg operataf. It is the
and momenta operators, up to ordering. We have consideraeskperimental question considered and the related choice of
the simple case of a nonrelativistic free particle, using a tenbasis that break the<t equivalence. Quantum mechanics
tative natural ordering. A regulation procedure allows us togllows us to consider the following question as well: What is
to find a self-adjoint time-of-arrival operatdthere is No  the probability of the particle gettingere nowas opposed to
nondetection in this cagand we have studied the probabili- getting here some other tineln order to answer this ques-
ties the operator yields. These are given explicitly in &) tion, one is led naturally to the™*(T,X) representation in
for an arbitrgry initial state and in Eqe51), (6.2)’ and(A8) . which the roles of position and time are to a large extent
Tpr a Gaussian wave packet. Remarkably, in the theor‘?‘?'?%terchanged. In particular, the wave function is normalized
iterature there is no agreement about thgse pr_oba}bllltle time and probabilities of events at the same position are
[1,13,15. We suggest that an experimental investigation o .

. g . considered.
the problem could be of interest. It could indicate which one To avoid misunderstandinas. let us make clear that we
is the correct approach to calculating these probabilities and " ) gs, :
rtainly do not claim that space and time have the same

it could shed some light on the conceptual issues raised b ) . .
this seemingly very simple aspect of quantum mechanics. ature, nor that their role in the quantum mechanics of a

We showed that the regulated time-of-arrival operator caP@rticle is exactly the same. What we suggest is that the
be used to derive time-energy uncertainty relations, circuméommon arguments that and t can be treated on equal
venting a well-known nonexistence theorem, and that ifooting in classical mechanics, but not in quantum mechan-
yields a well-defined “time representation” for the system. ics, might lose force under closer scrutiny. Contrary to the

For more general systems, the classical limit is not likelyabove arguments, our analysis reveals an underlying hidden
to be sufficient for constructing the operator. In a forthcom-equivalence between “dependent” and “independent” vari-
ing paper[21] we investigate a general technique for con-ables in the quantum theory of a free particle.
structing the time-of-arrival operator in general cases. We
will study in detail the particle in an exponential potential,

where theP operator is nontrivial. We will also investigate

parametrized systems and theories without a Newtonian ACKNOWLEDGMENTS
time, arguing that the ideas presented here may be relevant ) )

We close with a general comment on the significance ofiions. We are particularly grateful to Don Marolf for the
the result obtained. In classical mechanics there is a hidde$tiggestion on the way to regulate the time-of-arrival opera-
equivalence between the independent time varitlaled the  tor and to Jim Hartle and Jonathan Halliwell for stressing the
dependent dynamical variablé$e positionx in the present importance of the problem and for helpful discussions and
case. This equivalence is made manifest by expressing th&orrespondence. This work was supported in part by the Na-
theory in parametrized form, namely, by representing thdional Science Foundation under Grant No. PHY 92-05109.
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APPENDIX: IS THE COMPUTED PROBABILITY whereR; is again exponentially smahl-exp(—1/ky6) and
DENSITY REASONABLE? we have disregarded andependent phase, which is not go-
ing to affect the probability distribution.

Let us now investigate whether the result we have ob- N ok about th K of the G .
tained for the Newtonian free particle is physically reason- ow we can expangk about tne peak of the L>aussian as

able. The simplest check is to compute the expectation value

of the time of arrival of a wave packet with initial position

Xo and momentunpy. The result should agree with the ex- Vk= kg
pected classical time of arrival=t(X;Xg,pg)- Since the op-

erator was constructed via a factor ordering and regulation of ) ) L
the classical solution, the expectation values obviously sat?Sing this expansion, we can compute the Gaussian integral
isfy Ehrenfest’'s theorem. A more accurate check that goe¥' (A3)
beyond the semiclassical approximation is to compare the
probability distribution we have obtained with the one we o
can estimateby indirect but intuitive methods. In Sec. 1 of j
the Appendix we first compute an approximation to the prob- -
ability amplitude(61) and(62), and the resulting probability

density, for a Gaussian state. This also gives us some intu-

14 Kok, o kKol A4
e e )

AT
dkvk exp( —(k—kq)28%—i mkzﬂk(x—xo)

ition for the behavior of the distribution. Then in Sec. 2 of :eiko(xfxo)fi(hTIZm)kg ko exp
the Appendix we compute the Schlinger current through 2t AT
the detector position and compare this with the approxima- + 2m
tion we obtained in Sec. 1. ~
ot
X—=Xg— ——
. m
1. Gaussian state X T
Consider the Gaussian wave packet of Sec. Il C. In the 4( 5%+i 2—)
momentum representation, this state is given by - m
hTkg
—Xg— ——
2\ 1/4 . m
w(k>=(—) ext — (k—ko)?6*~ikxol.  (AL) x| L ity | PRe | (A9)
7T 4kg 8%+i ﬁ

The envelope of this wave function is a Gaussian of width
1/6 at positive momenturky. In order to simplify the calcu- where

lations, we slightly modify this state by assuming it to be

zero fork<<e. Clearly, since this modification is far out on 1 (= ) 1 1

the tail of the Gaussian, the error we make is very small |R2|s—3,2f dk e = kom—=55 = (A6)
[more precisely, one can show that it vanishes as 8ko ") —= 16kp5° &
exp(—1/ky8)]. We thus replac€Al) by

is of second order in Bk,. Thus, to first order in thésmal)
quantity 16k,, we have

2\ 1/4
& (Tix) = 3 ,h_ko(ﬁ_) eiko(x—xo)—i(ﬂ/zm)kg
' m\

2\ 1/4
w(k)=0(k—e)(7) exf — (k—kg)26%—ikxo], (A2)

where #(x) is the characteristic function of the positive line.

2
Substituting this expression in{63), we find that the ampli- X — X ﬁTkO)
tude for the particle to be detected betwdeandT+dT at ° m
the positionx is exp AT
4 52+i—)
y 2m
f 282\ Y4 (e AT\ 12
+ =[] — —(k—k~)252 2,
(T, X) \/2wm< 77) f dkyk exp( (k—Kq)2 8 4(5 +|2m)
AT ATk
i K24k (X — i 2
|2mk +ik(X xo)) n X—Xo o .
X +i T (A7)

2\ 1/ © 240
- \/Zfr_m<%) AU dkik exp(‘(k—ko>252 ol 41 5

AT _ To this approximation, the probability density
—|ﬁk2+|k(x—xo) -Ry|, (A3) 7t (T;x)=|¢"(T;x)|? is then
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o= “dt jy= o f A o)
rs y M2 0 Jx 2mi " X X x=X
(X—=x)Th  ko(X—Xo— ko T/m)? x X
k052+ 4m52 lskgaz = f_dep tl_ J_ochp (A13)
X 12,2\ 37 t2
o] . - .
4m?5* The last line in the above equation is the probability that the

(X—Xo— ko Th/m)? particle is found in the left-hand side regioK£x) at time
xexp| — T2 (A8)  t; minus the probability that the particle is found in the left-
2( 52+T) hand side region at a later tintg. It is tempting to identify
4m*5 the flux between the time® and T+dT (through the time-
like surface atx=X) of the current density

Due to the Gaussian factor, the probability distribution is "

centered on the classical time of arrivl=m[(X—xXg)/ . _ —

fko], with width &, and vanishes exponentially outside such Ix(T)dT= Elm['ﬁ(X’T)axw(x’T)]x:XdT (A14)

a region.

Notice also that due to the Gaussian factor the third tern@s the probability density that a detector placed=ai will
in the numerator of the amplitude of the Gaussian is of ordefletect the particle. Note that the Scthireger current density
(1/8k,)? in all the region where the probability density is not has the correct dimensions of a density in time, namely,
exponentially small, so we may rewrite the probability den-[ T1~*. The problem, of course, is that the current represents
sity as thenet flux of probability acrosx=X and thus corresponds

to the difference between the probability of crossing to the
right and the probability of crossing to the left. Namely, we

, (X=X)Th may expect that
Koo+ “ame? .
7T(T,X)— m\/g (62+ Tzﬁz )3/2 JX(T) ™ (T,X) ™ (T,X), (A15)
Am2 &2 within some approximation. In fact, the currgg(T) is not
5 positive definite and we believe that this is related to the
wexp| — (X—=Xo—KoT%/m) (A9) difficulties in the approaches dfL7,15. Equivalently, we
252 may try to interpret the curremf a pure right moving state
2 52+m) as the probability density that the particle crossesX. We
are reassured in doing this by the fact that in this case the
o current is positive definite and its integral over all times
as an approximation correct to ordeity. gives one. This conclusion is based on the assumption that
the particle cannot “zigzag” across thé=x line, an as-
2. Current sumption that might be valid only if we look at sufficiently

. . ) large times.
In ordmary guantum mechanics, one can define a current So, wheny is a pure right moving state, the rightward
whose time and space components are flux density is positivéand integrates to 1 over all timgTo
see this, take the limits;— — andt,—« in (A13).] It is
J00x,t) = p(x,t)= (X, t) h(X,1), (A10) therefore at least consistent to interpret this as an estimate of
the probability density. Does this estimate yield the correct
semiclassical limit? The expectation values of the usual po-
h — — sition and momentum operators satisfy Ehrenfest’'s theorem
o (W= daih) (X0, (A11)  since the probability densities are associated with the decom-
position of a state onto the spectrum of some self-adjoint
) , , operator. The same is true of the probability densities we
where y(x,t) is the quantum state in the conventional paye obtained from the time-of-arrival operator. The above
Schradinger-picture position representation. Since the statg,rent density imot obtained via a spectral projection, how-
satisfies Schidinger’'s equation, this current is conserved ever, and isot associated with a “time operator.” How do
the expectation values of the time of arrival behave with
respect to this estimated probability density and do they cor-
respond to the classical limit in some way? We next proceed
to analyze this issue.
Consider, for a particle in one dimension, the space-time The expectation value of the time of arrival of the particle
region(a half strip defined byx<X,t;<t<t, and integrate at the positionX is naturally defined only when the state has
the divergence free current over this volume. Dropping thesupport only on th&=0 region and is then given by
boundary terms ak= —«, we find that the outgoingi.e.,
rightward flux of this current through the timelike boundary
at x=X in the time interval {;,t,) is 2See(Al14) and recall that this is a free particle.

j'(x,t)=

3%+ ;j'=0. (A12)
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T —Jm dT Tjx(T)= h R fm dTdekadk’T LS ikX | ¢(k “IATK ik’ X | (k'
(Mx=| (M) =5 AT dk exp — o~ ~ikX | g(kjexp — —+i (k')
-l g | oleocolkfwolk’ml A P LA | s O B UAL SR B
“2am e ) AT A AR k|| T ok TR O o T IkX ] jptkexp T kX )
mR fwdk (k) X 19 (k) X ! mLs +X ! (Al6)
= — ——— =mX{ — )~ 5| —Xot+XoT— ),
h 0 v k kok v Po 2\ Po ° Olao
|
where we have dropped a surface termkatO since we oo
assume thaty(k)_o—k?". The final expression in the  dx(T)=IMLY(X;T)dxh(XT)Ix=x
above equation is the symmetric factor ordering of the clas-
sical expressionT =m(X—X)/po, thus we do recover the % +o —iThk?® 2
correct semiclassical limit. 5 fo dkyk ex o T KX (k)
For the localized right moving wave packet previously
considered, the current is easily computed, giving h 0 K —iThk® 2
+m Jlocdk k ex om +ikX l//(k)
- 2 (A20)
jx(T)=—=R dk —ikX | ¢(k
() 2mm e{fo exr{ 2m )lﬁ( ) We now setX=0 for simplicity, without loss of generality.

A little algebra gives

h + o + o
do<T>=mJ% d"J,w dK' (K- JK7)?

fwdk’k’ LS ikX | (k'
X o ex T+I (k") |.

(Al7)
—iTh(k®—k'?) —
The integral can be explicitly done, yielding Xexp ——— | ¢(ky(k’). (A21)
Now suppose that our measurement has a precisiomhen
(X—%o)Th the difference of the probability densities, averaged around
Kog6?+ ——— Tis
_ 0 4ms?
Ix(T)= oy 252372 1 [T+oT
2 - ’ ’
(5 + 4m252> APT =55 | dT'do(T).  (A22)
2
xexp| — (X—xo—ko'zl'ﬁzlm) (A18) The integral indT’ can be done easily, which yields
Th '
2
2| & +4m252)

h +o +oo
AP(T,&T)sz dkf dk’ (Vk— k)2

which is precisely the approximate form for the probability —iTA(K®—k'2)

we computed from the time-of-arrival operati@ee (A9)]. exp( T) (k) (k")
Thus the probability distributions computed with the time-of-

arrival operator and by means of the current agree for a right STh

moving localized wave packet to ordekd$, which is one sin %(kz—k’z)}

order beyond the classical limit. X ) (A23)

For a general state, roughly localized in momentum state ﬂﬁ(kz_k,g)
around a momenturky, we can compare the curre(14) 2m

with the difference between the probability of being detected

moving towards the right minus the probability of being de-For large 6T, compared to the “de Broglie time” of the
tected moving left. Namely, we can estimate particle 2n/k?# (wherek is the highest momentum in the
support of the wave functignthe factor in curly brackets in
the integrand has non-negligible support only kerk’ and

the integral is then suppressed by thék ¢ Vk’)? factor.
This indicates that the two ways of computing the probability
for the time-of-arrival approach each other when our resolu-
Explicitly, using (A14) and (50), we have tion time is larger than the particle’s de Broglie time.

dx(T)=jx(T)—[7x (T) = mx (T)]. (A19)



4690 NORBERT GROT, CARLO ROVELLI, AND RANJEET S. TATE 54

[1] B. Mielnik, Found. Phys24, 1113(1994. [17] J. B. Hartle, Phys. Rev. @3, 1434(1988; 44, 3173(199J);
[2] F. T. Smith, Phys. Rev118 349(1960. N. Yamada and S. Takagi, Prog. Theor. P85.985(1991);
[3] R. Werner, Ann. Inst. Henri Poincad¥, 429 (1987). 86, 599 (1991); 87, 77 (1992; J. J. Halliwell and M. E. Ortiz,
[4] G. R. Allcock, Ann. Phys(N.Y.) 53, 253 (1969; 53, 286 Phys. Rev. D48, 748(1993; N. Yamada, Sci. Rep. "Fmoku
(1969; 53, 311(1969. Univ., Ser. 812, 177(1992; J. J. Halliwell, Phys. Lett. /207,
[5] E. P. Wigner, Phys. Re\88, 145 (1955. 237(1995.
[6] E. Gerjuoy and D. Coon, Superlatt. Microstrugt305(1989, [18] J. B. Hartle, Class. Quantum Gral3, 361(1996.
and references therein. [19] C. Rovelli, Phys. Rev. Di3, 442 (1991): 42, 2638(199).

[7] J. Kijowski, Rep. Math. Phys5, 361 (1974).

[8] C. Piron, in Interpretation and Foundations of Quantum
Theory edited by H. NeumanriBibliographisches Institute,
Manheim, 1979

[9] R. Werner, J. Phys. &1, 4565(1988.

. Isham, inintegrable Systems, Quantum Groups, and Quan-

[20] C. Isham, inl ble S Q G dQ
tum Field Theoriesedited by L. A. Ibort and M. A. Rodriguez
(Kluwer Academic, London, 1993

[21] C. Rovelli and R. S. Tatéunpublishegl

[10] V. S. Olkhovsky, E. Recami, and A. J. Gerasimchuk Nuovo[zz] P. A. M. Dirac, Principles of Quantum Mechanio®xford
Ciméntozz 262&19.74) ' T ' University Press, Oxford, 1930

[11] M. S. Marinov and B. Segev, Report No. quant-ph/03018. (23] D. Marolf (private commumcano)_m )

[12] J. S. Muga, S. Brouard, and D. Mas} Ann. Phys(N.Y.) 240, [24] 1. S. Gradsteyn and |. M. RyhzikTable of Integrals, Series

351 (1995. and Products edited by A. Jeffrey(Academic, New York,
[13] R. Werner, J. Math. Phy27, 793 (1986. 1980, p. 1064.
[14] D. Marolf, Phys. Rev. A50, 939 (1994). [25] A. Ashtekar and R. S. Tate, J. Math. Ph@§, 6434 (1994,
[15] N. Kumar, Pramana J. Phy&5, 363(1985. and references therein; R. S. Tate, Ph.D. dissertation, Syracuse
[16] J. B. Hartle, inGravitation and Quantizationdroceedings of University, 1994(Report No. 92-96/9304043

the 1992 Les Houches Summer School, edited by B. Julia ané26] V. I. Arnold, Mathematical Methods of Classical Mechanics
J. Zinn-Justin(North-Holland, Amsterdam, 1994 (Springer-Verlag, Berlin, 1978



