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We study the problem of computing the probability for the time of arrival of a quantum particle at a given
spatial position. We consider a solution to this problem based on the spectral decomposition of the particle’s
~Heisenberg! state into the eigenstates of a suitable operator, which we denote as the ‘‘time-of-arrival’’
operator. We discuss the general properties of this operator. We construct the operator explicitly in the simple
case of a free nonrelativistic particle and compare the probabilities it yields with the ones estimated indirectly
in terms of the flux of the Schro¨dinger current. We derive a well-defined uncertainty relation between time of
arrival and energy; this result shows that the well-known arguments against the existence of such a relation can
be circumvented. Finally, we define a ‘‘time representation’’ of the quantum mechanics of a free particle, in
which the time of arrival is diagonal. Our results suggest that, contrary to what is commonly assumed, quantum
mechanics exhibits a hidden equivalence between independent~time! and dependent~position! variables,
analogous to the one revealed by the parametrized formalism in classical mechanics.
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I. INTRODUCTION

Consider the following experimental arrangement. A par-
ticle moves in one dimension, along thex axis. A detector is
placed in the positionx5X. Let T be the time at which the
particle is detected, which we denote as the ‘‘time of ar-
rival’’ of the particle atX. Can we predictT from the knowl-
edge of the initial state of the particle?

In classical mechanics, the answer is simple. Let
x(t;x0 ,p0) be the general solution of the equations of motion
corresponding to initial position and momentumx0 andp0 at
t50. We obtain the time of arrivalT as follows. We invert
the functionx5x(t;x0 ,p0) with respect tot, obtaining the
function t(x;x0 ,p0). The time of arrivalT at X of a particle
with initial datax0 andp0 is then

T5t~X;x0 ,p0!. ~1!

Two remarks are in order. First, ift(x;x0 ,p0) is multivalued,
we are only interested in its lowest value, since the particle is
detected the first time it gets toX. Second, for certain values
of x0 andp0, it may happen thatX is outside the range of the
functionx(t;x0 ,p0). This indicates that the detector inX will
never detect a particle with that initial state. The time of
arrival is a physical variable that, in a sense, can take two
kinds of values: either a real numberTPR or the value
‘‘ T5never.’’ Notice that in the latter case, the quantityT
formally computed from~1! turns out to be complex. Thus a
complexT from ~1! ~for givenX,x0 ,p0) means that the par-
ticle with initial datax0 ,p0 is never detected atX.

In quantum mechanics, the problem is surprisingly harder.
In this case the time of arrival can be determined only proba-

bilistically. Letp(T)dT be the probability that the particle is
detected at detector locationX within the time intervalT and
T1dT. Thus

E
T1

T2
p~T!dT ~2!

is the probability that the particle is detected between the
time T1 and the timeT2. How can we computep(T) from
the quantum state, e.g., from the particle’s wave function
c(x) at t50?

The importance of this problem has been stressed by oth-
ers. Mielnik @1# refers to it as ‘‘a dark spot in the perfection
of quantum scheme.’’ Smith@2# begins with the following:
‘‘It is surprising that the current apparatus of quantum me-
chanics does not include a simple representation for so emi-
nently observable a quantity as the lifetime of metastable
entities.’’ In a similar vein, Werner@3# states, ‘‘There is a
strange discrepancy between many theoretical accounts of
measurement in quantum mechanics and the typical mea-
surement carried out in a laboratory. On the one hand every
counter clicks at a certain time, and frequently these times
are quite important for the evaluation of an experiment, e.g.,
a correlation experiment. On the other hand, operators de-
scribing the probability that a counter responds during a
given time interval are rarely discussed in quantum mechan-
ics textbooks.’’

To the best of our knowledge, this question has not re-
ceived a complete treatment in the standard literature on
quantum mechanics. In this literature, the problem has been
variously referred to as the ‘‘tunneling time problem,’’ the
‘‘time of arrival problem,’’ or the ‘‘screen problem.’’ The
existing literature appears to be vast, and we do not intend to
give a complete review.

Allcock @4# has given a proof of the nonexistence of a
time-of-arrival operator on the usual Hilbert space of quan-
tum mechanics. The problem of computing the time of de-
tection of a particle is usually treated in a very indirect man-
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ner. For instance, the probability~in time! of detecting a
decay product, say a particle escaping the potential of a
nucleus, can be obtained from the time evolution of the prob-
ability that the particle is still within the confining potential.
Alternatively, one can treat the detector that measures the
time of arrival quantum mechanically and compute the prob-
abilities for the positions of the detector pointer at a later
time; in this way one can trade a measurement of the time of
arrival for a measurement of position at a late fixed time.

Apart from the above apparently undeveloped ideas, vari-
ous concrete approaches have been taken. One of the earliest
is that of the time operator as the energy derivative operator.
Wigner considered the problem of relating the energy deriva-
tive of the wave function’s phase shift to the scattering delay
of a particle@5#. This approach, later developed by Smith@2#
and others~see, for instance,@6#!, gives the average delay,
but fails to provide the full probability distribution of the
time of arrival. Kijowski @7# obtained a probability distribu-
tion, but not on the usual Hilbert space; thus the interpreta-
tion of the wave function in terms of familiar quantities is
obscure. Piron discussed the problem@8#, sketching ideas
related to the ones developed here. From the Wigner distri-
bution, Werner@9# obtained a quasiprobability, which, how-
ever, is not positive definite. Ideas related to the ones pre-
sented here were also explored by Olkhovskyet al. @10#, but
in this case too only the average time of arrival was obtained
and not its full probability distribution. More recently,
Marinov and Segev@11# have applied this approach to cal-
culate tunnelling times. Mugaet al. @12#, as well as Kijowski
@7#, estimated the time-of-arrival probability density from the
Schrödinger current density. This density is not positive defi-
nite and the approach has been otherwise criticized~see, e.g.,
@1#!. Werner took a mathematical approach@3,13# to the
problem of the construction of ‘‘screen observables,’’ i.e.,
observables on timelike hypersurfaces@1#. Among more
‘‘space-time’’ approaches, Marolf@14# has calculated prob-
abilities for particle detection in space-time regions, but~not
unreasonably! finds them to be very sensitive to the model of
detection. Kumar@15# studied the quantum first-passage
problem in a path-integral approach, but did not obtain a
positive probability density. The problem has been studied in
the framework of Hartle’s generalized quantum mechanics
@16# by using sum over histories methods. Various attempts
in this direction and discussions of difficulties can be found
in Ref. @17#. See also the recent paper Ref.@18# for a discus-
sion of the problem and for references; in particular, Ref.
@18# discusses the difficulties one has to face in trying to
computesequencesof times of arrival: an important problem
that, however, we do not address here. As stressed by Hartle
in @18#, generalized quantum mechanicsgeneralizes‘‘usual
quantum mechanics’’; here, on the other hand, we are inter-
ested in the question whetherp(T) can be computed within
the mathematical framework of conventionalHamiltonian
quantum mechanics.

We see two reasons of interest for discussing the problem
of computing time of arrival in quantum mechanics. First, it
is a well-posed problem in simple quantum theory and there
must be a solution. Echoing Smith@2#, we do not expect that
quantum mechanics could fail to predict a probability distri-
bution that can be experimentally measured by simply plac-
ing a detector at a fixed position and noting the time at which

it ‘‘clicks.’’ The problem is not just academic: It is related to
the problem of computing the full probability distribution~as
opposed to the expectation value! for the tunneling time
through a potential barrier. This problem has relevance, for
instance, in computing rates of chemical reactions~see, for
example,@15#!. Second, the problem bears directly on the
interpretation of quantum theories without Newtonian time
@19,20# and thus on quantum gravity; we shall briefly com-
ment on this issue in closing.

This paper is the first of a sequence of two. Here we
develop a general theory for the time-of-arrival operator and
study the free nonrelativistic particle case in detail. In a com-
panion paper@21#, we investigate a technique for the explicit
construction of the time-of-arrival operator in more general
cases, we extend our formalism to parametrized systems, and
we study some less trivial models: a particle in an exponen-
tial potential and a cosmological model.

In Sec. II we give a general argument, based on the su-
perposition principle, for the existence of an operatorT̂ ~the
time-of-arrival operator! such thatp(T) can be obtained
from the spectral decomposition ofc(x) in eigenstates of
T̂, in the usual manner in which probability distribution are
obtained in quantum theory.T̂ has peculiar properties that
distinguish it from conventional quantum observables. We
give a general argument based on the correspondence prin-
ciple indicating thatT̂ can be expressed in terms of position
and momentum operators by the inverse of the classical
equations of motion Eq.~1!. This does not suffice in fixing
the operator, since factor-ordering ambiguities can be seri-
ous. The problem of the actual construction of the operator
T̂ in more general systems will be addressed in@21#. In Sec.
III we study an explicit form of the operator in the case of a
free nonrelativistic particle. We diagonalize the operator,
providing a general expression for the time-of-arrival prob-
ability densityp(T). In particular, we calculatep(T) explic-
itly for a Gaussian wave packet. In Sec. IV we discuss some
consequences of our construction. We notice that the exist-
ence of the operator implies that the quantum mechanics of a
free particle can be expressed in a ‘‘time-representation’’
basis. We derive time-energy uncertainty relations. We con-
clude in Sec. V with a general comment on the equivalence
between time and position variables suggested by our results.

In the Appendix we study whether the probability distri-
bution we computed is reasonable, by comparing it with the
one estimated indirectly using the Schro¨dinger current. We
find that the two agree within second order in the de Broglie
wavelength of the particle. The probability computed from
the Schro¨dinger current cannot be physically correct to all
orders because it is not positive definite; whether or not the
probability distribution computed withT̂ is physically cor-
rect to all orders is a question that can perhaps be decided
experimentally.

II. TIME OF ARRIVAL: GENERAL THEORY

A. Incomplete spectral family P„T…

Consider the quantum analog of the experimental situa-
tion sketched at the beginning of the paper: A particle is in

54 4677TIME OF ARRIVAL IN QUANTUM MECHANICS



an initial statec at t50 and a particle detector is placed at
x5X. Let T be the time at which the particle is detected. Let
pc(T)dT be the probability that the particle is detected be-
tween timesT and T1dT. Let c and f be two quantum
states such that bothpc(T) andpf(T) have support in the
interval I5(T,T1DT). Consider the state formed as the lin-
ear combinationac1bf ~wherea andb are any two com-
plex numbers withuau21ubu251).

According to the superposition principle, if a measurable
quantity has a definite valuelc when the system is in the
statec and valuelf when the system is in the statef, then
a measurement of such a quantity in the stateac1bf will
yield eitherlc or lf ~with respective probabilitiesuau2 and
ubu2) @22#. If we assume the general validity of the superpo-
sition principle, we must then expect that the probability dis-
tribution pac1bf(T) will have support in the interval
(T,T1DT) as well. Therefore, the statesc such that
pc(T) has support on a given intervalI5(T,T1DT) form a
linear subspace of the state space. We can therefore define a
projection operatorPI as the projector on such a subspace.

The superposition principle could fail for the time of ar-
rival. However, we would be surprised if it did. Notice that
the question can~probably easily! be decided experimen-
tally. Perhaps an experiment testing the validity of the super-
position principle in this contest could have some interest.
Here we assume that the principle holds, and thus the pro-
jectorsPT,T1DT are well defined.

By their very definition, the projectors satisfyPIPJ5PJ if
the intervalJ is contained in the intervalI andPIPJ50 if
the two intervals are disjoint. Then one can show that
PIøJ5PI1PJ , and it follows that the operatorsPI can be
written in terms of a family of~spectral! projectorsP(T) as

PT,T1DT5E
T

T1DT

P~T8!dT8. ~3!

The ~spectral! family P(T) contains all the information
needed to computep(T). Indeed, from the definition given
and using again the superposition principle, we have easily

pc~T!5^cuP~T!uc&. ~4!

Thus the probability distributionp(T) can be obtained in
terms of the spectral familyP(T) in the same way in which
all probability distributions are obtained in quantum mechan-
ics. Indeed, recall that ifÂ is the self-adjoint quantum opera-
tor corresponding to the observable quantityA, then the
probability distributionpc(A) of measuring the valueA on
the statec is ^cuP(A)uc&, whereP(A) is the spectral family
associated toÂ, namely,

Â5E AP~A!dA. ~5!

B. Operators T̂ and P̂

One may be immediately tempted to define a ‘‘time-of-
arrival operator’’ in analogy with~5! as

T̂5E
2`

1`

TP~T!dT ~6!

so that an eigenstate of this operator with eigenvalueT
would be a~generalized! state detected precisely at timeT.
However, there is an important difference from usual self-
adjoint quantum-mechanical observables that must be ad-
dressed before doing so. IfP(A) is the spectral family of a
self-adjoint operatorÂ, then

E
2`

1`

P~A!dA51̂, ~7!

where 1̂is the identity operator. On the other hand, define
P̂ by

P̂ :5E
2`

1`

P~T!dT; ~8!

there is no reason forP̂ to be the identity. If it is not, we say
that the spectral familyP(T) is ‘‘incomplete.’’

Incompleteness occurs because it is not true that any state
is certainly detected at some time. Most likely, there are
states that are never detected, given that such states exist in
the classical theory as well. ThusP̂ projects on the subspace
Hdetectedformed by the states in which the particle is detected
at some time atX and (1̂2P̂) is the projector on the sub-
spaceHnever detectedof states in which the particle is never
detected atX. The fact that those two classes of states form
orthogonal linear subspaces follows from the superposition
principle again.

Thus T̂ is properly defined by~6! onHdetectedonly. If we
define the time-of-arrival operator by~6! on the entire state
space, then we have the awkward consequence that the states
in the range ofP(T50) and the ones inHnever detectedare
both annihilated byT̂. Namely, T̂ does not distinguish the
states in which the particle is detected atT50 from the ones
in which it is never detected.

The full information that we need in order to compute
p(T) is contained in the incomplete spectral familyP(T) or,
equivalently, in the two mutually commuting operatorsP̂
andT̂, whereT̂ is a self-adjoint operator on the Hilbert space
Hdetected5Range(P̂). Notice that

^T̂&c5
^cuP̂T̂P̂uc&

^cuP̂uc&
~9!

is the expected time of arrival in those states that are detected
at all and is thus aconditionalexpectation value.

As defined in ~6!, T̂ annihilates all states in
Hnever detected. It is useful to replace this definition by fixing
the following convention for the action ofT̂ on
Hnever detected. We define T̂ on the entire state space, by
mimicking what happens in classical mechanics: We choose
~arbitrarily, at this stage! a ~diagonalizable! action of T̂ on
Hnever detectedwith a complex~nonreal! spectrum, with the
understanding that any complex eigenvalue be interpreted as
‘‘the particle is never detected.’’ If we use this convention,
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the operatorT̂ is not self-adjoint, but it may still have a
complete and orthogonal basis of eigenstates~perhaps after a
regularization; see later!. The reason for such a convention
~which we postulate from now on! will be given below; its
utility will be particularly clear in@21#.

C. Partial characterization of T̂ from its classical limit

In the preceding subsection we have argued on general
grounds that a time-of-arrival operatorT̂ giving the time-of-
arrival probability distribution should exist. How can we
construct the operatorT̂ from the knowledge of the dynamics
of the system? Let us work in the Heisenberg picture. The
quantum theory is defined by the Heisenberg state space, in
which states do not evolve. Letc be a Heisenberg state. The
elementary operators are Heisenberg position operatorx̂0
and the momentum operatorp̂0, representing position and
momentum att50. Since all operators can be constructed in
terms ofx̂0 and p̂0, we expect to be able to expressT̂ as an
operator function ofx̂0 and p̂0. A key requirement onT̂ is
that it yield the correct results in the classical limit~Bohr’s
correspondence principle!. If so, the dependence ofT̂ on x̂0
and p̂0 should reduce to the classical dependence ofT on
x0 and p0 in the classical limit. This indicates that the de-
pendence of the operatorT̂ on x̂0 and p̂0 is given by some
ordering of the function~1!, which, we recall, was obtained
by inverting the solutionsx(t;x0 ,p0) of the classical equa-
tions of motion. Thus we should have that

T̂5t~X; x̂0 ,p̂0!, ~10!

where an ordering has to be chosen. Thec numberX, we
recall, is the position of the detector. Notice at this point the
usefulness of the convention that complex eigenvalues rep-
resent nondetection: This can go through naturally in the
classical limit. Equation~10! does not suffice in general for
characterizingT̂ uniquely because the correct physical order-
ing of the operator function can be highly nontrivial. In the
companion paper@21#, we investigate a technique for con-
structing the operatorT̂(X) and fixing ordering ambiguities.

In order to emphasize the dependence of the time-of-
arrival operatorT̂ on the positionX of the detector, we will,
from now on, write the operator asT̂(X). Analogously, we
will denote the spectral family of projectors associated to
T̂(X) asP(T;X) and the probability distribution of the time
of arrival atX asp(T;X).

The construction above can be easily generalized to sys-
tems withn degrees of freedom. A classical state of such a
system is described by a point in the 2n-dimensional phase
spaceG, with coordinates$zi ,i51, . . . ,2n%. The dynamics
is generated by the HamiltonianH(zi). The Hamilton equa-
tions of motion aredzi(t)/dt5$zi ,H%. The general solutions
to these equations can be written as

zi~ t !5zi~z0
i ,t !, i51, . . . ,2n, ~11!

wherez0
i are 2n independent integration constants. In par-

ticular, we may choose as integration constantsz0
i the values

of zi at t50, zi(0). Theabove equations enable us to com-
pute the state of the system at any timet. We are interested

in the time of arrival of the particle at a given value ofoneof
the phase space coordinates, sayz1. ~Since the coordinates
zi are arbitrary,z1 can be any combination of dynamical
variables.! To compute the time of arrivalT(Z) at z15Z, we
solve the first equation of the system~11!

z1~z0
i ,t !5Z ~12!

with respect tot, obtaining t(Z;z0
i ). The time of arrival

T(Z) is then given by

T~Z!5t~Z;z0
i !. ~13!

Now, in the quantum theory, the integration constantsz0
i

correspond to Heisenberg operatorsẑ0
i . Equation~10! is im-

mediately generalized by ‘‘quantizing’’~13! as

T̂~Z!5t~Z; ẑ0
i ! ~14!

where again the operatorT̂(Z) is given only up to the order-
ing.

Before concluding this section, we add an important com-
ment on the seemingly puzzling caseT,0, namely, when
the detection time isearlier thant50. In the classical case,
the particle can be detected without being disturbed, but not
so in quantum mechanics; therefore one might wonder about
the meaning of a detection atT,0 for a particle that has a
certain state at timet50. The difficulty is avoided by choos-
ing the definition of ‘‘state’’ appropriate to the present con-
text. Consider the classical case first.x0 andp0 fix a unique
solution of the equations of motion. This solution could be
characterized by the values ofx andp at any other time or by
any two other constants of the motion. The definition of
‘‘time of arrival’’ that avoids the problem of detection before
preparation is the following. We are interested in the arrival
time of a particle that is moving according to the~unique!
solution of the equations of motion characterized by the fact
that at t50 the particle is atx0 and p0 if not disturbed.
Analogously, in quantum mechanicsT is the time of arrival
of a particle that at an earlier timet ~arbitrarily in the past!
was in the~Schrödinger! statec(t) uniquely characterized
by the fact that, if not disturbed, it would evolve to the state
c(0) at t50. In Sec. V we shall describe a general way of
dealing with this situation.

To summarize, in this section we have put forth two
physical hypotheses.

~i! The probability for the time of arrivalp(T;X), an
experimentally measurable quantity, can be computed by

pc~T;X!5^cuP~T;X!uc&, ~15!

whereP(T;X) are the projectors on the real component of
the spectrum of a diagonalizable operatorT̂(X). The states in
the span of the nonreal component of the spectrum ofT̂(X)
are never detected atX.

~ii ! The operatorT̂(X) is given by a suitable choice of
ordering from the equation

T̂~X!5t~X; x̂0 ,p̂0! ~16!
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or, in general, Eq.~14!.

The first hypothesis is motivated by our confidence in the
general validity of the superposition principle. The second
hypothesis is motivated by our confidence in the correspon-
dence principle. In the next section we investigate some of
the implications of these hypotheses and we illustrate the
construction and the use of the operatorT̂(X) in a simple
case. More interesting models, with nontrivialP̂ operator,
will be presented in the companion paper@21#.

III. TIME OF ARRIVAL OF A FREE PARTICLE

Consider a nonrelativistic free particle in one dimension.
Dynamics is generated by the HamiltonianH:5p2/2m. The
solutions of the classical equations of motion are

x~ t;x0 ,p0!5
p0
m
t1x0 . ~17!

The inversion of these yields the time at which a particle that
at t50 has initial position and momentumx0 ,p0 is detected
at the positionX @as in Eq.~1!#,

T~X!5t~X;x0 ,p0!5
m~X2x0!

p0
. ~18!

Notice that up to problems at the pointp050 ~problems with
which we shall deal extensively later! the particle is always
detected. In particular,T(X) is never complex. This greatly
simplifies the setting, since we may disregard the complica-
tions arising from the existence of~finite! regions of phase
space in which the particle is not detected.

Let us consider the usual quantum theory of a free par-
ticle. We work in the Heisenberg picture. We have Heisen-
berg ~nonevolving! statesc and time-dependent Heisenberg
position and momentum operatorsx̂(t),p̂(t), expressed in
terms of x̂0 and p̂0. Following the ideas of Sec. II, we ex-
plore the hypothesis that the quantum probability distribution
p(T;X) of the time of arrival atX of the particle can be
computed in terms of an operatorT̂(X) defined by a suitable
ordering of the~formal! operator function

T̂~X!5
m~X2 x̂0!

p̂0
. ~19!

Notice that the Heisenberg position operator is

x̂~ t !:5eiĤ t/\x̂0e
2 iĤ t/\5

p̂0
m
t1 x̂0 , ~20!

to be compared with~17!: Though rarely emphasized, clas-
sical and quantum dynamics are generically related by the
equation

x̂~ t !5x~ t; x̂0 ,p̂0!, ~21!

where the right-hand side is an operator function correspond-
ing to an ordering of the solutionx(t;x0 ,p0) of the classical
equations of motion. In general, Eq.~21! is of scarce use for
solving the quantum dynamics, since the associated ordering

problem is serious; but in simple cases such as the free par-
ticle, we see from~20! that the natural ordering suffices.

We explore here the possibility that in the case of a free
particle a natural ordering suffices for the time-of-arrival op-
erator as well. Namely, we study the choice of a symmetric
ordering for the operator~19!. We thus define, tentatively,

T̂~X!:5
mX

p̂0
2m

1

Ap̂0
x̂0

1

Ap̂0
. ~22!

In order to study this operator, let us choose a concrete
representation for the Hilbert space, namely, a basis. It is
convenient to use the momentum basis that diagonalizes
p̂0, because this basis makes the definition of 1/Ap̂0 simpler.
Thus we work in the Heisenberg-picture momentum basis.
The states are represented as functionsc(k)PL2(R) and the
elementary operatorsx̂0 and p̂0 are given by

x̂0+c~k!5 i
d

dk
c~k!, p̂0+c~k!5\kc~k!. ~23!

In terms of the above operators, we have, for example, the
Heisenberg position operator~20!

x̂~ t !5
\k

m
t1 i

d

dk
. ~24!

In this representation, the operatorT̂(X) given in ~22! is

T̂~X!+c~k!5F2 i
m

\

1

Ak
d

dk

1

Ak
1
m

\

X

k Gc~k!. ~25!

~We always take the principal value of the square root:
Ak5 iAuku for k,0.!

Notice that the one-parameter family of operatorsT̂(X)
can be generated unitarily via translations

T̂~X!5e2 ikXT̂~0!eikX. ~26!

Therefore it is sufficient to study the operatorT̂(0), namely,
we do not lose generality by assuming the detector to be at
the origin. We thus setX50 from now on and drop the
explicit X dependence

T̂:5T̂~0!52 i
m

\

1

Ak
d

dk

1

Ak
. ~27!

We will be interested in the operators corresponding to other
positions of the detector later on.

In the momentum representation, the eigenvalue equation
for T̂

T̂uT&5TuT& ~28!

becomes

T̂+gT~k![F2 i
m

\

1

Ak
d

dk

1

AkGgT~k!5TgT~k!, ~29!

where we have introduced the notation
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gT~k![^kuT& ~30!

for the momentum representation of the eigenstate ofT̂. The
eigenvalue equation is easily solved@in each half of the real
line (kÞ0)# by

gT~k!5@a1u~k!1a2u~2k!#A \

2pm
Ak expS i\Tk22m D ,

~31!

whereu(k) is the characteristic function of the positive half
of the real line anda6 are constants independent ofk. In
order to fix the relation betweena1 anda2 , let us act on
gT(k) by T̂. A simple calculation shows

T̂+gT~k!5TgT~k!2 iA m

2p\

d~k!

Auku
~a11 ia2!. ~32!

Thus, in order to satisfy the eigenvalue equation, it is neces-
sary that1

a25 ia1 . ~33!

At this point, we encounter a difficulty. The operator we
have constructed doesnot have a basis of orthogonal eigen-
states. This pathology destroys the possibility of givingT̂ the
interpretation we want. In the next subsection we show that
the eigenstates ofT̂ are not orthogonal and we discuss a way
out from this difficulty.

A. Difficulties with T̂ and a regulation

A simple calculation shows that for any two eigenstates of
T̂ with eigenvaluesT andT8

^TuT8&[E
2`

`

dkgT~k!gT8~k!5
\

2pmE0
`

dk2e~ i\/2m!k2~T82T!

5d~T2T8!2
i

p

1

~T2T8!
. ~34!

The eigenstates fail to be orthogonal. One can also see that
T̂ as defined above has no self-adjoint extensions by noticing
that its deficiency indices are unequal.

This difficulty stalled us for some time and various at-
tempts to circumvent the problem failed. A way out was then
suggested by Marolf@23#. The idea is to seek an operator that
in the classical limit would not reproduce the time of arrival
exactly, but would rather reproduce a quantity arbitrary close
to the time of arrival. Namely, we want to approximate the
time of arrival with a different quantity, free from patholo-
gies. It is easy to trace the above pathology to the singular
behavior of 1/k atk50. Even classically, a state withk50 is
physically disturbing: Either the particle is never detected or
the particle may stably sit over the detector. Therefore, we
seek a small modification of~18! such that no divergences

occur atp050. The modified time of arrival can perhaps be
interpreted as the outcome of a measurement by an apparatus
arbitrarily similar to a perfect detector, but which does not
allow the particle to stand still.

Let us introduce an arbitrary small positive numbere.
Consider a one-parameter family of real bounded continuous
odd functionsf e(k) that approach 1/k pointwise. More pre-
cisely, we require

f e~k!5
1

k
for uku.e

Þ0 for all kÞ0. ~35!

For instance, we may choose

f e~k!5H 1k for uku.e

e22k for uku,e.

~36!

Using this, we define the regulated time-of-arrival operator
as

T̂e52 i
m

\
Af e~k!

d

dk
Af e~k!, ~37!

to be compared with the unregulated operator~27!. Notice
that on any state with support onuku.e the operatorsT̂e and
T̂ are equal. Their action differs only on the component of a
state with arbitrary low momentum. As we shall see, the
probability distribution for the time of arrivalp(T) com-
puted fromT̂e will turn out to beindependent ofe for states
with support away fromk50, reinforcing the credibility of
the regulation procedure we are using.

Let us study the operatorT̂e . A key point is thatT̂e com-
mutes withQ(k)5sgn(k)5k/uku. Thus we can choose a ba-
sis of solutions of the eigenvalue equation forT̂e formed by
functions ofk that have support on positive or negativek
only. Now T̂e is a linear differential operator and since
f e(k)→0 as k→0, there is no continuity condition on its
eigenstates atk50. These two related properties lead to a
degeneracy in the spectrum. For each eigenvalueT, there are
two eigenstates, which we choose as having support in the
k.0 andk,0 regions, respectively, namely

T̂euT,1&e5TuT,1&e ,

T̂euT,2&e5TuT,2&e , ~38!

where

^kuT,1&e50 for k,0,

^kuT,2&e50 for k.0. ~39!

We introduce the notation

egT
6~k![^kuT,6&e ~40!

for the momentum representation of the eigenstates ofT̂e . A
simple calculation shows that these are

1Another approach to obtaining this result is to integrate the ei-
genvalue equation in a small region aroundk50. One then obtains
the same continuity condition~33! on gT(k).
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egT
6~k!5u~6k!A \

2pm

1

Af e

expS i \T

m E
6e

k

dk8@ f e~k8!#21D .
~41!

Explicitly, for uku>e we have

egT
6~k!5u~6k!A \

2pm
Ak expS i\T2m ~k22e2! D . ~42!

In order to derive various properties of these eigenstates,
it is convenient to introduce new coordinates on the right-
and left-hand sides of the real line as

Z6~k!5E
6e

k

dk8
1

f e~k8!
. ~43!

In the regionuku.e, Z6(k)5(k22e2)/2. In what follows
we do not need the specific form ofZ6 in the region
uku,e. Note first that on each side, the Jacobian of the co-
ordinate transformation is nonvanishing for allkÞ0 and thus
the new coordinates are strictly monotonic. At the points
uku5e, Z6(k56e)50, respectively. Furthermore, since
u f e(k)u →0 rapidly enough asuku→0, we see that bothZ6

P(2`,`). In terms of these coordinates, the eigenstates are

egT
6~Z6!5A \

2pm

1

Af e„k~Z6!…
ei ~\/m!TZ6

~44!

and the Hermitian inner product between two statesc,f is

^cuf&5 (
h51,2

E
2`

`

dZh f e„k~Zh!…c„k~Zh!…f„k~Zh!….

~45!

From ~44! and ~45!, the orthogonality of the eigenstates is
manifest:

e^T,huT8,h8&e5dh,h8d~T2T8!. ~46!

In the new coordinates, completeness too is manifest. We
can get the same result in thek representation with a little
work:

(
h51,2

E
2`

`

dT^kuT,h&ee^T,huk8&

5
\

2pm(
h

E
2`

`

dT
1

Af e~k!

1

Af e~k8!
ei ~\/m!T„Zh~k!2Zh~k8!…

5(
h

d„Zh~k!2Zh~k8!…

Af e~k!Af e~k8!

5(
h

d~k2k8!u~hk!

u]Zh/]kuAf e~k!Af e~k8!
5d~k2k8!. ~47!

Since it has a complete orthogonal basis of~generalized!
eigenstates with real eigenvalues,T̂e is self-adjoint.

B. Time-of-arrival probability density

Following the general theory of Sec. II, if the particle is in
the Heisenberg statec(k), the probability densityp(T) of
the time of arrival is the modulus square of the projection of
the state on theT eigenstates of the time-of-arrival operator.
Since these are doubly degenerate, we have in the present
case

p~T!5 ze^T,1uc& z2 1 ze^T,2uc& z2. ~48!

If we assume that the support ofc(k) does not contain~an
arbitrarily small finite regionuku,d around! the origin, we
can choosee,d and, using the explicit form~42! of the
eigenstates, we obtain the following expression forp(T):

p~T!5
\

2pm FU E
0

`

dkAk expS iT\~k22e2!

2m Dc~k!U2
1U E

2`

0

dkAk expS iT\~k22e2!

2m Dc~k!U2G . ~49!

Notice that thee dependence gives only a phase that disap-
pears when we take the absolute value squared, namely,

p~T!5
\

2pm FU E
0

`

dkAk expS iT\k2

2m Dc~k!U2
1U E

2`

0

dkAk expS iT\k2

2m Dc~k!U2G . ~50!

We thus have the result that for the states that do not include
an amplitude for zero velocity, the time-of-arrival probability
distribution computed~with e sufficiently small! with the
regulated operatorT̂e(x) is independent frome.

The two terms in~50! correspond to the left and right
moving components of the state. Therefore, we have imme-
diately that the probabilityp1(T) @andp2(T)# that the par-
ticle is detected inX50 while moving in the positive~or
negative! direction is

p6~T!5
\

2pmU E
0

6`

dkAk expS iT\k2

2m Dc~k!U2. ~51!

Finally, the result generalizes immediately to the case in
which the detector is not placed in the origin but rather in an
arbitrary positionX. The eigenstates of the operatorT̂e(X)

T̂e~X!uT,6;X&e5TuT,6;X&e ~52!

are obtained using the unitary translation operator

uT,6;X&e5e2 i /\ p̂XuT,6&e , ~53!

yielding

egT;X
6 ~k!5^kuT,6;X&e5e2 ikX

egT
6~k!. ~54!

The projectors considered in Sec. II are given by

P~T;X!5uT,1;X&ee^T,1;Xu1uT,2;X&ee^T,2;Xu.
~55!
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The probability density of being detected at timeT by a
detector inX that detects particles traveling with positive
~negative! velocity is

p6~T;X!5
\

2pmU E
0

6`

dkAk expS iT\k2

2m
2 ikXDc~k!U2.

~56!

Equation~56! represents our final result for the probability
distribution of the time of arrival atX of a free quantum
particle. This probability distribution should be compared
with experiments.~As is typical in standard quantum me-
chanics, we have considered ideal measurements with perfect
detector efficiencies. In a realistic situation, one should of
course take into consideration a model of the detector as
well. For example, Mugaet al. @12# have modeled the ab-
sorption process by complex potentials, which is perhaps
more realistic than the ideal measurements considered here.!

C. Time of arrival of a Gaussian wave packet

As an example of an application of the above result, we
compute the probability distribution for the time of arrival of
a Gaussian wave packet. Consider a Gaussian wave packet
localized about a point, say, to the left of the origin at time
t50 and moving, say, to the right. In the standard
Schrödinger-picture position representation, let this wave
packet be given by the normalized solution of the Schro¨-
dinger equation

c~x,t !5S d2

2p D 1/4 e2k0
2d2

Ad21
i t\
2m

expS @2d2k01 i ~x2x0!#
2

4d212i\t/m D .
~57!

Expectation values are

^p~ t !&5\k0 , ^Dp~ t !&5
\

2d
, ~58!

^x~ t !&5x01\k0t/m, ^Dx~ t !&5dA11
t2\2

4d4m2.

~59!

If we chooseux0u@d, uk0ud@1, x0,0, andk0.0, this state
represents a particle well localized to the left of the origin
and with a well-defined positive momentum at timet50. In
the Heisenberg-picture momentum representation~23!, this
state is given by

c~k!5S 2d2

p D 1/4exp@2~k2k0!
2d22 ikx0#. ~60!

The envelope of this wave function is a Gaussian of width
1/d centered atk0.

Using the theory developed, we can compute the projec-
tion of this state on the eigenstates of the time-of-arrival
operator. We assume here thate can be taken arbitrarily
close to 0.~See@24# for the relevant integrals.! We obtain

e^T,1;Xuc&

5A\

mS d2

25p3D 1/4e2d2k0
2
G~5/4!S d21

i\T

2m D 25/4

3H F @2d2k01 i ~X2x0!#

3FS 54 , 32 , @2d2k01 i ~X2x0!#
2

4d212i\T/m D
1ApS d21

i\T

2m D expS @2d2k01 i ~X2x0!#
2

4d212i\T/m D
3LS 14 ,2 1

2
,2

@2d2k01 i ~X2x0!#
2

4d212i\T/m D G J , ~61!

e^T,2;Xuc&

5A\

mS d2

25p3D 1/4e2d2k0
2
G~5/4!~2 i !S d21

i\T

2m D 25/4

3H S 2@2d2k01 i ~X2x0!#

3FS 54 , 32 , @2d2k01 i ~X2x0!#
2

4d212i\T/m D
1ApS d21

i\T

2m D expS @2d2k01 i ~X2x0!#
2

4d212i\T/m D
3LS 14 ,2 1

2
,2

@2d2k01 i ~X2x0!#
2

4d212i\T/m D G J , ~62!

where we have ignored the components inuku,e sincee can
be taken arbitrarily small.@F(n,m;z)51F1(n;m;z) is the
Kummer confluent hypergeometric function,L(n,a;z)
5Lna(z) is the nth generalized Laguerre polynomial, and
G(n) is the Euler gamma function.# The probability distribu-
tion is then given by~48!. The expression above for the
probability distribution of the time of arrival of a Gaussian
wave packet is a bit heavy; in order to unravel its content, we
have expanded it in powers of small quantities in the Appen-
dix and we have plotted the total probability density
p(T;X) at various detector positionsX in Fig. 1 @choosing a
Gaussian state~57! with x0525, k0520, d50.5, and
\5m51#. To begin with, the term corresponding to nega-
tive velocities is exponentially small; indeed, it derives from
the scalar product of a Gaussian wave packet concentrated
around a positivek with a function having support on
k,0.

The total detection probability density at timeT for the
detector in positionX is a function~more precisely, it is a
density inT) on theT-X plane. This function is concentrated
around the classical trajectory of the particleX5x0
1p0T/m, with a ~quantum! spread inT that increases with
the spread of the wave packet, namely, with the distance of
the detector from the initial state.

In the Appendix we compare our result with the probabil-
ity density obtained indirectly using the Schro¨dinger prob-
ability density. We find good agreement within second order
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in the de Broglie wavelength of the particle and we discuss
the order of the discrepancies. Thus our result is reasonable
to leading order. Whether or not it is physically correct to all
orders is a question that can perhaps be decided experimen-
tally. A discrepancy with an experimental result may indicate
an incorrect ordering of the time-of-arrival operator or a
more general difficulty with our approach.

IV. DISCUSSION

A. Time representation

Anytime we have a self-adjoint operator in quantum me-
chanics, we may define a representation that diagonalizes
this operator. Namely, we may choose the eigenbasis of the
operator as our working basis on the theory’s Hilbert space.
Nothing prevents us from doing so with the operators
T̂e(X) as well. Let us therefore introduce a ‘‘time-of-arrival
representation,’’ or, for short, a ‘‘time representation.’’ We
fix an e and define

ce
6~T,X!:5e^T,6;Xuc&5E dkegT;X

6 ~k!c~k!. ~63!

Clearly, we can do quantum mechanics in thece
6(T,X) rep-

resentation as well as we do quantum mechanics in the po-
sition, momentum, or energy representations. Since the
eigenstatesegT,X

1 (k) have support on positivek, we must
interpret ce

1(T,X) as the amplitude for the particle to be
detected by a detector placed atX in an infinitesimal neigh-
borhood ofT coming from the left andce

2(T,X) as the
amplitude to be detected atX in a neighborhood ofT coming
from the right.

What is the relation between thece
6(T,X) amplitude and

the conventional Schro¨dinger wave functionc(x,t)? Notice
that the first is defined byce

6(T,X)5e^T,6;Xuc&, where
uT,6;X&e is an eigenstate ofTe(X) with eigenvalueT, while
the second can be viewed as defined byc(x,t)5^x;tuc&,
whereux;t& is the eigenstate of the operatorx̂(t) with eigen-
valuex. At first sight, the two seem to be related to the same
quantity ~up to thee and the distinction between the two
directions of the velocity!: They both refer to probabilities of
being detected at some space point and at some time. How-
ever, this naive observation is very misleading. The quantity

uc(x,t)u2dx is the probabilityin spacethat the particle hap-
pens to be between the positionsx andx1dx at time t, as
opposed to being elsewhereat time t, whereas the quantity
uc6(T,X)u2dT is the probabilityin time that the particle hap-
pens to arrive between timesT and T1dT at the position
X, as opposed to reaching X at some other time. The two
basesuT,6;X&e and ux;t& are two well-defined~generalized
one-parameter families of! bases in the Hilbert space, but
they are distinct.

In particular, the two basesuT,6;X&e and ux;t& have dis-
tinct dimensions becauseuc(x,t)u2dx and uc6(T,X)u2dT
must both be dimensionless probabilities. Thus the transfor-
mation factor betweenuT,6;X& andux;t& has the dimension
of the square root of a velocity. Indeed, let us write the two
~generalized! states explicitly in the Heisenberg momentum
representation. Restricting ourselves tok.0 and takinge to
zero for simplicity, we have from~42!

^kuT,1;X&e5A \

2p
Ak

m
expS i\T2m k22 ikXD , ~64!

while, as it is well known,

^kux,t&5A 1

2p
expS i\t2m

k22 ikxD . ~65!

Therefore, takingx5X and t5T we have

^kuT,1;X&e5A\k

m
^kux,t&. ~66!

A physical understanding of the curiousA\k/m factor
that characterizes the eigenstates of the time-of-arrival opera-
tor can be obtained as follows. Consider a well-localized
wave packet traveling with velocityv5\k0 /m. We have
approximatelyuc6(T,X)u2'vuc(x,t)u2. Now consider the
x-t plane. The wave functionc(x,t) is significantly different
from zero on a band around the classical trajectory. The clas-
sical trajectory is a straight line with a slope given by the
velocity v. The ratio between a vertical and an horizontal
section of the band is therefore preciselyv. Thus, in order to
have both total probabilities normalized to 1 when integrat-
ing along at5const or ax5const line, the probability den-
sity in space and the probability density in time must be
related by a factorv. This hypothesis~66! has also been
made by Kijowski@7#, who used it to obtain a probability
distribution similar to~50!.

In Fig. 2 we have plotted the usual Schro¨dinger probabil-
ity density inx, p(x;t)5uc(x,t)u2, at various times, for the
same state used for Fig. 1. The time-of-arrival probability
densities arev5\k0 /m times as large as the Schro¨dinger
densities for values ofX5x andT5t near the classical tra-
jectory.

B. Time-energy uncertainty relation

Position-momentum uncertainty relations are of wide use
in quantum mechanics and can be cleanly derived from the
formalism on very general grounds. The commutation rela-

FIG. 1. Time-of-arrival probability densitiesp(T;X), plotted at
the detector positionsX525,23,21,1,3,5.
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tions @ x̂,p̂#5 i\1̂ imply DxDp>\/2. Time-energy uncer-
tainty relations are of wide use as well~e.g., between the
width of a spectral line and the lifetime!, but their general
derivation is notoriously tricky. If one tries to reproduce the
position-momentum derivation for the time-energy case by
assuming the existence of an operatorT̂ such that

@ T̂,Ĥ#52 i\1̂ ~67!

from which

DTDE>\/2 ~68!

would follow, then one would clash against a well-known
nonexistence theorem forT̂. The theorem states that the
commutation relations@Â,B̂#5 i\1̂ between two self-adjoint
operatorsÂ and B̂ implies that the spectrum of both opera-
tors is the real line. However, the spectrum of the Hamil-
tonian is bounded from below in all reasonable systems.
Therefore a time operatorT̂ satisfying~67! does not exist on
the usual Hilbert space. See, e.g.@4#, for a rigorous proof.

This theorem might have been the reason for which a
time-of-arrival operator has virtually never been considered
in quantum mechanics. In fact, it is often stated that time
cannot be an operator in quantum mechanics, with the above
theorem as a proof. Here we show how one can rigorously
derive time-energy uncertainty relations for a quantum par-
ticle and how the existence ofT̂e circumvents the theorem.

The commutation relations betweenT̂e and the Hamil-
tonian are easy to compute. In the momentum representation
we have

@ T̂e ,Ĥ#52 i\„1̂2he~k!…, ~69!

where

he~k!512k fe~k!. ~70!

The functionhe(k) vanishes foruku.e, and in the small
interval where it has support, it is bounded@by 1, if we
choosef e(k) as in~36!, which we do for simplicity#. For the
particle in the statec(k) the uncertainty relations are then

~DTe!
2~DE!2>

\2

4
@12^cuhe~k!uc&#2. ~71!

Now

^cuhe~k!uc&5E
2e

e

dkucu2he~k!<E
2e

e

dkucu2. ~72!

For all statesc(k) as in Sec. III B, whose support lies en-
tirely outside an arbitrarily small regionuku,d around the
origin, and for alle,d, we have*2e

e dkucu250. Thus, for
all such states with support away from the origin, we have

DTeDE>
\

2
~73!

for all sufficiently smalle. Note that we have defined the
standard mathematical uncertainties as defined for the posi-
tion and momentum operators and thus~73! is subject to the
standard interpretation of the product of the uncertainties of
two noncommuting operators.

With varying degrees of rigor, it is manifest that the vari-
ous ‘‘time as energy derivative’’ approaches cited in the In-
troduction yield the desired uncertainty relation~68!.

C. Definition of state in quantum mechanics

Finally, let us return to the problem we briefly discussed
at the end of Sec. II, which is the interpretation of the time of
arrival T when T,0, namely, when the detection time is
earlier than the timet50 at which the initial state is given.
We have suggested that in this case the correct interpretation
of T is the following.T is the detection time for a state that
arbitrarily in the past was in a state that would have evolved
to the t50 initial state if undisturbed. A cleaner way of
dealing with the general situation is to make use of a fully
time-independent notion of ‘‘state’’ and a fully time-
independent version of phase space and quantum state space.
This can be done as follows. Consider first classical mechan-
ics. Let us denote a single solution of the equation of motion
as a ‘‘physical history’’ of the system.~A physical history
should not be confused with the histories considered in sum-
over-histories theories: A physical history here is a history
satisfying the equations of motion.! Let Gs be the space of
these physical histories. A point inGs represents an entire
evolution of the system.Gs can be coordinatized by the 2n
integration constantszi . We ask for the time of arrival atx of
a system following one of the motions inGs . This time of
arrival is given by~13!. The key to the matter is that there is
no need to choose a time in order to specify a physical his-
tory.

In quantum mechanics we can define the Hilbert space
HS of thesolutionsof the Schro¨dinger equation. A vector in
HS represents an entire~quantum! motion of the system,
without reference to any particular time. The conventional
Heisenberg operators are defined onHS . The operator~14!
is properly defined onHS . We may choose to represent the
vectors inHS by means of the value that the Schro¨dinger
state would take~if undisturbed! at t50; therefore it makes
sense to defineT̂ as a function of the operatorsx̂0 andp̂0 that

FIG. 2. Schro¨dinger probability densitiesp(x;t) for position,
plotted at timest50,0.1,0.2,0.3,0.4,0.5.
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are defined on the states att50.
In this regard, it is interesting to notice that the original

definition of the ‘‘Heisenberg picture Hilbert space’’ given
by Dirac in the first edition of his book@22# is the definition
ofHS given above. It is only later that the Heisenberg picture
Hilbert space came to be mostly identified with the state
space at a fixed time~both interpretations ofHS can be found
in the literature!. A crucial advantage of using the definition
of HS given here is that this definition can be extended to
systems without Newtonian time at all@19,20,25#. We will
exploit this point of view in@21#.

V. CONCLUSION: X↔T EQUIVALENCE
IN QUANTUM THEORY

Let us summarize our results. We have considered the
problem of computing the time of arrivalT of a quantum
particle at a positionX. Relying on the general validity of the
superposition principle, we have argued that the probability
distribution forT can be obtained by means of an operator
T̂. This operator is, in general, not self-adjoint. However, it
admits an orthogonal basis of eigenstates. The eigenstates
with real eigenvalues correspond to~generalized! states for
which the detection time is sharp. The eigenstates with com-
plex eigenvalues correspond to states that are never detected.

The time-of-arrival operator is partially characterized by
its classical limit, which fixes its dependence on the position
and momenta operators, up to ordering. We have considered
the simple case of a nonrelativistic free particle, using a ten-
tative natural ordering. A regulation procedure allows us to
to find a self-adjoint time-of-arrival operator~there is no
nondetection in this case! and we have studied the probabili-
ties the operator yields. These are given explicitly in Eq.~56!
for an arbitrary initial state and in Eqs.~61!, ~62!, and~A8!
for a Gaussian wave packet. Remarkably, in the theoretical
literature there is no agreement about these probabilities
@1,13,15#. We suggest that an experimental investigation of
the problem could be of interest. It could indicate which one
is the correct approach to calculating these probabilities and
it could shed some light on the conceptual issues raised by
this seemingly very simple aspect of quantum mechanics.

We showed that the regulated time-of-arrival operator can
be used to derive time-energy uncertainty relations, circum-
venting a well-known nonexistence theorem, and that it
yields a well-defined ‘‘time representation’’ for the system.

For more general systems, the classical limit is not likely
to be sufficient for constructing the operator. In a forthcom-
ing paper@21# we investigate a general technique for con-
structing the time-of-arrival operator in general cases. We
will study in detail the particle in an exponential potential,
where theP̂ operator is nontrivial. We will also investigate
parametrized systems and theories without a Newtonian
time, arguing that the ideas presented here may be relevant
for the interpretations of quantum gravity.

We close with a general comment on the significance of
the result obtained. In classical mechanics there is a hidden
equivalence between the independent time variablet and the
dependent dynamical variables~the positionx in the present
case!. This equivalence is made manifest by expressing the
theory in parametrized form, namely, by representing the

evolution in terms of the functionst(t) andx(t) of an arbi-
trary parametert. In more elegant and general mathematical
terms, there are formulations of mechanics, e.g., the presym-
plectic formulation, in which the distinction between depen-
dent and independent variables is inessential; see, for in-
stance, Arnold’s classic text@26#. A parametrized
representation is commonplace in special relativity~where
T is calledx0) since it allows manifest Lorentz covariance.

It is commonly stated that this equivalence between inde-
pendent~time! and dependent variables is lost is quantum
mechanics. The arguments in support of this claim are com-
mon in the quantum gravity literature and take various
forms. For instance, it is said that the wave function must be
normalized by integrating inx and cannot be normalized by
integrating in t. Or it is said that probabilities are always
probabilities of different outcomes happening at the same
time, never at the same position. It is our impression that
these claims are misleading. The mistake is to assume that
thex↔t equivalence has to be realized as an equivalence in
the arguments of the Schro¨dinger wave functionc(x,t).

The conventional formulation of quantum mechanics in
terms of the Schro¨dinger wave functionc(x,t) hasalready
broken thex↔t equivalence. Indeed, it is a formulation tai-
lored to answer the following~experimental! question: What
is the probability of the particle beinghere now, as opposed
to that of beingelsewhere now? The corresponding represen-
tation diagonalizes the Heisenberg operatorsx̂(t). It is the
experimental question considered and the related choice of
basis that break thex↔t equivalence. Quantum mechanics
allows us to consider the following question as well: What is
the probability of the particle gettinghere nowas opposed to
gettinghere some other time? In order to answer this ques-
tion, one is led naturally to thec6(T,X) representation in
which the roles of position and time are to a large extent
interchanged. In particular, the wave function is normalized
in time and probabilities of events at the same position are
considered.

To avoid misunderstandings, let us make clear that we
certainly do not claim that space and time have the same
nature, nor that their role in the quantum mechanics of a
particle is exactly the same. What we suggest is that the
common arguments thatx and t can be treated on equal
footing in classical mechanics, but not in quantum mechan-
ics, might lose force under closer scrutiny. Contrary to the
above arguments, our analysis reveals an underlying hidden
equivalence between ‘‘dependent’’ and ‘‘independent’’ vari-
ables in the quantum theory of a free particle.
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APPENDIX: IS THE COMPUTED PROBABILITY
DENSITY REASONABLE?

Let us now investigate whether the result we have ob-
tained for the Newtonian free particle is physically reason-
able. The simplest check is to compute the expectation value
of the time of arrival of a wave packet with initial position
x0 and momentump0. The result should agree with the ex-
pected classical time of arrivalT5t(X;x0 ,p0). Since the op-
erator was constructed via a factor ordering and regulation of
the classical solution, the expectation values obviously sat-
isfy Ehrenfest’s theorem. A more accurate check that goes
beyond the semiclassical approximation is to compare the
probability distribution we have obtained with the one we
canestimateby indirect but intuitive methods. In Sec. 1 of
the Appendix we first compute an approximation to the prob-
ability amplitude~61! and~62!, and the resulting probability
density, for a Gaussian state. This also gives us some intu-
ition for the behavior of the distribution. Then in Sec. 2 of
the Appendix we compute the Schro¨dinger current through
the detector position and compare this with the approxima-
tion we obtained in Sec. 1.

1. Gaussian state

Consider the Gaussian wave packet of Sec. III C. In the
momentum representation, this state is given by

c~k!5S 2d2

p D 1/4exp@2~k2k0!
2d22 ikx0#. ~A1!

The envelope of this wave function is a Gaussian of width
1/d at positive momentumk0. In order to simplify the calcu-
lations, we slightly modify this state by assuming it to be
zero fork,e. Clearly, since this modification is far out on
the tail of the Gaussian, the error we make is very small
@more precisely, one can show that it vanishes as
exp(21/k0d)#. We thus replace~A1! by

c~k!5u~k2e!S 2d2

p D 1/4exp@2~k2k0!
2d22 ikx0#, ~A2!

whereu(x) is the characteristic function of the positive line.
Substituting this expression into~63!, we find that the ampli-
tude for the particle to be detected betweenT andT1dT at
the positionx is

c1~T,X!5A \

2pmS 2d2

p D 1/4E
e

`

dkAk expS 2~k2k0!
2d2

2 i
\T

2m
k21 ik~X2x0! D

5A \

2pmS 2d2

p D 1/4F E
2`

`

dkAk expS 2~k2k0!
2d2

2 i
\T

2m
k21 ik~X2x0! D 2R1G , ~A3!

whereR1 is again exponentially small;exp(21/k0d) and
we have disregarded ane-dependent phase, which is not go-
ing to affect the probability distribution.

Now we can expandAk about the peak of the Gaussian as

Ak5Ak0F11
k2k0
2k0

1OS k2k0
k0

D 2G . ~A4!

Using this expansion, we can compute the Gaussian integral
in ~A3!

E
2`

`

dkAk expS 2~k2k0!
2d22 i

\T

2m
k21 ik~X2x0! D

5eik0~X2x0!2 i ~\T/2m!k0
2FA k0

2p

d21 i
\T

2m

exp

3F 2

SX2x02
\Tk0
m D 2

4S d21 i
\T

2mD G
3S 11 i

X2x02
\Tk0
m

4k0S d21 i
\T

2mD D 1R2G , ~A5!

where

uR2u<
1

8k0
3/2E

2`

`

dk k2e2k2d25Ak0p
1

16k0
2d2

1

d
~A6!

is of second order in 1/dk0. Thus, to first order in the~small!
quantity 1/dk0, we have

c1~T;x!5A\k0
m S d2

p D 1/4eik0~X2x0!2 i ~\T/2m!k0
2

3

expS 2

SX2x02
\Tk0
m D 2

4S d21 i
\T

2mD D
4S d21 i

\T

2mD 1/2

3S 11 i

X2x02
\Tk0
m

4k0S d21 i
\T

2mD D . ~A7!

To this approximation, the probability density
p1(T;x)5uc1(T;x)u2 is then
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p1~T;x!5
\

mA2p

3

S k0d21
~X2x0!T\

4md2 1
k0~X2x02k0\T/m!2

16k0
2d2 D

S d21
T2\2

4m2d2D 3/2

3expS 2
~X2x02k0T\/m!2

2S d21
T2\2

4m2d2D D . ~A8!

Due to the Gaussian factor, the probability distribution is
centered on the classical time of arrivalT5m@(X2x0)/
\k0], with width d, and vanishes exponentially outside such
a region.

Notice also that due to the Gaussian factor the third term
in the numerator of the amplitude of the Gaussian is of order
(1/dk0)

2 in all the region where the probability density is not
exponentially small, so we may rewrite the probability den-
sity as

p~T;x!5
\

mA2p

S k0d21 ~X2x0!T\

4md2 D
S d21

T2\2

4m2d2D
3/2

3expS 2
~X2x02k0T\/m!2

2S d21
T2\2

4m2d2D D ~A9!

as an approximation correct to order 1/dk0.

2. Current

In ordinary quantum mechanics, one can define a current
whose time and space components are

j 0~x,t !5r~x,t !5c~x,t !c~x,t !, ~A10!

j i~x,t !5
\

2mi
~ c̄] ic2c] i c̄ !~x,t !, ~A11!

where c(x,t) is the quantum state in the conventional
Schrödinger-picture position representation. Since the state
satisfies Schro¨dinger’s equation, this current is conserved

]0 j
01] i j

i50. ~A12!

Consider, for a particle in one dimension, the space-time
region~a half strip! defined byx<X,t1<t<t2 and integrate
the divergence free current over this volume. Dropping the
boundary terms atx52`, we find that the outgoing~i.e.,
rightward! flux of this current through the timelike boundary
at x5X in the time interval (t1 ,t2) is

E
t1

t2
dt jx[

\

2miEt1
t2
dt~ c̄]xc2c]xc̄ !ux5X

5E
2`

x

dxrU t12E
2`

x

dxrU
t2

. ~A13!

The last line in the above equation is the probability that the
particle is found in the left-hand side region (X<x) at time
t1 minus the probability that the particle is found in the left-
hand side region at a later timet2. It is tempting to identify
the flux between the timesT andT1dT ~through the time-
like surface atx5X) of the current density

j X~T!dT5
\

m
Im@c~x,T!]xc~x,T!#x5XdT ~A14!

as the probability density that a detector placed atx5X will
detect the particle. Note that the Schro¨dinger current density
has the correct dimensions of a density in time, namely,
@T#21. The problem, of course, is that the current represents
thenet flux of probability acrossx5X and thus corresponds
to the difference between the probability of crossing to the
right and the probability of crossing to the left. Namely, we
may expect that

j X~T!;p1~T;X!2p2~T;X!, ~A15!

within some approximation. In fact, the currentj X(T) is not
positive definite and we believe that this is related to the
difficulties in the approaches of@17,15#. Equivalently, we
may try to interpret the currentof a pure right moving state
as the probability density that the particle crossesx5X. We
are reassured in doing this by the fact that in this case the
current is positive definite and its integral over all times
gives one. This conclusion is based on the assumption that
the particle cannot ‘‘zigzag’’ across theX5x line, an as-
sumption that might be valid only if we look at sufficiently
large times.

So, whenc is a pure right moving state, the rightward
flux density is positive2 and integrates to 1 over all time.@To
see this, take the limitst1→2` and t2→` in ~A13!.# It is
therefore at least consistent to interpret this as an estimate of
the probability density. Does this estimate yield the correct
semiclassical limit? The expectation values of the usual po-
sition and momentum operators satisfy Ehrenfest’s theorem
since the probability densities are associated with the decom-
position of a state onto the spectrum of some self-adjoint
operator. The same is true of the probability densities we
have obtained from the time-of-arrival operator. The above
current density isnotobtained via a spectral projection, how-
ever, and isnot associated with a ‘‘time operator.’’ How do
the expectation values of the time of arrival behave with
respect to this estimated probability density and do they cor-
respond to the classical limit in some way? We next proceed
to analyze this issue.

The expectation value of the time of arrival of the particle
at the positionX is naturally defined only when the state has
support only on thek>0 region and is then given by

2See~A14! and recall that this is a free particle.
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^T&X5E
2`

`

dT T jX~T!5
\

2pm
ReH E

2`

`

dTE
0

`

dkE
0

`

dk8T expS i\Tk22m
2 ikXD c~k!expS 2 i\Tk82

2m
1 ik8XD c~k8!J

5
\

2pm
ReH E

2`

`

dTE
0

`

dkE
0

`

dk8
m

\

1

k F S 1i ]

]k
1XD expS i\Tk22m

2 ikXD Gc~k!expS 2 i\Tk82

2m
1 ik8XD c~k8!J

5
m

\
ReH E

0

`

dk c~k!S Xk 2
i

k

]

]kD c~k!J [mXK 1

p̂0
L 2

m

2 K 1

p̂0
x̂01 x̂0

1

p̂0
L , ~A16!

where we have dropped a surface term atk50 since we
assume thatc(k)k→0→k21. The final expression in the
above equation is the symmetric factor ordering of the clas-
sical expressionT5m(X2x0)/p0, thus we do recover the
correct semiclassical limit.

For the localized right moving wave packet previously
considered, the current is easily computed, giving

j X~T!5
\

2pm
ReF E

0

`

dk expS iT\k2

2m
2 ikXDc~k!

3E
0

`

dk8k8expS 2 iT\k82

2m
1 ikXDc~k8!G .

~A17!

The integral can be explicitly done, yielding

j X~T!5
\

mA2p

S k0d21 ~X2x0!T\

4md2 D
S d21

T2\2

4m2d2D
3/2

3expS 2
~X2x02k0T\/m!2

2S d21
T2\2

4m2d2D D , ~A18!

which is precisely the approximate form for the probability
we computed from the time-of-arrival operator@see~A9!#.
Thus the probability distributions computed with the time-of-
arrival operator and by means of the current agree for a right
moving localized wave packet to order 1/k0d, which is one
order beyond the classical limit.

For a general state, roughly localized in momentum state
around a momentumk0, we can compare the current~A14!
with the difference between the probability of being detected
moving towards the right minus the probability of being de-
tected moving left. Namely, we can estimate

dX~T!5 j X~T!2@pX
1~T!2pX

2~T!#. ~A19!

Explicitly, using ~A14! and ~50!, we have

dX~T!5
\

m
Im@c~X;T!]Xc~X;T!#x5X

2
\

2pmU E
0

1`

dkAk expS 2 iT\k2

2m
1 ikXDc~k!U2

1
\

2pmU E
2`

0

dkAk expS 2 iT\k2

2m
1 ikXDc~k!U2.

~A20!

We now setX50 for simplicity, without loss of generality.
A little algebra gives

d0~T!5
\

2pmE2`

1`

dkE
2`

1`

dk8~Ak2Ak8!2

3expS 2 iT\~k22k82!

2m Dc~k!c~k8!. ~A21!

Now suppose that our measurement has a precisiondT. Then
the difference of the probability densities, averaged around
T is

DP~T,dT!5
1

2dTET2dT

T1dT
dT8d0~T8!. ~A22!

The integral indT8 can be done easily, which yields

DP~T,dT!5
\

2pmE2`

1`

dkE
2`

1`

dk8~Ak2Ak8!2

3expS 2 iT\~k22k82!

2m Dc~k!c~k8!

3H sinFdT\

2m
~k22k82!G

dT\

2m
~k22k82!

J . ~A23!

For largedT, compared to the ‘‘de Broglie time’’ of the
particle 2m/k2\ ~wherek is the highest momentum in the
support of the wave function!, the factor in curly brackets in
the integrand has non-negligible support only fork;k8 and
the integral is then suppressed by the (Ak2Ak8)2 factor.
This indicates that the two ways of computing the probability
for the time-of-arrival approach each other when our resolu-
tion time is larger than the particle’s de Broglie time.
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