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We consider Gell-Mann and Hartle’s consistent histories formulation of quantum cosmology in the inter-
pretation in which one history, chosen randomly according to the decoherence functional probabilities, is
realized from each consistent set. We show that in this interpretation, if one assumes that an observed quasi-
classical structure will continue to be quasiclassical, one cannot infer that it will obey the predictions of
classical or Copenhagen quantum mechanics.@S1050-2947~96!03309-4#
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I. INTRODUCTION

Modern cosmological theory strongly suggests that large-
scale classical structure now dominating the universe
evolved from a highly homogenous quantum state lacking
any such structure. Since this process cannot be described in
the Copenhagen interpretation of quantum theory, other in-
terpretational ideas, requiring, or claiming to require, no pre-
existing classical realm, have attracted increasing attention
over the past 40 years. There has been particular interest
lately in the consistent histories approach to quantum theory
developed by Griffiths@1,2#, Omnès @3,4#, and Gell-Mann
and Hartle@5,6#. Unlike earlier suggestive but imprecise pro-
posals in the literature, this formulation of the quantum
theory of a closed system admits a well-defined interpreta-
tion that defines an interesting scientific theory, albeit a
rather weak one. The purpose of this paper is to explain
precisely how weak this theory is when it comes to predict-
ing the formation and evolution of classical structure.

It was recently shown@7#, inter alia, that one cannot use
any version of the consistent histories formalism to predict
that the largely classical structure we observe will persist or
appear to persist. It is shown here that if we try to evade this
difficulty by simply assuming that we will continue to ob-
serve a largely classical universe, we cannot use the consis-
tent histories formalism to predict that the classical equations
of motion will hold, even approximately, or that the results
of quantum experiments will agree with the predictions of
the Copenhagen interpretation. The formalism predicts infi-
nitely many different possible outcomes for a typical classi-
cal or quantum observation or experiment. The conditional
probabilities for these outcomes, given the event that a clas-
sical structure persists for any fixed time interval, are not
defined.

If the aim is to derive a theory of the formation of the
observed large-scale structure, or its present dynamics, from
a consistent histories formulation of quantum cosmology,
these are clearly rather discouraging facts. Their implications
are discussed in Sec. IV.

II. CONSISTENT HISTORIES

We simplify the discussion by using a version of the con-
sistent histories formalism in which the initial conditions are

defined by a pure state rather than a density matrix, the basic
objects of the formalism are branch-dependent sets of pro-
jections, and consistency is defined by Gell-Mann and Har-
tle’s decoherence criterion. Arguments similar to those be-
low apply in the general case.1 The notation is Gell-Mann
and Hartle’s@8#.

Let c be the initial state of the universe.A branch-
dependent set of historiesis a set of products of projection
operators chosen from projective decompositions and with a
time label. The set is indexed by the variable
a5$an ,an21, . . . ,a1%, where the ranges of theak and the
projections they define depend on the values ofak21, . . . ,a1
and the histories take the form

Ca5Pan
n ~ tn ;an21 ,...,a1!

3Pan21

n21 ~ tn21 ;an22 ;...,a1!•••Pa1
1 ~ t1!. ~2.1!

Here, for fixed values of ak21,...,a1, the
Pak
k (tk ;ak21 ,...,a1) define a projective decomposition in-

dexed byak , so that(ak
Pak
k (tk ;ak21 ,...,a1)51 and

Pak
k ~ tk ;ak21 ,...,a1!Pa

k8
k

~ tk ;ak21 ,...,a1!

5dakak8
Pak
k ~ tk ;ak21 ,...,a1!. ~2.2!

The set of histories isconsistentif and only if

~Cbc,Cac!5dabp~a!, ~2.3!

in which casep~a! is interpreted as the probability of the
history Ca .

2 The histories of nonzero probability in a con-

1In particular, if there is an impure initial density matrix, then the
discussion of Ref.@7#, Sec. 3, can be used to show that a generic
quasiclassical history belongs to an infinite family of inequivalent
consistent sets. The use of branch-dependent sets, though conve-
nient for discussing structure formation, is also inessential.
2Note that, when we use the compact notationCa to refer to a

history, we intend the individual projection operators, not just their
product, to be part of the definition of the history.
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sistent set thus correspond precisely to the nonzero vectors
Cac. Only consistent sets are of physical relevance. Al-
though the dynamics are defined purely by the Hamiltonian,
with no collapse postulate, each projection in the history can
be thought of as corresponding to a historical event, taking
place at the relevant time. If a given history is realized, its
events correspond to extra physical information, neither de-
ducible from the state vector nor influencing it.

Most projection operators involve rather obscure physical
quantities, so that it is hard to interpret a general history in
familiar language. Given some sensible model, with Hamil-
tonian and canonical variables specified, one can construct
sets of histories that describe familiar physics and check that
they are indeed consistent. For example, a useful set of his-
tories for describing the solar system could be defined by
projection operators whose nonzero eigenspace contains
states in which a given planet’s center of mass is located in a
suitably chosen small volumes of space at the relevant times,
and one would expect a sensible model to show that this is a
consistent set and that the histories of significant probability
are those agreeing with the trajectories predicted by general
relativity. More generally, Gell-Mann and Hartle@5# intro-
duce the notion of aquasiclassical domain: a consistent set
that is complete, in the sense that it cannot be consistently
extended by more projective decompositions, and is defined
by projection operators that involve similar variables at dif-
ferent times and satisfy classical equations of motion, to a
very good approximation, most of the time. The notion of a
quasiclassical domain seems natural, though presently impre-
cisely defined. Its heuristic definition is motivated by the
familiar example of the hydrodynamic variables—densities
of chemical species in small volumes of space, and similar
quantities—which characterize our own quasiclassical do-
main. Here the branch dependence of the formalism plays an
important role, since the precise choice of variables~most
obviously, the sizes of the small volumes! we use depends on
earlier historical events. The formation of our galaxy and
solar system influences all subsequent local physics; even
present-day quantum experiments have the potential to do so
significantly, if we arrange for large macroscopic events to
depend on their results. It should be stressed at this point
that, according to all the developers of the consistent histo-
ries approach, quasiclassicality and related properties are in-
teresting notions to study within, not defining features of, the
formalism. All consistent sets of histories have the same
physical status.

By an interpretation of the consistent histories formalism
we mean a description of physics that uses only basic math-
ematical quantities defined in the formalism, such as sets and
histories, and that respects the democracy among consistent
sets. The literature contains a variety of such interpretations,
but essentially these are different ways of saying the same
thing. One can, with Griffiths, say that precisely one history
from each consistent set is realized, these histories being
chosen according to the probability distribution defined on
their set. One can, more economically, say that, in fact, only
one consistent set is physically relevant, but that we have no
theoretical rule that identifies this set or its properties@7#. Or
one can say, as Gell-Mann and Hartle do, that the predictions
one makes depend on the set one uses, though here it must be
understood that for almost all sets these predictions will not

correspond to the physics one actually observes. In each
case, though, it is to be understood that we can only observe
events from one history and that the formalism supplies no
theoretical criterion characterizing the consistent set from
which that history is drawn. These forms of words are scien-
tifically equivalent. When we come to predicting the future
from historical data, our predictions all take the form ‘‘ifS
turns out to be the relevant consistent set, then eventE will
take place with probabilityp.’’ No event can be predicted
independent of the as yet unknown setS, and, in fact, any
prediction made in a generic consistent setS will be incom-
patible with the predictions made in some other consistent
setS8.3 We will use the many-histories language here. Na-
ture consists of a list of historiesH(S) drawn from each
consistent setS. No observer can observe events from more
than one such history. The formalism predicts neither the
history H(S) in which we find ourselves nor the setS to
which it belongs. It supplies only the probabilities for the
possibleH(S) given the unknown setS.

I should like to add here the cautionary remark that there
is another interpretation of the consistent histories formalism
that is not equivalent to the many-histories interpretation
considered here.4 This interpretation, which as I understand
it is not advocated by Griffiths, Omne`s, or Gell-Mann and
Hartle ~but see the work of Saunders@11#!, can be summa-
rized by saying thateveryconsistent history is realized in a
continuum of copies whose measure is given by the history’s
probability weight.5

III. QUASICLASSICAL HISTORIES
IN QUANTUM COSMOLOGY

In the absence of a quantum theory of gravity, we work in
some fixed background space-time with preferred timelike
directions and suppose that the gravitational interactions of
matter can be modeled by a noncovariant quantum potential.
This is obviously incorrect, but at least shares qualitative
features with the type of description that it is hoped might
emerge from a fundamental theory.

A semiclassical treatment, in which the background mani-
fold depends on the large-scale structures in the matter dis-
tribution described by the different branches, would presum-
ably give a better description of our quasiclassical domain.
But it is hard to see any useful role for a consistency criterion
in a semiclassical theory, and in any case no adequate semi-
classical theory is available. Gell-Mann and Hartle’s defini-
tion of a quasiclassical domain has to be understood as a
definition that applies to real world cosmology only in the
context of a theory of gravity yet to be developed.6

3These points are discussed in detail in Ref.@7#. The reader might
also find the shorter summaries in Refs.@9, 10# useful.
4I am very grateful to Todd Brun for pointing this out in the

course of an illuminating correspondence.
5Though the separate discussion necessary for this interpretation

is beyond the scope of this paper, it seems to me that the interpre-
tation suffers from related and equally severe problems.
6A discussion of possible generalizations of the formalism to

quantum gravity can be found in Ref.@12#.
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What can be said about cosmology in our model? No
consistent set can givethecorrect account of the evolution of
large-scale structure, since there is no definitive account of
the unobserved past in the consistent histories formalism.
However, cosmologically minded consistent historians en-
visage that the set defining our quasiclassical domain can be
extended to a set—there may well be many such sets, but let
us fix on one and call itS0—which gives a particularly in-
teresting account, running very roughly as follows.

Some projective decompositionPa1
1 at an early timet1

characterizes inhomogeneities that mark the beginning of the
formation of structure. Further decompositions
Pa2
2 , . . . ,Pak

k , which depend on the inhomogeneities already

realized, describe the development of greater and finer-
grained inhomogeneity. By some later time, saytk11, almost
all of the projections in these decompositions become, to a
very good approximation, projections onto ranges of eigen-
values for hydrodynamic variables. At this point the histories
of nonzero probability define many distinct branches of the
quasiclassical domain, each of which corresponds to the for-
mation of significantly different large-scale structures. This
branching process continues through to the present, through
processes such as the quantum spreading of macroscopic
bodies and those of their interactions with microscopic par-
ticles or subsystems that are subsequently macroscopically
amplified. Each probabilistic quantum experiment that we
perform, for example, defines a new branching. There are
thus, by now, a very large number of nonzero history vectors
Cac corresponding to distinct quasiclassical branches. The
quasiclassical domain is filled out, between all these branch-
ings, by many projective decompositions describing events
that are very nearly predictable from the earlier history.

The branching process must stop at some point if the Hil-
bert space is finite dimensional, since all the nonzero history
vectors are orthogonal and any new branching adds to their
number @7,9#. The familiar description of quantum experi-
ments cannot be reproduced beyond this point, since all sub-
sequent events are predictable. Indeed, it is not clear that the
quasiclassical domain can continue at all. Consistent histori-
ans thus generally tacitly assume that the Hilbert space is
infinite dimensional, or at least that the present number of
branches is very much smaller than its dimension. In order to
simplify the discussion we will do so too.

Although Gell-Mann and Hartle generally refer to quasi-
classicality as a property of domains, it is obviously sensible
and useful to refer to individual histories as being quasiclas-
sical if they are built from projectors defined by hydrody-
namic variables and if the conditional probabilities of most
of these projectors, given the earlier history, is very close to
one. The pictureS0 gives, then, is of a large number of
historiesCa , including our own historyCa0

, defined up to
the present timet0, almost all of which are quasiclassical in
their later stages. Any quantum experiments we now under-
take can be described by a consistent setS08 that extendsS0
by projections, defined for the branch ofS0 corresponding to
our own history, which~very nearly! describe future hydro-
dynamic variables—the local densities around the possible
paths of a pointer, say— that record the results. The possible
outcomes of these experiments are described by a series of
nonzero history vectorsPb1

Ca0
c, . . . ,Pbk

Ca0
c. Each of

these outcomes corresponds to a quasiclassical history,
which we take to be complete up to timet.t0 . Let us sup-
pose we are just about to undertake such an experiment, and
for simplicity suppose that the number of outcomesk is 3 or
larger.

Now consider a similar branching, corresponding to an-
other quantum process with several macroscopically distinct
outcomes, described by vectorsPg1

Cac, . . . ,Pg l
Cac in a

historyCac other than our own. These histories can be de-
scribed in the equivalent consistent set in which the projec-
tive decomposition defined by thePg i

is replaced by that

defined by the one-dimensional projectorsPg i
8 onto the states

Pg i
Cac, together with their complement (12( iPg i

8 ) which

defines the zero probability history (12( iPg i
8 )Cac. Al-

though there are~l11! projectors in this decomposition,
there are still onlyl physical branches, since zero probability
histories are physically irrelevant in the formalism. We can
define other consistent sets, which are inequivalent toS0 and
involve nonquasiclassical histories in the branches extending
the historyCac, by replacing the projectorsPg i

8 in this last

decomposition by projectors onto anyl states forming an
orthogonal basis for the subspace spanned by the vectors
Pg i

Cac.
By making similar substitutions of the projective decom-

positions on all branches other than our own, we can con-
struct an infinite number of consistent setsS whose only
quasiclassical history is our ownCa0

. After the branching
defined, in any of these sets, by the experiment we are about
to undertake, the only quasiclassical histories will be the
Pb i

Ca0
, corresponding to thek possible experimental results.

Finally, we can pick one resulti 0 and again define new con-
sistent sets by replacing the projectorsPb i

for iÞ i 0 by pro-
jectors onto another orthonormal basis of the subspace
spanned by$Pb i

Ca0
: iÞ i 0%. In this way we can construct an

infinite number of consistent setsS that include precisely one
of the historiesPb i0

Ca0
, which extend the historyCa0

non-

quasiclassically between timest0 andt in all the other~k21!
branches and have no other quasiclassical histories. These
sets do not correspond to quasiclassical domains, but contain
one quasiclassical branch, which describes our history to
date together with one of the possible outcomes of the ex-
periments we are about to undertake.7

The probabilities of the historiesPb i
Ca0

are nonzero.
Now, according to the many-histories interpretation, one his-
tory is realized from each of the setsS and the probability of
being realized from any given set is simply the standard his-
tory probability. Since we have seen that there are an infinite
number of consistent sets containing any of these histories, it
follows with probability one that each of thesek histories is
realized infinitely many times from setsS of the form de-
scribed above. That is, each of the quasiclassical histories

7Though sets of histories of this type do not seem to have been
explicitly considered in the literature, most consistent historians
would, I believe, take their existence for granted in any sensible
cosmological model.
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defined by all of our observed data to date, together with one
of the possible experimental results, is realized infinitely
many times. The consistent histories formalism, in the many-
histories interpretation, realizes an infinite number of copies
of each possible quasiclassical outcome, and these copies of
course include descriptions of ourselves observing our his-
tory and the outcome of the experiment.

This is the problem. The formalism supplies us neither
with any way of identifying the correct set from which to
draw our history nor with any probability measure on the
sets. Thus, though we can identify the history describing the
data we observe, and when given a particular consistent set,
we can calculate the probabilities of its histories, we have no
way to compute theoretically, or from empirical data, the
probability of belonging to a history realized from any given
set or class of sets. If we merely adopt the assumption that
our realized history up to timet will be quasiclassical, we
can make no probabilistic predictions. In order to do so, we
need to make a stronger assumption, for example, that our
history will be one realized from a particular set. To make
such an assumption is to go beyond the formalism.

The discussion appliesa fortiori to the predictions of clas-
sical mechanics since, of course, these predictions are never
made with complete certainty. The argument just outlined
holds so long as the probabilities are nonzero, and there is
always some tiny probability that the position of a macro-
scopic object will undergo a significant quantum fluctuation
without violating the quasiclassicality of its history. While
the classical equations of motion are supposed to hold to a
very good approximation, nearly all of the time, in a quasi-
classical domain, a macroscopic tunneling event need not
violate these criteria. For example, if we study a ball thrown
against a wall, a very nearly consistent8 set can be defined by
projection operators whose eigenspaces correspond to states
in which the ball’s center of mass lies within small volumes
of space on either side of the wall and the history in which
the ball’s center of mass trajectory goes towards the wall and
then continues on the far side is a quasiclassical history
whose probability, though tiny, is nonzero.

It might possibly be argued against this last point that it is
sensible to ignore very small probability histories in the for-
malism. There are several problems with this line of defense,
however. It is true that, as Gell-Mann and Hartle point out
@5#, it is often sensible and convenient to ignore small prob-
ability histories. If, for example, we have found a good theo-
retical reason to fix a particular set of histories for making
predictions and find that within that set the probability of the
sun failing to rise tomorrow is 1021040, we can, for all prac-
tical purposes, take it to be zero. But this does not imply~and
Gell-Mann and Hartle do not argue! that small probability
histories are meaningless or always theoretically negligible.
In particular, small probability histories can still give rise to
large conditional probabilities. The construction above pro-
duces infinitely many consistent sets in which the only qua-
siclassical history is one in which the sun fails to rise and, of

course, in those sets, the probability of no sunrise condi-
tioned on persisting quasiclassicality is, tautologically, one.

It is true that we could simply declare by fiat that all
histories with probability smaller than some parametere are
to be neglected. Some care would be required here, since the
probability of our own realized historye0 is by now ex-
tremely small ande/e0 would also have to be very small if
we are to continue observing random events for very long.
But in any case this strategy would mean thate/e0 becomes a
key parameter in determining the outcome of experiments.
No outcomei whose probability conditioned on the past his-
tory p( i uH) is smaller thane/e0 could arise. However, we
would still have no way of deriving from the many-histories
interpretation the correct probabilities, conditioned on future
quasiclassicality, for outcomes for whichp( i uH).e/e0.
Many predictions of classical mechanics might, for some fi-
nite time interval, be recovered by this strategy, at the price
of introducing a new experimentally determinable parameter,
but the predictions of Copenhagen quantum mechanics can-
not be.

Finally, it should be stressed that the problem identified
here is quite different from the generally recognized prob-
lems of precisely defining quasiclassicality@5# and of under-
standing the error limits within which classical physics can
be recovered once a set involving classical variables has
been specified@3,4#. The arguments here require only a heu-
ristic definition of quasiclassicality@5#, but, of course, would
remain valid if a precise definition were supplied.

IV. CONCLUSION

The argument we have given is very simple. Predictions
within the formalism depend on one’s choice of set. If we
choose one of the infinitely many sets whose only quasiclas-
sical history describes a series ofN measurements ofsx on
spin-1 particles prepared in the eigenstatesy51, in each of
which sx51 is observed, then our prediction is that either
quasiclassicality will fail to persist or thatsx51 will repeat-
edly be observed. If we condition on the persistence of qua-
siclassicality, then in this set the latter prediction is made
with probability one. Indeed, this sequence of results is real-
ized in an infinite number of sets, as are all other sequences.
Without a measure on the space of sets, we cannot assign any
a priori probability distribution to the choice of set that
should be used for prediction and hence, if we assume the
persistence of quasiclassicality, cannot assign any probabili-
ties to our quasiclassical predictions.

Is the conclusion interesting? Why should anyone have
hoped to calculate conditional probabilities of the type con-
sidered? Might the conclusion perhaps rely on a perverse
reading of the consistent histories formalism? Can we not
easily find another interpretation in which no similar diffi-
culty arises? Is there perhaps a natural measure on the con-
sistent sets that produces the correct probabilistic predic-
tions? If not, is there a simple amendment to the formalism
that does the job? We take these points in turn.

At issue here is the relation between the consistent histo-
ries formulation of quantum cosmology, classical mechanics,
and Copenhagen quantum mechanics. Nothing that the con-
sistent histories formalism says is inconsistent with either of

8Gell-Mann and Hartle require only approximately consistent sets
@5#. However, it is conjectured@7# that this set can be approximated
by an exactly consistent set that describes essentially the same
physics. The conjecture is investigated further in Ref.@13#.
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these last two theories. It does not contradict their predic-
tions. However, it does not allow us to derive them. Given
any quasiclassical history, such as the one we find ourselves
in, the formalism makes no probabilistic or deterministic pre-
dictions of future events. As we have seen, this still holds
true if we assume that the history will continue to be quasi-
classical. The predictions of Copenhagen quantum mechan-
ics do not follow even from the consistent histories account
of quantum cosmology combined with the assumption of a
quasiclassical history obeying standard classical mechanics
to a good approximation. All three theories are independent.

Gell-Mann and Hartle argue@5# that, although all consis-
tent sets are equivalent in the formalism, we find ourselves
perceiving a quasiclassical history because we have evolved
so as to become sensitive to quasiclassical variables and
adapted to make use of them. There are implicit assumptions
in this argument that need not concern us here@7#. Let us
accept that it might be so and suppose that some theory of
perception tells us that for the purpose of predicting our own
future perceptions we can ignore the possibility that we
might find ourselves in a nonquasiclassical history. The pre-
ceding discussion still tells us that there are infinitely many
observers sharing our evolutionary history, continuing to ob-
serve a quasiclassical world in the future, who find their
subsequent observations disagreeing with classical mechan-
ics and Copenhagen quantum mechanics. This in itself need
not be an insuperable problem; however, the formalism does
not define any probability measure that allows us to tell
which type of realized quasiclassical history is more prob-
able. Thus, accepting Gell-Mann and Hartle’s argument, we
find ourselves unable to use the consistent histories formal-
ism to make the predictions of classical mechanics and
Copenhagen quantum mechanics.

We need not interpret the formalism in many-histories
language. The other interpretations of the formalism in the
literature, though, have the same implication when it comes
to making predictions, and it is easy to see why without
rehearsing the full argument@7# for their equivalence. To
predict anything, in any interpretation, we require data, in the
form of the observed historyH, and a consistent setS that
includes the projections defining that history. Neither the in-
clusion of the projections definingH nor the assumption that
S contains quasiclassical histories extendingH is a very
strong constraint onS. Without assuming some sort of prob-
ability measure on the space of sets we cannot characterize
the likely properties ofS. In particular, we cannot say what
type of histories it is likely to contain or which quasiclassical
histories it is likely to contain.

There is indeed a natural measure on the consistent sets of
histories, defined at least if the Hilbert space is finite dimen-
sional and inherited from the geometric description of con-
sistent sets as algebraic curves@7#. Unfortunately, though
unsurprisingly, when restricted to the class of sets containing
extensions of a given quasiclassical history, it assigns mea-
sure zero to the subclass containing quasiclassical extensions
of that history. In other words, if the formalism is amended
so that the physically relevant set is chosen according to the
natural measure, it predicts with probability one that the qua-
siclassicality we observe will cease immediately.

The obvious amendment to the formalism is to abandon
democracy among consistent sets. If we hypothesize that a

set defining our quasiclassical domain is the physically rel-
evant set or, more generally, that among the physically rel-
evant sets it is the only one including some of the projections
that characterize the observed data, then we can certainly
predict the persistence of quasiclassicality and derive the pre-
dictions of classical and Copenhagen quantum mechanics.9

In practice this is almost precisely what we do when we
make experimentally testable predictions: we do not typi-
cally use all the projections defining our quasiclassical do-
main, but the variables we do consider are always quasiclas-
sical projections or operators almost perfectly correlated with
those projections. To suppose that a particular set or type of
set is fundamentally preferred, of course, is to go beyond
orthodox quantum theory, by insisting that particular vari-
ables are distinguished. However, it appears to be necessary
in order to derive our most successful physical theories from
the consistent histories formulation of quantum cosmology.

There are at least two genuine, and genuinely different,
interpretations of quantum theory that follow the line of
thought that begins with the arguments of Everettet al. @14#
that quantum theory admits a ‘‘many-worlds interpretation.’’
One of these, due to Bell@15,16#, abandons the notion of a
coherent historical description of physics entirely: the events
occurring at any time are uncorrelated with those at earlier or
later times. This proposal is logically consistent and, given
the correct dynamics and boundary conditions, experimen-
tally unfalsifiable, but is not thought by most physicists~and
was not thought by Bell! to be a useful scientific theory,
since it makes cosmology redundant, memory fictitious, and
useful prediction impossible. The other is the interpretation
based on the consistent histories formalism considered here.
Neither allows the derivation of a theory of quasiclassical
physics.

This is not to say that either the formalism itself or the
current ideas about structure formation are misguided. The
former suggests at least one possible way of going beyond
orthodox quantum theory. The latter implicitly rely on intui-
tions, which may well be sound, about the variables that
might be distinguished. It would seem, though, that if we
want a genuine derivation of a theory of the formation and
dynamics of the quasiclassical structure in the universe from
quantum cosmology, in which we can make the usual quasi-
classical predictions, then we have to go beyond orthodox
quantum theory as it is presently understood by identifying
preferred variables in some way. This need not necessarily
involve any change in the dynamics.
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