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Pattern formation near threshold in single longitudinal mode and large aspect ratio optical parametric
oscillators~OPOs! operating near resonance are shown to be described by a complex Swift-Hohenberg equa-
tion. Such an equation is capable of capturing the main wave-vector selection rules for both degenerate and
nondegenerate OPOs.@S1050-2947~96!07609-3#

PACS number~s!: 42.65.Ky, 47.20.2k, 52.35.Mw

Complex pattern formation in nonlinear optics has been
the subject of extensive investigations in recent years. In
particular, an increasing interest has been addressed toward
large aspect ratio systems, where pattern formation is inde-
pendent of transverse boundaries and is thus described by
universal order parameter equations that provide a connec-
tion between pattern formation in optics and in other physi-
cal fields, particularly in hydrodynamics. Coupling of dif-
fraction with an optical nonlinearity in two transverse spatial
dimensions has revealed the appearance of transverse pat-
terns in a wide range of passive optical devices@1–3#. Active
optical systems are no exception and transverse pattern for-
mation has been investigated both in lasers@4–7# and in
optical parametric oscillators@8–10# in a cavity configura-
tion with flat end mirrors of infinite transverse extension and
uniform pumping. In the laser case, it was shown that the full
Maxwell-Bloch equations admit exact solutions in the form
of tilted traveling waves~TW’s!, and that the nature of the
selected pattern depends on the sign of the detuning between
the cavity and the atomic frequencies@4#. In particular, a
single tilted wave is able to dominate and to suppress all
others@4#; rhombic patterns arising from a four-wave inter-
action may be also stable states of the laser equation@7#.
Pattern formation in optical parametric oscillators~OPO’s!
has been also investigated, and previous studies have been
mainly restricted to the degenerate case, where signal and
idler fields are indistinguishable@8–10#. As for laser sys-
tems, it was shown that the OPO dynamics above threshold
for signal and idler generation strongly depends on the sign
of detuning between signal and cavity frequencies@8#. How-
ever, contrary to laser systems, in degenerate OPO’s thresh-
old lowering in the negative detuning side corresponds to an
off-axis emission of the signal field, which manifests itself as
a standing-wave~roll! pattern. The tendency to yield roll
patterns instead of a single tilted wave is due to the process
of parametric down conversion, which leads to the simulta-
neous emission of two symmetric TW’s with conversion of
the transverse photon momentum@8#. However, as pointed
out by one of the present authors, when the degeneracy con-

straint is removed the interference between these TW’s,
which is the basic reason for roll pattern formation, disap-
pears and the full OPO equations have an exact continuum
family of TW solutions for both signal and idler fields, which
are preferred to roll states found in the degenerate case@11#.
As for laser systems, we have recently shown that off-axis
emission in a nondegenerate OPO manifests itself as a single
TW @11# or as a rhombic pattern@12# for both signal and
idler fields. This analogy suggests to us that the spatiotem-
poral dynamics in lasers and OPO’s may be described by an
order parameter equation of the same kind and that the de-
generate OPO configuration may be captured by the same
model equation, provided that signal and idler fields are as-
sumed to be indistinguishable. Recent theoretical studies on
the laser equations have shown that a global description of
the laser dynamics for small detunings is provided by a com-
plex Swift-Hohenberg equation~SHE! @5,6#. This equation
seems to be very appealing because it explicitly contains the
wave-vector selection properties of the full laser equations
for both signs of detuning. The possibility of reducing the
dynamics of the full OPO equations to that of simpler uni-
versal equations has been recently discussed@10,13#, but
these analyses were restricted to the degenerate case or to
singly or doubly resonant OPO configurations. In particular,
it was shown that the doubly resonant OPO configuration in
the degenerate case can be conveniently described by a real
SHE @10#. However, the degeneracy constraint profoundly
affects pattern forming properties@11#, and therefore we en-
visage that such equations do not represent a general model
for the study of transverse effects in OPO’s.

In this paper we show that pattern formation in large as-
pect ratio, single longitudinal mode OPO’s operating near
resonance can be described by a complex SHE analogous to
that recently proposed for lasers systems. Such an equation is
here derived as a solvability condition in a multiple scale
expansion near threshold for signal and idler generation as-
suming small detunings for both fields from cavity reso-
nances. In particular, we show that for a degenerate OPO this
equation reduces to a real SHE, which has been proposed as
a model of stationary convection in hydrodynamics@14#.

The starting point of our analysis is provided by a mean-
field model for three optical fields~signal, idler, and pump
waves!, which simultaneously resonate in an optical cavity
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with flat end mirrors containing a nonlinearx~2! medium and
driven by a homogeneous, plane-wave pump input field
@8,9#. Assuming perfect phase matching, the single longitu-
dinal mode approximation and the paraxial approximation,
the dynamic equations for the three fields in the cavity are
@9#

] tB5g0@2~11 iD0!B1 ia0¹
2B#2g0A1A2 , ~1a!

] tA15g1@2~11 iD1!A11 ia1¹
2A11mA2* #1g1A2*B, ~1b!

] tA25g2@2~11 iD2!A21 ia2¹
2A21mA1* #1g2A1*B, ~1c!

whereA1 andA2 are the normalized slowly varying enve-
lopes for signal and idler fields, respectively,B5A02m is
the difference of the normalized pump field in the cavityA0
from its stationary valuem5E(12 iD0)/~11D0

2! below
threshold for idler and signal generation, andE is the nor-
malized amplitude of the plane-wave pump input field.D0,
D1, andD2 are three detuning parameters for pump, signal,
and idler fields, respectively, defined byD05(v02vL)/
g0 , D15(v12n1vL)/g1 , D25(v22n2vL)/g2, whereg0,
g1, andg2 are the cavity decay rates of the three fields,v0,
v1, andv2 are the three longitudinal cavity frequencies clos-
est to the pump frequencyvL , the signal frequencyn1vL ,
and the idler frequencyn2vL , respectively, withn11n251.
Finally, in Eqs.~1! the diffraction parametersa0 ,a1 ,a2 for
the three fields are given bya05c/2kzg0 , a1
5c/2n1kzg1 , a25c/2n2kzg2 , where c is the velocity of
light and kz longitudinal wave vector of the field at fre-
quencyvL . Note that, with a suitable choice of the phase of
the input pump fieldE, the parametric gainm in Eqs.~1! may
be assumed to be real and positive. Strictly speaking, Eqs.
~1! hold if signal and idler fields are distinguishable, i.e., in
case of non-degenerate OPO’s. But, we might use Eqs.~1!
again if signal and idler fields were degenerate with the con-
dition A15A2 . In this case, sinceg15g2, a15a2 , n15n2,
D15D2, Eqs. ~1b! and ~1c! are the same and there is total
match between signal and idler fields. The stationary solution
A15A25B50 Eqs.~1! becomes unstable beyond threshold
for signal and idler generation as the parametric gainm is
increased. Stability of the trivial zero solution can be reached
by the standard linear stability method; substitution of the

perturbation (
A
2*

A1 )}exp(st1ik•r ) into Eqs. ~1b! and ~1c!

gives the following algebraic equation for the eigenvaluess
in the linearized system

s21@g11g21 i ~g1D̃12g2D̃2!#s

1g1g2@11D̃1D̃21 i ~D̃12D̃2!#2g1g2m
250, ~2!

whereD̃1,2[D1,21a1,2k
2 andk5uku. For a given transverse

wave numberk of the perturbation, the real part of one of the
two eigenvalues, say Re~s1!, crosses zero from negative asm
is increased. Thus Re~s1!50 gives the neutral stability curve
m5m0(k) andv5Im~s1! defines the frequency of the Hopf
bifurcation; they are given by@9,11#

m0~k!5A11D̃2, ~3a!

v~k!5g1g2@D̃22D̃1#/~g11g2!, ~3b!

where D̃5@g1D11g2D21k2(g1a11g2a2)#/(g11g2) .
Threshold for oscillation is obtained by minimizingm0(k)
with respect tok and, as previously shown in Refs.@9#, @11#,
the nature of the instability at threshold strongly depends on
the sign of the averaged detuning parameter
D5~g1D11g2D2!/~g11g2!. In particular, ifD.0 the thresh-
old condition corresponds tomth5~11D2!1/2 and the conse-
quent bifurcation leads to a uniform phase-wave state for
both signal and idler fields. Conversely, forD,0 a lowering
of threshold tomth51 is predicted and the instability for sig-
nal and idler generation gives rise to a couple of symmetric
traveling waves with transverse wave vectorkc
5A2D(g11g2)/(a1g11a2g2). In the degenerate case,
these waves correspond to the same optical field and inter-
ference that give roll patterns in the transverse plane. Moti-
vated by recent studies on pattern formation in lasers@5,6#,
we argue that such asymmetric behavior should be mani-
fested as a result of multiple-scale analysis with the assump-
tion of smallD. For this purpose, we perform a weakly non-
linear analysis of the full OPO equations~1!, based on a
multiple-scale expansion around threshold for signal and
idler generation: this is done by assuming small cavity de-
tuningsD15eV1, D25eV2, wheree is the kernel parameter
for power expansion. Therefore, we look for OPO equations
with solutions in the form

V5e1V~1!1e2V~2!1e3V~3!1••• , ~4!

whereV5(B,A1 ,A2* )
T contains the field variables, which

slowly depend on time and space. The right scalings in the
perturbation analysis may be deduced by considering the
dependence of the growth rate Re~s1! on the wave number
k and parametric gainm near to the critical point
~kc50, m251!. From Eq.~2! with D15D250, we find that at
leading order ink and ~m221! the growth rate Re~s1! is
given by Re(s1)5(m221)g1g2/(g11g2)2bk41••• , where
b5g1g2@~g1a11g2a2!

2 1a1a2~g11g2!
2#/~g11g2!

3. Thus a
band of wave-vectork of width ~m221!1/4 centered around
kc50 is experiencing growth. To take into account these
modes, we introduce the slow spatial variables
X5(m221)1/4x, Y5(m221)1/4y. In order to have the terms
in D1 andD2 of the same order of magnitude as the diffrac-
tion terms in Eqs.~1b! and ~1c!, we assumem2215e2: so
doing, the slow spatial variables becomeX5e1/2x, Y5e1/2y.
Finally, two slow time variablesT15et and T25e2t are
needed.

In order to derive an amplitude equation as a solvability
condition in the amplitude scale expansion, it is worthwhile
to take into account the complex conjugate equation of~1c!
and to write the OPO equations in the compact notation

] tV5LV1N, ~5!

whereL is the linear operator andN the nonlinear operator
of the system, i.e.,

L5S 2g0~11 iD0!1 ia0g0¹
2

0
0

20
2g1~11 iD1!1 ia1g1¹

2

g2m

0
g1m

2g2~12 iD2!2 ia2g2¹
2
D , N5S 2g0A1A2

g1A2*B
g2A1B*

D .
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Substituting expansion~4! into Eq. ~5!, usingm2511e2 and
the derivative rules partials] t5e]T11e2]T2, ¹25e¹ x

2,
where¹ x

2 is the transverse Laplacian with respect to the slow
spatial coordinates, a hierarchy of equations for successive
corrections ofV is obtained.O(e1): L0V

(1)50; O(e2):
L0V

(2)5]T1V
(1)2L1V

(1)2N2[S2 ; O(e3): L0V
(3)

5]T2V
(1)1]T1V

(2)2L2V
(1)2L1V

(2)2N3[S3 , where

L05S 2g0~11 iD0!

0
0

0
2g1

g2

0
g1

2g2

D ,
L1

5S ia0g0¹x
2

0
0

0
2g1iV11 ia1g1¹x

2

0

0
0

g2iV22 ia2g2¹x
2
D ,

L25S 00
0

0
0

g2/2

0
g1/2
0

D
andN2, N3 are the nonlinear terms of the system at second
and third order, respectively. The solution of equation at
leading order is given byV(1)5(0,1,1)Tc, wherec is a com-
plex function that depends on the slow space-time variables.
For a degenerate OPO, the further conditionA 1

(k)5A 2
(k) at

any orderO(ek) requires thatc be a real variable. In order to
solvee2 ande3 equations, solvability conditions must be sat-
isfied, which determine the behavior of the functionc at the
time scalesT1 andT2, respectively. Such conditions may be
written asSk•u50 ~k52,3!, whereu5~0,1/g1,1/g2!

T is the
eigenvector of the adjoint ofL0.
The solvability condition at orderO~e2! requires

~1/g1 1 1/g2!]T1c5 i @~V22V1!2~a22a1!¹x
2#c ~6!

and the solutions at this order can be chosen as follows:
B(2)52 ucu2/(11 iD0) , A1

(2)52(1/2g1)]T1c2( i /2)(V1

2a1¹x
2)c, A2*

(2)52(1/2g2)]T1c1( i /2)(V22a2¹x
2)c.

At orderO~e3!, the solvability condition yields

S 1g1
1

1

g2
D ]T2c5c1

1

2 F S 1g1
]T11 P̂1D 2

1S 2
1

g2
]T11 P̂2D 2Gc2

2ucu2c
11D0

2 , ~7!

whereP̂1,2[ i (V1,22a1,2¹x
2). Finally, if we use the identities

@(1/g1)]T11 P̂1#c5@2(1/g2)]T11 P̂2#c5(g1P̂11g2P̂2)/

(g11g2)c we get the behavior ofc at the time scaleT2

S 1g1
1

1

g2
D ]T2c5c2Fg1V11g2V22~a1g11a2g2!¹x

2

g11g2
G2

3c2 2ucu2c/~11D0
2! . ~8!

The final equation forc is obtained by collecting all the
terms and looks like

]c/]t5e ~]c/]T1!1e2~]c/]T2!. ~9!

We can now substitute Eqs.~6! and~8! into Eq. ~9!, reintro-
duce the original variablesx5X/Ae andy5Y/Ae, D15eV1
andD25eV2, m2215e2, and redefineec asc: in this way,
we get the following complex SHE:

t] tc5~m221!c1 i @~D22D1!2~a22a1!¹
2#c

2~D2a¹2!2c2 2ucu2c/~11D0
2! , ~10!

where t[(g11g2)/g1g2, a[(a1g11a2g2)/(g11g2), D
[ (D1g11D2g2)/(g11g2) . This equation is very similar to
the laser SHE recently derived for classA andC lasers@5#.
As will be shown below, it is capable of describing the main
features of the OPO dynamics for both degenerate and non-
degenerate configurations. Moreover, it contains the asym-
metric wave-vector selection properties around the zero cav-
ity detuningD50.

In order to discuss the main properties of Eq.~10!, we
distinguish the degenerate configuration from the nondegen-
erate one.

(1) Degenerate OPO.If this is the case, the field variable
c must be real, and Eq.~10! reduces to a real SHE with a real
order parameter:

t] tc5~m221!c2~D2a¹2!2c22c3/~11D0
2! . ~11!

Equation~11! in its present form has been extensively stud-
ied as a model of stationary convection in hydrodynamics
@14# and has been previously derived by Staliunas in the
OPO context by an adiabatic elimination approach@10#. The
spatial structure of the unstable mode that arises when the
null solution loses its stability~as the driving parameter is
increased! is a plane-wave state forD.0 and a periodic state
~roll pattern! for D,0. In the latter case, the zero solution
bifurcates atmth51. In the former case instead, the instability

arises atmth5A11D2: this is just the threshold value pre-
dicted by full OPO equations@8#. Beyond threshold, the
wave-vector selection properties can be derived from a varia-
tional approach and the roll pattern may undergo phase~Eck-
haus and zigzag! instabilities@14#.

(2) Nondegenerate OPO.In this case, the order parameter
c may be complex and the SHE~10! has both zero solution
c50 and TW’s, given by

c5AC exp@ i ~k•r2vt !#, ~12!

where

C5~11D0
2!/2 @m2212~D1ak2!2#, ~13a!

v5@D22D11~a22a1!k
2#/t , ~13b!

and k5uku is the transverse wave number of the TW. It is
straightforward to show that the neutral stability curve of the
zero solution for the SHE~10! coincides with that given by
Eq. ~3a!. Therefore, forD.0 the uniform solutionk50 has
the lowest threshold and is excited first, whereas forD,0 a
traveling wave with transverse wave vectorkc5(2D/a)1/2

is the most unstable mode.
Because of the rotational symmetry in the transverse

plane, in the latter case there is a continuous set of critical
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modes near threshold. As far as linear dynamics is con-
cerned, all these modes are equally amplified, but usually
only a few of them survive and saturate due to nonlinear
interactions@3,15#. The competition among these modes near
threshold can be captured by deriving with standard nonlin-
ear analysis a set of nonlinear equations for the amplitudes of
competing modes@15#. In particular in our context, it is in-
teresting to investigate the interaction among four TW’s with
wave vectorsk1, k2, k3, andk4 where uk i u5kc ~i51,2,3,4!
and k352k1 and k452k2. Neglecting finite bandwidth ef-
fects, from the SHE~10! we find the following equations for
TW amplitudesz1, z2, z3, andz4:

1

2
t] tzn5

1

2
~m221!zn2

zn
11D0

2 S 2(
m51

4

uzmu22uznu2D
2

2

11D0
2 zn12* zn11zn13 , ~14!

where n,m runs cyclically over 1,2,3,4,. . . . Equation
~14! is similar to those derived in Ref.@7# for laser sys-
tems and it has two stable stationary solutions: single TW’s
(z1 ,z2 ,z3 ,z4)5(h,0,0,0) and alternating rolls (z1 ,z2 ,z3 ,z4)
5(h,ih,h,ih) @7,16#. In particular, a standing-wave pattern
(z1 ,z2 ,z3 ,z4)5(h,0,h,0) is known to be unstable@16#. Thus
the near field of signal and idler waves emitted by a nonde-
generate OPO does not show stripe patterns as in the degen-
erate case. To better understand the OPO emission in the
nondegenerate case, we point out that, at leading order in the
expansion~4!, the TW solution~12! of the OPO SHE corre-
sponds to the following pump, signal, and idler fields:B5
2C/(11D0

2), A15ACexp(ik–x2 ivt), A25ACexp(2ik•x
1 ivt). Physically, this solution describes off-axis emission
for both signal and idler fields in the form of tilted waves,
and a plane-wave pump field. Signal and idler fields are
emitted along two opposite directions of the transverse plane
and at frequencies equally detuned~in opposite sides! from
their reference frequenciesv1 andv2 by the amountv. In
this way, energy and photon momentum are maintained in
the parametric conversion process.

Stability of the TW’s~12! above threshold can be studied
in the framework of the reduced SHE by using a standard

linear stability method. As for the laser SHE@6#, it turns out
that the stability domain of TW’s in the plane~k,m! is de-
limited by the phase~Eckhaus and zigzag! instability bound-
aries, which can be analytically computed by deriving a
phase-diffusion equation for TW’s@4,6,15#. The derivation
of the phase-diffusion equation for the OPO SHE is similar
to that given in Ref.@6# for the laser SHE, and, therefore, we
omit details of calculations. Assuming that the wave vector
of TW is oriented along thex axis, the phase-diffusion equa-
tion reads

t~] tq2v!5DEckqxx1Dzigqyy , ~15!

where the diffusion coefficients are given by

DEck52~4a2k2/C!~11D0
2!~D1ak2!212a~D13ak2!,

~16a!

Dzig52a~D1ak2!. ~16b!

The stability requirements for the TW with wave number
k5~k,0) are thusDEck(k).0 andDzig(k).0. The passage of
DEck through zero states the Eckhaus stability boundary and
the zero crossing ofDzig gives the zigzag stability boundary.
Although a detailed comparison of the stability results ob-
tained from the SHE~10! with those derived in Ref.@11# for
the full OPO equations goes beyond the purpose of this pa-
per, we note that the Eckhaus stability boundary as computed
from Eq. ~15! coincides with that derived in Ref.@11#, only
near threshold and for small detuningsD1,D2. Moreover, the
phase equation~15! for the reduced SHE is not able to cap-
ture the dependence of Eckhaus stability boundary on the
pump detuningD0, as predicted in Ref.@11#. This is due to
the fact that the SHE~10! has been derived as a solvability
condition in a perturbation expansion at third order and, as a
consequence, its TW solutions coincide with the exact TW
states of the full OPO equations only for small detunings
D1,D2 and near threshold.

In conclusion, the present derivation of a complex SHE
provides a connection between spatiotemporal behavior of
large aspect ratio OPO’s and other pattern forming systems
in nonlinear optics and hydrodynamics. Such an equation
also allows a unified treatment of the different wave-vector
selection properties in degenerate and nondegenerate OPO’s.
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