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Swift-Hohenberg equation for optical parametric oscillators
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Pattern formation near threshold in single longitudinal mode and large aspect ratio optical parametric
oscillators(OPOg operating near resonance are shown to be described by a complex Swift-Hohenberg equa-
tion. Such an equation is capable of capturing the main wave-vector selection rules for both degenerate and
nondegenerate OPO$S1050-294®6)07609-3

PACS numbgs): 42.65.Ky, 47.20-k, 52.35.Mw

Complex pattern formation in nonlinear optics has beerstraint is removed the interference between these TW’s,
the subject of extensive investigations in recent years. Inwhich is the basic reason for roll pattern formation, disap-
particular, an increasing interest has been addressed towapears and the full OPO equations have an exact continuum
large aspect ratio systems, where pattern formation is inddamily of TW solutions for both signal and idler fields, which
pendent of transverse boundaries and is thus described laye preferred to roll states found in the degenerate [ddde
universal order parameter equations that provide a conneés for laser systems, we have recently shown that off-axis
tion between pattern formation in optics and in other physi-emission in a nhondegenerate OPO manifests itself as a single
cal fields, particularly in hydrodynamics. Coupling of dif- TW [11] or as a rhombic patterfil2] for both signal and
fraction with an optical nonlinearity in two transverse spatialidler fields. This analogy suggests to us that the spatiotem-
dimensions has revealed the appearance of transverse pptral dynamics in lasers and OPQO’s may be described by an
terns in a wide range of passive optical devicks3]. Active order parameter equation of the same kind and that the de-
optical systems are no exception and transverse pattern fogenerate OPO configuration may be captured by the same
mation has been investigated both in lasets7] and in  model equation, provided that signal and idler fields are as-
optical parametric oscillators8—10] in a cavity configura- sumed to be indistinguishable. Recent theoretical studies on
tion with flat end mirrors of infinite transverse extension andthe laser equations have shown that a global description of
uniform pumping. In the laser case, it was shown that the fulthe laser dynamics for small detunings is provided by a com-
Maxwell-Bloch equations admit exact solutions in the formplex Swift-Hohenberg equatio(SHE) [5,6]. This equation
of tilted traveling wavesTW'’s), and that the nature of the seems to be very appealing because it explicitly contains the
selected pattern depends on the sign of the detuning betweerave-vector selection properties of the full laser equations
the cavity and the atomic frequencif4]. In particular, a for both signs of detuning. The possibility of reducing the
single tilted wave is able to dominate and to suppress allynamics of the full OPO equations to that of simpler uni-
others[4]; rhombic patterns arising from a four-wave inter- versal equations has been recently discugsgy13, but
action may be also stable states of the laser equdfitn these analyses were restricted to the degenerate case or to
Pattern formation in optical parametric oscillatg@PO’S  singly or doubly resonant OPO configurations. In particular,
has been also investigated, and previous studies have begmwas shown that the doubly resonant OPO configuration in
mainly restricted to the degenerate case, where signal arttle degenerate case can be conveniently described by a real
idler fields are indistinguishablg8—10]. As for laser sys- SHE [10]. However, the degeneracy constraint profoundly
tems, it was shown that the OPO dynamics above thresholdffects pattern forming properti¢$1], and therefore we en-
for signal and idler generation strongly depends on the sigwisage that such equations do not represent a general model
of detuning between signal and cavity frequen¢®s How-  for the study of transverse effects in OPO'’s.
ever, contrary to laser systems, in degenerate OPQO’s thresh- In this paper we show that pattern formation in large as-
old lowering in the negative detuning side corresponds to apect ratio, single longitudinal mode OPQO’s operating near
off-axis emission of the signal field, which manifests itself asresonance can be described by a complex SHE analogous to
a standing-wavegroll) pattern. The tendency to yield roll that recently proposed for lasers systems. Such an equation is
patterns instead of a single tilted wave is due to the procedsere derived as a solvability condition in a multiple scale
of parametric down conversion, which leads to the simultaexpansion near threshold for signal and idler generation as-
neous emission of two symmetric TW's with conversion of suming small detunings for both fields from cavity reso-
the transverse photon momenty8i. However, as pointed nances. In particular, we show that for a degenerate OPO this
out by one of the present authors, when the degeneracy coseuation reduces to a real SHE, which has been proposed as

a model of stationary convection in hydrodynamii¢g].
The starting point of our analysis is provided by a mean-
*Present address: Research Laboratory of Electronics, Massachfield model for three optical fieldésignal, idler, and pump
setts Institute of Technology, Cambridge, MA 02139. waves, which simultaneously resonate in an optical cavity
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W|_th flat end mirrors containing a nonlinegf medlu_m and_ po(k)= /1+’A=2, (33)
driven by a homogeneous, plane-wave pump input field L
[8,9]. Assuming perfect phase matching, the single longitu- o(K)=y1y,[ A=A/ (y1+ v2), (3b)

dinal mode approximation and the paraxial approximation,

the dynamic equations for the three fields in the cavity arévhere A:[7141+,72A.2+k2(}’131+ ¥282) [/(y1+ 72) -
[9] Threshold for oscillation is obtained by minimizingy(k)

with respect tk and, as previously shown in Ref€], [11],
B=yo[ —(1+iAg)B+iagV?B]— y0A1A,, (18  the nature of the instability at threshold strongly depends on
. . 2 * " the sign of the averaged detuning parameter
A=y [ —(L+iA DA +ia VA + uAS T+ y,A5B, (1b) A=(1A1+1%0)/(y1+v,). In particular,2 iI/§>O the thresh-

U ; : 2 * * old condition corresponds ta,,=(1+A%)"“ and the conse-
IRz =yl —(1H182)Ap+iaV A+ uAT 1+ 72A1 B, (10 quent bifurcation leads to gthuniform phase-wave state for
both signal and idler fields. Conversely, a0 a lowering
of threshold tow,=1 is predicted and the instability for sig-
nal and idler generation gives rise to a couple of symmetric
traveling waves with transverse wave vectok,
=\J—A(y,+v5)/(a;y;+a5y,). In the degenerate case,
these waves correspond to the same optical field and inter-
A dA th detuni ters f : Iference that give roII_patterns in the transverse plane. Moti-

1, anda, are three detuning parameters for pump, signaly 40 by recent studies on pattern formation in la$grs],
and idler fields, respectively, defined hy,=(wo—w.)/  \ye argue that such asymmetric behavior should be mani-
Yo, Ar=(w1=vi0)/y1, Ay=(w—vo0 ) 72, Wherey,,  fested as a result of muitiple-scale analysis with the assump-
71, andy, are the cavity decay rates of the three fields,  tion of smallA. For this purpose, we perform a weakly non-
w1, andw, are the three longitudinal cavity frequencies clos-|inear analysis of the full OPO equatiori$), based on a
est to the pump frequency, , the signal frequency,w ,  multiple-scale expansion around threshold for signal and
and the idler frequency,w , respectively, withv;+v,=1.  idler generation: this is done by assuming small cavity de-
Finally, in Egs.(1) the diffraction parameteray,a;,a, for  tuningsA;=€,, A,=€(),, wheree is the kernel parameter
the three fields are given byay=c/2k,yy, a; for power expansion. Therefore, we look for OPO equations
=c/2v.k,y1, ap=cl2v,K,y,, wherec is the velocity of with solutions in the form
light and k, longitudinal wave vector of the field at fre- V=elVD 4 2y 4 BB ... ()
guencyw, . Note that, with a suitable choice of the phase of '
the input pump fielE, the parametric gaip in Egs.(1) may ~ where V=(B,A;,A%)" contains the field variables, which
be assumed to be real and positive. Strictly speaking, Eqslowly depend on time and space. The right scalings in the
(1) hold if signal and idler fields are distinguishable, i.e., in perturbation analysis may be deduced by considering the
case of non-degenerate OPO’s. But, we might use Bgs. dependence of the growth rate (&g on the wave number
again if signal and idler fields were degenerate with the conk and parametric gainu near to the critical point
dition A;=A,. In this case, SinCe,=7,, a,=a,, n=v,,  (k=0, u*=1). From Eq.(2) with A;=A,=0, we find that at
A;=A,, Egs. (1b) and (10 are the same and there is total leading order ink and (u°—1) the growth rate Rer) is
match between signal and idler fields. The stationary solutiogiven by Reg:)=(u’—1)y1yol(y1+7y,)—BK'+---, where
A,=A,=B=0 Egs.(1) becomes unstable beyond threshold 8=yl (a1 +¥8,)° +aa,(y+7y)°l(3n+y)>. Thus a
for signal and idler generation as the parametric gails ~ band of wave-vectok of width (x°—1)** centered around
increased. Stability of the trivial zero solution can be reached.=0 is experiencing growth. To take into account these
by the standard linear stability method; substitution of them00(|632, V)VSAX intr(zduzce )15?ye SIO(\jN S%atial hVariables

; 1 ey X=(u—1 CY=(u—1 . In order to have the terms

perturbation ﬁS)MEXp(UHIk r) into Egs. (1b) and (10 in A; andA, of the same order of magnitude as the diffrac-
gives the following algebraic equation for the eigenvaltes tion terms in Eqs(1b) and (1c), we assumeu’—1=¢* so

where A; and A, are the normalized slowly varying enve-
lopes for signal and idler fields, respectiveB=A,—pu is
the difference of the normalized pump field in the cavily
from its stationary valueu=E(1—iAg)/(1+A2) below
threshold for idler and signal generation, aads the nor-
malized amplitude of the plane-wave pump input fielq,

in the linearized system doing, the slow spatial variables becode €%, Y= 4.
.o~ ~ Finally, two slow time variablesT,=et and T,= €%t are
2+ [ y1+ yo+i(viA1— y2A)) o needgd. ! 2

+y1 Yol 1+ A A, +i (A —AL)]— y17,12=0, ) In order to derive an amplitude equation as a solvability
_ condition in the amplitude scale expansion, it is worthwhile
whereA; ,=A; ,+ alvzk2 andk=|k|. For a given transverse to take into account the complex conjugate equatiofiLof
wave numbek of the perturbation, the real part of one of the and to write the OPO equations in the compact notation
two eigenvalues, say Re)), crosses zero from neg_ative Aas dNV=LV+N, (5)
is increased. Thus Re;)=0 gives the neutral stability curve
u=puo(k) and w=Im(o,) defines the frequency of the Hopf wherelL is the linear operator and the nonlinear operator

bifurcation; they are given b}9,11] of the system, i.e.,
|
—70(1+iA0)+ia070V2 _O 0 _’yOA1A2
L= 0 —y1(1+iAy) +iayy, V2 Y1k , N=| 7A’B

0 Yot —y2(1—iAy) —iayy,V? ¥2AB*
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Substituting expansiof¥) into Eq. (5), using u>=1+ € and Pl at=e€ (Pl IT1) + €2(apl aT,). 9)
the derivative rules partialsy;= ey, + eZ&TZ, V2=¢€V2, _ _ _

whereV 2 is the transverse Laplacian with respect to the slow/Ve ¢an now substitute Eqe5) and(8) into Eq. (9), reintro-
spatial coordinates, a hierarchy of equations for successivéuce the original variables=X/\e andy=Y/\e, A;=eQ,
corrections ofV is obtained.O(el): Lov@=0; O(e?):  andA,=eQ,, u’~1=¢, and redefinesyy as ¢ in this way,

LovV@= 0T1V(1)— L,VD—N,=S,: O(e): Lov®  we get the following complex SHE:
=01,V Wtar, VEO- LV - LV -Ng=$;, where rah=(u? = DY+, —Ay) — (2~ ay) V2]
—7(1+idg) O 0 —(A=aV?)?y—2[y|?yl(1+ A7), (10
= 0 —
o ( 0 non ) ’ where 7= (y1+7,)/ 172, @=(2171+2272)/(71+ 72), A
V2 Y2 = (A,y1+A5v,)/(y1+ v,) . This equation is very similar to
L the laser SHE recently derived for clafsand C lasers[5].
1 As will be shown below, it is capable of describing the main
. 2 features of the OPO dynamics for both degenerate and non-
120V ) O, 9 0 degenerate configurations. Moreover, it contains the asym-
= 0 — 7y Fiayy, Vi 0 . metric wave-vector selection properties around the zero cav-
0 0 Y21 Qp—ia,7,V% ity detuningA=0.
In order to discuss the main properties of Efj0), we
0 O 0 distinguish the degenerate configuration from the nondegen-
L,={0 0 /2 erate one.
0 /2 0 (1) Degenerate OPQf this is the case, the field variable

¢ must be real, and E@10) reduces to a real SHE with a real
andN,, N3 are the nonlinear terms of the system at secondrder parameter:
and third order, respectively. The solution of equation at ) - s 5
leading order is given by )= (0,1,1)" ¢, wherey is a com- o= (pu = 1) ¢—(A—aV)“y—2¢y7/(1+Ag) . (11
lex function that depends on the slow space-time variable . o .
lgor a degenerate OE’O the further congitj@[ﬁ):Ag) at %quatlon(ll) in its presgnt form has bgen_extenswely stu.d—
any orderO(€") requires thaty be a real variable. In order to ied as a model of stationary convection in hydrodynamics

solve € and € equations, solvability conditions must be sat- [14] and has been pr_eviogsly _dgrive_d by Staliunas in the
isfied, which determine the behavior of the functipmt the ~ OF O context by an adiabatic elimination approgt]. The

time scalesT, andT,, respectively. Such conditions may be spatial structure of the unstable mode that arises when the
v asSK%u=0 (gk.:2 : where'u=(0 1y, Aly,)T is the null solution loses its stabilityas the driving parameter is
eigenvector of the adjoi'nt,di L2 increaseflis a plane-wave state f&«>0 and a periodic state

0.

o - : (roll pattern for A<O. In the latter case, the zero solution
The solvability condition at ordeD(e’) requires bifurcates aju,=1. In the former case instead, the instability
(1/y, + 1/72)(9le//:i[(Qz—Ql)—(az—al)V§]¢ (6)  arises atuy,=V1+AZ this is just the threshold value pre-
dicted by full OPO equation$8]. Beyond threshold, the
and the solutions at this order can be chosen as followsgvave-vector selection properties can be derived from a varia-
B@=—|y|2(1+iAo), AP =—(1/2y))dr y—(i/2)(Q, tional approach and the roll pattern may undergo pliEsk-
—a V), AR = (1/2,)d ¢+(i/2)(b —a,v2)y haus and zigzagnstabilities[14].
L 2 <Y2)om ¥ JARR2 G2 (2) Nondegenerate OP(n this case, the order parameter
At order O(e”), the solvability condition yields s may be complex and the SHEO) has both zero solution
=0 and TW'’s, given by

LS PR la+|5)2
v ) TV 5 T W= C extli(k-r—wt)], 12
1 ~ V2 2lylPy where
+ _,y_aTl"_PZ) v=1az D
2 0 C=(1+A%)/2 [p2—1—(A+ak?)?], (139
wherelslyzzi(ﬂlyz— amVi). Finally, if we use the identities w0=[A,—A,+(a,—a,)k?]/ (13b)
~ ~ ~ - 2 1 2 1 ’

[(1/y1) 7, +P1lyp=[—(1/y2) o1, + Palh=(y1P1+ y2P2)/
(y1+ v,) i we get the behavior of at the time scald , and k=|k| is the transverse wave number of the TW. It is
straightforward to show that the neutral stability curve of the
Y1 Q1+ ¥,Q0,— (a;y1+a,7,) V2|2 zero solution for the SHEL0) coincides with that given by
Yot 72 Eq. (33). Therefore, forA>0 the uniform solutiork=0 has
the lowest threshold and is excited first, whereasXerO a
X = 2| |2yl (1+ AS) . (8)  traveling wave with transverse wave vectqr=(—A/a)*?
is the most unstable mode.
The final equation fory is obtained by collecting all the Because of the rotational symmetry in the transverse
terms and looks like plane, in the latter case there is a continuous set of critical

dr,p=y¢—
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modes near threshold. As far as linear dynamics is conlinear stability method. As for the laser SHE]|, it turns out
cerned, all these modes are equally amplified, but usuallthat the stability domain of TW’s in the plané,u) is de-
only a few of them survive and saturate due to nonlineatlimited by the phaséEckhaus and zigzagnstability bound-
interactiong 3,15]. The competition among these modes neararies, which can be analytically computed by deriving a
threshold can be captured by deriving with standard nonlinphase-diffusion equation for TWg4,6,15. The derivation
ear analysis a set of nonlinear equations for the amplitudes aff the phase-diffusion equation for the OPO SHE is similar
competing mode§15]. In particular in our context, it is in- to that given in Ref{6] for the laser SHE, and, therefore, we
teresting to investigate the interaction among four TW’s withomit details of calculations. Assuming that the wave vector
wave vectork,, k,, ks, andk, wherelk;|=k. (i=1,2,3,4  of TW is oriented along the axis, the phase-diffusion equa-
and ks=—k; andk,=—k,. Neglecting finite bandwidth ef- tion reads
fects, from the SHE10) we find the following equations for

TW amplitudesz,, z,, z3, andz,: (919~ ©) = Deadhot Daigdyy, (19
1 4 where the diffusion coefficients are given by
Zn

5 TZn=5 (W12~ T sz:l |20l ?— |Zn|2) Dea= — (4a%k¥C)(1+A2)(A+ak?)2+2a(A+3ak?),

’ (163
2
T1rAZ Zn i 2Zn+1Zn+3s (14 D,ig=2a(A +ak?). (16b
0

The stability requirements for the TW with wave number
where n,m runs cyclically over 1,23,4,... . Equation k=(k,0) are thudD (k) >0 andDj4(k)>0. The passage of
(14) is similar to those derived in Ref7] for laser sys- D, through zero states the Eckhaus stability boundary and
tems and it has two stable stationary solutions: single TW'she zero crossing db,;, gives the zigzag stability boundary.
(21,2,23,24)=(h,0,0,0) and alternating rollsz(,z,,23,2;)  Although a detailed comparison of the stability results ob-
=(h,ih,h,ih) [7,16]. In particular, a standing-wave pattern tained from the SHE10) with those derived in Ref11] for
(21,25,23,24)=(h,0,h,0) is known to be unstabld6]. Thus  the full OPO equations goes beyond the purpose of this pa-
the near field of signal and idler waves emitted by a nondeper, we note that the Eckhaus stability boundary as computed
generate OPO does not show stripe patterns as in the deg&fom Eq. (15) coincides with that derived in Ref11], only
erate case. To better understand the OPO emission in thfxar threshold and for small detuniniys,A,. Moreover, the
nondegenerate case, we point out that, at leading order in thghase equatiofil5) for the reduced SHE is not able to cap-
expansion(4), the TW solution(12) of the OPO SHE corre- ture the dependence of Eckhaus stability boundary on the
sponds to the following pump, signal, and idler fiel@s=  pump detuning),, as predicted in Ref11]. This is due to
—CI(1+A%), A;=Cexpik-x—iwt), A;=Cexp(-ik-x the fact that the SHEL0) has been derived as a solvability
+iwt). Physically, this solution describes off-axis emissioncondition in a perturbation expansion at third order and, as a
for both signal and idler fields in the form of tilted waves, consequence, its TW solutions coincide with the exact TW
and a plane-wave pump field. Signal and idler fields arestates of the full OPO equations only for small detunings
emitted along two opposite directions of the transverse pland,,A, and near threshold.
and at frequencies equally detun@d opposite sidgsfrom In conclusion, the present derivation of a complex SHE
their reference frequencies, and w, by the amountw. In provides a connection between spatiotemporal behavior of
this way, energy and photon momentum are maintained itarge aspect ratio OPQO’s and other pattern forming systems
the parametric conversion process. in nonlinear optics and hydrodynamics. Such an equation

Stability of the TW’s(12) above threshold can be studied also allows a unified treatment of the different wave-vector
in the framework of the reduced SHE by using a standardgelection properties in degenerate and nondegenerate OPQ'’s.
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