PHYSICAL REVIEW A VOLUME 54, NUMBER 5 NOVEMBER 1996
Optimum phase-shift estimation and the quantum description of the phase difference
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The problem of a correct quantum description of the phase difference is examined from the perspective of
parameter estimation theory. It is shown that an optimum phase-shift measurement defines a phase difference
operator which coincides with other approaches to the same problem. We also study the fundamental limit to
the accuracy of a phase difference shift detection. We show that this limit can be reached by a measurement
having countable outcomes despite the fact that a phase shift can take any value. We show that this is the case
of the phase difference operator defined by an optimum phase-shift measuresi€s0-29476)09911-9

PACS numbd(s): 42.50.Dv

[. INTRODUCTION to a reference phase. The relative phase is essentially the
relevant variable in most of the practical cases of a phase-
The description of the phase in quantum terms has beeshift detection as it occurs when interferometric schemes are
influenced by the difficulty of ascribing an operator to it in used. It could be thought that this reasoning cannot lead to
the usual qguantum sense. This occurs because a polar decoamy new conclusion and the phase difference would inherit
position of the one-mode-field complex amplitude operatoithe same difficulties and the same solutions of the absolute
does not give a unitary operator exponential of the pfidke phase problem. However, the actual situation appears to be
Given the relevance of this variable in classical terms therelifferent.
have been several attempts to provide a suitable translation For instance, we can point out the possibility of defining a
into the framework of Hilbert space formalidid]. Although  unitary operator exponential of the phase difference by
this is still a controversial subject, recently significant means of a polar decomposition of the product of two-mode-
progress has been made in unifying all different approachefield complex amplitude§6]. The solution for the exponen-
to the problem 3]. tial of the phase difference can be unitary, contrary to the
One of them considers the phase as a parameter insteadrekult for the same problem in the one-mode case. We can
as a dynamical variable. From this point of view the phasealso describe naturally the phase difference by using previ-
problem can be reformulated as the proper detection of aus approaches for the absolute phd§dsThese two pro-
phase change. This leads to a study of measurement stratedures lead in principle to different results, although a
gies allowing a determination as precise as possible of aloser examination reveals some points of coincidence which
variation of this parameter. The evaluation and comparisomre not explicit from the beginning. In any case, this kind of
of different schemes falls then within the quantum estimatiorreasoning opens the possibility of applying, directly to the
theory which provides the tools for the study of their perfor-phase difference, the same tools used in the absolute phase
mance[4]. The conclusions of such an analysis are importanproblem with the hope of finding new conclusions.
not only for possible applications but also for every quantum Here we will examine the quantum description of the
description of the phase. Although in this context the phas@hase difference from the perspective of the estimation
is regarded just as a parameter, we can expect that an optheory. We will consider that a phase shift is in fact observed
mum measurement of a phase shift should provide, more as a phase difference shift. We expect that a measurement
less directly, a suitable description of the phase as a dynamproviding an estimation with desirable properties must serve
cal variable. After specifying conditions to be fulfilled by an as a suitable quantum description for the phase difference as
optimum detection, this analysis can lead to the same resudt two-mode-field variable. Following the usual procedure of
as that provided by other approaches quite distinct in prinascribing an operator to each variable, we will impose that
ciple [4,5]. Such a description is the positive operator mea-=such optimum estimation relies on a measurement described
sure given by the nonorthogonal Susskind-Glogower phasky a projection measure, arbitrary in principle. Our aim is to
states. find out which projection measure is defined by imposing
The main part of this work is devoted to the phase of adesirable properties to the estimation problem. Afterwards, it
one-mode field or absolute phase. Nevertheless, we can rell be compared with the phase difference operator arising
gard the phase difference as a more fundamental variablérom a two-mode polar decomposition and also with the
This is because any observation of the phase must be relatiymsitive operator measure emerging from the description of
the absolute phases in terms of the Susskind-Glogower

states.
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On the other hand, the phase difference operator results in\ated by our purpose of arriving at a suitable description of
discrete character for this variable. The number of allowedhe phase difference. This commutation relation is the quan-
values grows with the total photon number so that discretetum translation of the corresponding classical Poisson
ness is only relevant in the limit of small photon numbers. Inbracket. The total photon number is the infinitesimal genera-
any case, a discrete character seems to be in apparent cdor of translations of the phase sum and this commutation
tradiction with its behavior as a parameter, because a phasmsures that the phase difference is not modified by an equal
difference shift can take any value. Accordingly, the positiveshift of the two phases. This commutation or compatibility
operator measure would be preferable even if it does not giverith the total photon number is, in fact, verified by a very
an operator for this variable. broad class of phase approaches when we derive their asso-
Here again the quantum estimation theory provides a@iated description of the phase differerj@g.
valuable tool for a proper discrimination between these two This commutation has another advantage since it means
possibilities. In particular, the existence of a fundamentathat the measurement can be carried out with no active ele-
limit to the minimum detectable phase change depending oments involved and then all the energy available is that sup-
the total number of photons involved in the measurement iglied by the input field statgy). This can be relevant in the
relevan{8—11]. This limit must play a significant role in the examination of the ultimate phase resolution achievable
examination of whether a discrete character for the phassince it depends on the total energy involved. Otherwise it
difference as a variable is in contradiction or not with its may happen that the practical realization of the measurement
continuous behavior when considered as a shift parameter. kould demand the use of other sources of energy not taken
Sec. Il we define the phase difference operator using an opato account explicitly, as it is the case of a quadrature mea-
timum phase-shift estimation and then we study the limit tosurement, for example, where an intense local oscillator is
the phase resolution in the detection of a phase differenceeeded.
shift in Sec. Ill. After that, we will consider a measurement described by
an operatorA commuting with the total photon number.
Their common eigenvectotdl,a™'¥) can be written in the

Il. PHASE DIFFERENCE OPERATOR DEFINED number basis as

BY AN OPTIMUM PHASE-SHIFT ESTIMATION
N

In a phase estimation problem a field staté, pure for |N’a(NYk>>:nZo a(nN,k)|n’N_n>, 2.1

simplicity, undergoes an unknown, nonrandom, phase shift

0. By making an appropriate quantum measurement and

knowing the input statéy), the purpose is to estimate the where|n,N—n) are number states with photons in mode

phase shifts. a, andN—n photons in mode,, andk=0,1,. .. ,N labels
As it has been discussed in the Introduction, we are interthe N+ 1 eigenvectors ofA within the subspacé{y with

ested in the phase difference between two modes rather thastal photon numbeN. These vectors satisfy the resolution

in the absolute phase and therefore we will consider thapf the identity

|) is a two-mode field with complex amplitude operators .

a,,a,. Accordingly, the measurement is performed over

these two modes. Although the estimation problem views the go [N, @™y (N, aN9| =1y, .2

phase as a parameter instead of as a dynamical variable, it

seems that the better the estimation is, the closer should Q@nerelN is the identity on, and the orthogonality rela-

the measurement performed to a true measurement of thg, o

phase, or, in our case, of the phase difference. This means

that after 'ghe specification of'some deswable.propertles valid <N/’a(N’,k’)|N,a(N,k)>: Snn B 2.3

for every field statéy), an optimum phase estimation should

lead to a quantum description of the phase difference as go|d. Otherwise, the vectol,a™")) andA itself are arbi-
variable. Such description will be given by the measuremenjrayy.

that should be carried out in order to fulfill the said proper- The basic ingredient of a phase estimation prob|em is the

ties. . . . . conditional probability distribution function
The first requirement that we will consider is that the
measurement is described by an operétar, equivalently, P(N,k; 8)=|(N,aN0)| el 0a1a1|¢>|2 (2.4

by a projection measure. We exclude from the beginning the

possibility of a measurement relying on a positive operatoif getting the outcom&l,k when the true phase shift & If

measure. Such kinds of measurements are in fact projectiafe express the input fields) in the number basis as
measures defined over a wider set of field mo@esother

auxiliary quantum degrees of freedpmhen the state in the > N
other modes is fixed and known in advarfd®,11. Since )= >, > ¢N|n,N-n), (2.5
we are looking for a quantum description of a two-mode- N=0n=0
field property, we dismiss this possibility which involves im-
plicitly other degrees of freedom.

As a further requirement ol we will impose that it N
commutes with the total photon number p(N k: )= >, a(No= a;’)"k){/,gN)gz,ﬁ’)')* eh-ne (26
[A,ala;+ala,]=0. Here again this requirement is moti- nn' =0

we have
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This function contains all the relevant information concern-measurement having the desired properties is described by

ing the estimation. It provides the estima®@™¥ of the
phase shif as a function of the particular outcorhgk and

also gives its accuracy. Since this information can be ex-
tracted in many different ways, we will consider general con-
ditions onP(N,k; §) independent of any procedure of data

analysis.
As a desirable and natural property (N, k; 6) we will

the countable set of orthogonal and normalized vectors

N

JNF 1‘2 e ™6l |n,N—n)
n=0

N, M) =

_ ei ¢,(N,k)a1a1| N, ¢(N,0)>,

(2.13

impose that its form as a function &f does not depend on where theg-¥ phases are given by E(R.12.

the particular outcomé& which will appear simply as a pa-

rameter shifting the whole function. Choosikg-0 for ex-

ample as a reference, we assume that for eMegkythere are

It is interesting to examine whether this solution has fur-
ther properties or whether it is related to other approaches to
the quantum description of the phase difference. If we take

two quantities,u(N,k) and ¢, such that the shifting sMN=ns™ we can build the unitary operator

property
P(N,k; 0)= (N, K)P(N,0;0— ¢N-¥) 2.7

is satisfied. The functio?(N,0;6) does not depend ok;

w(N,k) is a factor of proportionality an@™'¥ are phase
parameters shifting the probability distribution as a whole,
with w(N,0)=1 and ¢N9=0. Among other possible con-
sequences of this shifting property we have that the uncer-
tainty in the phase-shift estimation will be independent of the

particular outcomek for a given value oiN.

Next we proceed to the determination of the most gener
measurement satisfying these properties. Since the input ve

tor |¢) is arbitrary, the shifting conditio2.7) reads
agN,k)* a;l\’l,k)z M(N'k)agN,m* aw’o)ei(“/ —m Nl (2.9

Takingn=n’ and using the normalization ¢N,a™"¥) we
get u(N,k)=1. Furthermore, if we sum Eq2.8) over k
whenn=n’ and if we use the resolution of the ident{#.2),
we get

1
aMV0=——¢

VN+1

Whereaﬂ\‘) are arbitrary phases. Then we have from )

o 2.9

1
aNb =

" IN+1

ol o gingMH

(2.10

The allowed values fos"'¥ can be determined from the

orthogonality condition(2.3),

1 N

<N,a(N:k’)| N1a(Nrk)>: -

(@M —gNKD) _
N+ 1:=0

5k,k’7

(2.11)
which gives¢™'®¥=27m(k)/(N+1), wherem(k) are inte-

gers satisfyingn(k) # m(k’) (modulusN+1) if k#k’, and
m(0)=0. If we rearrange the indek, we can write

(2.12

This is everything we can derive from the conditions im-
posed on the measurement. We can rename the vect
IN,aN¥y as|N, N and we have that the most general

o N+1
Mg)=2 AN.¢)= 2 —=IN.G)N, g,

0 N
ir(2m (N)
E12: E 2 |N,¢(N’k)>el[(2 IN+1) k+ 68 ]<N,¢(N'k)|,
N=0 k=0
(2.149

which satisfies the polar decompositif6i

a,a,=E,\/ala,(ala,+1)=ala,(ala;+1)Ey,

(2.15

defining the quantum translation for the exponential of the

hase difference. Thereforg;, can be properly considered
55 the unitary operator exponential of the phase difference
and its eigenvectorgN, ") as phase difference states.
Other possible solutions in EQR.13 are simply related with
this one by the unitary transformation

% N
u =NZO ngo In,N=n)el®n —n™)n N—n|, (2.1

and from now on we will consider for simplicity that the
relation sV =n &M is satisfied. It is worth noting that when
one of the modes is in a very intense coherent state, the
projection measure defined by the vect(®<3 leads to the
one-mode positive operator measure defined in terms of the
Susskind-Glogower phase stafés.

We can see that the very general specification of good
properties for a phase estimation problem leads essentially to
a well behaved phase difference operator. This situation can
be compared with the same case for the absolute phase.
There a similar procedure leads to a positive operator mea-
sure instead of an operator since no unitary solution exists
for the corresponding polar decomposition of a one-mode
complex amplitude operator. In our case it leads to a projec-
tion measure since an operator description for the phase dif-
ference is possible. Although the method for implementing a
direct measurement of this operator is not known vyet, it is
possible to obtain the quantiti¢gN, pN¥|4)|? from a mea-
surement performed by means of an eight-port homodyne
detector{13].

On the other hand, the positive operator measure for the
absolute phases can be used to get a quantum description of
the phase difference by means of very general methots
The result is also a positive operator measiifeb),

©

(2.17
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where ¢ can take any value in az2interval and/N,¢) are  ous ¢ with the replacement oE,’l’LO by fd¢. It can be
the counterparts of Eq2.13 for arbitrary values ofp, checked at any step that such a replacement has no conse-
guences on the following.
1 , Any performance analysis of a detection scheme is based
IN, ¢y = \/WZ e"’n,N-n). (2.18  on the conditional probability distribution of getting the out-
+in=0 comeN,k when the true value of the phase shiftds

N

This positive operator measure has been discussed recently
as providing an optimum measurement for a phase-shift es-

timation [14]. The family A(N, ¢) commutes with the total . ! , . o
[14] yA(N, 4) where the input field ) is here again pure for simplicity.

photon number and also verifies the same shifting propert}i_ . i ) S
(2.7 replacings™"¥ by ¢. This different range of variation T Nis function provides the estimatd"'¥ of ¢ after the out-

distinguishes it from the projection measure defined bycOmeN,k has been obtained and it also enters in the measure
IN, N0y As a consequence of this, the positive operatorof its performance. For this purpose it is necessary to specify
measurg2.17) cannot define a unitary operator exponentialthe importance of the deviations of the estimaté! from
of the phase difference. On the other hand, the vectorthe true valued. This can be done by introducing a cost
IN,¢) are not linearly independent because the subspacdanction C(¢™*), ). Assuming a uniform prior distribution
Hy with total photon numbeN are finite dimensional. Then, for  (maximum initial ignorancethe average cos,
the information they convey is redundant and a finite number
of them is enough within each subspddg . _ oMo

In addition to these remarks, it is interesting to study C=f do >, > (o9, 0)P(Nk;0), 3.3
whether this description has better properties than the one N=0k=0

based on the countable set of vect#<l3 especially if we =
take into account that a phase shift can take any value. TEEPresents the performance measure and the minimuth of

this end, the phase estimation problem offers a relevant tediVes the best accuracy achievable according to the criterion
We can examine which is the best possible resolution achievdefined byC(6™*, 6). Here we choose as the cost function
able and whether it can be reached with a measurement with _

countable outcomes. If there is a fundamental limit to the c(oNN, 9)=|e
accuracy, we can expect that the detailed structure of the —~
measurement below it will have no practical consequences. =2[1-cog "W~ 9)], (3.4

In such a case there would be no contradiction between the

continuous character of the phase difference as a parametegcause of its good propertigks).

and a discrete description as a variable. These points are From the last two equations we can see that the average

P(N,k; 6)=(yle A (N, k)&l 1% gy, (3.2)

Nk

e%2=4sirf[ (§N9 - 9)/2]

studied in the next section. cost depends on the quantities
I. LIMIT TO THE ACCURACY OF A PHASE f doei’P(N,k: 0). (3.5
DIFFERENCE SHIFT ESTIMATION

The purpose of this section is the precise determination ofhese quantities are interesting on their own since they pro-
the ultimate limit to the accuracy in the detection of a phasej/ide a measure of the width of the conditional probability
difference shift and the measurement that should be pedistribution P(N,k; #) evaluating the accuracy of the phase
formed in order to achieve it. We will also examine whetherggtimateg™¥) after the outcome,k. Specifically, we can
it can be matched by a measurement described by the vecta§igfine a normalized probability distributid®(N,k; ),

IN,("N'K) found in the preceding section as providing a
phase estimation having good properties.

As before, we regard the change of phase to be detected P(N,k; 0) =
as a phase difference shift and therefore a two-mode descrip-

tion of the field state and the measurement is considered. Thv(\?hich can be considered as a probability distribution for the
only prior requirement we will impose is that the measured. p y

observable commutes with the total photon number in accoﬂp(;ermdbghf‘ie tSh'ft w?en %? dg_ hot h[g\,;lge fg{zprlor knowl-
dance with the discussion in the preceding section. As to jt§09€ about IS true vajue. The dispersiall, 19,
precise form, the measurement is in principle arbitrary and

we will describe_ it by a positive operator measuréN, k) D?(N,k)=1—|(¢' 0>(N,k)|2:1_j doe'’P(N,k; 6)
with the properties

1
WP(N'k; 0), (3.6)

2

(3.7
M

[A(N,k),a{aﬁaﬁaz]:o, 2 ANK)=Iy. (3.2 gives a measure of the accuracy of the phase-shift measure-
k=0 ment provided by the outconté, k. We will begin looking
for the minimum value possible for this dispersion. In addi-
For simplicity we have labeled these operators by a discretgon to its own interest, it will be necessary for the minimi-
k taking an arbitrary number of valuéé+ 1, but it must be zation of the average cost.
understood that it can be replaced throughout by a continu- The normalized distributio(N,k; 8) is given by
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N

- C= 3(E,E}+EIE 3.1
PINKO)=NNK) 2 g A o (N R i e, 2(BFet Baf) (319
n.n’=0 3.9 is the operator cosine of the phase difference introduced by
' Carruthers and Nietfl], which has the following eigenvec-
where tors and eigenvalues:
N 1 CIN,cody ;) =cody |N,cody ),
(N,k)= . (39
230 olyn 1% Ann(NK) 5= N
and IN,cody )= mﬂgo sin(n+1)6y,]|n,N—n),
(3.20
Apn(N,K)=(n,N—n[A(N,k)|n",N—n"). (3.10
with
This gives
an
6N,r=N+2r, r=12,...N+1. (3.21

N
()NO=2aNINK) 2 o Ao (NK) YY)
e (3.11) Since [(e'/Y(N'W| is the mean value o€ in the state de-
scribed byp (V9| its maximum valugminimum dispersion
The minimum ofD2(N,k) or, equivalently, the maximum is obtained whenp V% is formed by the eigenvector
of |(e'?)(N:¥| can be found by the method of Lagrange mul-with ~ the ~ maximum  eigenvalue  cég;, p"™
tipliers. Nevertheless, there is another procedure which pro=|N,cosy 1)(N,cos 4. In such a case we have
vides a better understanding of the result. We can note that

Eqg. (3.11) can be written formally as the following mean PO\ (NLK) _ i oK) ™
value: (e N=g o7 (3.22
(e'yNR =t p(NWE,ET], (3.12  and the minimum dispersion is
wherep(™'¥ is the normalized density matrix in tHeéy sub- T om
space, DRin(N)=1-cos > =sif—,  (3.23
N
which is reached whenever it is satisfied that
pMI=27NMINK) 3 [ N= g Ay o (NK) g
e pNk = el aim| N, cospy 1)(N, costy ole e,
x(n",N—n’|, (3.13 (3.29
andE,, E, are the Susskind-Glogower operators for any value ofS"K, WhenN>1 the limit of the resolu-
tion has the expected dependemrg,(N)o 7/N. The mini-
E[n)=[n—-1), E|0)=0. (3.14  mum detectable phase shift is of the order of the spacing of

. . . . _ the phase difference values™'¥'=2xk/(N+1) derived in
SinceA(N,k) is a positive operator measure it can be Ve”'Eq. (2.12 in the preceding section.

f'e(what Eq.(3.13 d?jfmesha Iegr([jlmlate dﬁgn(s,\"% magrlx. ) We have found that in order to achieve the minimum
e are interested in the modulus (°)™% and so it dispersion "X must be formed by a pure vector and then

will be convenient to extract its argument A(N.K) must be also formed by a pure vector
=argt[p™VEE]]}, A(N,K) [N, b ) (N, b N1 (3.25

(3.19  Given the definition3.13 of p™™¥ and the form(3.24) that
it must take in order to reach the minimum dispersion, the

5“\"")=ar41 dee'’P(N,k; 6)

and then coefficients in the number basis jpf) and |N,b™K) must
(@ 9>(N’k)=ei5(N,k)tr['5 (N,k)ElE;], (3.16 satisfy the relations
. m 0 o(NK)
where %N)* bﬁN’k)“S'r{(”“Ll)NjLz ind (3.26
~ (NK) — a—i8NWala; (Nk) i 6N Kala
P © sipe o (3.17 The limit (3.23 can be reached in principle by any detec-
Now the trace in Eq(3.16) is a positive real number and we tion scheme for those outcomes havbﬁ'k’;éo for all n if
have the input statg ) is prepared according to E¢3.26). In
general, for differenN,k these conditions will be incompat-
(eify(N k= gl 8™ (NI, (3.19 ible and the minimum will be reached only provided that just

a particular result is obtained. Nevertheless, if the measure-
where ment is that described by the vectd&13 or the positive
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operator measure formed by the vect¢®s18), it can be

verified that the condition3.26) can be satisfied for every  C,;,= 477( 1—<$|C0é|lﬂ>> =87 (4f|sir? il [).
N,k if we identify sM9 with ¢(NK or ¢, respectively. In N+2 2N+4
such a case the minimum dispersion is reached irrespectively (3.33

of the particular outcome obtained by means of a suitable

preparation of ) according to Eq(3.26).
Next we consider the minimization of the average cost
For this purpose we have to evaluate

® M
(@ =3 > | doe "™ PN k; 6)
N=0 k=0
) M 1 ~
:N§=:0 =0 MN,k) e*i(’(N’k)f doe!"P(N.k: ).

(3.27

The maximum possible value of the real part of

(/0= 0™y will give us the minimum average cost. In the
first place we can focus on thieintegration which just gives
Eq. (3.11. It must take its maximum modulus for every
N,k. We have found it to be Eq3.22 when Eq.(3.26 is
satisfied. In such a case we have

© M
L~ 1 ) ~ T
i(6—oMNKyy i(5(NK) — (N

(e ) N=0 goMN,k)e Ntz

(3.28

To obtain its maximum real part we can assume that the

estimated™ is naturally defined to be™:® [17]
"é<N'k>:5<N~k>=argUdoeiGP(N,k;e)}, (3.29
and we have that the minimum cost is associated with
© N M
(@ TN =27 S cog oD VP, Ana(NK).
N=0 +27= ' P& MM
(3.30

Using the resolution of the identity3.1), the sum overk
gives unity and we have

o N
i(g— Nk _ 77 (N)|2
(€ ) 277,\‘2:0 comgolwn |
=2 % PN sN—W
= WNZO #(N)co n

an
—27T<¢|005m|¢>- (3.3

where P,(N) is the probability of having a total photon
numberN in the statel) andN=ala,+aj}a, is the total

We recall that this minimum can be achieved provided
that one requirement is fulfilled. The dispersi@7) must

take its minimum valug3.23 for everyN,k. To reach this

minimum value the input vector and the measurement per-
formed must satisfy the relatia3.26 for everyN,k. It can

be checked that it does not matter whether the measurement
has discrete or continuous outcomes.

As we noted after Eq.3.26), this requirement is satisfied
when the measurement is described by the projection mea-
sure defined by the vectof2.13 and also when it corre-
sponds to the positive operator meas{#&d.7). According to
Egs.(3.26, (2.13, and(2.18 the input vector must be of the
form

=", cye'® VAN cosy ), (339
N=0

being an arbitrary superposition of rotated eigenvectors of
the cosine operatof3.19 with the eigenvalue cdg ;. In
such a case, from Eg$3.29, (3.19, and (3.26), the esti-

matesd™¥ are
_ 2
AN.K) = 6(N’k)=mk+ 5(N)_5'(N), (3.39

if the measurement is described by the vect@rg3, while
they are

§<N,¢):5<N,¢>:¢_5'<N>, (3.39

if the measurement corresponds to the vectdrs8). In both
the cases the estimates are given by the phase difference
variables¢'¥ and ¢, respectively.

This answers the question posed at the end of the preced-
ing section. We have found that the measurement with
countable outcomes described by the vect®sl3 can
reach the best possible accuracy of an arbitrary phase differ-
ence shift.

The minimum average co$8.33 still depends on the
total photon number distribution of the input veci@:.34).

We can optimize it constraining the total mean photon num-
ber to be some given integ\l (or its nearest integerThe
minimum is then obtained whe{rqb)=e‘5'(N)aIal|N,cos9N,1>

and Cp, takes the valueCy,=8 sinf[m/(2N+4)] which
scales as N2 for largeN.

We can note that there is some lack of symmetry between
the phase difference staté€a13 and(2.18), describing op-
timal detection schemes and the input si@&4) needed to
reach the best resolution available. This is merely an effect

photon number operator. From the resolution of the identityof the cost function used here which is based on the disper-

(3.2) it follows that

© M
f do>. D P(N,k;0) =2, (3.32
N=0 k=0

and we obtain that the minimum average cost is finally

sion. We have made such a choice because of its good prop-
erties. Nevertheless, the same analysis could be carried
out with a different cost function. The choice
c( N0 g)y=— (oW —g), for instance, corresponds to
the maximum likelihood and reciprocal peak criteria. It is not
difficult to show that this leads to the same conclusions in
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relation with the measurement providing the minimum costment coincides with the solution of a polar decomposition
which is obtained then when the input state is precisely dor a two-mode field.
phase difference stat@.13 or (2.18). A particular feature of this operator is that its eigenvalues
Finally we can point out that, since the subspagfg form a countable set which seems to be in contradiction with
have finite dimensioN+ 1, the conclusions of this and the the fact that a phase shift can take any value. This contradic-
preceding sections for the phase difference can be translatéidn is solved by the existence of an ultimate limit to the
straightforwardly to the azimuthal angle of an angular mo-accuracy achievable in the measurement of a phase differ-
mentumj if we restrict the analysis to a fixed value bf  ence shift. We have shown that this limit can be reached by
with N=2j. a measurement scheme having a countable set of outcomes
and, in particular, by the phase difference operator previ-
V. CONCLUSIONS ously found. Due to this limit, a discrete description of the
phase difference as a variable is consistent with the fact that
In this paper we have demonstrated that an optimum megt can take any value as a parameter since a measurement

surement of a phase shift provides a suitable quantum dggith continuously distributed outcomes cannot provide a bet-
scription of the phase as a variable. To examine the optimurfer estimation.

character of a measurement we have analyzed it from the
point of view of a quantum estimation problem. We have
applied this reasoning to the phase difference as being more
meaningful than the absolute phase. After imposing some
very general properties we have shown that this procedure A.L. acknowledges the support of a grant from the Direc-
leads to an operator description of this variable in the usuation General de InvestigaaioCientfica y Tecnica del Min-
quantum sense, contrary to what happens for the absolutsterio Espanl de Educacio y Ciencia and the kind hospi-
phase. Such an operator defined by an optimum measurtality from the Optics Department of the Paladkpiversity.
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