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Nonlinear coherent states
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We consider a class of nonlinear coherent states, which are right-hand eigenstates of the product of the
boson annihilation operator and a nonlinear function of the number operator. Such states may appear as
stationary states of the center-of-mass motion of a trapped and bichromatically laser-driven ion far from the
Lamb-Dicke regime. Besides coherence properties, they exhibit nonclassical features such as amplitude
squeezing and self-splitting, which is accompanied by pronounced quantum interference effects.
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Coherent states, defined as the right-hand eigenstatese techniques are needed which allow their reconstruction
|a@) of the non-Hermitian boson annihilation operatay  from measured dat§l3—-15. To record the full quantum
ala)=ala) [1], play an important role in quantum optics. statistical information on the NCS including the quantum
The development of lasers made it possible to prepare lighthterference fringes, a highly efficient method for determin-
fields which are very close to such states. Their behaviod the quantum mechanical state of a trapped ion has been
shows a close correspondence to that of a classical wavBroposed16], where the information on the motional state is
The mean amplitude of théelectric or magnetic field  transformed by appropriate bichromatic laser excitation of a
strength depends linearly on the eigenvaduand the corre- weak electronic transition onto the electronic-state dynamics,
sponding variance is insensitive to the amplitude, it is justvhich is subsequently probed by measuring the fluorescence
given by the variance in the vacuum state. of a strong electronic transition.

In the context of the quantum nature of light, coherent Let us consider the right-hand eigenstalgsf) of the
states appear to be of less interest. Over the last two decadegn-Hermitian operatof(n)a,
there have been several experimental demonstrations of non- A
classical effects, such as photon antibunchi@g, sub- f(malx:f)=xlx;f), (1)
Poissonian statisticg3,4], and squeezing5,6]. Moreover,
there exist interesting quantum effects, and related quantufjherea is the annihilation operator of the harmonic oscilla-

states that are hard to prepare and to detect, namely supgg; (f) is an operator-valued function of the number opera-
position states exhibiting quantum interference efféats ., A=a'a, and y is a complex eigenvalue. The notation

Such states display the striking consequences of the superr. ¢y jngicates the dependence of these states on the function
position principle of quantum mechanics. Transient elec

) . “(n). The ordinary coherent states are recovered for the spe-
tronic states of this type have recently been prepared via . ~ A
pulsed excitation of atomic Rydberg wave pack&is More- cial choice off (n) = 1. Ir_1 g(_ar_1eral, the features of those states
over, superpositions of coherent states can be prepared in tREC gxpected to alter S|gn|f|cant_ly in dependence on their ex-
motion of a trapped iof9,10]. With respect to the nonclas- citation, th!‘$ we call t_hem nonlinear coher_ent states.
sical effects, the coherent states turn out to define the limit AN explicit expression for the stafg;f) in the number
between the classical and nonclassical behavior, so that thégpresentatlon,
do not display any of these interesting features.

In the present contribution we will consider nonlinear co- R\ — .
herent stgteiNCS’s) of the harmonic oscillator and their |X’f>_§n: InXnlx: ), @
realization in the motion of a trapped atom. Such states
maintain typical features of the coherent states, such as the readily given by
localization of their phase-space distributions around their
(nonvanishing mean complex amplitude. On the other hand, g(n)
the NCS can display strongly nonclassical properties, such as (nlx; fy=N—x", 3
amplitude squeezing and quantum interferences. The latter ynt
occur due to self-splitting of these states into pure substates
which eventually gives rise to interferences of their ownwhere
structures. Particular representatives of these nonlinear co-

herent states emerge as stationary states of the motion of an 1 if n=0,
appropriately laser-driven trapped ion, which is in the re- ) on-1

solved sideband limit and far from the Lamb-Dicke regime. g(n)= H [f(k)]~t if n>0, )
These experimental requirements could be fulfilled using k=0

presently available trapped ion techniquek0—12. For
studying the properties of quantum states in detail, appropriand the normalization constant reads as
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The functionf(k) in Eq. (4) is simply derived from the op-
erator functionf(n) by replacing the number operatorby
the integek. It is seen from Eq(3) that the phase-sensitivity
of the NCS is determined by the phage of the complex
eigenvaluey, in close analogy to the situation for ordinary
coherent states. Thus it is expected that the NCS’s are lo- dp i . T w o~n . R
cated in the phase space around a prefg_rential phase value, as T %[H ntoP ]+ §(2A12I5A21— Ayp—pAs)),
should be the case for any state exhibiting some coherence. (12)
To get more insight in the features of such states, let us first

deal with a method of their generation in the motion of ayhere the last term describes spontaneous emission with en-

trapped ion{17]. . _ , _ ergy relaxation ratd’, and
Consider a single ion trapped in a harmonic potenfi&]

of frequencyr and interacting with two laser fields, tuned, ~ 11 i p(a+aT)sA i p(3+aT)s

respectively, to an electronic transition of frequensy; and p= EjfldSV\(S)e pe (13

to the (first) lower vibrational sideband with respect to that

transition. In the optical rotating-wave approximation theaccounts for changes of the vibrational energy due to spon-

Q, and(, are the Rabi frequency of the lasers tuned to the
electronic transition and the first sideband, respectively.

The time evolution of the system is characterized by the
master equation

Hamiltonian of this system may be given as taneous emission(s) is the angular distribution of spon-
L R taneous emission angthe vibronic density operator.
H=Hgy+H(t), (6) The stationary solutiop, of Eq. (12) can be found by
settingdp/dt=0 on its left-hand side. This yields
where R
ps=|1)[)(€(1], (14)

VL ot .

Ho=Ava'a+hoahz ™ where|1) is the electronic ground state ahg) is a vibra-
describes the free motion of the internal and external degredi®n@l right-hand eigenstate of the operaforgiven in Eq.
of freedom of the ion, and (12),

Hin( 1) = N[ Ege ™ (ko020 4 Eye i (o2 M)A+ Hic. Fley=¢lé), ¢=-5 - 19
8 1

_ ) _ ) _ Note that the ion stops to interact with the laser fields when
the interaction of the ion with the laser fields. The operators; yeaches the steady-state and remains in a “dark-state”
a andA;; (i,j=1,2), respectively, are the annihilation op- [22]. This ensures a high stability of the state, since any
erator of a quantum of the ionic vibrational motion and theperturbation switches on the interaction with the lasers,
electronic(two-leve) flip operator for thej)—|i) transition,  \hich restores the state.

\ is the electronic couplm_g_matrlx ele_ment, akgl.k, are Using Egs.(1)—(5) it is straightforward to show tha)
the wave vectors of the driving laser fields. The operator Obelongs to the class of NCS considered above,
the center-of-mass positionmay be written as

1&=x:1), (16)
x= T (a+ah), 9  with
L

Qg
7 being the Lamb-Dicke parameter akg~ky=~Kk; . X=_q (17

In the resolved sideband limit the vibrational frequency Kt
v is much larger than the characteristic frequencies of the F(k) =LY D[ (k+1)Lo(52)] (18)

=Lk k '

interaction problem. In the interaction picture, one may use a
vibrational rotating wave approximation and neglect the con
tributions of all those terms quickly rotating with the fre-
guencyw. This allows us to treat the interaction of the ion
with the two lasers separately, using a nonlinear Jayne
Cummings Hamiltoniar{19—21 for each coupling. Thus,
the interaction Hamiltoniai8) simplifies to

wherelL] is an associated Laguerre polynomial. It is note-
worthy that the statgf) represents the exact stationary solu-
tion of the master equatiofi2), valid for arbitrary values of
$he Lamb-Dicke parameter.

The properties of the particular NGg) will depend on
the nonlinear functionf(k), characterized by the Lamb-
Dicke parameter;. Moreover, the state depends on the com-
ﬁi,nt:ﬁﬂle, ,,2/2A21( F+ (ﬂ) +HC. (10) plex eigenva_lue(, which is controlled by the amplitudes and

Q the phase difference of the two lasers. In order to get some
R insight in the behaviour of the stat¢), we show in Fig. 1

where the operatdf is given by the coefficientg(n)/+/n!, appearing in Eq(3), for various
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FIG. 1. The functiorg(n)/(n!)*? according to Eq(4) together
with Eq. (18) is shown for various values of;. Curve (1),
7=0.01; curve (2), =0.33; curve (3), »=0.6; curve (4),
n=0.8.

values of . In the Lamb-Dicke regime, wherg<1, this
coefficient reduces to {h! corresponding to an ordinary
coherent state. When increasesg(n)/+/n! is no longer a
monotone function oh and displays several local maxima.
For a given parametey, the properties of the stat&) will
therefore depend on the value pin a rather complex, non-
linear manner.

For an appropriately chosen value pthe number distri-

Re(a) 4

FIG. 3. Wigner function of the NCS|¢) for %=0.33,
|x|=2.3, ande, = /2.

maximum are strongly suppressed, cf. Fig. 1. Consequently,
a NCS of this type may display amplitude squeezing. Chang-
ing the excitation somewhat, it may split into two well sepa-
rated peaks. This yields a coherent superposition of two
quantum states, appearing due to self-splitting of the NCS,
giving rise to quantum interference effects. For sufficiently
large values of the Lamb-Dicke parametgrwhere the ex-
pansion coefficients are strongly structured, even a multiple
splitting of the NCS can occur. This gives rise to rich struc-
tures of the phase-space distributions.

In Fig. 2 we show the Wigner function for a typical NCS
that exhibits strong amplitude squeezingi(An)?)
=0.0%n). Moreover, this state has a large coherent ampli-
tude. To achieve such a single-peaked state the Lamb-Dicke
parameter should not be too large. Otherwise several maxima
of the expansion coefficients are close together and the NCS
exhibits more complex structures.

When the excitation of the state given in Fig. 2 is some-
what decreased, the NCS exhibits a two-peak structure as

bution P,,=|(n|&)[? of the state can be localized rather close
to one local maximum of the expansion coefficient, which
gives rise to a narrow distribution since the probabilities for ;,
the occupation of number states somewhat apart from thi
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FIG. 4. Contour plot of theQ function of the NCS|¢&) for
FIG. 2. Wigner function for the NCS|¢) for %=0.33, 7=0.82,|x|=1.1, ande,= /2 . Light regions indicate large val-
|x|=2.6, ande, = /2. ues of the function.
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shown in Fig. 3. As expected, both peaks are centered in theal properties of coherent states such as the localization of
phase space at the same phase angle. They are well separatesir phase-space distributions around a nonvanishing mean
from each other since the expansion coefficients are vergoherent amplitude. Moreover, these coherence effects may
small between the two local maxima. Therefore, the numbepe accompanied by nonclassical effects such as strong am-
distributions are essentially nonoverlapping so that the NC$litude squeezing and self-splitting into two or more sub-
effectively represents a quantum superposition of two parstates, which eventually gives rise to pronounced quantum
tially coherent states, occurring due to self-splitting of thejnterferences. Such states could be generated as stationary
state. , _ _ states of the center-of-mass motion of a laser-driven trapped
_Let us finally consider a typical example for an NCS exX-jq, in the resolved sideband regime and far from the Lamb-
hibiting more structures, as it can be 0t_>ta|ned for larger valpyi e limit. When the motional state is prepared in an NCS,
ues of the Lamb-Dicke parameter In Fig. 4 we show the 0 jon is decoupled from the driving laser fields. Conse-

infurl;lctrI]OI’l of ESCh r?t qi;'antumriititie’n\”hfh 5’ ::eintfnrelci{[ a; uently, any perturbation of the corresponding motional state
given pnase and contains co utions at several amplitudeps, 4 1o the switching on of the interaction yielding a self-

Tthe qutz;nt:Jm |ntet:er?ncet.effe_ctstlnherlenttln t,["S Z'L?Ffdgre *Qabilization of the NCS. In view of their interesting proper-
slrong a e\ll?n I'@ émc lon 1S srr]ong);sl;ruc ured, It IS- Ities, states of that type might be of more general interest,
plays several localized regions where it becomes extreme X.g., in the context of optical and microwave fields or for

small. This is due to the fact that the separate peaks of thﬁmlecular vibrations. Eventually, they turned out to be of

number distribution of that state are rather close together, a&eneral interest from the point of view of quantum groups
suggested by Fig. 1. '

In summary we have considered nonlinear coherent states This research was supported by the Deutsche Fors-
showing strongly nonclassical features. They maintain typichungsgemeinschatft.
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