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We consider a class of nonlinear coherent states, which are right-hand eigenstates of the product of the
boson annihilation operator and a nonlinear function of the number operator. Such states may appear as
stationary states of the center-of-mass motion of a trapped and bichromatically laser-driven ion far from the
Lamb-Dicke regime. Besides coherence properties, they exhibit nonclassical features such as amplitude
squeezing and self-splitting, which is accompanied by pronounced quantum interference effects.
@S1050-2947~96!08811-7#

PACS number~s!: 42.50.Dv, 03.65.Db, 32.80.Pj, 42.50.Vk

Coherent states, defined as the right-hand eigenstates
ua& of the non-Hermitian boson annihilation operatorâ,
âua&5aua& @1#, play an important role in quantum optics.
The development of lasers made it possible to prepare light,
fields which are very close to such states. Their behavior
shows a close correspondence to that of a classical wave.
The mean amplitude of the~electric or magnetic! field
strength depends linearly on the eigenvaluea and the corre-
sponding variance is insensitive to the amplitude, it is just
given by the variance in the vacuum state.

In the context of the quantum nature of light, coherent
states appear to be of less interest. Over the last two decades
there have been several experimental demonstrations of non-
classical effects, such as photon antibunching@2#, sub-
Poissonian statistics@3,4#, and squeezing@5,6#. Moreover,
there exist interesting quantum effects, and related quantum
states that are hard to prepare and to detect, namely super-
position states exhibiting quantum interference effects@7#.
Such states display the striking consequences of the super-
position principle of quantum mechanics. Transient elec-
tronic states of this type have recently been prepared via
pulsed excitation of atomic Rydberg wave packets@8#. More-
over, superpositions of coherent states can be prepared in the
motion of a trapped ion@9,10#. With respect to the nonclas-
sical effects, the coherent states turn out to define the limit
between the classical and nonclassical behavior, so that they
do not display any of these interesting features.

In the present contribution we will consider nonlinear co-
herent states~NCS’s! of the harmonic oscillator and their
realization in the motion of a trapped atom. Such states
maintain typical features of the coherent states, such as the
localization of their phase-space distributions around their
~nonvanishing! mean complex amplitude. On the other hand,
the NCS can display strongly nonclassical properties, such as
amplitude squeezing and quantum interferences. The latter
occur due to self-splitting of these states into pure substates
which eventually gives rise to interferences of their own
structures. Particular representatives of these nonlinear co-
herent states emerge as stationary states of the motion of an
appropriately laser-driven trapped ion, which is in the re-
solved sideband limit and far from the Lamb-Dicke regime.
These experimental requirements could be fulfilled using
presently available trapped ion techniques@10–12#. For
studying the properties of quantum states in detail, appropri-

ate techniques are needed which allow their reconstruction
from measured data@13–15#. To record the full quantum
statistical information on the NCS including the quantum
interference fringes, a highly efficient method for determin-
ing the quantum mechanical state of a trapped ion has been
proposed@16#, where the information on the motional state is
transformed by appropriate bichromatic laser excitation of a
weak electronic transition onto the electronic-state dynamics,
which is subsequently probed by measuring the fluorescence
of a strong electronic transition.

Let us consider the right-hand eigenstatesux; f & of the
non-Hermitian operatorf̂ (n̂)â,

f̂ ~ n̂!âux; f &5xux; f &, ~1!

whereâ is the annihilation operator of the harmonic oscilla-
tor, f̂ (n̂) is an operator-valued function of the number opera-
tor n̂5â†â, and x is a complex eigenvalue. The notation
ux; f & indicates the dependence of these states on the function
f̂ (n̂). The ordinary coherent states are recovered for the spe-
cial choice off̂ (n̂)51̂. In general, the features of those states
are expected to alter significantly in dependence on their ex-
citation, thus we call them nonlinear coherent states.

An explicit expression for the stateux; f & in the number
representation,

ux; f &5(
n

un&^nux; f &, ~2!

is readily given by

^nux; f &5N
g~n!

An!
xn, ~3!

where

g~n!5H 1 if n50,

)
k50

n21

@ f ~k!#21 if n.0,
~4!

and the normalization constant reads as
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n!
ug~n!u2G2 1/2

. ~5!

The functionf (k) in Eq. ~4! is simply derived from the op-
erator functionf̂ (n̂) by replacing the number operatorn̂ by
the integerk. It is seen from Eq.~3! that the phase-sensitivity
of the NCS is determined by the phasewx of the complex
eigenvaluex, in close analogy to the situation for ordinary
coherent states. Thus it is expected that the NCS’s are lo-
cated in the phase space around a preferential phase value, as
should be the case for any state exhibiting some coherence.
To get more insight in the features of such states, let us first
deal with a method of their generation in the motion of a
trapped ion@17#.

Consider a single ion trapped in a harmonic potential@18#
of frequencyn and interacting with two laser fields, tuned,
respectively, to an electronic transition of frequencyv21 and
to the ~first! lower vibrational sideband with respect to that
transition. In the optical rotating-wave approximation the
Hamiltonian of this system may be given as

Ĥ5Ĥ01Ĥ int~ t !, ~6!

where

Ĥ05\nâ†â1\v21Â22 ~7!

describes the free motion of the internal and external degrees
of freedom of the ion, and

Ĥ int~ t !5l@E0e
2 i ~k0x̂2v21t !1E1e

2 i [k1x̂2~v212n!t] #Â121H.c.
~8!

the interaction of the ion with the laser fields. The operators
â and Âi j ( i , j51,2), respectively, are the annihilation op-
erator of a quantum of the ionic vibrational motion and the
electronic~two-level! flip operator for theu j &→u i & transition,
l is the electronic coupling matrix element, andk0 ,k1 are
the wave vectors of the driving laser fields. The operator of
the center-of-mass positionx̂ may be written as

x̂5
h

kL
~ â1â†!, ~9!

h being the Lamb-Dicke parameter andkL'k0'k1 .
In the resolved sideband limit the vibrational frequency

n is much larger than the characteristic frequencies of the
interaction problem. In the interaction picture, one may use a
vibrational rotating wave approximation and neglect the con-
tributions of all those terms quickly rotating with the fre-
quencyn. This allows us to treat the interaction of the ion
with the two lasers separately, using a nonlinear Jaynes-
Cummings Hamiltonian@19–21# for each coupling. Thus,
the interaction Hamiltonian~8! simplifies to

Ĥ int8 5\V1e
2h2/2Â21S F̂1

V0

V1
D1H.c., ~10!

where the operatorF̂ is given by

F̂5 (
k50

`
~ ih!2k11

k! ~k11!!
~ â†!kâk111

V0

V1
(
k51

`
~ ih!2k

~k! !2
~ â†!kâk,

~11!

V0 andV1 are the Rabi frequency of the lasers tuned to the
electronic transition and the first sideband, respectively.

The time evolution of the system is characterized by the
master equation

dr̂

dt
52

i

\
@Ĥ int8 ,r̂ #1

G

2
~2Â12r̂̃Â212Â22r̂2 r̂Â22!,

~12!

where the last term describes spontaneous emission with en-
ergy relaxation rateG, and

r̂̃5
1

2E21

1

dsW~s!eih~ â1â†!sr̂e2 ih~ â1â†!s ~13!

accounts for changes of the vibrational energy due to spon-
taneous emission.W(s) is the angular distribution of spon-
taneous emission andr̂ the vibronic density operator.

The stationary solutionr̂s of Eq. ~12! can be found by
settingdr̂/dt50 on its left-hand side. This yields

r̂s5u1&uj&^ju^1u, ~14!

where u1& is the electronic ground state anduj& is a vibra-
tional right-hand eigenstate of the operatorF̂ given in Eq.
~11!,

F̂uj&5juj&, j52
V0

V1
. ~15!

Note that the ion stops to interact with the laser fields when
it reaches the steady-state and remains in a ‘‘dark-state’’
@22#. This ensures a high stability of the state, since any
perturbation switches on the interaction with the lasers,
which restores the state.

Using Eqs.~1!–~5! it is straightforward to show thatuj&
belongs to the class of NCS considered above,

uj&[ux; f &, ~16!

with

x5
iV0

hV1
, ~17!

f ~k!5Lk
1~h2!@~k11!Lk

0~h2!#21, ~18!

whereLm
n is an associated Laguerre polynomial. It is note-

worthy that the stateuj& represents the exact stationary solu-
tion of the master equation~12!, valid for arbitrary values of
the Lamb-Dicke parameter.

The properties of the particular NCSuj& will depend on
the nonlinear functionf (k), characterized by the Lamb-
Dicke parameterh. Moreover, the state depends on the com-
plex eigenvaluex, which is controlled by the amplitudes and
the phase difference of the two lasers. In order to get some
insight in the behaviour of the stateuj&, we show in Fig. 1
the coefficientg(n)/An!, appearing in Eq.~3!, for various
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values ofh. In the Lamb-Dicke regime, whereh!1, this
coefficient reduces to 1/An! corresponding to an ordinary
coherent state. Whenh increases,g(n)/An! is no longer a
monotone function ofn and displays several local maxima.
For a given parameterh, the properties of the stateuj& will
therefore depend on the value ofx in a rather complex, non-
linear manner.

For an appropriately chosen value ofx the number distri-
butionPn5 z^nuj& z2 of the state can be localized rather close
to one local maximum of the expansion coefficient, which
gives rise to a narrow distribution since the probabilities for
the occupation of number states somewhat apart from the

maximum are strongly suppressed, cf. Fig. 1. Consequently,
a NCS of this type may display amplitude squeezing. Chang-
ing the excitation somewhat, it may split into two well sepa-
rated peaks. This yields a coherent superposition of two
quantum states, appearing due to self-splitting of the NCS,
giving rise to quantum interference effects. For sufficiently
large values of the Lamb-Dicke parameterh, where the ex-
pansion coefficients are strongly structured, even a multiple
splitting of the NCS can occur. This gives rise to rich struc-
tures of the phase-space distributions.

In Fig. 2 we show the Wigner function for a typical NCS
that exhibits strong amplitude squeezing:̂(Dn̂)2&
50.07̂ n̂&. Moreover, this state has a large coherent ampli-
tude. To achieve such a single-peaked state the Lamb-Dicke
parameter should not be too large. Otherwise several maxima
of the expansion coefficients are close together and the NCS
exhibits more complex structures.

When the excitation of the state given in Fig. 2 is some-
what decreased, the NCS exhibits a two-peak structure as

FIG. 2. Wigner function for the NCSuj& for h50.33,
uxu52.6, andwx5p/2.

FIG. 3. Wigner function of the NCSuj& for h50.33,
uxu52.3, andwx5p/2.

FIG. 4. Contour plot of theQ function of the NCSuj& for
h50.82, uxu51.1, andwx5p/2 . Light regions indicate large val-
ues of the function.

FIG. 1. The functiong(n)/(n!) 1/2 according to Eq.~4! together
with Eq. ~18! is shown for various values ofh. Curve ~1!,
h50.01; curve ~2!, h50.33; curve ~3!, h50.6; curve ~4!,
h50.8.
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shown in Fig. 3. As expected, both peaks are centered in the
phase space at the same phase angle. They are well separated
from each other since the expansion coefficients are very
small between the two local maxima. Therefore, the number
distributions are essentially nonoverlapping so that the NCS
effectively represents a quantum superposition of two par-
tially coherent states, occurring due to self-splitting of the
state.

Let us finally consider a typical example for an NCS ex-
hibiting more structures, as it can be obtained for larger val-
ues of the Lamb-Dicke parameterh. In Fig. 4 we show the
Q function of such a quantum state, which is centered at a
given phase and contains contributions at several amplitudes.
The quantum interference effects inherent in this state are so
strong that even theQ function is strongly structured; it dis-
plays several localized regions where it becomes extremely
small. This is due to the fact that the separate peaks of the
number distribution of that state are rather close together, as
suggested by Fig. 1.

In summary we have considered nonlinear coherent states
showing strongly nonclassical features. They maintain typi-

cal properties of coherent states such as the localization of
their phase-space distributions around a nonvanishing mean
coherent amplitude. Moreover, these coherence effects may
be accompanied by nonclassical effects such as strong am-
plitude squeezing and self-splitting into two or more sub-
states, which eventually gives rise to pronounced quantum
interferences. Such states could be generated as stationary
states of the center-of-mass motion of a laser-driven trapped
ion, in the resolved sideband regime and far from the Lamb-
Dicke limit. When the motional state is prepared in an NCS,
the ion is decoupled from the driving laser fields. Conse-
quently, any perturbation of the corresponding motional state
leads to the switching on of the interaction yielding a self-
stabilization of the NCS. In view of their interesting proper-
ties, states of that type might be of more general interest,
e.g., in the context of optical and microwave fields or for
molecular vibrations. Eventually, they turned out to be of
general interest from the point of view of quantum groups.
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