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In this paper it is shown that the Lyman-a transition of a single hydrogenlike system driven by a laser
exhibits macroscopic dark periods, provided there exists an additional constant electric field. We describe the
photon-counting process under the condition that the polarization of the laser coincides with the direction of
the constant electric field. The theoretical results are given for the example of4He1. We show that the
emission behavior depends sensitively on the Lamb shift@W. E. Lamb and R. C. Retherford, Phys. Rev.72,
241~1947!# between the 2s1/2 and 2p1/2 energy levels. A possibly realizable measurement of the mean duration
of the dark periods should give quantitative information about the above energy difference by using the
proposed photon-counting process.@S1050-2947~96!08611-8#

PACS number~s!: 42.50.Lc, 42.50.Md, 32.90.1a

I. INTRODUCTION

For the first time coherence effects in hydrogenlike sys-
tems were found by the observation of quantum beats~Stark
beats! in the Lyman-a transition @1#. In these experiments
only the metastable 2s state of atomic hydrogen is initially
populated. Switching on a constant electric field leads to a
build-up of a coherent superposition of the upper 2p and
2s levels, and the radiative decay shows an interference pat-
tern known as quantum beats.

This uncommon behavior of hydrogenlike systems sug-
gests that interesting effects may occur if the Lyman-a tran-
sition is driven by monochromatic laser light and if an addi-
tional constant electric field leads to a coherence between the
upper levels 2p and 2s. We show that the resulting photon-
counting process is similar to the one predicted by Dehmelt
@2# for a different system with two excited states, one rapidly
decaying and the other metastable, driven by two lasers.
Semiclassically one expects for the Dehmelt system periods
of constant fluorescence intensity due to the strong transition
~light period!, interrupted by periods of zero intensity, while
the atomic electron is shelved in the metastable state~dark
period!. These photon statistics have been observed experi-
mentally@3#, and the above semiclassical idea has been ana-
lyzed quantum mechanically@4–6#. In an alternative experi-
ment Hulet and Wineland proved the existence of
macroscopic dark periods in the fluorescence intensity of a
single ion influenced by a magnetic field, when a single laser
is tuned near one of the principal transition resonances@7#.
Hegerfeldt and Plenio@8# proposed another mechanism for
dark periods that is not based on the existence of a meta-
stable state. They studied a three-level atom with two strong
electric-dipole transitions to one common ground state,
driven by a single laser. The existence of macroscopic dark
periods in the fluorescence light is due to a quantum coher-
ence effect. The premise is a very small energy separation of
the upper levels in conjunction with parallel transition dipole
moments. Because of this an experimental realization of the
latter physical system seems to be difficult@9#.

In this paper we discuss the photon-counting process of a
single hydrogenlike system, driven by a single linearly po-
larized laser and additionally influenced by a constant elec-

tric field. As for the Dehmelt system, there exists a semiclas-
sical explanation for the occurrence of macroscopic dark
periods in the emission process of the hydrogenlike system
as follows. The strong Lyman-a transition (2p→1s) is
driven by the laser light. Because of this we expect a con-
stant fluorescence intensity. The constant electric field leads
to the possibility that the atomic electron makes a transition
from the 2p to the 2s energy level. In this case we have zero
intensity ~dark period!, because a dipole transition to the
1s ground state is impossible. However, due to the constant
electric field, there exists the possibility that the atomic elec-
tron gets out of the 2s back into the 2p energy level, and the
emission process starts again. By the quantum-mechanical
treatment of the problem we show that under the assumption
that the polarization of the laser coincides with the direction
of the constant electric field the above semiclassical expla-
nation describes the photon-emission process qualitatively
@10#.

As will be seen later, one can regulate the mean duration
of the dark and light periods almost independently by vary-
ing the intensity of the laser beam and the strength of the
constant electric field. The mean duration of the dark periods
depends sensitively on the Lamb shift@11# between the
2s1/2 and 2p1/2 energy level. A possibly realizable measure-
ment of this mean duration, as it was done in the experiments
@3,7# in the case of other systems, should give quantitative
information about the above energy difference. We show that
there exists a correspondence between this system and the
above mentioned mechanism of macroscopic dark periods
without a metastable state@8#.

II. QUANTUM-MECHANICAL DESCRIPTION
OF THE PHOTON-COUNTING PROCESS

We consider a single hydrogenlike system without hyper-
fine structure@12# driven by a single linearly polarized laser
with electric fieldFL and additionally influenced by a weak
constant electric fieldF. The laser is supposed to be tuned
near the 2p1/2→1s1/2 transition resonance. The Hamiltonian
in dipole form for the atom interacting with the quantized
radiation field is given by
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HereHA is the atomic fine-structure Hamiltonian@13#. We
assume the Lamb shift to be incorporated inHA @14#. As in
Fig. 1 the relevant atomic eigenstates with positive magnetic
quantum number are labeled fromu1& to u5&. For everyu i &
( i51, . . . ,5) with positive magnetic quantum numbermi ,
there exists a corresponding atomic eigenstate with the same
principal quantum number, the same total angular-
momentum quantum number, the same parity and the mag-
netic quantum number2mi , which we denote byu2 i &.
Then the atomic Hamiltonian is given by

HA5 (
u i u51

5

\v i1u i &^ i u, ~2!

wherev i j is the transition frequency between the statesu i &
and u j &. Note thatu i u.u j u impliesv i1>v j1.

To describe the photon-counting process one needs the
probability densityw(t1 , . . . ,tN ;@ t0 ,t#) for finding exactly
N photons at timest1,•••,tN in the interval@ t0 ,t#. We
assume that the initial state of the complete system is
uV&^Vu ^ r(t0), where uV& is the vacuum of the quantized
radiation field, andr(t0) is the initial atomic density opera-
tor. The probability densityw is of the form@15–17#

w~ t1 , . . . ,tN ;@ t0 ,t# !5Tr@Ŝ~ t,tN!ĴŜ~ tN ,tN21!

3••• ĴŜ~ t1 ,t0!r~ t0!#, ~3!

where Ŝ(t,t8) and Ĵ are atomic superoperators. Using
the quantum jump approach@5# ~which is essentially equi-
valent to the Monte Carlo wave-function approach@18#
and to the use of quantum trajectories@19#! Hegerfeldt@17#
has determined the superoperatorsĴ and Ŝ(t,t8) for an
arbitrary atom. Considering Refs.@5,17# one finds that
uV&^Vu ^ @ Ĵr(t)/Tr(•)# is the state right after the detection
of a photon, provided we have a measurement by absorption,
which we assume from now on. There exists a nonunitary
atomic operatorUc(t,t0), the so called conditional~reduced!
evolution operator, describing the time development of an
atom under the condition that no photon is observed in the
time interval @ t0 ,t#, and Ŝ(t,t0) is given by
Ŝ(t,t0)r(t0)5Uc(t,t0)r(t0)Uc(t,t0)

†. The conditional evo-
lution operator is generated by the conditional Hamiltonian
Hc and withDi j[^ i uDu j &, the generalized damping terms

G i jkl[
e2

6p«0\c
3Di j •Dkluvklu3 ~4!

and the decay matrix

G[ (
u i u,u j u,uku51
u i u,uku.u j u

5

G i j jk u i &^ku ~5!

one finds following Refs.@5,17# thatHc is given by

Hc5HA1eD•@FL~ t !1F#2 i\G. ~6!

For the reset operatorĴ one obtains@17#

Ĵr5 (
i jkl

u i u.u j u
uku.u l u

~G j ikl1Gkl j i !^ i uruk&u j &^ l u. ~7!

The above operatorsHc and Ĵ are rather complicated in
the case of our ten level hydrogenlike system. There are
three main difficulties in calculating the probability density
Eq. ~3! as follows. The superoperatorĴ generally carries
pure states into statistical mixtures of the two ground states
u1&, u21&, with in general nonzero off-diagonal matrix
elements. The state right after the detection of a photon
uV&^Vu ^ @ Ĵr(t)/Tr(•)# generally depends onr(t) @20#. The
superoperatorsĴ andŜ(t,t8) act on a 100 dimensional vector
space. In the next section we show a way out of these diffi-
culties.

III. SYMMETRY CONSIDERATIONS

Here we make the assumption that the laser light is
linearly polarized with polarization in the same direction
as the constant electric field,F5Fez and FL(t)
5FLcos(vLt1wL)ez . Therefore we have an invariance of the
Hamiltonian Eq.~1! with respect to the group O~2! of those
orthogonal transformations which leave thez-axis invariant.
The results of the following symmetry considerations are
given at the end of this section.

By T we denote the standard double-valued representation
of the group O~2! on the atomic Hilbert space. The invari-
ance of the Hamiltonian Eq.~1! leads to

FIG. 1. Relevant energy levels of4He1. The fine structure fre-
quency between the 2p3/2 and the 2p1/2 energy level is given by
1.7531011 Hz, while the Lamb shift frequency between the 2s1/2
and the 2p1/2 energy levels is 1.431010 Hz. In addition
g51010 s21 is the Einstein coefficient of the Lyman-a transition.
Note that the above Lamb shift splitting is appreciably larger than
g.

4554 54THORSTEN KÖHLER



T~g!~ Ĵr!T~g!†5 Ĵ@T~g!rT~g!†# ~8!

for every group elementg and to the analogous equation for
Ŝ(t,t8). Special elements of O~2! are given byD(w), the
rotation through the anglew about thez-axis, and byS, the
reflection in they-z plain. One can show that the projector
P̂(0) onto the subspace of the scalar operators with respect to
the group O~2! is given by@21#

P̂~0!r5
1

4pE0
2p

dw@T„D~w!…rT„D~w!…†

1T„D~w!…T~S!rT~S!†T„D~w!…†#

5
1

2 (
i , j.0
mi5mj

~^ i uru j &1« i* « j^2 i uru2 j &!

3~ u i &^ j u1« i« j* u2 i &^2 j u!, ~9!

where r is an arbitrary atomic operator and« i is a phase
factor with the propertyT(S)u i &5« i u2 i &. Using the cyclic
invariance of the trace and Eq.~3!, Eq. ~8! we obtain

w~ t1 , . . . ,tN ;@ t0 ,t# !5Tr@Ŝ~ t,tN!ĴŜ~ tN ,tN21!

3••• ĴŜ~ t1 ,t0!P̂
~0!r~ t0!#. ~10!

Since the atomic state right after the detection of a photon is
a statistical mixture of the ground statesu1&, u21& one finds

ĴP̂~0!r5Tr~ Ĵr!r r ~11!

with the scalar operator

r r5
1

2
~ u1&^1u1u21&^21u!. ~12!

From Eq. ~8! we also know thatĴ and Ŝ(t,t8) leave the
subspace of the scalar operators invariant, and using addi-
tionally Eq. ~11! we come to the conclusion that the prob-
ability density Eq.~3! factorizes into single-photon prob-
abilities

w~ t1 , . . . ,tN ;@ t0 ,t# !

5Tr@Ŝ~ t,tN!r r #Tr@ ĴŜ~ tN ,tN21!r r #•••Tr@ ĴŜ~ t2 ,t1!r r #

3Tr@ ĴŜ~ t1 ,t0!P̂
~0!r~ t0!#. ~13!

From this we see that the photon-counting process is
governed byP0(t), the probability density of counting
no photons untilt starting with the ground state, since
2 Ṗ0(t2t8)5Tr@ ĴŜ(t,t8)r r # @17#. The conditional evolu-
tion operatorUc(t,t8) is a scalar operator and from Eq.~9!
one obtains thatUc(t,t8) leaves the atomic subspace gener-
ated by the states with positive magnetic quantum num-
ber invariant. Using the definition ofr r , the relation
T(S)u1&^1uT(S)†5u21&^21u, the fact thatUc(t,t8) com-
mutes withT(S) and the cyclic invariance of the trace we
obtain

P0~ t !5Tr@Ŝ~ t,0!r r #5Tr@Uc~ t,0!r rUc~ t,0!†#

5iUc~ t,0!u1&i2. ~14!

Therefore we only have to consider the atomic states with
positive magnetic quantum number. By a similar reasoning it
is easy to check that the latter is also true in the more gen-
eral case of the first single-photon probability
Tr@ ĴŜ(t1 ,t0) P̂

(0)r(t0)# in Eq. ~13!.
Because of our symmetry assumption the original ten-

level atom behaves like a five-level system with a single
ground state@22#. In the special case of the spontaneous
Lyman-a transition influenced by the Stark effect this agrees
with the previous results in literature~see, for example,@23#!.
Starting with the state right after the detection of a photon
even the stateu5& drops out, because it is coupled neither by
the laser nor by the constant electric field. Going over to an
interaction picture the explicit time dependence ofHc in Eq.
~6! vanishes. We introduce the operator

M[
i

\
Hc5S 0 i

VL

2
0 2 i

VL

A2

i
VL

2

g

2
2 iD2 iV 0

0 iV 2 iD3 2 iA2V

2 i
VL

A2
0 2 iA2V

g

2
2 iD4

D
~15!

in matrix form with respect to the atomic basisu1&, u2&,
u3&, u4&, whereg is the Einstein coefficient of the Lyman-
a transition,VL[(e/\)FL^2uzu1& is the real Rabi frequency
of the laser with respect to the 2p1/2→1s1/2 transition,
V[(e/\)F^2uzu3& is the analogous real constant of the con-
stant electric field andD i[vL2v i1 is the detuning of the
laser with respect to the stateu i &. Then we finally have
P0(t)5ie2Mtu1&i2 @24#.

IV. EMISSION BEHAVIOR

We assume the laser to be tuned near the 2p1/2→1s1/2
transition resonance, such thatuD2u<g. In this case\uD3u is
essentially given by the Lamb shift between the 2s1/2 and
2p1/2 energy level, anduD4u is a fine structure frequency,
which leads touD3u!uD4u. We also assume the electric fields
to be chosen to satisfy the relationuVu!uVLu,uD3u. We
approximate the functionP0(t) by means of a perturbative
approach based on the book of Kato@25#. Since additionally
the 2p3/2 level couples weakly to the laser, we have two
perturbation parametersV/D3 andVL /D4. PuttingV50 in
Eq. ~15! we denote the resulting operator byM (0), and we
defineM (1)[M2M (0). There exists a decomposition of the
form

M ~0!5L1
~0!P1

~0!1l2
~0!P2

~0!1l3
~0!P3

~0! , ~16!

wherel2
(0)[2 iD3 is one of the eigenvalues, another one is

given by
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l3
~0!'

g

2
2 iD4 ~17!

in first order inVL /D4 andPi
(0) , i52,3 are the respective

eigenprojectors, and we defineP1
(0)[12P2

(0)2P3
(0) . The

operatorL1
(0) is chosen to commute withP1

(0) . We obtain for
L1
(0) in first order inVL /D4 the result

2 i\L1
~0!'\

VL

2
~ u2&^1u1u1&^2u!2 i\S g

2
2 iD2D u2&^2u.

~18!

Note that the right-hand side of Eq.~18! is the conditional
Hamiltonian of a two-level atom@5,17#. In an analogous
manner we can decompose the operatorM in the form

M5L1P11l2P21l3P3 ~19!

with eachPi corresponding toPi
(0) , and we have

e2Mtu1&5e2L1tP1u1&1e2l2tP2u1&1e2l3tP3u1&. ~20!

The main idea of our perturbative approach is to approximate
L1, l2, l3 and the respective projectors separately with the
aid of Ref.@25#. First of all we are interested in the behavior
of P0(t) assumingt@g21. By using Eqs.~17! and~18! one
can verify that the first and the third term in Eq.~20! decay
exponentially on the time scaleg21 while in first order in
V/D3 the real part ofl2 vanishes. Because of this we only
have to approximate Re(l2) and iP2u1&i2. In first order in
V/D3 we have

P2u1&'2P2
~0!M ~1!@M ~0!2l2

~0!~12P2
~0!!#21u1&. ~21!

With the definition of the complex number

a[12
D3

D4
2

VL
2

4D3
2 2

D2

D3
1

3VL
2

4D3D4
1

g2

4D3D4
1

D2

D4
2

VL
2D2

2D3
2D4

2 i S g

2D3
2

g

D4
1

3VL
2g

8D3
2D4

1
gD2

2D3D4
D ~22!

we obtain

P0~ t !'e22 Re~l2!t
V2VL

2

4D3
4

S 123
D3

D4
12

D2

D4
D 21 9g2

4D4
2

uau2
~23!

assumingt@g21, up to small relative deviations of the order
V/VL . In second order inV/D3 one finds

l2'l2
~0!2^3uM ~1!@M ~0!2l2

~0!~12P2
~0!!#21M ~1!u3& ~24!

and this leads to

Rel2'
V2g

2D3
2

122
D3

D4
13

D3
2

D4
2 24

D2D3

D4
2 1

3g2

4D4
2 12

D2
2

D4
2

uau2
.

~25!

It is comparatively easy to describe the behavior ofP0(t) on
the other time scalet@/g21. In zeroth order inVL /D4,
V/D3 we have

P0~ t !'ie2L1
~0!tu1&i2, ~26!

whereL1
(0) can be approximated by Eq.~18!.

We introduce a time T0 such that g21!T0
!(2 Rel2)

21. Then for t!T0 the functionP0(t) is gov-
erned by the behavior of a two-level atom with a strong
transition, while in a large time interval aroundT0 it is very
small, though not vanishingly small, and slowly varying. An
interruption of the atomic fluorescence longer thanT0 is
called a dark period. The above results concerningP0(t)
guarantee the occurrence of light and dark periods in the
resonance fluorescence of the atom~see, for example,@6#!.
Following Refs.@5,6# we can calculate the mean durations
TL ,TD of the light and dark periods and the probabilityp for
the occurrence of a dark period. One findsp5P0(T0) and
TD5(2 Rel2)

21, which is given by Eqs.~23! and Eq.~25!,
respectively. The value ofTL can be obtained from
TL5tL /p, wheretL is the mean time between two photons
in a light period. This is intuitively obvious, sincep21 is the
mean number of photons in a light period. We have

tL52E
0

T0
t
Ṗ0~ t !

12p
dt'

1

g

g212VL
214D2

2

VL
2 ~27!

by using Eq.~26!. Thus one finds

TD5
D3
2uau2

V2gS 122
D3

D4
13

D3
2

D4
2 24

D2D3

D4
2 1

3g2

4D4
2 12

D2
2

D4
2D ~28!

and

TL5
4D3

4uau2~g212VL
214D2

2!

gVL
4V2F S 123

D3

D4
12

D2

D4
D 21 9g2

4D4
2G . ~29!

All the above mean values can be obtained from a single
trajectory of the photon-counting process.

As a typical example of the occurrence of macroscopic
dark periods in the emission process of4He1 we discuss
D250, F53.63103 V/m, FL52.93106 V/m, which
meansV50.025g, VL55g. One finds

TD51.131025 s, TL5431024 s, ~30!

and for the mean number of photons in a light period we
obtain p21523106. Since the Lyman-a transition is re-
markably strong with a lifetime of about 0.1 ns, one has a
high fluorescence intensity in a light period and a different
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time scale in comparison with the Dehmelt systems in Ref.
@3#.

Under consideration of our premises with respect to the
electric fields we know thatTL /TD is almost independent of
V. However,TD only depends weakly onVL , which is in-
tuitively obvious. As a conclusion, one can regulate the
emission process with the aid of the electric fields.

V. DISCUSSION

From the calculation above we have seen that macro-
scopic dark periods occur in hydrogenlike systems like
4He1 provided the external electric fields are suitably cho-
sen. One might wonder, however, in which way one can
reach a dark period. As the quantum-mechanical calculation
shows and the intuitive explanation in the introduction sug-
gests, in order to reach a macroscopic dark period the system
must be mostly in the 2s state.

One might be tempted to argue in a simplified way as
follows. One could assume that the coherent evolution of the
atom is started by the absorption of a 1s→2p photon, and
terminated by spontaneous emission into this channel. In or-
der to evolve to an extended dark period spontaneous emis-
sion must not occur for many lifetimes. If we take the effec-
tive Rabi frequencyV51/40g of the Stark field one would
estimate that the probability to obtain an even mixing of
2p and 2s is smaller than exp(220), or 231029, and at this
point the atom is not dark at all. From the 0.1 ns lifetime of
the 2p state of 4He1 one estimates a lower limit of
TL.0.1s for the mean time of a light period in the emission
process. This result much exceeds the previously calculated
value ofTL5431024 s from the quantum mechanical de-
scription, and macroscopic dark periods should be very sel-
dom.

At this point we have to remember that it is the relative
weight of the 2s state in the emission-free subensemble that
counts rather than the absolute population. There aretwo
mechanisms that make the 2s state become rapidly predomi-
nant in the emission-free subensemble as follows. The rela-
tive weight of the 2p and the 1s state in the emission-free
subensemble decreases rapidly on the time scaleg21, be-
cause those atoms with a spontaneous emission from the
strong Lyman-a transition leave the emission-free suben-
semble and do not contribute. On the other hand the 2s state
is metastable and weakly coupled to the 2p state. Therefore
if the atom is once in the 2s state it stays with a high prob-
ability, and it remains in the emission-free subensemble for a
long time. As a conclusion we obtain the possibly astonish-
ing result that the 2s state becomes predominant fairly
quickly in the emission-free subensemble although the abso-
lute population of this metastable state is very small. An
estimation of the population dynamics in the emission-free
subensemble from a very simple rate equation model is given
in the appendix.

For the mechanism of quantum jumps in hydrogen-
like systems there exists a close relation to the proposal of
macroscopic dark periods without a metastable state by
Hegerfeldt and Plenio@8# as follows. If we neglect the ex-
istence of the weakly coupled 2p3/2 level, and if we con-
sider the conditional Hamiltonian, which is given in matrix
form with respect to the atomic orthonormal basisu1&,

1/A2(u2&1u3&), 1/A2(u2&2u3&) by

Hc5\S 0
VL

2A2
VL

2A2

VL

2A2
V2 i

g

4
2

D21D3

2
2 i

g

4
1

D32D2

2

VL

2A2
2 i

g

4
1

D32D2

2
2V2 i

g

4
2

D21D3

2

D ,

(31)

then Eq.~31! corresponds directly to Eq.~5! of @8#, except
that the off-diagonal frequency shift terms (D32D2)/2 ~half
of the negative Lamb shift frequency! are absent@26#. As a
conclusion, the physical system of Hegerfeldt and Plenio be-
haves like a hydrogenlike system without quantum electro-
dynamical corrections of the atomic spectrum.

In the case of our realistic hydrogenlike system the
photon-counting process is governed by the detuningD3,
where\uD3u is essentially given by the Lamb shift between
the 2s1/2 and the 2p1/2 energy level. We assume a possibly
realizable measurement of the mean duration of the dark pe-
riods, as it was done in the experiments@3,7# for Dehmelt
systems. In this case we can calculate the detuningD3 with
the aid of the approximation Eq.~28! to high accuracy by
solving Eq.~28! for D3, which leads to a polynomial equa-
tion of sixth degree. If the other parameters in Eq.~28! are
known, this provides a detection of the Lamb shift by using
the proposed photon-counting process.
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APPENDIX

In this appendix we show that, in the emission-free sub-
ensemble, the relative weight of the 2s state becomes rapidly
predominant on the time scale of the inverse Lyman-a Ein-
stein coefficientg21. This can be seen by a simple rate equa-
tion model for the emission-free subensemble as follows. For
convenience we neglect the existence of the weakly coupled
2p3/2 level. By Pi(t) ( i51,2,3) we denote the probability
that no photon has been detected untilt and that the atom is
in the state u i & at time t. We note that t.0 implies
( i51
3 Pi(t),1. By RB ,RR we denote the transition rates due

to stimulated emission of the blue transition 2p→1s and the
red transition 2s→2p respectively. For this subensemble
one has the rate equations

Ṗ152RBP11RBP2 , ~A1!

Ṗ25RBP12~g1RB1RR!P21RRP3 , ~A2!

Ṗ35RRP22RRP3 . ~A3!

The only difference to the usual rate equations@14# is that
those atoms with a spontaneous emission from the blue tran-
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sition leave the emission-free subensemble. Therefore the
term gP2 in Eq. ~A1! is absent. This leads to a decay of
( iPi(t) in time. AssumingRR!RB ,g and starting with the
ground state one easily obtains the perturbative expressions

P1~ t !5e2m2t
m12RB

m12m2
2e2m1t

m22RB

m12m2
,

P2~ t !5
RB

m12m2
~e2m2t2e2m1t!,

P3~ t !5
RRRB

m12m2
S e2m1t

m12m3
2

e2m2t

m22m3
D

1e2m3tS RRRB

~m22m3!~m12m2!

2
RRRB

~m12m3!~m12m2!
D , ~A4!

where the real numbersm i are defined by

m1/2[
1

2
@~g1RR12RB!6A~g1RR!214RB

2 #,

m3[RR . ~A5!

We note thatm1.m2@m3, and we see that the population
P3(t) of the 2s stateu3& in the emission-free subensemble
increasesrapidly from P3(0)50 on the time scalem1/2

21

;RB
21;g21 and then remains on a low level for a long

time of the orderm3
21;RR

21 . On the other hand the pop-
ulation P1(t), P2(t) of the 1s, 2p state respectively
decreasesrapidly on the time scaleRB

21;g21 so that
P3(t).P2(t),P3(t) is reached fairly quickly. This behavior
can also be seen in Fig. 2. Because of the normaliza-
tion (( iPi(t)5weight of the emission-free subensemble!
the conditional probabilities arePj (t)/( iPi(t) ( j51,2,3).
A similar behavior is obtained in the quantum-mechanical
calculation of the paper, but a quantitative agreement is not
easily available from this simple rate equation model.
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