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Quantum jumps in hydrogenlike systems
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In this paper it is shown that the Lyman4ransition of a single hydrogenlike system driven by a laser
exhibits macroscopic dark periods, provided there exists an additional constant electric field. We describe the
photon-counting process under the condition that the polarization of the laser coincides with the direction of
the constant electric field. The theoretical results are given for the examplelef. We show that the
emission behavior depends sensitively on the Lamb fWiftE. Lamb and R. C. Retherford, Phys. R&2,
241(1947] between the &, and 20,,, energy levels. A possibly realizable measurement of the mean duration
of the dark periods should give quantitative information about the above energy difference by using the
proposed photon-counting procefS1050-294{06)08611-§

PACS numbgs): 42.50.Lc, 42.50.Md, 32.96-.a

[. INTRODUCTION tric field. As for the Dehmelt system, there exists a semiclas-
sical explanation for the occurrence of macroscopic dark
For the first time coherence effects in hydrogenlike sys{eriods in the emission process of the hydrogenlike system
tems were found by the observation of quantum béatark  as follows. The strong Lyman- transition (2—1s) is
beat$ in the Lymane transition[1]. In these experiments driven by the laser light. Because of this we expect a con-
only the metastable 2state of atomic hydrogen is initially stant fluorescence intensity. The constant electric field leads
populated. Switching on a constant electric field leads to ao the possibility that the atomic electron makes a transition
build-up of a coherent superposition of the uppgr @d  from the 2 to the % energy level. In this case we have zero
2s levels, and the radiative decay shows an interference paintensity (dark period, because a dipole transition to the
tern known as quantum beats. 1s ground state is impossible. However, due to the constant
This uncommon behavior of hydrogenlike systems sugelectric field, there exists the possibility that the atomic elec-
gests that interesting effects may occur if the Lymatran-  tron gets out of the back into the » energy level, and the
sition is driven by monochromatic laser light and if an addi- emission process starts again. By the quantum-mechanical
tional constant electric field leads to a coherence between theeatment of the problem we show that under the assumption
upper levels p and . We show that the resulting photon- that the polarization of the laser coincides with the direction
counting process is similar to the one predicted by Dehmelpf the constant electric field the above semiclassical expla-
[2] for a different system with two excited states, one rapidlynation describes the photon-emission process qualitatively
decaying and the other metastable, driven by two lasergiQ].
Semiclassically one expects for the Dehmelt system periods As will be seen later, one can regulate the mean duration
of constant fluorescence intensity due to the strong transitiosf the dark and light periods almost independently by vary-
(light period, interrupted by periods of zero intensity, while ing the intensity of the laser beam and the strength of the
the atomic electron is shelved in the metastable di@dek  constant electric field. The mean duration of the dark periods
period. These photon statistics have been observed experitepends sensitively on the Lamb shiftl] between the
mentally[3], and the above semiclassical idea has been an&s, , and 24, energy level. A possibly realizable measure-
lyzed quantum mechanicallyt—6]. In an alternative experi- ment of this mean duration, as it was done in the experiments
ment Hulet and Wineland proved the existence o0f[3,7] in the case of other systems, should give quantitative
macroscopic dark periods in the fluorescence intensity of #formation about the above energy difference. We show that
single ion influenced by a magnetic field, when a single lasethere exists a correspondence between this system and the

is tuned near one of the principal transition resonan@és above mentioned mechanism of macroscopic dark periods
Hegerfeldt and Pleni¢8] proposed another mechanism for without a metastable staf&].

dark periods that is not based on the existence of a meta-

stable state. They studied a three-level atom with two strong

eI_ectric-dipoIe_ transitions to one common ground state, Il. QUANTUM-MECHANICAL DESCRIPTION

dnv_en by a single laser. The_ existence of macroscopic dark OF THE PHOTON-COUNTING PROCESS

periods in the fluorescence light is due to a quantum coher-

ence effect. The premise is a very small energy separation of We consider a single hydrogenlike system without hyper-

the upper levels in conjunction with parallel transition dipolefine structurg12] driven by a single linearly polarized laser

moments. Because of this an experimental realization of theith electric fieldF_ and additionally influenced by a weak

latter physical system seems to be diffid@t. constant electric field-. The laser is supposed to be tuned
In this paper we discuss the photon-counting process of aear the p,,— 1S, transition resonance. The Hamiltonian

single hydrogenlike system, driven by a single linearly po-in dipole form for the atom interacting with the quantized

larized laser and additionally influenced by a constant elecradiation field is given by
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32 12 12 32 where é(t,t’) and J are atomic superoperators. Using
- 2812 the quantum jump approadd] (which is essentially equi-
5 4 2pir valent to the Monte Carlo wave-function approafts]
and to the use of quantum trajector{@$]) Hegerfeldt[17]
2psn 172 has determined the superoperatdrsand S(t,t’) for an
T2 arbitrary atom. Considering Refg5,17] one finds that
| QY Q|®[Ip(t)/Tr(-)] is the state right after the detection
of a photon, provided we have a measurement by absorption,
which we assume from now on. There exists a nonunitary
atomic operatob) .(t,ty), the so called conditiondreduced
evolution operator, describing the time development of an
atom under the condition that no photon is observed in the
time interval [to,t], and S(t,ty) is given by
S(t,to) p(to) =U(t,t) p(to)Uc(t,to) . The conditional evo-
12 lution operator is generated by the conditional Hamiltonian
Isi — v H¢ and withD;;=(i|D|j), the generalized damping terms
C = 3D, Dlol? @
ikl = 5 7 ~3Vij Pl
FIG. 1. Relevant energy levels 8He". The fine structure fre- V- Bmeghc Y
quency between the,, and the 2., energy level is given by .
1.75x 10! Hz, while the Lamb shift frequency between the; 2 and the decay matrix
and the D, energy levels is 1X410° Hz. In addition 5
y=10% s is the Einstein coefficient of the Lymadm-transition. = Tyl K| (5)
Note that the above Lamb shift splitting is appreciably larger than |i‘\',||j| ,lk\il ik
Y- il,|k[>j
one finds following Refs[5,17] thatH, is given by
hw
H=Ha+ > ho@hant > i \/5—(an—ah,) Hc=Ha+eD-[F (t)+F]—i#T. (6)
kx kN 2eoV
X eD- g, +eD-[F(t)+FI. (1) For the reset operatdr one obtaing17]
HereH, is the atomic fine-structure Hamiltonida3]. We Jp= 2 (T +Twiii)ilplk)i )] (7

assume the Lamb shift to be incorporatecHp [14]. As in ’.'\Jﬁi,‘
Fig. 1 the relevant atomic eigenstates with positive magnetic K>l

quantum number are labeled frof) to [S). For every]i) The above operatorsi, and J are rather complicated in

E;]: L. iS) with posmvg magtnet!c q.uantutmt nuThbiﬁ’ the case of our ten level hydrogenlike system. There are
Ere exists a corresponding atomic eigenstate wi € SaMfree main difficulties in calculating the probability density

principal quantum number, the same total angular- .
momentum quantum number, the same parity and the ma =q. (3) as f.OHOWS' .Th.e sup_eroperatdr generally carries
' ure states into statistical mixtures of the two ground states

netic quantum numberm;, which we denote by —i). |1), |—1), with in general nonzero off-diagonal matrix

Then the atomic Hamiltonian is given by elements. The state right after the detection of a photon
|Q)(Q[&[Ip(t)/Tr(-)] generally depends an(t) [20]. The

, 7)) superoperatord andS(t,_t’) act on a 100 dimensional vector
space. In the next section we show a way out of these diffi-
culties.

HA:“E]. froja|i )i

where wj; is the transition frequency between the states
and|j) Note that|i|> |J| implies 01> o). . SYMMETRY CONSIDERATIONS

To describe the photon-counting process one needs the Here we make the assumption that the laser light is
probability densityw(ty, . .. ty;[to,t]) for finding exactly  |inearly polarized with polarization in the same direction
N photons at timed; < -- <ty in the interval[to,t]. We a5 the constant electric fieldF=Fe, and F(t)
assume that the initial state of the complete system is. g coge, t+¢,)e,. Therefore we have an invariance of the
|2){(Q]@p(to), where|Q) is the vacuum of the quantized amiltonian Eq.(1) with respect to the group @) of those
radiation field, anch(to) is the initial atomic density opera- qrthogonal transformations which leave thexis invariant.

tor. The probability densityv is of the form[15-17 The results of the following symmetry considerations are
given at the end of this section.
W(ty, . tnilto t]) =TSt tn) IS(ty  th-1) By T we denote the standard double-valued representation

. of the group @2) on the atomic Hilbert space. The invari-
X - JS(tq,tg) p(to) ], €)) ance of the Hamiltonian Ed1) leads to
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T(9)(Ip)T(9)'=I[T(9)pT(9)'] ® Po(t) =TI S(t,0)p, 1= T U(t,0p,Uc(t,0)]

for every group elemerg and to the analogous equation for =[U(t,0[1)[?. (14

S(t,t"). Special elements of @) are given byD(¢), the . . ,
rotation through the angle about thez-axis, and bysS, the The_r_efore we o_nly have to consider the atomic states W't.h
positive magnetic quantum number. By a similar reasoning it

reflection in they-z plain. One can show that the projector is easy to check that the latter is also true in the more gen-

P© onto the subspace of the scalar operators with respect Qal case of the first single-photon  probability
the group @2) is given by[21 ~e A .
group @2) is given by[21] T3Sty 1) P@p(te)] in Eq. (13).
A 1 (2= Because of our symmetry assumption the original ten-
P<0>p=4—j de[ T(D()pT(D(@))T level atom behaves like a five-level system with a single
m™Jo ground statg22]. In the special case of the spontaneous
Lyman- transition influenced by the Stark effect this agrees

t t
FTP(e)T(8)pT(S) T(D(¢))] with the previous results in literatuteee, for exampld 23]).

1 . . . _ Starting with the state right after the detection of a photon
= ZZO (ilpli)+efe(—ilpl—i)) even the statés) drops out, because it is coupled neither by
m'iJ:mj the laser nor by the constant electric field. Going over to an
o o _ interaction picture the explicit time dependencepfin Eq.
X([iXil+eief =)=, (9  (6) vanishes. We introduce the operator
where p is an arbitrary atomic operator arg is a phase Q Q
factor with the propertyT(S)|i)=eg;|—i). Using the cyclic 0 - 0 it
invariance of the trace and E(B), Eq. (8) we obtain 2 V2
- an Q ,
Wty, « ottt =TSt t) IS(ty b ) uoln = %—iAz iQ 0
nn “ =z c™
X JS(ty,tg) PPp(t)]. (10 0 iQ —iAs  —i\20
Since the atomic state right after the detection of a photon is —i& 0 ~iy20 Y_ia
a statistical mixture of the ground statds, |—1) one finds 2 2 4

. N (15
IJPQp=Tr(Ip)p, (11)
in matrix form with respect to the atomic bagit), |2),

with the scalar operator |3), |4), wherey is the Einstein coefficient of the Lyman-
a transition,Q), = (e/h)F (2|z|1) is the real Rabi frequency
of the laser with respect to thep2,—1s,, transition,
Q= (elh)F(2|z|3) is the analogous real constant of the con-
stant electric field and\i=w, — w;; is the detuning of the
From Eq.(8) we also know that) and S(t,t’) leave the laser with respect to the staté). Then we finally have
subspace of the scalar operators invariant, and using addo(t) =le ™1)||* [24].
tionally Eq. (11) we come to the conclusion that the prob-
ability density Eq.(3) factorizes into single-photon prob- IV. EMISSION BEHAVIOR
abilities

1
pr= (11(1+] = 1)(~1)). (12

We assume the laser to be tuned near tbg,2>1S),
W(ty, ... tnilto,t]) transition resonance, such tHat|<y. In this caséi|A4| is
essentially given by the Lamb shift between thg ;2 and
T 7c LT 2pq» energy level, andA,| is a fine structure frequency,
= TS TIIS(N ty-)pe] - - TS ) o] Whi::h leads tdA3|<|Aj. V\|/e also assume the electric fields
XTI IS(ty,te) P@p(to)]. (13) to be chosen to satisfy the relatigf|<|Q, |<|A;]. We
approximate the functioy(t) by means of a perturbative
From this we see that the photon-counting process i@pproach based on the book of Ké&b]. Since additionally
governed byPy(t), the probability density of counting the 2ps;, level couples weakly to the laser, we have two
no photons untilt starting with the ground state, since perturbation parametef3/A; and(}, /A,. PuttingQ =0 in
—Po(t—t")=Tr{IS(t,t')p,] [17]. The conditional evolu- Ed: (15) we denote the resulting operator M), and we
tion operatorU(t,t') is a scalar operator and from E@) defineM®=M—M (). There exists a decomposition of the
one obtains thatl(t,t') leaves the atomic subspace gener-form
ated by the states with positive magnetic quantum num-
ber invariant. Using the definition of,, the relation MO =APPP+ NP P+ NP PY, (16)
T(S)|1W1|T(S)T=|-1)(—1], the fact thatU(t,t') com-
mutes withT(S) and the cyclic invariance of the trace we wherex!)=—iA; is one of the eigenvalues, another one is
obtain given by
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Y . Az A% AzAz 37’2 A%
AP~ —iA 1 —2 43 54—t o+
3 2 4 ( 7) sz 1 2A4 3?4 4 A4 4A4 2P4
Ren,~ 572 [a]?
in first order inQ, /A, and P{?), i=2,3 are the respective 3 (25)

eigenprojectors, and we defife{”’=1—pP— P The

operatorA {?) is chosen to commute with(”). We obtain for It is comparatively easy to describe the behavioPg(t) on

A(lo) in first order inQ, /A, the result the other time scalas»y~ 1. In zeroth order inQ /A,
Q/A; we have

Y_

. iAz) 2)(2]. Po(t)~[e ™| 1)|2 (26

(18

—ih AP =# %(|2><1|+|1><2|)—iﬁ(

whereA{?) can be approximated by E¢1L9).

We introduce a time T, such that y '<T,
<(2Re\,) L. Then fort<T, the functionPg(t) is gov-
erned by the behavior of a two-level atom with a strong
transition, while in a large time interval aroufd it is very
small, though not vanishingly small, and slowly varying. An

Note that the right-hand side of E¢L8) is the conditional
Hamiltonian of a two-level aton}5,17]. In an analogous
manner we can decompose the oper&om the form

M=A,P;+A,P,+\3P;3 (19 interruption of the atomic fluorescence longer thB# is
called a dark period. The above results concerrqgt)
with eachP; corresponding t&(®, and we have guarantee the occurrence of light and dark periods in the
1 1

resonance fluorescence of the at(see, for exampl€,6]).

Following Refs.[5,6] we can calculate the mean durations
e M 1)=e APy |1)+e M2'Py1) + e 2Py 1). (200  T_,Tp of the light and dark periods and the probabilityor

the occurrence of a dark period. One finols Py(T,) and
The main idea of our perturbative approach is to approximaté p = (2 Rex,) 1, which is given by Egs(23) and Eq.(25),
A1, Ny, A3 and the respective projectors separately with theespectively. The value off_ can be obtained from
aid of Ref.[25]. First of all we are interested in the behavior T, = 7 /p, wherer_is the mean time between two photons
of Py(t) assuming>y 1. By using Eqs(17) and(18) one in a light period. This is intuitively obvious, singe ! is the
can verify that the first and the third term in EQO) decay = mean number of photons in a light period. We have
exponentially on the time scalg™ ! while in first order in
Q/A4 the real part of\, vanishes. Because of this we only

T - 2 2 2
have to approximate Reg) and|P,|1)|/2. In first order in = _f ° PO(t)dt% 1 ﬂzﬂ 27)
Q/A; we have o 1-p v Of

by using Eq.(26). Thus one finds
Po|1)~—PYMIIMO NP (1-PP)] 1), (21)

AZ|al?
With the definition of the complex number Tp= A23| | 7 A2 (28
2 3 3 AxAz 3y 2
Q’y 1_2A_4+3P_4T+W+2p
_, A 00 A, B0F 42 A, QR ! ! v
YT A, aA2 A, 4AA,  4AsA, A, 2AZA,  and
(v 30y 22 L AAdlal’(y* 1208+ 445 29
205 A, 8AZA, 2A3A, L Ay A\ 9y
324 YOO | 1-3242"2 +—
L Ay A, T 4AZ
we obtain

All the above mean values can be obtained from a single
Ay A\% 992 trajectory of the photon-counting process.
0202 (1_3A_4+2A_4) + 4A2 As a typical example of the occurrence of macroscopic
- , 4 (23  dark periods in the emission process tfie” we discuss
4A3 || A,=0, F=3.6x1C° V/m, F, =2.9x1C° V/m, which
means()=0.025y, ; =5y. One finds
assuming> vy~ %, up to small relative deviations of the order
Q/Q, . In second order if)/A; one finds Tp=1.1X10° s, T =4x10* s, (30

Po(t)%672 Re(\o)t

and for the mean number of photons in a light period we
N~ AR = (BIMEIMO@O AP (1-PPH ] MD|3) (24 obtain p~1=2x1CP. Since the Lyman transition is re-

markably strong with a lifetime of about 0.1 ns, one has a
and this leads to high fluorescence intensity in a light period and a different
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time scale in comparison with the Dehmelt systems in Ref1/y2(|2)+|3)), 1/2(|2)—|3)) by
[3].

Under consideration of our premises with respect to the O QL
electric fields we know that, /T is almost independent of 0 _2\/5 _2\/5
Q). However,Tp only depends weakly of2, , which is in-
tuitively obvious. As a conclusion, one can regulate the Q, vy A,+Ag vy Ag—A,
emission process with the aid of the electric fields. He=1 m Q_'Z_ 2 —lz+ 2 ,
V. DISCUSSION oy, B8y AatAs
2y2 4 2 4 2

From the calculation above we have seen that macro-
scopic dark periods occur in hydrogenlike systems like (31)
“He" provided the external electric fields are suitably cho-
sen. One might wonder, however, in which way one carthen Eq.(31) corresponds directly to Eq45) of [8], except
reach a dark period. As the qguantum-mechanical calculatiothat the off-diagonal frequency shift term&{—A,)/2 (half
shows and the intuitive explanation in the introduction sug-of the negative Lamb shift frequencsgre absenf26]. As a
gests, in order to reach a macroscopic dark period the systeaonclusion, the physical system of Hegerfeldt and Plenio be-
must be mostly in the  state. haves like a hydrogenlike system without quantum electro-

One might be tempted to argue in a simplified way asdynamical corrections of the atomic spectrum.
follows. One could assume that the coherent evolution of the In the case of our realistic hydrogenlike system the
atom is started by the absorption of a-22p photon, and photon-counting process is governed by the deturing
terminated by spontaneous emission into this channel. In owherefi|A;| is essentially given by the Lamb shift between
der to evolve to an extended dark period spontaneous emithe 2s,,, and the 24, energy level. We assume a possibly
sion must not occur for many lifetimes. If we take the effec-realizable measurement of the mean duration of the dark pe-
tive Rabi frequency)=1/40y of the Stark field one would riods, as it was done in the experimei&7] for Dehmelt
estimate that the probability to obtain an even mixing ofsystems. In this case we can calculate the detudipgvith
2p and X is smaller than exp{20), or 210 °, and at this  the aid of the approximation Eq28) to high accuracy by
point the atom is not dark at all. From the 0.1 ns lifetime ofsolving Eq.(28) for A, which leads to a polynomial equa-
the 2p state of “He" one estimates a lower limit of tion of sixth degree. If the other parameters in E2p) are
T, >0.1s for the mean time of a light period in the emissionknown, this provides a detection of the Lamb shift by using
process. This result much exceeds the previously calculateitie proposed photon-counting process.
value of T, =4x10"* s from the quantum mechanical de-
scription, and macroscopic dark periods should be very sel- ACKNOWLEDGMENTS
dom.

At this point we have to remember that it is the relative | am grateful to G. C. Hegerfeldt, D. G. Sondermann, and
weight of the 2 state in the emission-free subensemble thaf®- W- Vogt for helpful discussions.
counts rather than the absolute population. Theretae
mechanisms that make the &tate become rapidly predomi- APPENDIX
nant in the emission-free subensemble as follows. The rela-
tive weight of the » and the & state in the emission-free
subensemble decreases rapidly on the time sgafe be-
cause those atoms with a spontaneous emission from t
strong Lymane transition leave the emission-free suben-
semble and do not contribute. On the other hand thetate
is metastable and weakly coupled to the &ate. Therefore
if the atom is once in the Lstate it stays with a high prob- . .
ability, and it remains in the emission-free subensemble for éhat no ph°t°’.‘ has b_een detected unthd that the_ator_n IS
long time. As a conclusion we obtain the possibly astonishln3 the statefi) at time t. We note thatt.>.0 implies
ing result that the & state becomes predominant fairly ~i=1Pi(t)<1. By Rg,Rg we denote the transition rates due
quickly in the emission-free subensemble although the absd® Stimulated emission of the blue transitiop-2 1s and the
lute population of this metastable state is very small. An"€d transition 2—2p respectively. For this subensemble
estimation of the population dynamics in the emission-fred’€ Nas the rate equations
subensemble from a very simple rate equation model is given .

In this appendix we show that, in the emission-free sub-
ensemble, the relative weight of the &tate becomes rapidly

edominant on the time scale of the inverse Lynaakin-
stein coefficienty L. This can be seen by a simple rate equa-
tion model for the emission-free subensemble as follows. For
convenience we neglect the existence of the weakly coupled
2p3p level. By Pi(t) (i=1,2,3) we denote the probability

in the appendix. P1=—RgP1+RsP2, (A1)
For the mechanism of quantum jumps in hydrogen- .

like systems there exists a close relation to the proposal of P>=RgP1—(y+Rg+Rr)P2+RgP3, (A2)

macroscopic dark periods without a metastable state by

Hegerfeldt and Pleni¢8] as follows. If we neglect the ex- Ps=RgrP,— RgP5. (A3)

istence of the weakly coupledp3,, level, and if we con-
sider the conditional Hamiltonian, which is given in matrix The only difference to the usual rate equati¢hd] is that
form with respect to the atomic orthonormal basgly, those atoms with a spontaneous emission from the blue tran-
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sition leave the emission-free subensemble. Therefore the »(t)
term yP, in Eq. (Al) is absent. This leads to a decay of 1
3;P;(t) in time. AssumingRg<Rg,y and starting with the

ground state one easily obtains the perturbative expressions o.s

-R -R
Pl(t)=e_"“2t'u1 B_e—mt’uz B, 0.6
M1 M2 M1 M2

0.4
R
Pa(t)= ———(e =g 41!),
M1 M2 0.2
RoR e Mt @ Mot
Py(t)= —— - ) 10 15 20
M1— M2\ 1™ M3 M2 U3
ot RrRg FIG. 2. Estimation of the expected population dynamics by
+e 3 (fo— pa) (1 — o) means of the simplified rate equation model in the case of the pa-

rametersRg=5v, Rg=0.05y. The dashed line, fat solid line, thin
RrRg solid line indicate the populatioR(t), P,(t), P3(t) respectively.
T e p—rn) )’ (Ad)  The time axis is given in natural units of the inverse Lyman-
Einstein coefficient.

where the real numberg; are defined by
time of the orderu; '~Rgz'. On the other hand the pop-

1 > ulation P4(t), P,(t) of the 1s, 2p state respectively
r12= 517+ Ret2Re) = V(y+Re) ™+ 4Rg], decreasesrapidly on the time scaleRg'~7y ™! so that
P5(t)>P,(t),P5(t) is reached fairly quickly. This behavior
Mn3=Rg. (A5) can also be seen in Fig. 2. Because of the normaliza-
tion (Z;P;(t)=weight of the emission-free subensemble
We note thatu,>u,>us, and we see that the population the conditional probabilities ar®;(t)/=;P;(t) (j=1,2,3).
P3(t) of the 2s state[3) in the emission-free subensemble A similar behavior is obtained in the quantum-mechanical
increasesrapidly from P5(0)=0 on the time scalgu;3  calculation of the paper, but a quantitative agreement is not
~Rg*~ vy ! and then remains on a low level for a long easily available from this simple rate equation model.
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