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Resolutions of the identity in terms of line integrals that involve(ltoherent states and their comple-
mentary states are presented. They are used for the expansion of various states in terf& oblgident
states on a line. The properties of the complementary states are also st8di@s0-29476)08211-X]
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I. INTRODUCTION states, the unit disk for SW,1) coherent states, efcHere
we study resolutions of the identity in terms of the line inte-
SU(2) coherent states have been studied by various augrals of the type
thors[1,2] and found various applications in quantum optics.
They are realizable in various contexts, for example, in two- f di|s)(s;com =1,

photon systems described by the Hamiltonidh €3

where|s) are coherent states akstcon are “complemen-
tary” states that are not coherent states. The use of these
+ + . .. . states gives us great flexibility in constructing new resolu-
wherea’, a andb’, b are photon creation and annihilation jons of the identity; at the same time there is no loss in the

operators. strength of the resulting resolution of the identity. Indeed Eq.

SU(2) coherent states form an overcomplete set of state§1.3) can be used to expand an arbitrary ket stitén terms
In fact it can be proved using the language of analytic repyf the coherent statds) as

resentationgsee Appendix A that if {zy} is a convergent

H=w,a'a+ w,b’b+rab’+r*a'b, (1.1

sequence to some poigf in the extended complex plane

(which is stereographically equivalent to a sphetken the |f>=f dl f(s)|s), (1.9
corresponding coherent states form an overcomplete set.

This is undoubtedly a very powerful theorem. However, f(s)=(s;comf) (1.5

from a practical point of view in order to use the @)
coherent states as a basis in the Hilbert space, we need amd the corresponding bra stdte in terms of the coherent
have a resolution of the identity that can be used for thestates(s| as

expansion of an arbitrary state in terms of (8Ucoherent

states. Simply to know that a set of states is overcomplete <f|:f [dl f(s)]*(s|

without having a resolution of the identity is not practically '
useful; but, on the other hand, it encourages us to try to find ) )
resolutions of the identity in terms of these states. And someClearly we can also write the bra statf| in terms of the
times even a weaker concept than a resolution of the identingomplementary states;cony as

like the concept of frames in the context of wavelpds,

might also be useful. In the SP) case, the known resolution (f|= f dig(s)(s;con, (1.7)

of the identity involves all the S(2) coherent states in the

extended complex plane. According to what we have said

above, there are much smaller subsets that are also overcom- g(s)=(fls), 1.8

plete, and we are encouraged to look for other resolutions
the identity in terms of fewer S(@) coherent states.

In order to explain the philosophy of our approach we first
point out that the resolutions of the identity for the various
types of coherent states are in terms of surface integrals
the form

(1.6

Qt:];ut we are usually interested in the expansi@ng), (1.6) in

terms of the coherent statgsy that are experimentally real-

izable, rather than in Eq1.7) in terms of the statels;com).

'I}he |s;com) are auxiliary states that are used in the calcula-

%on of the coefficientg1.5).

The above ideas have been inspired by recent btk
where quantum states have been expressed as quantum su-
f du|s)(s|=1, (1.2 perpositions of Glauber cqhert_ant states on a certain Ii_ne i_n

phase space. The approximation of the exact expansion in
terms of line integrals by a discrete sum leads to the possi-

where|s) are coherent states, and the integration is over &ility of producing experimentally, approximately any de-

certain manifolde.g., the complex plane for Glauber coher- sired state as a superposition of Glauber coherent states. This

ent states, the extended complex plane foZd¢oherent is one approach within the more general framework of
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112
: (2.9

guantum-state engineerif§] and indicates one of the prac-

tical merits of expansions like E41.3). In Eq. (1.2 all the o(j,m)=
coherent states are involved and any good approximation of

the integral as a surte.g., by using the coherent states on
von Neumann-type of lattigewill require a lot of terms. In
Eqg. (1.3 it is expected that such approximations will be
more accurate with fewer terms. Related[H is also the
contour representations studied[if]. The latter formalism . _ Go_iv— i .
has recently been used [i8] to enlarge the usual Hilbert 3060 =T(6,¢. V|33, =) =exp(=A2)|;2),

(2j)!
(J+m!(j—n)!

8wherez belongs to the extended complex pldfaJ{«}] that
we call theJd plane, and which is topologically equivalent to
the J sphere. An alternative equivalent definition is

space in order to describe a harmonic oscillator at both posi-

tive and negative temperatures. All these references use the z=—tan;60)e"'?, (2.9
Glauber coherent states associated with the Heisenberg-Weyl ) o ]
group. z is the stereographic projection of the poii#¢) of the

In this paper we construct a resolution of the identity us-Sphere onto the extended complex plane. The following reso-
ing a line integral of the type Eq1.3), in terms of SW2) lution of the identity in terms of these states is well known:
coherent states. We also study the properties of the comple- _
mentary state$s;com) that enter in this integral. Using this 2j+1 j d IMI 2l =1
resolution of the identity we can expand an arbitrary state in T w2323z =1,
the Hilbert space in terms of §B) coherent states. As ex-
amples, we use this expansion to express thstates” that du(z)=(1+|2]? 2d?z (2.10
we studied in our previous worl®] within the general con-
text of quantum systems with finite-Hilbert spdd®-12, as  we next introduce the “complementary” states to the(3U

superpositions of S(2) coherent states. The results could becoherent states that we define for any0, as
useful for the production of these states.

j
P _ -1 H j 17-1/1.;
Il. RESOLUTIONS OF THE IDENTITY IN TERMS (Jiz;com =[Mz))] n;_j [6(j,mZ " 17X )Nl
OF SU(2) COHERENT STATES AND THEIR
COMPLEMENTARY STATES

j
We consider the angular momentum operators |J;z;com):[/\/(|z|)]‘1n;j [8(j,m)(z*) " 1174 35),n),
J, de =%, [J,,0_1=27,, »
[ z _] + [ + ] z N(| |) i (j+n)!(j—n)! 1 1/2
z)= - - ,
P2=224+13,3.+3_3,) (2.1) n<L (2)! |z]20+ 0+ D)
(2.11
and the usud)J;j,n) vectors (=1,2,3...,—j<=n<j),
where ‘“com” in the notation indicates complementary
32|J;j,n>:j(j+1)|3;j,n>, (2.2 states. They are auxiliary states that will be useful in the
calculation of the coefficients, in the expansion of an arbi-
3350 =n|J;j.n), (2.3 trary state in terms of S@2) coherent states.

Combining Egs(2.7) and(2.11) we show the resolution

J+|J;j,n>:[j(j+1)_n(n+1)]1/2|\];j,n+1>’ (2.4 of the identity

. N 1/2) 1.5 dz 2\j . P
J_|13jm=[j(j+1)—n(n-1)]"43;j,n—1). (2.9 fﬁ(1+|z| YM(2))]3;2)(3;z;com =1, (2.12

As in our previous worK9], we introduce an extra to the ) L ) )
usual notation because through a finite-Fourier transform, w&/hereC is a contour around the origin in the anticlockwise
can introduce dual angle states that we denottas). 6 direction. Using Eq(2.12 we can expand an arbitrary pure
states and operators have been studig@jiand will be used ~ Staté
here later. The stateg;j,n) span a2j +1)-dimensional Hil- J_ J_
bert spaceH. We also consider the SP) operators: .
P P H=2 flsin: X =1 (@219

T(0,p,N)=exd —20e %), +10e'?J_lexpird,),

in terms of SW2) coherent states on a contauiaround the

Oo<f<mw, 0=¢<2. (2.6 origin as

SU(2) coherent states are defined as

dz
= 5= t13:2), 214

i
B2=@+l2)7 2 sGmZ i, @D
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f(2)=(1+2*)M|2])(J;z;comf)
j

=(1+|2>) X

n

(2.19

As examples of this expansion we consider the stdtgsn)
and the SW2) coherent state$);w) for which we easily
prove

. (1+]z%)
J,J,n>—>f(z)=W, (2.19
N . 1 1+ ij -
[Jw)—F(2)=5 =wi) 8\ Z) (2.17)
where
22j+l_l
S(Z)Z? if z#1,
S(1)=2j+1. (2.18
Note that if
_ 27 21
w=exq i 2741 (2.19
then
S(w™=0; m=1,...(2)). (2.20

In order to elucidate the relationship between the resolution

of the identity(2.10 in terms of a surface integral, and the
resolution of the identity2.12) in terms of a line integral, we
give an alternative proof of Eq2.12 starting from Eq.
(2.10. In order to do this, we first use the relation

i

where ¢ is an anticlockwise contour around the origin, to
prove,

dw (1+z*w)?

A I IR

(2.21

(37 =(1+]7* 7 f}g ;—;Vile|>(1+wz*>Zi<J;w;corﬂ-
(2.22

We also use the resolution of the identi&10 to prove that
13,2).

2j+1
oo J du(2)
2.23

Inserting Eq.(2.22 into Eq.(2.10 and using Eq(2.23 we
have an alternative proof of ER.12.

(1+zFw)?
(1+]2]%) (1 +[wl?)!

| J;w)

I1l. RESOLUTION OF THE IDENTITY
IN THE DUAL 6 PLANE

In Refs.[9] we have studied the Fourier transform

Up=(2j+1)" Y23 »™3;j,m)(J;j.nl, (3.1
m,n
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FIG. 1. Coefficients of the expansions [#j,m) (with j=2,
m=1) in the terms ofJ-coherent states on the cirdlg =0.5. The
|f(2)| is plotted as a function of arg.

UeUf =UfUg=1, (3.2

(3.3

wherew has been defined in EQR.19. Using these Fourier
transforms we have introduced thebasis of Euler angle
states|d;j,m)

j
[0:1,m)=Uel 3. m)=(2j +1) 2 2 o"|3:).n).
(3.4

We have also introduced the Euler angle operators6._,
and 6, which can obey the S@) algebra

6,=UgJ,U{, (3.9
6, =UgJ, Ut (3.6
6_=UgJ_Ut, 3.7
[6,,0.]1=*60., [60.,0_1=26,. (3.9

The 6 operators act on thestates in an analogous way to the
J operators acting on thé@ states. Therefore we have éa
sphere(and through stereographic projectionfaextended
complex plang which are dual to thel sphere(and to the
J-extended complex planeUsing Eq.(3.4) in conjunction
with Eq. (2.19 we express theég;j,m) states as superposi-
tions of theJ-coherent statefEq. (2.14)] with coefficients

wmn

5(j,n)zj+n+l‘
(3.9

i
f(zm)=(1+|z?)(2j+1) 2 >
n=-—j

Numerical results for théf(z)| and argf(z)] are shown in
Figs. 1 and 2 correspondingly, for the expansion of the states
#;j,m) with j=2m=1 in terms of thel-coherent states on
the circle|z|=0.5. These results can be useful for the pro-
duction of these states.
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FIG. 2. Coefficients of the expansion ¢f;j,m) (with j=2,
m=1) in terms of J-coherent states on the circlg|=0.5. The
arg(f(z)) is plotted as a function of arg).

SU(2) ¢-coherent states can be defined @k

J
16;2)=U|3;2)=(1+]2]>) 7T X 8(j,mZ " 6;),n).
n=—j

(3.10
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FIG. 3. Coefficients of the expansion of tllecoherent states
|6;w) [with j =2, w=2, argfv) =0] in terms ofJ-coherent states on
the circle|z|=0.5. The|f(z)| is plotted as a function of argj.

|6,z,com)=Ug|J;z;com

J
:[M|Z|)]_ln;j [8(j,n)(z*)I*n+1]~1
x|6;j,n). (3.13

It is clear that the following resolution of the identity is

With respect to thed operators they have the same propertiesvalid:

as the(ordinary J-coherent states with respect to thep-
erators. It is the properties of th®ecoherent states with re-
spect to thel operators or the properties of tldecoherent
states with respect to the operators, that are novel. Using
Eq. (3.4 we show that

|Gw)=(L+|w|?) 712 +1) 72> 8(j,nwi "™ 3;j,m)
nm
(3.11
that we use in conjunction with E@2.15 to show that the

f-coherent states can be expressed as superpositions of
J-coherent statefEq. (2.14)] with coefficients

o IIT s [ —m)!(j+m)! ]
f(z’w)_{ Twpz) AL 2 (G—m!(j+n)!
Wj+n
X ZJ+m+l (312

Numerical results for théf(z)| and argf(z)] are shown in
Figs. 3 and 4, for the expansion of thecoherent states
|6;w=2) (with j=2) in terms of thel-coherent states on the

circle |z|=0.5. These results can be useful for the production FiG. 4.

of the #-coherent states.
The #-complementary states are introduced as

fﬁc 2d_;i (1+|213M2))|6;2)(6;z;com =1, (3.14

which is analogous to Eq2.12).
The J,- 6, phase space is the discretized toA(2j +1)
XZ(2j+1) [whereZ(2j+1) denotes the integers modulo
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Coefficients of the expansion of tlfecoherent states
=2,w=2, argv) =0] in terms ofJ-coherent states on
the circle|z|=0.5. The arff(z)] is plotted as a function of argj.
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2j+1]. Displacements in this phase space are performedtates are not SQQ) coherent states. Indeed they can be ex-

with the operatorgsee Appendix B pressed as
. 2w 2] - k
E=exr{—| —_— 02}, (3.15 o e 1 (2] —k)! J_+ L
2j+1 [izicom =[2M2)17* 2 =5 | 7+ | 93—
Foexgi -2 3.1 2
e (3.16 ~[@) DTS K253 4),
EAl=Fa =1, (3.17 @.1)

aEB=EBEa, B . L .
E*FF=F E% ™", (3.18 We see that the operators acting |[dnj,—j) or |J;j,j) are

not of the typg2.6). In order to get a better understanding of
the complementary states, we compare and contrast the di-
rections of the vectors

where a,8 are integers(modulo 2+1). The general dis-
placement operator in th&- #, phase space, can be written

as
D(a,B)=F“EPw(—2"tap), (3.19 a;=(J;z;comJ;|J;z,com, 4.2
D(a1,B1)D(az,B2) =D(ay+az,B1+ B2) bi=(J;2|3;|3;2), 4.3
Xw[2 a1 B2 ayBy],
(3.20 ¢i=(6:2[3i]6;2), (4.4

D(0,0=D(2j+1,00=D(0,2j+1)=D(2j+1,2j+1)=1, wherei =Xx,y,z. We also use the notaticam, ,b, ,c, for
(3.21

wherew(x) is a shorthand notation fas. We next consider a.=(Jz;,comJ, [J;z,comp=a,+iay, (4.5
the parity operator
b, =(J;23,|J;2)=b,+ib,, (4.6)
Po=U¢ (3.22 # =323 |32 =bycriby
and prove that acting on $B) coherent states, we get . =(6;2]3.|0;z)=cyFicy. (4.7)
z\3 1 It is easy to show that
P0|J,Z>= H) J; E> (323)
. . ) j j+n)!(j—n)! n
The displaced parity operators are defined as azz[/\/’(|z|)]*2n:z_j U ()Zj()J! ) P
P(a,8)=D(a,B)Po[D(a,8)]"=D(2a,28)Pq 4.8
=Po[D(22,28)]" (3.24) o _
s (G—mi(j+n+1)! 1
and can be used in expressing the Wigner functiofil8 a,=[Mlz)] 7 n;j 2j)! |z]20FFD)
W(e,8)=TrpP(a,B)]. (3.29 49
Combining Eqs(2.12), (4.20, (4.21), and(4.22 we express and it is well known that
the Wigner function as
g 2 b= 22 4.10
z . z =) o .
_ el 2yj il zZ|“+1
W(a,B) 35 57 (1+]2 >N<|z|>(|z|) 12
1 *
x(J;z;compD(2a,2B)|J; E>' (3.26 b,=2j ZPr1 (4.1
IV. COMPLEMENTARY STATES It is also easy to shoywsing Eq.(3.4)] that
The expansion Eq2.14 is in terms of the usual SQ@) c,=(1+|z/)"%2j+1) !
coherent states whose properties are well known. However, _
the complementary states of EQ.11) also enter in the cal- > 2(j)! 2
culation, in the coefficient§(z) of Eq. (2.15. In this sense Xn,m,l (G+mIG—m!G+DI—!

there is merit in studying some of the properties of these . .
states. We start by making clear that the complementary XmeMn=hzi 0z )i+l (4.12
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FIG. 5. The normalization constanf(|z|) for the complemen-

tary statewith j =2) as a function ofz]. FIG. 7. The angle arctaj,|/a,) for complementary states

with j=2 as a function ofz|.

¢ =(1+|z»)"P(2j+1)7"

(2j)!
P e AR

men—l(m+1)zj+n(z*)j+|[(j _m)(] +m+ 1)]1/2.

(4.13

We first present results for the normalization constant. In
Fig. 5 we plotA(|z]) as a function ofiz| for j=2. As ex-  from which it is clear that the arctajiy, |/b,) is independent
pected, forz| <1 the M(|z|) takes large values. of j and argg). The corresponding angle for the vectgris
We next consider the spherical angles (arg, shown in Figs. 7 and 8 where it is seen that it depends on

arctan(a,|/a,) for the vectora;, and the corresponding both |z| andj [although it is independent of a)(. From
angles for the vectorb, ,c; . It is clear that Fig. 7 and Eq(4.15 it is seen that when the vectar points

in the north hemisphere, the vectby points in the south

arga,)=argb,)=—argz) (4.19

hemisphere and vice versa. Only fia{=1, both vectors
and therefore both vectoesandb are on the same half plane

a;,b; point in the same direction on they plane. Results
for arctan(c, |/c,) are shown in Figs. 9—11 where it is seen
through thez axis, defined by the anglearg(z). argc.) as
a function of argg) is shown in Fig. 6 from which it is seen

clearly that the vectoc, is on a different half plane through
the z axis, than the vectora, andb. .
Equations(4.10 and(4.11) show that

1/2

lb.| _ 2l

b, 1 s

that it depends oiz|, arg(z), andj.
We next evaluate the overlaps:

- 2 lzi=2 o(l21=0.7)  Hizl=t)  *(z1=2)
. . 1 . . . .
80 N T T T X * %
*
1601
1400
1200
= & 100f
B 251 g + + + + + + + +
© § sof
200 g
sl 60F
ol 40r
(o]
sl - 20+ o .
0 . . . . . . J . © o o o o
o 50 10 150 200 250 800 350 o 2 s 4 5 6 7 8 9 10

FIG. 6. The angle afg ) for 6-coherent state}®;z) (with j =2,

arg(z)

|z|=2) as a function of arg).

FIG. 8. The angle arctajd,|/a,) for complementary states

[with |z]=0.7 (O); |z|=1 (+); |z] =2 (*)] as a function of.
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FIG. 9. The angle arctafg.|/c,) for #-coherent state$s;z)
[with j=2, arg(z) =30] as a function ofz].

<J,21;corﬂJ;ZZ;c0m>=[N(|121|)/\/(|22|)]’l
(J+m!(—n)!

j
X2 @)
1
T @19
and also
1
(J;21;c0mI; 2, =[M]zi)] H1+]2,)?) 7T = s(é)
z; \zg
(4.17

whereS(z) has been defined in E(R.18). It is clear that the
above overlap is equal to zero, when

Zl=22wm, m:].,,(2]) (418)

=2 izl=2
T

110

arctan(ic,lic,)

851 J
L L L L s

50 . L
0 50 100 150 200 250 300 350
arg(z)

FIG. 10. The angle arctaju, |/c,) for #-coherent statefy;z)
(with j=2, |z|=2) as a function of arg).
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arg(z)=30
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FIG. 11. The angle arctajw, |/c,) for #-coherent statefy;z)
[with arg(z) =30 and|z|=0.7 (O); |z|=1 (+); |z| =2 (*)] as a func-
tion of j.

We next express the statdsz;com) as superpositions of the
SU(2) coherent statels);z). Due to the overcompleteness of
the states|P;z)], there are many such expansions and we

give some of them.
We start with the expansiof2.14) and using Eq(2.195

we find

|J;w;com)—f(2)
=[MwD] 1+

5>

j=-n

G+miG-n! 1
@Dl Wy

(4.19

Another expansion can be found using the integral

Fds SZJJ”dt e‘(t+5)(£)j+m=(j+m)!(j—m)!
0 0 S
(4.20

to prove that

|J;z;com):[z*(2j)!/\/’(|z|)]*1J'0wdsf:dt g (t+9

, ] t
X|s +W J; §> (4.21
Finally we use the integral
[8(j,m] ?=(j—n)B(j+n+1j—n)
w  xitn
=(j—n)f0 de (422

whereB is a beta function, to prove
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% dx . and in which space they belong. In the @Ucase studied in
|J:Z;00m>:[2*/\/(|2|)]71f AL (2] —xdyx) this paper all the sums are finite and we had no difficulties of
0 this nature.
X2 x
X[ 1+ 27 J; Z—*>] (4.23 APPENDIX A

In the language of analytic representatigesgy.,[14]) we
V. DISCUSSION can represent the arbitrary stdfe of Eq. (2.13 with the

. . . . .__.analytic function in the extended complex plane:
Resolutions of the identity are important for the practical

use of coherent states as a basis in a Hilbert space. In this J _ _
paper we have derived the resolution of the iden@@yl 2 in f(z)= > N3, nZ TN =(1+2H)I(z*|f). (A1)
the context of S(P) coherent states. This involves both the n=-I

SU(2) coherent stateld); z) and the auxiliary states appearing Let {z\} be sequence in the complex plane that converges to

in the palculaﬂon of the coefficients in E¢2.13. Some_ some pointz,. We want to prove that the set of the corre-
properties of the complementary states have been studied g?)onding S(R) coherent stateJ;z,)! is overcomplete. In-

Sec. IV. Using Eq.(2.12 we can expand any state in the deed if it is not com -
. ; plete there will be some stége that
Hilbert space in terms of SQ@) coherent statefEgs. (2.14) will be orthogonal to alf|J;zy)} and consequentlg(zy) =0

and(2.15]. Expansions for the statéd;j,n), |6;j,n), |J;2), f o .

’ ; : or all {zy}. But this is not possible because the zeros of
and|6,z) have bee_n given in Eq#2.19, (3'9).' (2.17), and analytic functions are “isolated” and cannot converge to a
(3.12, correspondingly, and related numerical results haveboint zo. Therefore the sef|J;z,)} is at least complete. In

been presented. The Wigner function in tdg 6, phase fact it is overcomplete because the same argument is also

space has also been given in the form of a contour integral i alid. even if we omit a finite number of terms from the
Eq. (3.26. The results have been presented in a generazequ,ence{zN}

SU(2) context but they could be readily applied in the two-
photon realization of these states with the Hamiltor{iad).
More work is required on resolutions of the identity in
terms of line integralflike Eq. (1.3)]. One approachistouse  |n this appendix we briefly review the properties of the
contour integrals in an appropriate complex region and folpperator€E andF of Egs.(3.15 and(3.16. The operator&
coherent state@ssociated with a certain groupf the type  andF perform displacements along the and 6, axes, cor-

APPENDIX B

respondingly,
_ N 2_
|z>—% anzV|N), % lan|*=1 (5.1 EJ;j,m)=]J;j.m+a), (B1)
to construct the complementary states as E*[6;),m)=w(—ma)|6;],m), (B2)
(z;com=[M|2))]7*2 [ana "1 17YN|, (5.2 PR m) = o(mB)3if,m). &9
N

FA16;j,my=16;j,m+ B). (B4
where N(]z|) is a normalization factor anN) is an ortho-
normal basis. The difficulty with certain groups might be that Combining(B1), (B3) or (B2), (B4) we prove the impor-
the normalization factor diverges and then we have to thinkant relation(3.18. More details about these operators and
very carefully of how the complementary states are definedheir properties are given in R€®].
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