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Resolutions of the identity in terms of line integrals that involve SU~2! coherent states and their comple-
mentary states are presented. They are used for the expansion of various states in terms of SU~2! coherent
states on a line. The properties of the complementary states are also studied.@S1050-2947~96!08211-X#
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I. INTRODUCTION

SU~2! coherent states have been studied by various au-
thors@1,2# and found various applications in quantum optics.
They are realizable in various contexts, for example, in two-
photon systems described by the Hamiltonian@3#

H5v1a
†a1v2b

†b1lab†1l* a†b, ~1.1!

wherea†, a andb†, b are photon creation and annihilation
operators.

SU~2! coherent states form an overcomplete set of states.
In fact it can be proved using the language of analytic rep-
resentations~see Appendix A!, that if $zN% is a convergent
sequence to some pointz0 in the extended complex plane
~which is stereographically equivalent to a sphere!, then the
corresponding coherent states form an overcomplete set.
This is undoubtedly a very powerful theorem. However,
from a practical point of view in order to use the SU~2!
coherent states as a basis in the Hilbert space, we need to
have a resolution of the identity that can be used for the
expansion of an arbitrary state in terms of SU~2! coherent
states. Simply to know that a set of states is overcomplete
without having a resolution of the identity is not practically
useful; but, on the other hand, it encourages us to try to find
resolutions of the identity in terms of these states. And some-
times even a weaker concept than a resolution of the identity,
like the concept of frames in the context of wavelets@4#,
might also be useful. In the SU~2! case, the known resolution
of the identity involves all the SU~2! coherent states in the
extended complex plane. According to what we have said
above, there are much smaller subsets that are also overcom-
plete, and we are encouraged to look for other resolutions of
the identity in terms of fewer SU~2! coherent states.

In order to explain the philosophy of our approach we first
point out that the resolutions of the identity for the various
types of coherent states are in terms of surface integrals of
the form

E dmus&^su51, ~1.2!

where us& are coherent states, and the integration is over a
certain manifold@e.g., the complex plane for Glauber coher-
ent states, the extended complex plane for SU~2! coherent

states, the unit disk for SU~1,1! coherent states, etc.#. Here
we study resolutions of the identity in terms of the line inte-
grals of the type

E dlus&^s;comu51, ~1.3!

whereus& are coherent states and^s;comu are ‘‘complemen-
tary’’ states that are not coherent states. The use of these
states gives us great flexibility in constructing new resolu-
tions of the identity; at the same time there is no loss in the
strength of the resulting resolution of the identity. Indeed Eq.
~1.3! can be used to expand an arbitrary ket stateu f & in terms
of the coherent statesus& as

u f &5E dl f ~s!us&, ~1.4!

f ~s!5^s;comu f & ~1.5!

and the corresponding bra state^ f u in terms of the coherent
states,̂ su as

^ f u5E @dl f ~s!#* ^su. ~1.6!

Clearly we can also write the bra state^ f u in terms of the
complementary stateŝs;comu as

^ f u5E dlg~s!^s;comu, ~1.7!

g~s!5^ f us&, ~1.8!

but we are usually interested in the expansions~1.4!, ~1.6! in
terms of the coherent statesus& that are experimentally real-
izable, rather than in Eq.~1.7! in terms of the statesus;com&.
The us;com& are auxiliary states that are used in the calcula-
tion of the coefficients~1.5!.

The above ideas have been inspired by recent work@5#
where quantum states have been expressed as quantum su-
perpositions of Glauber coherent states on a certain line in
phase space. The approximation of the exact expansion in
terms of line integrals by a discrete sum leads to the possi-
bility of producing experimentally, approximately any de-
sired state as a superposition of Glauber coherent states. This
is one approach within the more general framework of
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quantum-state engineering@6# and indicates one of the prac-
tical merits of expansions like Eq.~1.3!. In Eq. ~1.2! all the
coherent states are involved and any good approximation of
the integral as a sum~e.g., by using the coherent states on a
von Neumann-type of lattice! will require a lot of terms. In
Eq. ~1.3! it is expected that such approximations will be
more accurate with fewer terms. Related to@5# is also the
contour representations studied in@7#. The latter formalism
has recently been used in@8# to enlarge the usual Hilbert
space in order to describe a harmonic oscillator at both posi-
tive and negative temperatures. All these references use the
Glauber coherent states associated with the Heisenberg-Weyl
group.

In this paper we construct a resolution of the identity us-
ing a line integral of the type Eq.~1.3!, in terms of SU~2!
coherent states. We also study the properties of the comple-
mentary statesus;com& that enter in this integral. Using this
resolution of the identity we can expand an arbitrary state in
the Hilbert space in terms of SU~2! coherent states. As ex-
amples, we use this expansion to express the ‘‘u states’’ that
we studied in our previous work@9# within the general con-
text of quantum systems with finite-Hilbert space@10–12#, as
superpositions of SU~2! coherent states. The results could be
useful for the production of these states.

II. RESOLUTIONS OF THE IDENTITY IN TERMS
OF SU„2… COHERENT STATES AND THEIR

COMPLEMENTARY STATES

We consider the angular momentum operators

@Jz ,J6#56J6 , @J1 ,J2#52Jz ,

J25Jz
21 1

2 ~J1J21J2J1! ~2.1!

and the usualuJ; j ,n& vectors (j51,2,3,...,2 j<n< j ),

J2uJ; j ,n&5 j ~ j11!uJ; j ,n&, ~2.2!

JzuJ; j ,n&5nuJ; j ,n&, ~2.3!

J1uJ; j ,n&5@ j ~ j11!2n~n11!#1/2uJ; j ,n11&, ~2.4!

J2uJ; j ,n&5@ j ~ j11!2n~n21!#1/2uJ; j ,n21&. ~2.5!

As in our previous work@9#, we introduce an extraJ to the
usual notation because through a finite-Fourier transform, we
can introduce dual angle states that we denote asuu;j ,n&. u
states and operators have been studied in@9# and will be used
here later. The statesuJ; j ,n& span a~2 j11!-dimensional Hil-
bert spaceH. We also consider the SU~2! operators:

T~u,f,l!5exp@2 1
2ue2 ifJ11 1

2ueifJ2#exp~ ilJz!,

0<u<p, 0<f,2p. ~2.6!

SU~2! coherent states are defined as

uJ;z&5~11uzu2!2 j (
n52 j

j

d~ j ,n!zj1nuJ; j ,n&, ~2.7!

d~ j ,n!5F ~2 j !!

~ j1n!! ~ j2n!! G
1/2

, ~2.8!

wherez belongs to the extended complex plane@Cø$`%# that
we call theJ plane, and which is topologically equivalent to
the J sphere. An alternative equivalent definition is

uJ;ufl&5T~u,f,l!uJ; j ,2 j &5exp~2 ilz!uJ;z&,

z52tan~ 1
2u!e2 if, ~2.9!

z is the stereographic projection of the point~u,f! of the
sphere onto the extended complex plane. The following reso-
lution of the identity in terms of these states is well known:

2 j11

p E dm~z!uJ;z&^J;zu51,

dm~z!5~11uzu2!22d2z. ~2.10!

We next introduce the ‘‘complementary’’ states to the SU~2!
coherent states that we define for anyzÞ0, as

^J;z;comu5@N~ uzu!#21 (
n52 j

j

@d~ j ,n!zj1n11#21^J; j ,nu,

uJ;z;com&5@N~ uzu!#21 (
n52 j

j

@d~ j ,n!~z* ! j1n11#21uJ; j ,n&,

N~ uzu!5F (
n52 j

j
~ j1n!! ~ j2n!!

~2 j !!

1

uzu2~ j1n11!G1/2,
~2.11!

where ‘‘com’’ in the notation indicates complementary
states. They are auxiliary states that will be useful in the
calculation of the coefficients, in the expansion of an arbi-
trary state in terms of SU~2! coherent states.

Combining Eqs.~2.7! and ~2.11! we show the resolution
of the identity

R
c

dz

2p i
~11uzu2! jN~ uzu!uJ;z&^J;z;comu51, ~2.12!

whereC is a contour around the origin in the anticlockwise
direction. Using Eq.~2.12! we can expand an arbitrary pure
state

u f &5 (
n52 j

j

f nuJ; j ,n&; (
n52 j

j

u f nu251 ~2.13!

in terms of SU~2! coherent states on a contourc around the
origin as

u f &5 R
c

dz

2p i
f ~z!uJ;z&, ~2.14!

where
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f ~z!5~11uzu2! jN~ uzu!^J;z;comu f &

5~11uzu2! j (
n52 j

j
f n

d~ j ,n!zj1n11 . ~2.15!

As examples of this expansion we consider the statesuJ; j ;n&
and the SU~2! coherent statesuJ;w& for which we easily
prove

uJ; j ,n&→ f ~z!5
~11uzu2! j

d~ j ,n!zj1n11 , ~2.16!

uJ;w&→ f ~z!5
1

2 S 11uzu2

11uwu2D
j

SSwz D , ~2.17!

where

S~z!5
z2 j1121

z21
if zÞ1,

S~1!52 j11. ~2.18!

Note that if

v5expS i 2p

2 j11D ~2.19!

then

S~vm!50; m51,...,~2 j !. ~2.20!

In order to elucidate the relationship between the resolution
of the identity~2.10! in terms of a surface integral, and the
resolution of the identity~2.12! in terms of a line integral, we
give an alternative proof of Eq.~2.12! starting from Eq.
~2.10!. In order to do this, we first use the relation

R
c

dw

2p i

~11z*w!2 j

wj1n11 5~z* ! j1n@d~ j ,n!#2, ~2.21!

where c is an anticlockwise contour around the origin, to
prove,

^J;zu5~11uzu2!2 j R
c

dw

2p i
N~ uwu!~11wz* !2 j^J;w;comu.

~2.22!

We also use the resolution of the identity~2.10! to prove that

uJ;w&5
2 j11

p E dm~z!
~11z*w!2 j

~11uzu2! j~11uwu2! j
uJ,z&.

~2.23!

Inserting Eq.~2.22! into Eq. ~2.10! and using Eq.~2.23! we
have an alternative proof of Eq.~2.12!.

III. RESOLUTION OF THE IDENTITY
IN THE DUAL u PLANE

In Refs.@9# we have studied the Fourier transform

UF5~2 j11!21/2(
m,n

vmnuJ; j ,m&^J; j ,nu, ~3.1!

UFUF
15UF

1UF51, ~3.2!

UF
451, ~3.3!

wherev has been defined in Eq.~2.19!. Using these Fourier
transforms we have introduced theu basis of Euler angle
statesuu ;j ,m&

uu; j ,m&5UFuJ; j ,m&5~2 j11!21/2 (
n52 j

j

vmnuJ; j ,n&.

~3.4!

We have also introduced the Euler angle operatorsu1 , u2 ,
anduz which can obey the SU~2! algebra

uz5UFJzUF
1 , ~3.5!

u15UFJ1UF
1 , ~3.6!

u25UFJ2UF
1 , ~3.7!

@uz ,u6#56u6 , @u1 ,u2#52uz . ~3.8!

Theu operators act on theu states in an analogous way to the
J operators acting on theJ states. Therefore we have au
sphere~and through stereographic projection au-extended
complex plane! which are dual to theJ sphere~and to the
J-extended complex plane!. Using Eq.~3.4! in conjunction
with Eq. ~2.15! we express theuu;j ,m& states as superposi-
tions of theJ-coherent states@Eq. ~2.14!# with coefficients

f ~z;m!5~11uzu2! j~2 j11!21/2 (
n52 j

j
vmn

d~ j ,n!zj1n11 .

~3.9!

Numerical results for theu f (z)u and arg[f (z)] are shown in
Figs. 1 and 2 correspondingly, for the expansion of the states
uu ;j ,m& with j52,m51 in terms of theJ-coherent states on
the circle uzu50.5. These results can be useful for the pro-
duction of these states.

FIG. 1. Coefficients of the expansions ofuu;j ,m& ~with j52,
m51! in the terms ofJ-coherent states on the circleuzu50.5. The
u f (z)u is plotted as a function of arg(z).
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SU~2! u-coherent states can be defined as@9#

uu;z&5UFuJ;z&5~11uzu2!2 j (
n52 j

j

d~ j ,n!zj1nuu; j ,n&.

~3.10!

With respect to theu operators they have the same properties
as the~ordinary! J-coherent states with respect to theJ op-
erators. It is the properties of theu-coherent states with re-
spect to theJ operators or the properties of theJ-coherent
states with respect to theu operators, that are novel. Using
Eq. ~3.4! we show that

uu;w&5~11uwu2!2 j~2 j11!21/2(
n,m

d~ j ,n!wj1nvnmuJ; j ,m&

~3.11!

that we use in conjunction with Eq.~2.15! to show that the
u-coherent states can be expressed as superpositions of the
J-coherent states@Eq. ~2.14!# with coefficients

f ~z;w!5F 11uzu2

11uwu2G
j

~2 j11!21/2(
n,m

F ~ j2m!! ~ j1m!!

~ j2n!! ~ j1n!! G1/2

3vmn
wj1n

zj1m11 . ~3.12!

Numerical results for theu f (z)u and arg[f (z)] are shown in
Figs. 3 and 4, for the expansion of theu-coherent states
uu ;w52& ~with j52! in terms of theJ-coherent states on the
circle uzu50.5. These results can be useful for the production
of the u-coherent states.

The u-complementary states are introduced as

uu,z,com&5UFuJ;z;com&

5@N~ uzu!#21 (
n52 j

j

@d~ j ,n!~z* ! j1n11#21

3uu; j ,n&. ~3.13!

It is clear that the following resolution of the identity is
valid:

R
c

dz

2p i
~11uzu2! jN~ uzu!uu;z&^u;z;comu51, ~3.14!

which is analogous to Eq.~2.12!.
The Jz-uz phase space is the discretized torusZ(2 j11)

3Z(2 j11) @whereZ(2 j11) denotes the integers modulo

FIG. 2. Coefficients of the expansion ofuu ;j ,m& ~with j52,
m51! in terms of J-coherent states on the circleuzu50.5. The
arg„f (z)… is plotted as a function of arg(z).

FIG. 3. Coefficients of the expansion of theu-coherent states
uu ;w& @with j52,w52, arg(w)50# in terms ofJ-coherent states on
the circleuzu50.5. Theu f (z)u is plotted as a function of arg(z).

FIG. 4. Coefficients of the expansion of theu-coherent states
uu;w& @with j52,w52, arg(w)50# in terms ofJ-coherent states on
the circleuzu50.5. The arg†f (z)‡ is plotted as a function of arg(z).
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2 j11#. Displacements in this phase space are performed
with the operators~see Appendix B!

E5expF2 i
2p

2 j11
uzG , ~3.15!

F5expF i 2p

2 j11
JzG , ~3.16!

E2 j115F2 j1151, ~3.17!

EaFb5FbEav2ab, ~3.18!

where a,b are integers~modulo 2j11!. The general dis-
placement operator in theJz-uz phase space, can be written
as

D~a,b!5FaEbv~2221ab!, ~3.19!

D~a1 ,b1!D~a2 ,b2!5D~a11a2 ,b11b2!

3v@221a1b22221a2b1#,

~3.20!

D~0,0!5D~2 j11,0!5D~0,2j11!5D~2 j11,2j11!51,
~3.21!

wherev(x) is a shorthand notation forvx. We next consider
the parity operator

P05UF
2 ~3.22!

and prove that acting on SU~2! coherent states, we get

P0uJ;z&5S z

uzu D
2 jUJ; 1zL . ~3.23!

The displaced parity operators are defined as

P~a,b!5D~a,b!P0@D~a,b!#†5D~2a,2b!P0

5P0@D~2a,2b!#† ~3.24!

and can be used in expressing the Wigner function as@13#

W~a,b!5Tr@rP~a,b!#. ~3.25!

Combining Eqs.~2.12!, ~4.20!, ~4.21!, and~4.22! we express
the Wigner function as

W~a,b!5 R
c

dz

2p i
~11uzu2! jN~ uzu!S z

uzu D
2 j

3^J;z;comurD~2a,2b!UJ; 1zL . ~3.26!

IV. COMPLEMENTARY STATES

The expansion Eq.~2.14! is in terms of the usual SU~2!
coherent states whose properties are well known. However,
the complementary states of Eq.~2.11! also enter in the cal-
culation, in the coefficientsf (z) of Eq. ~2.15!. In this sense
there is merit in studying some of the properties of these
states. We start by making clear that the complementary

states are not SU~2! coherent states. Indeed they can be ex-
pressed as

uJ;z;com&5@z*N~ uzu!#21(
k50

2 j
~2 j2k!!

~2 j !! S J1

z* D kuJ; j ,2 j &

5@~z* !2 j11N~ uzu!#21(
k50

2 j

k! ~z* J2!kuJ; j , j &.

~4.1!

We see that the operators acting onuJ; j ,2 j & or uJ; j , j & are
not of the type~2.6!. In order to get a better understanding of
the complementary states, we compare and contrast the di-
rections of the vectors

ai5^J;z;comuJi uJ;z,com&, ~4.2!

bi5^J;zuJi uJ;z&, ~4.3!

ci5^u;zuJi uu;z&, ~4.4!

wherei5x,y,z. We also use the notationa1 ,b1 ,c1 for

a15^J;z;comuJ1uJ;z;com&5ax1 iay , ~4.5!

b15^J;zuJ1uJ;z&5bx1 iby , ~4.6!

c15^u;zuJ1uu;z&5cx1 icy . ~4.7!

It is easy to show that

az5@N~ uzu!#22 (
n52 j

j
~ j1n!! ~ j2n!!

~2 j !!

n

uzu2~ j1n11! ,

~4.8!

a15@N~ uzu!#22
1

z (
n52 j

j21
~ j2n!! ~ j1n11!!

~2 j !!

1

uzu2~ j1n11!

~4.9!

and it is well known that

bz5 j
uzu221

uzu211
, ~4.10!

b152 j
z*

uzu211
. ~4.11!

It is also easy to show@using Eq.~3.4!# that

cz5~11uzu2!22 j~2 j11!21

3 (
n,m,l

F 2~ j !!

~ j1n!! ~ j2n!! ~ j1 l !! ~ j2 l !! G
1/2

3mvm~n2 l !zj1n~z* ! j1 l , ~4.12!
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c15~11uzu2!22 j~2 j11!21

3 (
n,m,l

F ~2 j !!

~ j1n!! ~ j2n!! ~ j1 l !! ~ j2 l !! G
1/2

3vmn2 l ~m11!zj1n~z* ! j1 l@~ j2m!~ j1m11!#1/2.

~4.13!

We first present results for the normalization constant. In
Fig. 5 we plotN(uzu) as a function ofuzu for j52. As ex-
pected, foruzu,1 theN(uzu) takes large values.

We next consider the spherical angles arg~a1!,
arctan(ua1u/az) for the vectorai , and the corresponding
angles for the vectorsbi ,ci . It is clear that

arg~a1!5arg~b1!52arg~z! ~4.14!

and therefore both vectorsa andb are on the same half plane
through thez axis, defined by the angle2arg(z). arg~c1! as
a function of arg(z) is shown in Fig. 6 from which it is seen

clearly that the vectorc1 is on a different half plane through
the z axis, than the vectorsa1 andb1 .

Equations~4.10! and ~4.11! show that

ub1u
bz

5
2uzu

uzu221
~4.15!

from which it is clear that the arctan(ub1u/bz) is independent
of j and arg(z). The corresponding angle for the vectorai is
shown in Figs. 7 and 8 where it is seen that it depends on
both uzu and j @although it is independent of arg(z)#. From
Fig. 7 and Eq.~4.15! it is seen that when the vectorai points
in the north hemisphere, the vectorbi points in the south
hemisphere and vice versa. Only foruzu51, both vectors
ai ,bi point in the same direction on thex-y plane. Results
for arctan(uc1u/cz) are shown in Figs. 9–11 where it is seen
that it depends onuzu, arg(z), and j .

We next evaluate the overlaps:

FIG. 5. The normalization constantN(uzu) for the complemen-
tary states~with j52! as a function ofuzu.

FIG. 6. The angle arg~c1! for u-coherent statesuu;z& ~with j52,
uzu52! as a function of arg(z).

FIG. 7. The angle arctan(ua1u/az) for complementary states
with j52 as a function ofuzu.

FIG. 8. The angle arctan(ua1u/az) for complementary states
@with uzu50.7 ~s!; uzu51 ~1!; uzu52 ~* !# as a function ofj .
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^J,z1 ;comuJ;z2 ;com&5@N~ uz1u!N~ uz2u!#21

3 (
n52 j

j
~ j1n!! ~ j2n!!

~2 j !!

3
1

~z1z2* ! j1n11 , ~4.16!

and also

^J;z1 ;comuJ;z2&5@N~ uz1u!#21~11uz2u2!2 j
1

z1
SS z2z1D ,

~4.17!

whereS(z) has been defined in Eq.~2.18!. It is clear that the
above overlap is equal to zero, when

z15z2v
m, m51,...,~2 j !. ~4.18!

We next express the statesuJ;z;com& as superpositions of the
SU~2! coherent statesuJ;z&. Due to the overcompleteness of
the states [uJ;z&], there are many such expansions and we
give some of them.

We start with the expansion~2.14! and using Eq.~2.15!
we find

uJ;w;com&→ f ~z!

5@N~ uwu!#21~11uzu2! j

3 (
j52n

n
~ j1n!! ~ j2n!!

~2 j !!

1

~zw* ! j1n11 .

~4.19!

Another expansion can be found using the integral

E
0

`

ds s2 jE
0

`

dt e2~ t1s!S tsD
j1m

5~ j1m!! ~ j2m!!

~4.20!

to prove that

uJ;z;com&5@z* ~2 j !!N~ uzu!#21E
0

`

dsE
0

`

dt e2~ t1s!

3Fs21 t2

uzu2G
jUJ; t

sz* L . ~4.21!

Finally we use the integral

@d~ j ,n!#225~ j2n!B~ j1n11,j2n!

5~ j2n!E
0

` xj1n

~11x!2 j
dx ~4.22!

whereB is a beta function, to prove
FIG. 10. The angle arctan(uc1u/cz) for u-coherent statesuu;z&

~with j52, uzu52! as a function of arg(z).

FIG. 11. The angle arctan(uc1u/cz) for u-coherent statesuu;z&
@with arg(z)530 anduzu50.7 ~s!; uzu51 ~1!; uzu52 ~* !# as a func-
tion of j .

FIG. 9. The angle arctan(uc1u/cz) for u-coherent statesuu;z&
@with j52, arg(z)530# as a function ofuzu.
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uJ;z;com&5@z*N~ uzu!#21E
0

` dx

~11x2!2 j
~2 j2x]x!

3H F11
x2

uzu2G
jUJ; x

z* L J . ~4.23!

V. DISCUSSION

Resolutions of the identity are important for the practical
use of coherent states as a basis in a Hilbert space. In this
paper we have derived the resolution of the identity~2.12! in
the context of SU~2! coherent states. This involves both the
SU~2! coherent statesuJ;z& and the auxiliary states appearing
in the calculation of the coefficients in Eq.~2.15!. Some
properties of the complementary states have been studied in
Sec. IV. Using Eq.~2.12! we can expand any state in the
Hilbert space in terms of SU~2! coherent states@Eqs.~2.14!
and~2.15!#. Expansions for the statesuJ; j ,n&, uu;j ,n&, uJ;z&,
and uu;z& have been given in Eqs.~2.16!, ~3.9!, ~2.17!, and
~3.12!, correspondingly, and related numerical results have
been presented. The Wigner function in theJz-uz phase
space has also been given in the form of a contour integral in
Eq. ~3.26!. The results have been presented in a general
SU~2! context but they could be readily applied in the two-
photon realization of these states with the Hamiltonian~1.1!.

More work is required on resolutions of the identity in
terms of line integrals@like Eq. ~1.3!#. One approach is to use
contour integrals in an appropriate complex region and for
coherent states~associated with a certain group! of the type

uz&5(
N

aNz
NuN&, (

N
uaNu251 ~5.1!

to construct the complementary states as

^z;comu5@N~ uzu!#21(
N

@aNz
N11#21^Nu, ~5.2!

whereN(uzu) is a normalization factor anduN& is an ortho-
normal basis. The difficulty with certain groups might be that
the normalization factor diverges and then we have to think
very carefully of how the complementary states are defined

and in which space they belong. In the SU~2! case studied in
this paper all the sums are finite and we had no difficulties of
this nature.

APPENDIX A

In the language of analytic representations~e.g.,@14#! we
can represent the arbitrary stateu f & of Eq. ~2.13! with the
analytic function in the extended complex plane:

f ~z!5 (
n52 j

j

f Nd~ j ,n!zj1n5~11uzu2! j^z* u f &. ~A1!

Let $zN% be sequence in the complex plane that converges to
some pointz0. We want to prove that the set of the corre-
sponding SU~2! coherent states$uJ;zn&% is overcomplete. In-
deed if it is not complete there will be some stateug& that
will be orthogonal to all$uJ;zN&% and consequentlyg(zN)50
for all $zN%. But this is not possible because the zeros of
analytic functions are ‘‘isolated’’ and cannot converge to a
point z0. Therefore the set$uJ;zN&% is at least complete. In
fact it is overcomplete because the same argument is also
valid, even if we omit a finite number of terms from the
sequence$zN%.

APPENDIX B

In this appendix we briefly review the properties of the
operatorsE andF of Eqs.~3.15! and~3.16!. The operatorsE
andF perform displacements along theJz anduz axes, cor-
respondingly,

EauJ; j ,m&5uJ; j ,m1a&, ~B1!

Eauu; j ,m&5v~2ma!uu; j ,m&, ~B2!

FbuJ; j ,m&5v~mb!uJ; j ,m&, ~B3!

Fbuu; j ,m&5uu; j ,m1b&. ~B4!

Combining~B1!, ~B3! or ~B2!, ~B4! we prove the impor-
tant relation~3.18!. More details about these operators and
their properties are given in Ref.@9#.
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