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Simple algebraic method to solve a coupled-channel cavity QED model

Ying Wu*
Applied Physics, Yale University, P. O. Box 208284, New Haven, Connecticut 06520
(Received 22 May 1996

In this paper, we present a simple purely algebraic method to solve a coupled-channel cavity QED model
with three nondegenerate quantized field modes proposed by Wang, Puri, and[PbgdyRev. A46, 7192
(1992)]. By transforming it into one describing a sp}rparticle in a magnetic field and utilizing the relations
between field variables and an orbital angular momentum, we can easily obtain energy eigenvalues without the
need to know concrete expressions for eigenstates in terms of the usual Fock states, and analytical expressions
of evolution and atomic inversion operators. The eigenstates of energy and orbital angular momentum are also
explicitly expressed in terms of Fock states.
[S1050-2947@6)06811-4

PACS numbgs): 42.50.Dv, 32.80-t, 12.20.Ds

. INTRODUCTION H=wpN+E, _J,+Hi, (1a

The exact solvability of fully quantum-mechanical models
plays a critically important role in the field of light-atom
interactions for the study of purely quantum features such as
the collapse and revival of Rabi oscillations because it per- .
mits access to regimes which are incompatible with perturWhere the subscript®, S, and A represent pump. Stokes,
bation theory, which embrace most long-time low-loss near@nd anti-Stokes modes, respectivelyanda' are the cre-
resonance phenomena and include the domain of few-photcfion and annihilation operators for the corresponding
strong fields, and in which atomic response can be large eveRodes, subscripts- and — denote atomic level$+) and
if the field is extremely weak by conventional measyEs | —); o’s are the usual atomic transition operators satisfying
Over the last two decades, there has been intensive stud§kOmn=0jndmk @ndo__+o .. =1; the two constants of
[2,3] of the solvable Jaynes-Cumming3C) model and its motion are the total photon numb&=np+ns+n, and
various extensions such as intensity-dependent coupling codz=Na—Ns* 3(o; . —o__); and the two channels have an
stants[4], two-photon or multiphoton transitiongs], and equal couplingy. Obviously, the second channel causes con-
two-cavity modes for three-level atorf,6,7,10—12, many siderable difficulty in solving the eigenvalue problem, far
of which have been proved to be exactly solvable. Here wdrom trivial compared to all known single-channel JC cases.
mention only a few studies of Raman-coupled cavity QEDWang, Puri, and Eberly succeeded in exactly solving it par-
models mostly relevant to this paper. Gerry and Ebggly tially [1]. They expanded the eigenvectors of the Hamil-
and Cardimonat al.[7] treated a nondegenerate model in atonian in terms ofnp ,Ns,Na, +)=[np,ns,nal®[*), where
two-mode cavity in which a three-level atom and only the|np,Ns,na) denotes the usual Fock staies eigenstates of
pump Stokes transition are considered. This model has bedoton numbensto obtain a recursion relation for the expan-
solved exactly for the zero-detuning cad$9] and for an  sion coefficients. Then the recursion relation was converted
arbitrary detuning11,17. We have found that this three- into a differential equation by introducing a generating func-
level probem can be exactly transformed to a two-level ondion. By demanding its solution be suitable for the generating
for arbitary detunind11], and that bare- and dressed-statefunction defined, they finally obtained the eigenvalues and
solutions display quite different dynami¢&2]. The corre- corresponding eigenvectors for the special casd,ef - 3.
sponding three-mode model called the coupled-channel cahey also gave the eigenvalues but not the eigenvectors for
ity QED model[1], which includes both the pump-Stokes the general casgl]. The same method could in principle
and pump-anti-Stokes transitions, has also been proved pafeal with the general case of any allowabje so long as the
tially solvable[1,13]. It displays nontrivial multivave mix- generated differential equation could be transformed into a
ing, an interesting chain structure in a fully quantized treat-Standard one with known soluti@) which remain unclear
ment[1], and two-mode squeezing and a nontrivial phasgight now. In their papefl], they established an elegant
correlation when treating a pump with constant amplitudeconnection between field variables and an orbital angular

Hin=0(alap+abas) o, _+g(apast+apap)o_ .,
(1b)

classically. momentum L with L,=aka,—atas, and identified S,
The Hamiltonian of the fully quantized coupled-channel=3(o ., . —o__) as thez component of anothespin angu-
cavity QED model readgl] lar momentum. Hencéd,=L,+ S, denotes the component

of the sum of two angular momenta. They did not utilize this
connection in solving the model because they [tg]tthat to
*Permanent address: Physics Department, Huazhong Universifgke advantage of it, a relation between the eigenstates of
of Science and Technology, Wuhan 430074, People’s Republic of., and the usual Fock statfss ,ng,n,) was necessary, and
China. they did not know thig1].
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In this paper, we present a simple algebraic method t@xpressions ofl,m) in terms of Fock stategnp,ng,np).
solve this model for all possible values df, by establishing The results are as follows. For a givé the allowable
its connection with the model for a spiparticle in a mag- values of the angular quantum number are
netic field, and taking advantage of the relations betweeh=N,N—2N—-4,... (N—=2Int(N/2)), where Int(N/2)
field variables and the orbital angular momentum. The out=N/2 for evenN and Int(N/2)=(N—1)/2 for odd N or,
line of this paper is as follows. In Sec. I, we calculate theequivalently, 1=0,24...N for even N and
eigenvalues of the Hamiltonian or energy eigenvalues. It i$=1,3,5... N for oddN. Also, m=0,=1,+2, ... =1 for
shown that these can be obtained quickly with no need tany allowable |. Because J,=L,+30,, where o,
know the explicit relation between the eigenstate§ pand  =¢_, , —o_ _, and the operatois?,L,, andJ, are mutually
Fock states, and, in fact, without the need to know the coneommutative, we see that they have a complete set of com-
crete relations between the energy eigenstates and Foekon eigenvectorgl,my®|=) where |+) are the atomic
states. This method is in fact a systematic and effective, pewtates, and the eigenvalues Kfare +3,+2 ... =(1+3)
haps the simplest, one to quickly obtain eigenvalues of alfor any givenl.
solvable JC models. Our results for eigenvalues are the same We now consider the Hamiltonian and its eigenvalues.
as the ones obtained by Wang, Puri, and Eberly for the speNoting that L_o . _ + |_+U_+)2:(|_2_35+ 1) which obvi-
cial case OfJZ:—%, but differ from theirs in the general OUSIy commutes with |_(_0-+_+|_+0-_+), we can rewrite
case. In Sec. lll, we first calculate the analytical expressionge interaction Hamiltonian as
of the evolution operator and the atomic inversion operator,
and explain why the Fock initial-field state in this model g PRI .
would in general give the collapse and revivals of Rabi os- Hintzﬁ L*=J;+z0,=300y (4)
cillations. Then we explicitly express the eigenstates of the
energy and orbital angular momentum in terms of Fockby introducing operators
states for any allowable values df. The connection be-

tween the angular quantum number and the total photon Lo, +L o,

number is derived in Appendix A. In Appendix B, we oy= , (5)
present expressions of the eigenvectors of the Hamiltonian /LZ—J2+ E

and the orbital momentum in terms of Fock states for a few Z 4

photons(the total photon numbed=1, 2, and 3.

Q=gV2(L?=J22+13). (6)

It is easy to check that oy=io,0y
To determine the energy eigenvalues of the coupledzi(L,o,+—L+o+,)/\/L2—JZZ+%,oy, and o,=0,,
channel cavity QED model, we begin with a connection be— ¢ _ _ satisfy the well-known Pauli operators’ commutation

tween field variables and an orbital angular momentum and anticommutation relationso;oj+ ojo;=26; and

Il. ENERGY EIGENVALUES

introduced by Wang, Puri, and Ebefly], Lok,01]=2i €qmom; In particular; oizl, andoy has two
) R eigenvaluest 1. Obviously, this form of interaction Hamil-
L. =LetiLy=V2(asab+aiap), (28 tonian H,, describing the coupled-channel cavity QED
model is identical to the model for a spinparticle in a
L_=LT=\2(apal+atay), (2b)  magnetic fieldB along they direction with its magnitude
proportional to the quantit§), except thaB and() are now
L,=aja,—alas, (200 operators and nat numbers. The quantit§} is nothing but
the Rabi operatofits eigenvalues give all the frequencies in
L?=(na—ng)®+(Na+ng)(2np+1) +2np the Rabi oscillations of the atomic inversjofor the cavity
QED model and the gyration frequen¢gperatoy for the
+2(apajal+al?asas), (2d)  Jatter model. This similarity between the two models permits

us to obtain quickly the energy eigenvalues and solutions of
wherel _ andL ., are the lowering and raising operators of the evolution operator and other operators such as the atomic
the momentum. The interaction Hamiltonian can be put intnyersion as well as the expression of Rabi operator. It also
the form[1] permits us to determine energy eigenvalues quickly when

including the Stark term and off-resonance effect, as will be

9 explained below. In addition, this similarity immediately

Him_ﬁ“‘*‘”*“‘*“**)' 3 shows that the system’s energy levels manifest a doublet

structure, with the doublets’ energy differences equal to the

From the theory of angular momentum and the expressiofigenvalues of the Rabi operator. The operators’ solutions

of L,, we know that_ represents an orbital angular momen- Will be discussed in Sec. Ill. Here we decide the energy
tum, andL? andL, have a complete set of common eigen- €igenvalues. o _
vectors |I,m) satisfying L2|l,m)=I(I+1)[I,m), and As discussed above, the total Hamitonian can be written
LJl,my=m|l,m) with 1=0,1,23... and m=o,+1, as follows:

+2,+3,...,=l. In Appendix A, we show how to obtain the

restriction of the total photon numbé¢ on the quantum H=w N+E. J +i 2= 32+ 1q . @
numbersl and m without the need to know the concrete P TR 2 2oy
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It is easily found that the Hermitian operatdisL?, J,, and  case of any allowabld, without presenting derivations. We
o, are mutually commutative, and hence have a complete seite their resul{their Eq.(B1.9)] here;

of common eigenvectors, which is also the complete set of

the energy eigenvectors, with its typical member expressed A=22n(n+[3,)), (10
as|N,l,J,,my), wherem,=+1 are the eigenvalues of,,
and we use the symbol andJ, to express the operators
and their eigenvalues for simplicity. We immediately obtain
the energy eigenvalues

9
Eng, m=0pN+E,Jp+ Trzy I(1+1)=32+3, (8

where

where, depending on the parity of the integhr<|J,| + 3),
the allowed values oh are eithern=0,1, ... 3(N—|J,|
+3) orn=33, ... 3(N—]J,]+3). In this equation) is the
eigenvalue of the interaction Hamiltonian divided by g. Our
corresponding result is
I(1+1)— 32+ 1|2
2

A=+

: (11)

N=012..., (9 Wwherel=N,N-2N—4,. .. (N-2Int(N/2)) and J,=3,*
3, ...,=(I+3). Obviously, our result is same as theirs for
N J,=—3, but differs from theirs generally since the two ex-
[=N,N—-2N-4,... ,(N—Z |ﬂt(§>), (9b)  pressions for eigenvalues have different functional depen-
dences on the quantum numhkr. Let us give a numerical
(41, (9¢  example to illustrate that the two expressions indeed lead to
different results. We follow their convention by specifying
mo=-+1. (9d) N andJ, first. TakingN=10 andJ,=5+ 3, one finds that
their expression gives\==2(n=3), +2¥(n=3), and
We discuss the system’s energy structure by means of the £(n=3), while ours gives\=+6(1=6), *=21(1=8),
expression of energy eigenvalues. and *+/40(1=10), sincel=0, 2, 4, 6, 8, and 10 for
It is seen that the energy structure displays a singlet plusi=10, andJ,=5+ 3, implying | =>5.
doublet characteristic quite similar to the case of the JC Our method of obtaining eigenvalues still works when the
model. For any given set ofN(I,J,) except ford,==(I  Stark termg(ny,—ng)o__ is included and the frequency
+3), my==1 gives a doublet with its energy difference resonant condition is not exactly satisfied, which amounts to
equal toQIVJZ:g\/E\“U+1)—J§+—Eg\/§ (|+%)2_‘]§, an extra termdo__ [1]. To see tlhis, Welrewrite the two
which is the eigenvalues of the Rabi operator. These charal€™MS as [g(Na—ng)+d]o - =3[g(J+2) + 8](1~ ).
teristics resemble those of the doublets of the JC model. Fothe Hamiltonian then becomes
J,=(1+3) or —(I+3), we obtain a singlet state, since

—1 43
J,=%+3 .

0 5,=0. It is easily seen thal,m=1)®|o,=1) is the ei- H= 9+§ +wpN+ E+7+9 Jz+i L2-32+ Lo,
genvector of two operators: a Hamiltonian add for 4 2 2 V2

- 1 i - - _ - _
J,=(I+3), and so is|l,m=-1)®|o,=—1) for J,=—(I g4 )+ 8lo, (12)

+3). Itis interesting to see that these singlets represent states
of no coupling between the atom and the fields, since th@oting that operator& 2 and J, commute witho, and o,
vectors can be expressed by the direct product of the atomige can put the Hamiltonian into the form

states|o,= = 1) and the field stated,m==1), quite simi-

lar to the ground state of the JC model, which is also a
singlet and represents a state of no coupling between the
atom and the field. There is some ambiguity in the definitions

of operatorso, and o, asJ,= = (I + 1), since their denomi- where

1)
= g-l—— +wpN+

1
2t 5 L+ Zwo,, (13

g
Evot 5]t 5

2

nator \L?—J2+ 3 becomes zero. However, it is easy to
show that their numerators L(o,_+L,o_,) and
(L_o_,—L,o,_) also become zero, and this ambuguity

w=\[0(J,+ 1)+ 82+ 2g3(L2-32+1),  (19)

does not affect the expression of the energy eigenvalues. [g J,+ E +5
For a givenN, the angular quantum numbeérwill still o= 2 n 9 (15)
have several choices. We havk doublets and two singlets In= 0= ) T2T %y

for any allowablel, and thus 4+ 2 different energy states

for a given set of K,1). Thus, it is easy to show that the total Wherew and() denote, respectively, the Rabi operator with

number of energy states for a givenN is and without considering the Stark artiterms, and() is

S alowable (41+2)=(N+1)(N+2), which is the exact num- given in Eq.(6); n represents a unit vectgoperatoy. It is

ber of all the possiblénp,ng,na,0,==*1) for a fixed N. easy to see thadrﬁ=1, that o, has eigenvaluesm,=+1,

This means that all energy levels are nondegenerate. and that it commutes with?, J,, andN. This form of the
We now compare our results with the ones given byHamiltonian still resembles the model for a sgiparticle in

Wang, Puri, and Eberljl]. They[1] derived an expression a magnetic field along the direction. Therefore, the typical

for energy eigenvalues for the special casdef —3 (J,is  energy eigenvector i$N,l,J,,m,), and the corresponding

denotedC by then), and gave the eigenvalues for the generalenergy eigenvalue is
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g & g The  population operators are determined by
Enig,m=|7 T3] TNt ( A o, (t)=A+0,(1)/2 ando__(t)=(1—o,(1))/2. The cal-
culation of the transition operater, _ is a little more diffi-
My, My, 2 culty since it does not commute witthy and(). However, it
Tt [9 Jzt 7) +6 is easy to show thatr, _F(Hq)=F(Ho—E. _/2)o,_ and

G(QY)o,_=0c,_G(Q,) whereF andG are arbitrary func-
tions, andQ+=QJZHJZ+1,2. Using these commutation rela-

tions and the expressions bf,; ando,, we arrive at

1/2

+2g71(1+1)— 22+ 3]t (16)

which gives all the energy eigenvalues wh¥n, andJ, run ;{ E+t) S(QJ) S(Qt
o,_(t)expi——|=0,_cCO co§ —

through all the values given by E() andm,=*1. 2 2 2
Ill. OPERATOR SOLUTIONS . Lyo__ [ Qt Ot
AND ENERGY EIGENVECTORS * SIN —5— €08 &~
L2_J2+ 1
z
In this section, we calculate the analytical expressions of
the evolution operator and the atomic inversion operator, and i Lioss co O,t sin g
explicitly express the eigenstates of the energy and orbital L2_324 1 2 2
angular momentum in terms of Fock states for any allowable z
values ofJ,. We begin with the first task. |—2+(L+ _ (Q+t> _ (Qt)
sin| sinl —
2_ 7241 2 2
A. Dynamics Lo 5+
(22)

In this part, we show that it is a simple matter to obtain
analytical expressions for the evolution operator and atomiel-he operator L
inversion by recognizing the similarity between this model _ 2 —1 :
. . A e L_t—\/L—JZ-i--(TO'_ —io,(t)o, _(1)).
and the one for a spig{article in a magnetic field; then we '(I'kze photonz r:L(meber+(oz)eratc§§s) s%ti(sfi/) the relations
explain why there is no longer any dramatic difference, in A= (Jp— o ()24 N-1p)  and  Ms=(—J,+ o, (1)/2
this model, between the role of a Fock state and a coherer% AT \NzT 07 P S A

state in the collapse and revival of Rabi oscillations. ~N—ng), andne(t) relates its initial operatone by the

The dynamics in Heisenberg’'s scheme is represented br)glatmn

the transformationsA=A(0)—A(t)=U(t)AU(t), where

can be obtained by the relation

Ot Ot
U(t) is the system’s evolution operator, and has, in our case, np(t)= cos<7 +iaysin< 7”
the form
. : Ot Ot
U(t)=exp(iHt)=exp(iH ot)Ujn(t), 17) X Np cos(T)—iaysin(T) :
where

This formula is not very useful if we do not have the explicit
Uin(t) =exp(iH ). (18  relation between Fock states and energy eigenstates, or if we
do not know the results of the photon number operator
Utilizing Hiy=3Q0, and the formula exp{o;) acting on the energy eigenstates. However, things are totally
=cos(f)+ioysin(f), We immediately obtain the analytical different about the atomic quantities, , ,c__ ando ., _ as

expression of the evolution operator as follows: well as the field variablek _ andL . , because their actions
on energy eigenstates are known even if we do not know the
U. (t)z(:oS(ﬂ Ligusin E) (19) relations be_tvy_een the Fock states and energy eige_nstates. So
int 2 y 2 long as the(initial) state or density operator {$chralinge)

the Heisenberg picture is given in the energy representation,
where 0'y=(L,0'+,+L+U,+)/\/L2—J22+;11, and the dynamical properties of these operators, including their

Q=g\2(L2=J2+1) is the Rabi operator. They commute &Xpectation values, can be discussed and determined solely
z . . . . .

with each other and both are constants of motion. The atomi¥ithin the energy representation by using the above formu-

inversion operatowr,(t)=a, . (t)—o__(t) is also easy to las, without the need to know about Fock states and the

obtain by using the expression of evolution operator and not[elatlons between the Fock states and energy eigenstates; this

ing that it commutes with Rabi operator aHg, and satisfies d0€s not hold for photon numbers if we do not know such
[oy,0,]=2i 0 and oo,= — o0, . The result is relations. Let us illustrate this point by calculating the atomic
y Yz X yYz Yy

inversion. The most general form of a density operator in

o,(1) = 0,04 Q1) — o, SiN(Qt), (20) ~ energy representation is
whereo,=i(L_o_,—L, o, _)/\L?=J32+% o,(t) is sim- p= > C,'szmy”,yy m NI, my)
ply obtained byo,(t)=io(t)o, as 13,.my ;17,3 m Y

0(1) = 0,0 Q1) + 7SN Q). (21) X(NLI", 35, my|.
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Using the formulas in Eq24) andoy=io,0,, we obtain photon numben by a unit. This similarity helps to construct
the energy eigenvectors in term of vectgirsn).
(N,I",3; !m),/|0'z|Nv| J; vmy>: 5JZ,J£5I,I’5my,—m)’,i

B. Energy eigenstates

(N7, my [N "]Z'my>:'my5szJ£5""5my'—m{,' According to the above discussions, and using the formu-

las
Then the atomic inversiow(t) = Tr(o,(t) p) is easily shown
to have the form L_[l,my=VI(1+1)—m(m—1)]I,m—1), (233
W)= > C; my i1.3,,~m [COE Ly ) —imysin(Qy, D], L, l,m=VI(I+1)—m(m+1)[l,m+1), (23b
|’lemy z' 1z z z

one easily sees that the energy eigenvectors can be expressed
whereQUZ: gv2[(l+ %)2—\]5]. There is no unknown quan- in terms of the eigenvectors of the orbital angular momentum

tities in the expression of the atomic inversion, since theS
coefficientsC, 3,.myi00),m; are supposed to be knowwe
pamyilnd;my

use the Heisenberg picture, so that the density operator does
not vary with time, which corresponds to the initial density

IN,I,d,=m+3,m,=1)

. . . . 1
operator in Schrdinger picture. In order to obtain the den- =—(l,me|+)+|l,m+1)e|-)), (249
sity operator at any time in Schiimger picture, one has to V2
assume the form of the initial density operatdn the ex-
pression of the average pump photon numbemaf()p), |N,|,JZ:m—%,my:—1>
there is a quantityN,l",J; ,m/|np|N,I,J,,m,) which is un-
known if one does not know the relations between the Fock 1

states and energy eigenstates. \/5(“ m-Lo[+)-[l,ma[-)), (24b

Before ending this subsection, we discuss the Rabi fre-

quencyQ =gv2(L?~J2+ 7). The atomic inversiofthe ex-  where the two atomic levels:) satisfy o[+ )==|=), |
pectation value of the operator(t)] is easily seen fromthe =N N-2,... (N-2Int(N/2)), and m=0,21,+2, ...,
expression of the operater,(t) to oscillate, with all its fre- | The normalization constant 2 is replaced by 1
guencies given by the eigenvalues of the Rabi operator, angs J,=*+(+3) since |I,m==+(I+1))=0. These results
determined by those df? andJ,. The atomic inversion is can also be obtained by the relationssr,=
exactly a periodic function if the system’s state is one of thegyp(— | (mld)a)ayexpli(ml4)oy), o ll,my@|=)=*|I,m)
eigenvectors of the Rabi operatdt,()®| =) or its suitable ®|x), expi(md)o)=(1+icy)/y2, and [N,,J,=m
combinations such as;||,m)®|+)+c,|l,m+1)®|-)). It +1my =+ 1) =exp(mday)|l,me|=).

is noted that the vectors|np.ns,na)®[*), with We now establish the relations between the Fock states
Inp.ns,na) denoting Fock states, are generally not theang the eigenstates of the orbital angular momentum. We
eigenvectors of the Rabi operator. Their expressions in termgonstruct the eigenvectofsm= —1Y=|I,~1), and then ob-

corresponding to different oscillation frequencies. The interysing Eq.(23.]

ference of these oscillations with different frequencies will
generally lead to collapse and revivals of the Rabi oscilla-

tions. The same is true for a coherent state. This is the reason 1,m)= 1 \ /(l —m)! L' M)l -1) (25)
why the Fock initial-field state in this model generally gives ’ Jenr Vda+mrer

the collapse and revivals of Rabi oscillations. In contrast, the

direct products of atomic statgs ) and Fock states are Rabi wherem=0,+1,+2, ... *I. The (2+1) vectors|l,m) for

operator Eigenvectors in almost all other models. For in-a fixed | are normalized and mutua”y OrthogonaL which
stance, the JC model's Rabi operator iscomes only from the theory of angular momentum without
J(A2)’+g°[n+(1+0,)/2] which has an eigenvector using the connection between the field variables and the ar-
[ny®|+) or suitable  combinations  such  as gular momentum. Suppose

ciln)®|+)+cyn+1)®|—). Therefore, the corresponding

atomic inversion is a periodic function if the field part of the n

system state is given by a Fock state, while it manifests [1,—1)= > (—1)Xay)2k,I +n—k,n—k), (26)
collapse and revivals if the field is specified by a coherent k=0

state. From the above discussions, we also know that the role

of vectors|l,m) in this coupled-channel model replaces thewhere |=N,N—2, ... (N—2Int(N/2)), n=(N—1)/2 is a
role of Fock states in the JC model. To be more specific, th@onnegative integer, and the coefficienatg,k=0,1,...,n
quantum numbem describingL, in this model is similar to  are determined by. _|I,—1)=0, which gives the recursive

the photon numben in the JC model, which becomes obvi- relation aV(2k+1)(N—K) = ay 1 V(2k+2) (1 +n—K),
ous by comparing the two models, sinte (L.) lowers k=0,1,2,...,n—1. Using this recursive relation, we can
(raise$ m by a unit, while operator (a') lowers (raiseg  obtain that



" 1 [(2k)!(1+n—k)!
||1_|>:C|k20 (_1)k2kk! (

) 1/2

(n—k)!
X |2k,I +n—k,n—k), (27
wherec, is a normalization constant given by
n —-1/2
1 @2n!{l+n-r)!
“= 20 4712 (n—r)! (28
It is seen that all the vectors [I,m)

(I=N,N=2,...(N=21Int(N/2)); m=0,£1,+2,...,%I)

generated by Eq4$25) and(27) form a orthogonal and nor-
malized set whose number iS¢ 1)(N+2)/2, the number
of the Fock statemp ,ng,n,) with a fixed total photon num-
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where I=N,N—-2, ... (N—-2Int(N/2)), n=(N-1)/2, and
|0,0,0 is the field state without any photon. Denoting
L. =\2A,A=(asal+ajap), and noting thaiA commutes
with (ajal—2al?), we find that we need to calculate quan-
tity A'"*™Mall|0,0,0), which is transformed to calculate the
coefficient of Ith power of —a in the expression of

A*Mexp(-al)|0,0,0. It is easy to  show
A" Mexp(—ca)=exp(—aa)(A—aal) ™™ by  noting
expeal)Aexp(—aal)=(A—aal). The calculation of

(A—aal)'*M0,0,0 is very similar to calculating the eigen-
functions of the harmonic oscillator in quantum mechanics.
It is noted thatA|0,0,0=0, [A,al"]=najal" *which
means thatA resemblesajd/dx and aj, similar to x in
calculating A— eal)' "™ 0,0,0. While doing soa} can be

treated as & number, since it commutes witA and aj,

berN. They are the explicit relations between the Fock stated herefore, we obtainf— aa)'*™0,0,0=W|0,0,0, where

and the eigenvectors of the orbital angular momentum. SubA/=(B(d/dx) — ax)

stituting them into Eq(24), we also obtain the explicit rela-

I+m

x-al, p-a Obviously, we have

A

tions between the Fock states and the energy eigenstates.

These forms of explicit relations are particularly simple to

use when the field part of the systemmitial) state in
Heisenberg's(Schralinger's scheme is given by a Fock
state withng=0 and/ornp=0. To illustrate this, we assume

the atom is in its ground state and the fields in a Fock state
|2M,0,0), and express this state in terms of energy eigenvec-

tors. It is simple to obtain

1/2
L'|2M,O,O)=21’Z<%) [2M—1,1,0), (29
<I,0|2M,0,0>=%{I,—HLHZM,0,0)
2=M 1yJ2em
=(-pM-12 ¢ . (30
Jzh! (M_IE)! '

Using these expressions and E24), we arrive at

22K=M(2K)1Y(2M)!

4kt (M=k)!

M
|2M-0,0>®|—>=k20 (—pMk
XC2k(|my:1>_|my: —-1)), (31

where|m,=*1)=|N=2M,l=2k,J,= — 3,m,= = 1) repre-
sent energy eigenstates, acy is given by Eq.(28). This

simple example also serves the purpose of comparison, as

will be seen below.

Next we go one step further to calculate the concrete

forms of vectorgl,m) without expressing them in terms of
the lowering operator acting gh —1). Using the property of
a creation operataa'™|0)= \/n!|n), we expressl,—1) in a
compact and convenient form

C
I.-1)= —rad(alal-3a{?)"0,0,0, (32

I+m

Ao el 557
ex ﬁx &GX ﬁx

dl+m

e

1/2\ I+m 1/2
:(—1>'+m((0‘2—ﬁ) ) H|+m(ix) ,

(33

I+m
(ﬁ%—ax) :IBH—m

where use has been made of the express$iot of the
Hermitian polynomial of order, H,(X)
=(—1)"exp’)[d"exp(—x3))/dx" which has the series form
[14]

[n/2]

Hy(X)= z

k=0

_1\k
L ")

kI (n—2Kk)

where [n/2]=Int(n/2) or [n/2]=n/2 for even n and
[n/2]=(n—1)/2 for oddn. From the above discussions, we
obtain

[(0+m)/2]

>

A"mall|0,0,0=11(1+m)!
K=k

agk— maj;ka'l';l +m-—2k
-10,0,0),

X ORI+ m—2K) T (k—m)!

(35

whereko=m for m=0 andk,=0 for any negativem, or
ko=max(m,0). It is now a simple task to exprefism) in
terms of Fock states by using Eq25), (32), and(35). The
final results are as follows:
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(N~ Imbrz N-m  N+m
I,my= > B 2k —5——k.—5—~k| foreven (I+m), (363
(Nl ~4)72 N-m-1  N+m-1
Lmy= > B§;>k2k+1,T—k, T—k> for odd (1+m), (36b)
=0
where
_ 1/2
Bl(r$1)k: k(M) e,
(21)!
N—m N+m 12
Fmax (2k)! T_k ! 5 —k|!
_ r
2 D g N em (379
r: T—r : T— +r|! T_ +r ( —2r)!
(I+m)!(1—m)r\ 2
(0) _ok fo| VTV U
BII"(r)lk_2 \/5( (2|)| I [
N-m—1 N+m—1 12
Fmax (2k+1)! > k]! > k]!
_ r
rzzrmin( o A1 N—I | l—-m—-1 c | [+m—-1 K {(Pk—2 1|’ (370
r.2—r. 5 —+r.T—+r.(—r+).
|
where I max= Min(k, (N—=1)/2), I min=max(0.k—[(l of the coupled-channel cavity QED model with three nonde-

—|m[)/2]), andc, is given by Eq.(28). Equation(36) gives  generate quantized field modes proposed and partially solved
all the eigenvectors of the orbital angular momentum explichy Wang, Puri, and Eberly. We have shown that by estab-
itly expressed in terms of the Fock stateslaandm run |ishing the similarity between this model and the one for a
through the value$=N,N—2,... (N=2Int(N/2)), where  gpin1 particle in the presence of a magnetic field, we can
:\Tt(N/j) :_I\gi flor+ezvenN f?dslné('\lt(f)t.: (NE_ 132(/52'fc:r ?Edd quickly obtain the system’s energy eigenvalues and Rabi op-
»andm=u,= 1,=2, . ..,.=1. substituling a( )mp 9 erator, and its eigenvalues, evolution, and atomic inversion
.(24)' we also obtain the concrete forms of energy e'gens'[ate(gzperators without having to know the explicit relation be-
in terms of Fock states for any allowahlg. tween the Fock states and the energy eigenstates. We have

thelTetlgttailcgngaggg;vzvein%epeuin,er?\?gctlcz)?sercl))fl tﬂlg Qr%titgls;anb“jlhalso explicitly expressed the energy eigenstates in terms of
9 U o ck states not only for the special caselJot=—3 as in

momentum and the Fock staff], but they[1] derived the revious studie§l], but also those for any allowable values

explicit relations between the energy eigenstates and Fo ith th ; I d ei K
states for the special case bf= — 1. It can be seen that the Of J;. With the energy eigenvaues an eigenstates hown
' 2 ; for the general situations, we can study the model’'s dynami-
first and second terms of their EQq.3.2 are | and ‘stical ! fth . d field variabl

|, m=0)&|~)/\2 and|l.m=—1)&|+)/\Z. However, we cal and statistical properties of the atomic and field variables
I ' : ! uch as the time evolution of atomic inversion, average pho-

cannot compare their results Wi.th ours for the.spe_cial €aS€ Qb numbers, self-made, and intermode correlations for any
J,=— 1 at present, since factorials of a negative integer ap3iowableJ
2

pear in the denominators in their expressions of expansion In their work, Wang, Puri, and Eberly established an el-

coeff|0|ents[the|r Eq.(3.6)] while we d(_) not know their con- egant connection between the field variables and an orbital
vention on the facton_al ofa negatl\(e integer. In Appendix B:angular momentum, but were not able to obtain a relation
)[/ve.presegtt:xpre;tsulnns Ofl the elgen\t/ecto_rst of the lefm'between the Fock states and eigenvectors of the orbital an-
c:n;an ]f’m fe or hl atl anr?u ?rt r?orrr:etn um in bgqnlslo 5 OCliguIar momentum. We have gone one step further to establish
states for a few photonghe total photon numbeN=1, 2, such relations, and thus have finally given a complete con-

and 3 by using Eqs(24) and(36). It is easily checked di- oo hetween the field modes and the orbital angular mo-
rectly by the expression of Hamiltonian that the vectors, .. m

[N,1,3;,my) in Appendix B are indeed the energy eigenvec-according to our results, we find that the model stil
tors. shows a considerable similarity to the JC model, although,
unlike the JC model, it manifests a chain structure pointed
out first by Wang, Puri, and Eberly. For instance, the model
In this paper, we presented a very simple algebraidisplays many singlefsuch asl,= =+ (I +1/2)] representing
method to investigate the eigenvalue problem and dynamicstates without effective coupling between the field modes

IV. SUMMARY
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and the atom, very similar to the ground state in the JGhe Fock states ag¢)=c|1,(N+I—-1)/2,(N—1—-1)/2)
model, and it has many more doublets, with the energy dif-+|¢), where|¢) contains terms witmp=3, we see that
ference of each doublet given by one of the eigenvalues of _|)=0 givesc=0 because thapag term inL, causes
the Rabi operator, while these eigenvalues also determine alhe ¢ term to become a term with,=0, while L _|#) con-
the oscillating frequencies of the atomic inversion. Theseqains only terms witmp=2. By the same argument, we can
properties still resemble those of the doublets in the JGhow that| ) contains no term witp= 3. Repeating this
model. We have also explained why the Fock initial-field process, we finally provg)=0. The last question is
state in this model generally gives the collapse and revivajyhether all the valuek=N,N—2, ... (N—2 Int(N/2)) can
phenomena in the Rabi oscillations of the atomic inversionpe taken. The answer is yes, since the total number of inde-
The method of obtaining the eigenvalues and the Rabi andendent vectors |l,m) for these values ofl is
evolution operators, by establishing a similarity to the modelfs (2| + 1)=(N+1)(N+2)/2 where summation is over all
describing a spir- particle in the presence of a magnetic the values specified above. This would lead to the wrong
field, is also of theoretical interest in its own right, since it conclusion that the spacé cannot be spanned by all the
provides a systematic and effective way to obtain these quangdiowable|l,m) if some of thel values in this range were not

tities quickly, not only for this particular model but also for gjjowable. We have, now, finished our proof.
any other solvable two-level models including those describ-

ing a multilevel atom interacting with multimode quantum
fields, so long as they can be transformed into an effective
two-level problem by either an exact transformatjdd] or In this appendix, we give the eigenvectors of the Hamil-
approximation methods such as the adiabatic elimination. tonian and the orbital angular momentum for total photon
numberN=1, 2, and 3. Using Eq(36) [or Egs.(25) and
ACKNOWLEDGMENTS (27)], we obtain the expressions [,|,m) in terms of Fock
states|np,ng,n,) as follows (note that we usel,m) for
We acknowledge helpful discussions with A. Douglassimplicity in the main text, while we usg\,|,m) here since
Stone. This work was partially supported by NSF Grant No.we consider different values of in this appendix
DMR-92145065.

APPENDIX B

IN=1]=1m=0)=|1,0,0, (Bla
APPENDIX A IN=1)=1m=—1)=[0,1,0,
In this appendix, we prove the conclusion that the allow-
able values of an angular quantum number are IN=1/=1m=1)=0,0,, (B1b)
[=N,N—2,... (N=2Int(N/2)) for a fixed N, where
Int(N/2)=N/2 for evenN and Int(N/2)=(N—1)/2 for odd IN=2]=2m=-2)=(0,2,0,
N, and for any allowable valug m=0,+1,=2,... *I.
First, we point out that the operatohs, L2, andL, are IN=2]=2m=2)=0,0,, (B2a)
mutually commutative, and hence have common eigenvec-
tors forming a complete set. Its typical memiay;|,m) is IN=2]=2m=-1)=11,0,
denoted agl,m) throughout this paper for simplicity. Let
V denote the space spanned by the Fock sfatess,n,) IN=2l=2m=1)=]1,0,9, (B2b)
with a fixed N (=np+ng+n,). Obviously, it is also
spanned by the vectots,m) with all allowable values of IN=2|=2m=0)= \/g|2,0,()+ \/§|0,1,J>, (B20)
and m for the fixed N, and its dimension is
(N+1)(N+2)/2. In Sec. lll, we explicitly constructed om0\ — /2 _ 1
(N+1)(N+2)/2 independent vectot$,m), with the above IN=21=0m=0) \/:|O’l’]> \/;|2’0'0>’ (B3)
specifiedl and m, all of which satisfy the restriction of a
fixed N. Therefore, the above conclusion has actually been IN=3|=1m=—1)= £|0 2,1 — i|2 1,0, (B4a)
proved. However, we now present another kind of proof ’ NN I
which does not need the concrete formglof) in terms of
the Fock states. The proof of the allowabfes simple. Any A1 me\— /2 _ /3
two of (21+1) vectors|l,m) (m=0,£1,=2,...,=I) are IN=3/=1m=0) \/;|1’1']> \/2|3'0'Q’ (B4b)
related by operatok , (or L_), which does not changH.
All of them will satisfy the condition of a fixed\ if one of IN=3l=1m=1)= i|0 1,9 i|2 0,1, (B4o
them does. o NN -
Hence we consider the caserof= —| to decide the alow-
ablel. Using the expression fdr, andm= —1 , we find that IN=3]=3m=-3)=10,3,0,
2np=N—-I—-np and hg=N+I—np, implying I=<N, and
that (N—1) andnp are either both even or both odd. An odd IN=3|=3m=3)=|0,0,3, (B53)
(N—=1I) is impossible if we can show thaly)=0 if
L_|#)=0, where|) contains only the Fock states of odd IN=3|=3m=-2)=[1,2,0,

ne since|l,m=—1) satisfiesL _|I,m=—1)=0 and is not a
zero vector. We now prove this. Expandihg) in terms of IN=3]=3m=2)=(1,0,2, (B5b)
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IN=2/=0J,=—%m,=—-1)
N=3|/=3m=-1 2,1,0+ 0,2,2), (B5c
| )= (' 0 @' D, (B50) , .
—ﬁ|0,1,3®|—>+ﬁ|2,0,0®|—>. (B8b)
IN=3J=3m=0)=+/23,0,0+2[1,1,), (B50)
. , IN=3)=13,=%m,=1)
IN=3|=3m=1)=—|0,1,2+ —=|2,0,). (B5¢ 2 1
V5 V5 = —|01,2®|+)- —=|2,0)®|+), (B9
V5 V5
Using the above equations and E&4), one can express the
energy eigenstates in terms of Fock stdtes,ng,n,) and IN=3|=1J,=—3,m,=—1)
the atomic states+) as follows: L 5
IN=1)=1J,=%,m,=1)=]0,0,)|+), (B6a) :E|2,1,Q®|_>_£|0.2,])®|_>. (B9Db)
|N:11|:11‘]Z:_%1my:_l>:_|ovllq®|_>v (B6b) |N:37|:17‘]Z:%1my:il>
IN=11=1J,=3,m=*1) 1
) ) - ghavsln)-Valsogel)= Eo12s|-)
=E|1,0,Q®|+>tﬁ|0,0,1>®|—>, (B60) L
I\/T)|2,O,]>®|—>, (BQC)
IN=1)=1J,=—%m,==1)
1 1 |N:3,|:1,JZ:_%,my:i1>
=—0,1,0®|+)=x—|1,0,0®|—), B6
ﬁ' O®|+) ﬁ' 0®[-), (B6d) : L L
=@lo,2,1>®|+>—Elz,l,c»®|+>iﬁll,1,ﬂ>®l—>
IN=2)=2J,=%,m,=1)=(0,02%|+), (B7a
B9
IN=2/=2J,=—3m=—1)=—[0,2.0®|—), (B7H (899
N=3l=3J,=42 m,=1)=|0,0, +>, (B10
N=20=20,=hm—+1) | ~3.m=1)=[0038|+), (8103
1 1 IN=31=33,=—fm,=-1)=—l030el-),
=—=[1,0,0®|+)*—=[0,0,2®[—-), (B70
V2 V2
IN=3]=3J,=%,m,=+1)
IN=2]=23,=3,m==*1) L L
=—=[1,02®|+)*—=[0,03®|—-), (B10g
1 7 7
=—12,00®|+)+ 0,1, h)®|+ 1,0,)®
ﬁIQ|>\/—IDI>J—IJ>I 3
(B7d) |N=3,|=3,JZ=§,my= +1)
=v2]2,0,D)®|+)+V5/0,1,2®|+)+ V3|1,0,2®|-),
N=2i=20=~fm==1) VEoyel )+ ViloL20]+)= Vi1020|-)
(B10d)
1 1 1
=E|1,1,Q®|+>iﬁ|2v0@®|—>i%|011,3®|—>' IN=3]=3J,=%,m,==*1)
B7¢
(879 [|3oo®|+>+ﬁ|111>®|+> r'°12>®"
IN=2)=23,=—%m,=+1)
. . +2|2,0, 00| -), (B10®
=—=[0200|+)x—=[1,1,0®|-), (B7f)
V2 V2 IN=3]=3J,=—1,m,=+1)
N=2]l=0J,=% m,=1
| = 2my=D = Vi22001+)+ Vo226l +)=12008] )
2 1
=—1[0,1,)®|+)——|2,0,0®|+), (B8a)
3 3 ENE R (B10f
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IN=3]=3J,=—%,m,=1)

1 +4/2 — +i —
=\i1.208|+)+ 221,00 )= 7l02.98]-),

(B10g)
IN=3)=3J,=—%,m,=+1)

=i|0,3,(}®|+>ii2|1,2,0®|—>. (B10h

V2 V2

Note that N+1)(N+2) is the number of all the energy
eigenvectors for a givehl. Equation(B6) gives six (2 3)
energy eigenvectors fod=1. EquationgB6) and(B7) give

12 (3%x4) energy eigenvectors fdd=2, while Egs.(B6)

and (B7) give 20 (4x5) energy eigenvectors foN=3.
Therefore, the total number of the energy eigenvectors in this
appendix is 38. It is easily checked by using the original
Hamiltonian in Eq.(1) that they are correct energy eigenvec-
tors, with the corresponding eigenvalues described by(&q.

in the main text.
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