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In this paper, we present a simple purely algebraic method to solve a coupled-channel cavity QED model
with three nondegenerate quantized field modes proposed by Wang, Puri, and Eberly@Phys. Rev. A46, 7192
~1992!#. By transforming it into one describing a spin-1

2 particle in a magnetic field and utilizing the relations
between field variables and an orbital angular momentum, we can easily obtain energy eigenvalues without the
need to know concrete expressions for eigenstates in terms of the usual Fock states, and analytical expressions
of evolution and atomic inversion operators. The eigenstates of energy and orbital angular momentum are also
explicitly expressed in terms of Fock states.
@S1050-2947~96!06811-4#

PACS number~s!: 42.50.Dv, 32.80.2t, 12.20.Ds

I. INTRODUCTION

The exact solvability of fully quantum-mechanical models
plays a critically important role in the field of light-atom
interactions for the study of purely quantum features such as
the collapse and revival of Rabi oscillations because it per-
mits access to regimes which are incompatible with pertur-
bation theory, which embrace most long-time low-loss near-
resonance phenomena and include the domain of few-photon
strong fields, and in which atomic response can be large even
if the field is extremely weak by conventional measures@1#.
Over the last two decades, there has been intensive study
@2,3# of the solvable Jaynes-Cummings~JC! model and its
various extensions such as intensity-dependent coupling con-
stants @4#, two-photon or multiphoton transitions@5#, and
two-cavity modes for three-level atoms@2,6,7,10–12#, many
of which have been proved to be exactly solvable. Here we
mention only a few studies of Raman-coupled cavity QED
models mostly relevant to this paper. Gerry and Eberly@6#
and Cardimonaet al. @7# treated a nondegenerate model in a
two-mode cavity in which a three-level atom and only the
pump Stokes transition are considered. This model has been
solved exactly for the zero-detuning case@8,9# and for an
arbitrary detuning@11,12#. We have found that this three-
level probem can be exactly transformed to a two-level one
for arbitary detuning@11#, and that bare- and dressed-state
solutions display quite different dynamics@12#. The corre-
sponding three-mode model called the coupled-channel cav-
ity QED model @1#, which includes both the pump-Stokes
and pump-anti-Stokes transitions, has also been proved par-
tially solvable@1,13#. It displays nontrivial multiwave mix-
ing, an interesting chain structure in a fully quantized treat-
ment @1#, and two-mode squeezing and a nontrivial phase
correlation when treating a pump with constant amplitude
classically.

The Hamiltonian of the fully quantized coupled-channel
cavity QED model reads@1#

H5vpN1E12Jz1H int , ~1a!

H int5g~aS
†aP1aP

†aA!s121g~aP
†aS1aA

†aP!s21 ,
~1b!

where the subscriptsP, S, andA represent pump, Stokes,
and anti-Stokes modes, respectively;a and a† are the cre-
ation and annihilation operators for the corresponding
modes, subscripts1 and2 denote atomic levelsu1& and
u2&; s ’s are the usual atomic transition operators satisfying
s jksmn5s jndmk ands221s1151; the two constants of
motion are the total photon numberN5nP1nS1nA and
Jz5nA2nS1

1
2(s112s22); and the two channels have an

equal couplingg. Obviously, the second channel causes con-
siderable difficulty in solving the eigenvalue problem, far
from trivial compared to all known single-channel JC cases.
Wang, Puri, and Eberly succeeded in exactly solving it par-
tially @1#. They expanded the eigenvectors of the Hamil-
tonian in terms ofunP ,nS ,nA ,6&[unP ,nS ,nAu ^ u6&, where
unP ,nS ,nA& denotes the usual Fock states~or eigenstates of
photon numbers! to obtain a recursion relation for the expan-
sion coefficients. Then the recursion relation was converted
into a differential equation by introducing a generating func-
tion. By demanding its solution be suitable for the generating
function defined, they finally obtained the eigenvalues and
corresponding eigenvectors for the special case ofJz52 1

2.
They also gave the eigenvalues but not the eigenvectors for
the general case@1#. The same method could in principle
deal with the general case of any allowableJz , so long as the
generated differential equation could be transformed into a
standard one with known solution~s! which remain unclear
right now. In their paper@1#, they established an elegant
connection between field variables and an orbital angular
momentum L with Lz5aA

†aA2aS
†aS , and identified Sz

51
2(s112s22) as thez component of another~spin! angu-

lar momentum. HenceJz5Lz1Sz denotes thez component
of the sum of two angular momenta. They did not utilize this
connection in solving the model because they felt@1# that to
take advantage of it, a relation between the eigenstates of
Lz and the usual Fock statesunP ,nS ,nA& was necessary, and
they did not know this@1#.
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In this paper, we present a simple algebraic method to
solve this model for all possible values ofJz , by establishing
its connection with the model for a spin-1

2 particle in a mag-
netic field, and taking advantage of the relations between
field variables and the orbital angular momentum. The out-
line of this paper is as follows. In Sec. II, we calculate the
eigenvalues of the Hamiltonian or energy eigenvalues. It is
shown that these can be obtained quickly with no need to
know the explicit relation between the eigenstates ofLz and
Fock states, and, in fact, without the need to know the con-
crete relations between the energy eigenstates and Fock
states. This method is in fact a systematic and effective, per-
haps the simplest, one to quickly obtain eigenvalues of all
solvable JC models. Our results for eigenvalues are the same
as the ones obtained by Wang, Puri, and Eberly for the spe-
cial case ofJz52 1

2, but differ from theirs in the general
case. In Sec. III, we first calculate the analytical expressions
of the evolution operator and the atomic inversion operator,
and explain why the Fock initial-field state in this model
would in general give the collapse and revivals of Rabi os-
cillations. Then we explicitly express the eigenstates of the
energy and orbital angular momentum in terms of Fock
states for any allowable values ofJz . The connection be-
tween the angular quantum number and the total photon
number is derived in Appendix A. In Appendix B, we
present expressions of the eigenvectors of the Hamiltonian
and the orbital momentum in terms of Fock states for a few
photons~the total photon numberN51, 2, and 3!.

II. ENERGY EIGENVALUES

To determine the energy eigenvalues of the coupled-
channel cavity QED model, we begin with a connection be-
tween field variables and an orbital angular momentumL
introduced by Wang, Puri, and Eberly@1#,

L15Lx1 iL y5A2~aSaP
†1aA

†aP!, ~2a!

L25L1
† 5A2~aPaS

†1aP
†aA!, ~2b!

Lz5aA
†aA2aS

†aS , ~2c!

L25~nA2nS!
21~nA1nS!~2nP11!12nP

12~aP
2aA

†aS
†1aP

†2aSaA!, ~2d!

whereL2 andL1 are the lowering and raising operators of
the momentum. The interaction Hamiltonian can be put into
the form @1#

H int5
g

A2
~L2s121L1s21!. ~3!

From the theory of angular momentum and the expression
of Lz , we know thatL represents an orbital angular momen-
tum, andL2 andLz have a complete set of common eigen-
vectors u l ,m& satisfying L2u l ,m&5 l ( l11)u l ,m&, and
Lzu l ,m&5mu l ,m& with l50,1,2,3, . . . and m5o,61,
62,63, . . . ,6 l . In Appendix A, we show how to obtain the
restriction of the total photon numberN on the quantum
numbersl and m without the need to know the concrete

expressions ofu l ,m& in terms of Fock statesunP ,nS ,nA&.
The results are as follows. For a givenN, the allowable
values of the angular quantum number are
l5N,N22,N24, . . . ,„N22Int(N/2)…, where Int(N/2)
5N/2 for evenN and Int(N/2)5(N21)/2 for oddN or,
equivalently, l50,2,4, . . . ,N for even N and
l51,3,5, . . . ,N for oddN. Also,m50,61,62, . . . ,6 l for
any allowable l . Because Jz5Lz1

1
2sz , where sz

5s112s22 , and the operatorsL2,Lz , andJz are mutually
commutative, we see that they have a complete set of com-
mon eigenvectorsu l ,m& ^ u6& where u6& are the atomic
states, and the eigenvalues ofJz are6 1

2,6
3
2, . . . ,6( l1 1

2)
for any givenl .

We now consider the Hamiltonian and its eigenvalues.
Noting that (L2s121L1s21)

25(L22Jz
21 1

4) which obvi-
ously commutes with (L2s121L1s21), we can rewrite
the interaction Hamiltonian as

H int5
g

A2
AL22Jz

21 1
4sy5

1
2Vsy ~4!

by introducing operators

sy5
L2s121L1s21

AL22Jz
21

1

4

, ~5!

V5gA2~L22Jz
21 1

4 !. ~6!

It is easy to check that sx5 iszsy

5 i (L2s212L1s12)/AL22Jz
21 1

4,sy , and sz5s11

2s22 satisfy the well-known Pauli operators’ commutation
and anticommutation relationss is j1s js i52d i j and
@sk ,s l #52i eklmsm ; in particular;sy

251, andsy has two
eigenvalues61. Obviously, this form of interaction Hamil-
tonian H int describing the coupled-channel cavity QED
model is identical to the model for a spin-1

2 particle in a
magnetic fieldB along they direction with its magnitude
proportional to the quantityV, except thatB andV are now
operators and notc numbers. The quantityV is nothing but
the Rabi operator~its eigenvalues give all the frequencies in
the Rabi oscillations of the atomic inversion! for the cavity
QED model and the gyration frequency~operator! for the
latter model. This similarity between the two models permits
us to obtain quickly the energy eigenvalues and solutions of
the evolution operator and other operators such as the atomic
inversion as well as the expression of Rabi operator. It also
permits us to determine energy eigenvalues quickly when
including the Stark term and off-resonance effect, as will be
explained below. In addition, this similarity immediately
shows that the system’s energy levels manifest a doublet
structure, with the doublets’ energy differences equal to the
eigenvalues of the Rabi operator. The operators’ solutions
will be discussed in Sec. III. Here we decide the energy
eigenvalues.

As discussed above, the total Hamitonian can be written
as follows:

H5vpN1E12Jz1
g

A2
AL22Jz

21 1
4sy. ~7!
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It is easily found that the Hermitian operatorsN, L2, Jz , and
sy are mutually commutative, and hence have a complete set
of common eigenvectors, which is also the complete set of
the energy eigenvectors, with its typical member expressed
as uN,l ,Jz ,my&, wheremy561 are the eigenvalues ofsy ,
and we use the symbolsN and Jz to express the operators
and their eigenvalues for simplicity. We immediately obtain
the energy eigenvalues

EN,l ,Jz ,my
5vpN1E12Jz1

gmy

A2
Al ~ l11!2Jz

21 1
4 , ~8!

where

N50,1,2, . . . , ~9a!

l5N,N22,N24, . . . ,XN22 IntSN2 D C, ~9b!

Jz5
1
2 ,6

3
2 , . . . ,6~ l1 1

2 !, ~9c!

my561. ~9d!

We discuss the system’s energy structure by means of the
expression of energy eigenvalues.

It is seen that the energy structure displays a singlet plus
doublet characteristic quite similar to the case of the JC
model. For any given set of (N,l ,Jz) except forJz56( l
1 1

2), my561 gives a doublet with its energy difference

equal toV l ,Jz
5gA2Al ( l11)2Jz

21 1
4[gA2A( l1 1

2 )
22Jz

2,
which is the eigenvalues of the Rabi operator. These charac-
teristics resemble those of the doublets of the JC model. For
Jz5( l1 1

2) or 2( l1 1
2), we obtain a singlet state, since

V l ,Jz
50. It is easily seen thatu l ,m5 l & ^ usz51& is the ei-

genvector of two operators: a Hamiltonian andJz for
Jz5( l1 1

2), and so isu l ,m52 l & ^ usz521& for Jz52( l
1 1

2). It is interesting to see that these singlets represent states
of no coupling between the atom and the fields, since the
vectors can be expressed by the direct product of the atomic
statesusz561& and the field statesu l ,m561&, quite simi-
lar to the ground state of the JC model, which is also a
singlet and represents a state of no coupling between the
atom and the field. There is some ambiguity in the definitions
of operatorssy andsx asJz56( l1 1

2), since their denomi-

nator AL22Jz
21 1

4 becomes zero. However, it is easy to
show that their numerators (L2s121L1s21) and
(L2s212L1s12) also become zero, and this ambuguity
does not affect the expression of the energy eigenvalues.

For a givenN, the angular quantum numberl will still
have several choices. We have 2l doublets and two singlets
for any allowablel , and thus 4l12 different energy states
for a given set of (N,l ). Thus, it is easy to show that the total
number of energy states for a givenN is
(allowable l(4l12)5(N11)(N12), which is the exact num-
ber of all the possibleunP ,nS ,nA ,sz561& for a fixedN.
This means that all energy levels are nondegenerate.

We now compare our results with the ones given by
Wang, Puri, and Eberly@1#. They @1# derived an expression
for energy eigenvalues for the special case ofJz52 1

2 (Jz is
denotedC by them!, and gave the eigenvalues for the general

case of any allowableJz without presenting derivations. We
cite their result@their Eq.~B1.9!# here;

l56A2n~n1uJzu!, ~10!

where, depending on the parity of the integer (N2uJzu1
1
2),

the allowed values ofn are eithern50,1, . . . ,12(N2uJzu
11

2) or n5 1
2,

3
2, . . . ,

1
2(N2uJzu1

1
2). In this equation,l is the

eigenvalue of the interaction Hamiltonian divided by g. Our
corresponding result is

l56S l ~ l11!2Jz
21 1

4

2
D 1/2, ~11!

where l5N,N22,N24, . . . ,„N22 Int(N/2)… and Jz5
1
2,6

3
2, . . . ,6( l1 1

2). Obviously, our result is same as theirs for
Jz52 1

2, but differs from theirs generally since the two ex-
pressions for eigenvalues have different functional depen-
dences on the quantum numberJz . Let us give a numerical
example to illustrate that the two expressions indeed lead to
different results. We follow their convention by specifying
N and Jz first. TakingN510 andJz551 1

2, one finds that
their expression givesl562(n5 1

2), 6 39
2 (n5 3

2), and
6 85

2 (n5 5
2), while ours givesl566(l56), 6A21(l58),

and 6A40(l510), since l50, 2, 4, 6, 8, and 10 for
N510, andJz551 1

2, implying l>5.
Our method of obtaining eigenvalues still works when the

Stark termg(nA2nS)s22 is included and the frequency
resonant condition is not exactly satisfied, which amounts to
an extra termds22 @1#. To see this, We rewrite the two
terms as @g(nA2nS)1d#s225 1

2@g(Jz1
1
2)1d](12sz).

The Hamiltonian then becomes

H5S g41
d

2D1vpN1SE121
g

2D Jz1 g

A2
AL22Jz

21 1
4sy

2 1
2 @g~Jz1

1
2 !1d#sz. ~12!

Noting that operatorsL2 andJz commute withsy andsz ,
we can put the Hamiltonian into the form

H5S g41
d

2D1vpN1SE121
g

2D Jz1 1

2
vsn , ~13!

where

v5A@g~Jz1
1
2 !1d#212g2~L22Jz

21 1
4 !, ~14!

sn5n•s52

FgS Jz1 1

2D1dG
v

sz1
V

v
sy , ~15!

wherev andV denote, respectively, the Rabi operator with
and without considering the Stark andd terms, andV is
given in Eq.~6!; n represents a unit vector~operator!. It is
easy to see thatsn

251, thatsn has eigenvaluesmn561,
and that it commutes withL2, Jz, andN. This form of the
Hamiltonian still resembles the model for a spin-1

2 particle in
a magnetic field along then direction. Therefore, the typical
energy eigenvector isuN,l ,Jz ,mn&, and the corresponding
energy eigenvalue is
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EN,l ,Jz ,mn
5S g41

d

2D1vpN1SE121
g

2D Jz
1
mn

2 H FgS Jz1 mn

2 D1d G2
12g2@ l ~ l11!2Jz

21 1
4 #J 1/2, ~16!

which gives all the energy eigenvalues whenN, l , andJz run
through all the values given by Eq.~9! andmn561.

III. OPERATOR SOLUTIONS
AND ENERGY EIGENVECTORS

In this section, we calculate the analytical expressions of
the evolution operator and the atomic inversion operator, and
explicitly express the eigenstates of the energy and orbital
angular momentum in terms of Fock states for any allowable
values ofJz . We begin with the first task.

A. Dynamics

In this part, we show that it is a simple matter to obtain
analytical expressions for the evolution operator and atomic
inversion by recognizing the similarity between this model
and the one for a spin-12 particle in a magnetic field; then we
explain why there is no longer any dramatic difference, in
this model, between the role of a Fock state and a coherent
state in the collapse and revival of Rabi oscillations.

The dynamics in Heisenberg’s scheme is represented by
the transformationsA[A(0)→A(t)5U(t)AU†(t), where
U(t) is the system’s evolution operator, and has, in our case,
the form

U~ t !5exp~ iHt !5exp~ iH 0t !U int~ t !, ~17!

where

U int~ t !5exp~ iH intt !. ~18!

Utilizing H int5
1
2Vsy and the formula exp(ifsy)

5cos(f)1isysin(f), We immediately obtain the analytical
expression of the evolution operator as follows:

U int~ t !5cosS Vt

2 D1 isysinS Vt

2 D , ~19!

where sy5(L2s121L1s21)/AL22Jz
21 1

4, and

V5gA2(L22Jz
21 1

4) is the Rabi operator. They commute
with each other and both are constants of motion. The atomic
inversion operatorsz(t)5s11(t)2s22(t) is also easy to
obtain by using the expression of evolution operator and not-
ing that it commutes with Rabi operator andH0, and satisfies
@sy ,sz#52isx andsysz52szsy . The result is

sz~ t !5szcos~Vt !2sxsin~Vt !, ~20!

wheresx5 i (L2s212L1s12)/AL22Jz
21 1

4 sx(t) is sim-
ply obtained bysx(t)5 isz(t)sy as

sx~ t !5sxcos~Vt !1szsin~Vt !. ~21!

The population operators are determined by
s11(t)5„11sz(t)…/2 ands22(t)5„12sz(t)…/2. The cal-
culation of the transition operators12 is a little more diffi-
culty since it does not commute withH0 andV. However, it
is easy to show thats12F(H0)5F(H02E12/2)s12 and
G(V)s125s12G(V1) whereF andG are arbitrary func-
tions, andV15VJz→Jz11/2. Using these commutation rela-

tions and the expressions ofU int andsy , we arrive at

s12~ t !expS i E12t

2 D5s12cosS V1t

2 D cosS Vt

2 D
1 i

L1s22

AL22Jz
21 1

4

sinS V1t

2 D cosS Vt

2 D
2 i

L1s11

AL22Jz
21 1

4

cosS V1t

2 D sinS Vt

2 D
1

L1
2 s21

L22Jz
21 1

4

sinS V1t

2 D sinS Vt

2 D .
~22!

The operator L2 can be obtained by the relation
L2(t)5AL22Jz

21 1
4(sys21(t)2 isx(t)s12(t)).

The photon number operators satisfy the relations
2nA5(Jz2sz(t)/21N2nP) and 2nS5(2Jz1sz(t)/2
1N2nP), and nP(t) relates its initial operatornP by the
relation

nP~ t !5FcosS Vt

2 D1 isysinS Vt

2 D G
3nPFcosS Vt

2 D2 isysinS Vt

2 D G .
This formula is not very useful if we do not have the explicit
relation between Fock states and energy eigenstates, or if we
do not know the results of the photon number operatornP
acting on the energy eigenstates. However, things are totally
different about the atomic quantitiess11 ,s22 ands12 as
well as the field variablesL2 andL1 , because their actions
on energy eigenstates are known even if we do not know the
relations between the Fock states and energy eigenstates. So
long as the~initial! state or density operator in~Schrödinger!
the Heisenberg picture is given in the energy representation,
the dynamical properties of these operators, including their
expectation values, can be discussed and determined solely
within the energy representation by using the above formu-
las, without the need to know about Fock states and the
relations between the Fock states and energy eigenstates; this
does not hold for photon numbers if we do not know such
relations. Let us illustrate this point by calculating the atomic
inversion. The most general form of a density operator in
energy representation is

r5 (
l ,Jz ,my ; l 8,Jz8 ,my8

Cl ,Jz ,my ; l 8,Jz8 ,my8
uN,l ,Jz ,my&

3^N,l 8,Jz8 ,my8u.
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Using the formulas in Eq.~24! andsx5 iszsy , we obtain

^N,l 8,Jz8 ,my8uszuN,l ,Jz ,my&5dJz ,Jz8d l ,l 8dmy ,2m
y8
,

^N,l 8,Jz8 ,my8usxuN,l ,Jz ,my&5 imydJz ,Jz8d l ,l 8dmy ,2m
y8
.

Then the atomic inversionW(t)5Tr„sz(t)r… is easily shown
to have the form

W~ t !5 (
l ,Jz ,my

Cl ,Jz ,my ; l ,Jz ,2my
@cos~V lJz

t !2 imysin~V lJz
t !#,

whereV lJz
5gA2@( l1 1

2 )
22Jz

2#. There is no unknown quan-
tities in the expression of the atomic inversion, since the
coefficientsCl ,Jz ,my ; l 8,Jz8 ,my8

are supposed to be known~we

use the Heisenberg picture, so that the density operator does
not vary with time, which corresponds to the initial density
operator in Schro¨dinger picture. In order to obtain the den-
sity operator at any time in Schro¨dinger picture, one has to
assume the form of the initial density operator!. In the ex-
pression of the average pump photon number Tr(nP(t)r),
there is a quantitŷN,l 8,Jz8 ,my8unPuN,l ,Jz ,my& which is un-
known if one does not know the relations between the Fock
states and energy eigenstates.

Before ending this subsection, we discuss the Rabi fre-

quencyV5gA2(L22Jz
21 1

4 ). The atomic inversion@the ex-
pectation value of the operatorsz(t)# is easily seen from the
expression of the operatorsz(t) to oscillate, with all its fre-
quencies given by the eigenvalues of the Rabi operator, and
determined by those ofL2 andJz . The atomic inversion is
exactly a periodic function if the system’s state is one of the
eigenvectors of the Rabi operator (u l ,m& ^ u6& or its suitable
combinations such asc1u l ,m& ^ u1&1c2u l ,m11& ^ u2&). It
is noted that the vectors unP ,nS ,nA& ^ u6&, with
unP ,nS ,nA& denoting Fock states, are generally not the
eigenvectors of the Rabi operator. Their expressions in terms
of Rabi operator eigenvectors generally contain many terms
corresponding to different oscillation frequencies. The inter-
ference of these oscillations with different frequencies will
generally lead to collapse and revivals of the Rabi oscilla-
tions. The same is true for a coherent state. This is the reason
why the Fock initial-field state in this model generally gives
the collapse and revivals of Rabi oscillations. In contrast, the
direct products of atomic statesu6& and Fock states are Rabi
operator eigenvectors in almost all other models. For in-
stance, the JC model’s Rabi operator is
A(D/2)21g2@n1(11sz)/2# which has an eigenvector
un& ^ u6& or suitable combinations such as
c1un& ^ u1&1c2un11& ^ u2&. Therefore, the corresponding
atomic inversion is a periodic function if the field part of the
system state is given by a Fock stateun&, while it manifests
collapse and revivals if the field is specified by a coherent
state. From the above discussions, we also know that the role
of vectorsu l ,m& in this coupled-channel model replaces the
role of Fock states in the JC model. To be more specific, the
quantum numberm describingLz in this model is similar to
the photon numbern in the JC model, which becomes obvi-
ous by comparing the two models, sinceL2 (L1) lowers
~raises! m by a unit, while operatora (a†) lowers ~raises!

photon numbern by a unit. This similarity helps to construct
the energy eigenvectors in term of vectorsu l ,m&.

B. Energy eigenstates

According to the above discussions, and using the formu-
las

L2u l ,m&5Al ~ l11!2m~m21!u l ,m21&, ~23a!

L1u l ,m&5Al ~ l11!2m~m11!u l ,m11&, ~23b!

one easily sees that the energy eigenvectors can be expressed
in terms of the eigenvectors of the orbital angular momentum
as

uN,l ,Jz5m1 1
2 ,my51&

5
1

A2
~ u l ,m& ^ u1&1u l ,m11& ^ u2&), ~24a!

uN,l ,Jz5m2 1
2 ,my521&

5
1

A2
~ u l ,m21& ^ u1&2u l ,m& ^ u2&), ~24b!

where the two atomic levelsu6& satisfy szu6&56u6&, l
5N,N22, . . . ,„N22 Int(N/2)…, and m50,61,62, . . . ,
6 l . The normalization constant 1/A2 is replaced by 1
as Jz56( l1 1

2) since u l ,m56( l11)&50. These results
can also be obtained by the relationssz5
exp„2 i (p/4)sx…syexp„i (p/4)sx…, szu l ,m& ^ u6&56u l ,m&
^ u6&, exp„i (p/4)sx…5(11 isx)/A2, and uN,l ,Jz5m
6 1

2,my561&5exp(ip/4sx)ul,m&^u6&.
We now establish the relations between the Fock states

and the eigenstates of the orbital angular momentum. We
construct the eigenvectorsu l ,m52 l &[u l ,2 l &, and then ob-
tain the rest by the formula@which is obtained by recursively
using Eq.~23.b!#

u l ,m&5
1

A~2l !!
A~ l2m!!

~ l1m!!
L1
l1mu l ,2 l & ~25!

wherem50,61,62, . . . ,6 l . The (2l11) vectorsu l ,m& for
a fixed l are normalized and mutually orthogonal, which
comes only from the theory of angular momentum without
using the connection between the field variables and the ar-
gular momentum. Suppose

u l ,2 l &5 (
k50

n

~21!kaku2k,l1n2k,n2k&, ~26!

where l5N,N22, . . . ,„N22 Int(N/2)…, n5(N2 l )/2 is a
nonnegative integer, and the coefficientsak ,k50,1, . . . ,n
are determined byL2u l ,2 l &50, which gives the recursive
relation akA(2k11)(n2k)5ak11A(2k12)(l1n2k),
k50,1,2,. . . ,n21. Using this recursive relation, we can
obtain that
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u l ,2 l &5cl(
k50

n

~21!k
1

2kk! S ~2k!! ~ l1n2k!!

~n2k!! D 1/2
3u2k,l1n2k,n2k&, ~27!

wherecl is a normalization constant given by

cl5F (
r50

n
1

4r r ! 2
~2r !! ~ l1n2r !!

~n2r !! G21/2

. ~28!

It is seen that all the vectors u l ,m&
( l5N,N22, . . . ,„N22 Int(N/2)…; m50,61,62, . . . ,6 l )
generated by Eqs.~25! and ~27! form a orthogonal and nor-
malized set whose number is (N11)(N12)/2, the number
of the Fock statesunP ,nS ,nA& with a fixed total photon num-
berN. They are the explicit relations between the Fock states
and the eigenvectors of the orbital angular momentum. Sub-
stituting them into Eq.~24!, we also obtain the explicit rela-
tions between the Fock states and the energy eigenstates.
These forms of explicit relations are particularly simple to
use when the field part of the system’s~initial! state in
Heisenberg’s~Schrödinger’s! scheme is given by a Fock
state withnS50 and/ornP50. To illustrate this, we assume
the atom is in its ground state and the fields in a Fock state
u2M ,0,0&, and express this state in terms of energy eigenvec-
tors. It is simple to obtain

L2
l u2M ,0,0&521/2S ~2M !! l !

~2M2 l !! D
1/2

u2M2 l ,l ,0&, ~29!

^ l ,0u2M ,0,0&5
1

A~2l !!
^ l ,2 l uL1

l u2M ,0,0&

5~21!M2~1/2!
2l2M

A~2l !!

l !A~2M !!

SM2
l

2D !
cl . ~30!

Using these expressions and Eq.~24!, we arrive at

u2M ,0,0& ^ u2&5 (
k50

M

~21!M2k
22k2M

A~4k!!

~2k!!A~2M !!

~M2k!!

3c2k~ umy51&2umy521&), ~31!

whereumy561&[uN52M ,l52k,Jz52 1
2,my561& repre-

sent energy eigenstates, andc2k is given by Eq.~28!. This
simple example also serves the purpose of comparison, as
will be seen below.

Next we go one step further to calculate the concrete
forms of vectorsu l ,m& without expressing them in terms of
the lowering operator acting onu l ,2 l &. Using the property of
a creation operatora†nu0&5An! un&, we expressu l ,2 l & in a
compact and convenient form

u l ,2 l &5
cl
n!
aS
†l~aA

†aS
†2 1

2aP
†2!nu0,0,0&, ~32!

where l5N,N22, . . . ,„N22 Int(N/2)…, n5(N2 l )/2, and
u0,0,0& is the field state without any photon. Denoting
L15A2A,A5(aSaP

†1aA
†aP), and noting thatA commutes

with (aA
†aS

†2 1
2aP

†2), we find that we need to calculate quan-
tity Al1maS

†l u0,0,0&, which is transformed to calculate the
coefficient of l th power of 2a in the expression of
Al1mexp(2aaS

†)u0,0,0&. It is easy to show
Al1mexp(2aaS

†)5exp(2aaS
†)(A2aaP

†)l1m by noting
exp(aaS

†)Aexp(2aaS
†)5(A2aaP

†). The calculation of
(A2aaP

† ) l1mu0,0,0& is very similar to calculating the eigen-
functions of the harmonic oscillator in quantum mechanics.
It is noted that Au0,0,0&50, @A,aP

†n#5naA
†aP

†n21which
means thatA resemblesaA

†d/dx and aP
† , similar to x in

calculating (A2aaP
† ) l1mu0,0,0&. While doing so,aA

† can be
treated as ac number, since it commutes withA and aP

†

Therefore, we obtain (A2aaP
† ) l1mu0,0,0&5Wu0,0,0&, where

W5„b(d/dx)2ax…x5a
P
† ,b5a

A
†

l1m
. Obviously, we have

S b
d

dx
2axD l1m

5b l1mFexpS a

2b
x2D ddxexpS 2

a

2b
x2D G l1m

5b l1mexpS a

2b
x2D dl1m

dxl1mexpS 2
a

2b
x2D

5~21! l1mS S ab

2 D 1/2D l1m

Hl1mS a

2b
xD 1/2,

~33!

where use has been made of the expression@14# of the
Hermitian polynomial of order, Hn(x)
5(21)nexp(x2)@dnexp(2x2)#/dxn which has the series form
@14#

Hn~x!5 (
k50

[n/2]
~21!kn!

k! ~n22k!!
~2x!n22k ~34!

where @n/2#[Int(n/2) or @n/2#5n/2 for even n and
@n/2#5(n21)/2 for oddn. From the above discussions, we
obtain

Al1maS
†l u0,0,0&5 l ! ~ l1m!! (

k5k0

[ ~ l1m!/2]

3
aS
†k2maA

†kaP
†l1m22k

2kk! ~ l1m22k!! ~k2m!!
u0,0,0&,

~35!

wherek05m for m>0 andk050 for any negativem, or
k05max(m,0). It is now a simple task to expressu l ,m& in
terms of Fock states by using Eqs.~25!, ~32!, and~35!. The
final results are as follows:
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u l ,m&5 (
k50

~N2umu!/2

Blmk
~e! U2k,N2m

2
2k,

N1m

2
2kL for even ~ l1m!, ~36a!

u l ,m&5 (
k50

~N2umu21!/2

Blmk
~o! U2k11,

N2m21

2
2k,

N1m21

2
2kL for odd ~ l1m!, ~36b!

where

Blmk
~e! 52kS ~ l1m!! ~ l2m!!

~2l !! D 1/2l !cl ,

(
r5rmin

rmax

~21!r
F ~2k!! SN2m

2
2kD ! SN1m

2
2kD ! G1/2

4r r ! SN2 l

2
2r D ! S l2m

2
2k1r D ! S l1m

2
2k1r D ! ~2k22r !!

, ~37a!

Blmk
~o! 52kA2S ~ l1m!! ~ l2m!!

~2l !! D 1/2l !cl ,

(
r5rmin

rmax

~21!r
F ~2k11!! SN2m21

2
2kD ! SN1m21

2
2kD ! G1/2

4r r ! SN2 l

2
2r D ! S l2m21

2
2k1r D ! S l1m21

2
2k1r D ! ~2k22r11!!

, ~37b!

where rmax5min„k,(N2 l )/2…, rmin5max„0,k2@( l
2umu)/2#…, andcl is given by Eq.~28!. Equation~36! gives
all the eigenvectors of the orbital angular momentum explic-
itly expressed in terms of the Fock states asl andm run
through the valuesl5N,N22, . . . ,„N22 Int(N/2)…, where
Int(N/2)5N/2 for evenN and Int(N/2)5(N21)/2 for odd
N, andm50,61,62, . . . ,6 l . Substituting Eq.~36! into Eq.
~24!, we also obtain the concrete forms of energy eigenstates
in terms of Fock states for any allowableJz .

In their paper, Wang, Puri, and Eberly did not establish
the relations between the eigenvectors of the orbital angular
momentum and the Fock states@1#, but they@1# derived the
explicit relations between the energy eigenstates and Fock
states for the special case ofJz52 1

2. It can be seen that the
first and second terms of their Eq.~3.2! are
u l ,m50& ^ u2&/A2 andu l ,m521& ^ u1&/A2. However, we
cannot compare their results with ours for the special case of
Jz52 1

2 at present, since factorials of a negative integer ap-
pear in the denominators in their expressions of expansion
coefficients@their Eq.~3.6!# while we do not know their con-
vention on the factorial of a negative integer. In Appendix B,
we present expressions of the eigenvectors of the Hamil-
tonian and the orbital angular momentum in terms of Fock
states for a few photons~the total photon numberN51, 2,
and 3! by using Eqs.~24! and ~36!. It is easily checked di-
rectly by the expression of Hamiltonian that the vectors
uN,l ,Jz ,my& in Appendix B are indeed the energy eigenvec-
tors.

IV. SUMMARY

In this paper, we presented a very simple algebraic
method to investigate the eigenvalue problem and dynamics

of the coupled-channel cavity QED model with three nonde-
generate quantized field modes proposed and partially solved
by Wang, Puri, and Eberly. We have shown that by estab-
lishing the similarity between this model and the one for a
spin-12 particle in the presence of a magnetic field, we can
quickly obtain the system’s energy eigenvalues and Rabi op-
erator, and its eigenvalues, evolution, and atomic inversion
operators without having to know the explicit relation be-
tween the Fock states and the energy eigenstates. We have
also explicitly expressed the energy eigenstates in terms of
Fock states not only for the special case ofJz52 1

2 as in
previous studies@1#, but also those for any allowable values
of Jz . With the energy eigenvalues and eigenstates known
for the general situations, we can study the model’s dynami-
cal and statistical properties of the atomic and field variables
such as the time evolution of atomic inversion, average pho-
ton numbers, self-made, and intermode correlations for any
allowableJz .

In their work, Wang, Puri, and Eberly established an el-
egant connection between the field variables and an orbital
angular momentum, but were not able to obtain a relation
between the Fock states and eigenvectors of the orbital an-
gular momentum. We have gone one step further to establish
such relations, and thus have finally given a complete con-
nection between the field modes and the orbital angular mo-
mentum.

According to our results, we find that the model still
shows a considerable similarity to the JC model, although,
unlike the JC model, it manifests a chain structure pointed
out first by Wang, Puri, and Eberly. For instance, the model
displays many singlets@such asJz56( l11/2)] representing
states without effective coupling between the field modes
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and the atom, very similar to the ground state in the JC
model, and it has many more doublets, with the energy dif-
ference of each doublet given by one of the eigenvalues of
the Rabi operator, while these eigenvalues also determine all
the oscillating frequencies of the atomic inversion. These
properties still resemble those of the doublets in the JC
model. We have also explained why the Fock initial-field
state in this model generally gives the collapse and revival
phenomena in the Rabi oscillations of the atomic inversion.

The method of obtaining the eigenvalues and the Rabi and
evolution operators, by establishing a similarity to the model
describing a spin-12 particle in the presence of a magnetic
field, is also of theoretical interest in its own right, since it
provides a systematic and effective way to obtain these quan-
tities quickly, not only for this particular model but also for
any other solvable two-level models including those describ-
ing a multilevel atom interacting with multimode quantum
fields, so long as they can be transformed into an effective
two-level problem by either an exact transformation@11# or
approximation methods such as the adiabatic elimination.
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APPENDIX A

In this appendix, we prove the conclusion that the allow-
able values of an angular quantum number are
l5N,N22, . . . ,„N22 Int(N/2)… for a fixed N, where
Int(N/2)5N/2 for evenN and Int(N/2)5(N21)/2 for odd
N, and for any allowable valuel , m50,61,62, . . . ,6 l .

First, we point out that the operatorsN, L2, andLz are
mutually commutative, and hence have common eigenvec-
tors forming a complete set. Its typical memberuN,l ,m& is
denoted asu l ,m& throughout this paper for simplicity. Let
V denote the space spanned by the Fock statesunP ,nS ,nA&
with a fixed N (5nP1nS1nA). Obviously, it is also
spanned by the vectorsu l ,m& with all allowable values ofl
and m for the fixed N, and its dimension is
(N11)(N12)/2. In Sec. III, we explicitly constructed
(N11)(N12)/2 independent vectorsu l ,m&, with the above
specifiedl andm, all of which satisfy the restriction of a
fixed N. Therefore, the above conclusion has actually been
proved. However, we now present another kind of proof
which does not need the concrete forms ofu l ,m& in terms of
the Fock states. The proof of the allowablem is simple. Any
two of (2l11) vectorsu l ,m& (m50,61,62, . . . ,6 l ) are
related by operatorL1 ~or L2), which does not changeN.
All of them will satisfy the condition of a fixedN if one of
them does.

Hence we consider the case ofm52 l to decide the alow-
ablel . Using the expression forLz andm52 l , we find that
2nA5N2 l2nP and 2nS5N1 l2nP , implying l<N, and
that (N2 l ) andnP are either both even or both odd. An odd
(N2 l ) is impossible if we can show thatuc&50 if
L2uc&50, whereuc& contains only the Fock states of odd
nP since u l ,m52 l & satisfiesL2u l ,m52 l &50 and is not a
zero vector. We now prove this. Expandinguc& in terms of

the Fock states asuc&5cu1,(N1 l21)/2,(N2 l21)/2&
1uf&, where uf& contains terms withnP>3, we see that
L2uc&50 givesc50 because theaPaS

† term in L1 causes
the c term to become a term withnP50, while L2uf& con-
tains only terms withnP>2. By the same argument, we can
show thatuc& contains no term withnP53. Repeating this
process, we finally proveuc&50. The last question is
whether all the valuesl5N,N22, . . . ,„N22 Int(N/2)… can
be taken. The answer is yes, since the total number of inde-
pendent vectors u l ,m& for these values of l is
((2l11)5(N11)(N12)/2 where summation is over all
the values specified above. This would lead to the wrong
conclusion that the spaceV cannot be spanned by all the
allowableu l ,m& if some of thel values in this range were not
allowable. We have, now, finished our proof.

APPENDIX B

In this appendix, we give the eigenvectors of the Hamil-
tonian and the orbital angular momentum for total photon
numberN51, 2, and 3. Using Eq.~36! @or Eqs. ~25! and
~27!#, we obtain the expressions ofuN,l ,m& in terms of Fock
statesunP ,nS ,nA& as follows ~note that we useu l ,m& for
simplicity in the main text, while we useuN,l ,m& here since
we consider different values ofN in this appendix!:

uN51,l51,m50&5u1,0,0&, ~B1a!

uN51,l51,m521&5u0,1,0&,

uN51,l51,m51&5u0,0,1&, ~B1b!

uN52,l52,m522&5u0,2,0&,

uN52,l52,m52&5u0,0,2&, ~B2a!

uN52,l52,m521&5u1,1,0&,

uN52,l52,m51&5u1,0,1&, ~B2b!

uN52,l52,m50&5A2
3 u2,0,0&1A1

3 u0,1,1&, ~B2c!

uN52,l50,m50&5A2
3 u0,1,1&2A1

3 u2,0,0&, ~B3!

uN53,l51,m521&5
2

A5
u0,2,1&2

1

A5
u2,1,0&, ~B4a!

uN53,l51,m50&5A2
5 u1,1,1&2A3

5 u3,0,0&, ~B4b!

uN53,l51,m51&5
2

A5
u0,1,2&2

1

A5
u2,0,1&, ~B4c!

uN53,l53,m523&5u0,3,0&,

uN53,l53,m53&5u0,0,3&, ~B5a!

uN53,l53,m522&5u1,2,0&,

uN53,l53,m52&5u1,0,2&, ~B5b!
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uN53,l53,m521&5
2

A5
u2,1,0&1

1

A5
u0,2,1&, ~B5c!

uN53,l53,m50&5A2
5 u3,0,0&1A3

5 u1,1,1&, ~B5d!

uN53,l53,m51&5
1

A5
u0,1,2&1

2

A5
u2,0,1&. ~B5e!

Using the above equations and Eq.~24!, one can express the
energy eigenstates in terms of Fock statesunP ,nS ,nA& and
the atomic statesu6& as follows:

uN51,l51,Jz5
3
2 ,my51&5u0,0,1& ^ u1&, ~B6a!

uN51,l51,Jz52 3
2 ,my521&52u0,1,0& ^ u2&, ~B6b!

uN51,l51,Jz5
1
2 ,my561&

5
1

A2
u1,0,0& ^ u1&6

1

A2
u0,0,1& ^ u2&, ~B6c!

uN51,l51,Jz52 1
2 ,my561&

5
1

A2
u0,1,0& ^ u1&6

1

A2
u1,0,0& ^ u2&, ~B6d!

uN52,l52,Jz5
5
2 ,my51&5u0,0,2& ^ u1&, ~B7a!

uN52,l52,Jz52 5
2 ,my521&52u0,2,0& ^ u2&, ~B7b!

uN52,l52,Jz5
3
2 ,my561&

5
1

A2
u1,0,1& ^ u1&6

1

A2
u0,0,2& ^ u2&, ~B7c!

uN52,l52,Jz5
1
2 ,my561&

5
1

A3
u2,0,0& ^ u1&1

1

A6
u0,1,1& ^ u1&6

1

A2
u1,0,1& ^ u2&,

~B7d!

uN52,l52,Jz52 1
2 ,my561&

5
1

A2
u1,1,0& ^ u1&6

1

A3
u2,0,0& ^ u2&6

1

A6
u0,1,1& ^ u2&,

~B7e!

uN52,l52,Jz52 3
2 ,my561&

5
1

A2
u0,2,0& ^ u1&6

1

A2
u1,1,0& ^ u2&, ~B7f!

uN52,l50,Jz5
1
2 ,my51&

5
2

A3
u0,1,1& ^ u1&2

1

A3
u2,0,0& ^ u1&, ~B8a!

uN52,l50,Jz52 1
2 ,my521&

52
2

A3
u0,1,1& ^ u2&1

1

A3
u2,0,0& ^ u2&, ~B8b!

uN53,l51,Jz5
3
2 ,my51&

5
2

A5
u0,1,2& ^ u1&2

1

A5
u2,0,1& ^ u1&, ~B9a!

uN53,l51,Jz52 3
2 ,my521&

5
1

A5
u2,1,0& ^ u2&2

2

A5
u0,2,1& ^ u2&, ~B9b!

uN53,l51,Jz5
1
2 ,my561&

5
1

A5
u1,1,1& ^ u1&2A 3

10 u3,0,0& ^ u1&6A2
5 u0,1,2& ^ u2&

7
1

A10
u2,0,1& ^ u2&, ~B9c!

uN53,l51,Jz52 1
2 ,my561&

5A 2
5 u0,2,1& ^ u1&2

1

A10
u2,1,0& ^ u1&6

1

A5
u1,1,1& ^ u2&

7A 3
10 u3,0,0& ^ u2&, ~B9d!

uN53,l53,Jz5
7
2 ,my51&5u0,0,3& ^ u1&, ~B10a!

uN53,l53,Jz52 7
2 ,my521&52u0,3,0& ^ u2&,

~B10b!

uN53,l53,Jz5
5
2 ,my561&

5
1

A2
u1,0,2& ^ u1&6

1

A2
u0,0,3& ^ u2&, ~B10c!

uN53,l53,Jz5
3
2 ,my561&

5A 2
5 u2,0,1& ^ u1&1A 1

10 u0,1,2& ^ u1&6A1
2 u1,0,2& ^ u2&,

~B10d!

uN53,l53,Jz5
1
2 ,my561&

5
1

A5
u3,0,0& ^ u1&1A 3

10 u1,1,1& ^ u1&6
1

A10
u0,1,2& ^ u2&

6A 2
5 u2,0,1& ^ u2&, ~B10e!

uN53,l53,Jz52 1
2 ,my561&

5A 2
5 u2,1,0& ^ u1&1A 1

10 u0,2,1& ^ u1&6
1

A5
u3,0,0& ^ u2&

6A 3
10 u1,1,1& ^ u2&, ~B10f!
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uN53,l53,Jz52 3
2 ,my51&

5A 1
2 u1,2,0& ^ u1&6A2

5 u2,1,0& ^ u2&6
1

A10
u0,2,1& ^ u2&,

~B10g!

uN53,l53,Jz52 5
2 ,my561&

5
1

A2
u0,3,0& ^ u1&6

1

A2
u1,2,0& ^ u2&. ~B10h!

Note that (N11)(N12) is the number of all the energy
eigenvectors for a givenN. Equation~B6! gives six (233)
energy eigenvectors forN51. Equations~B6! and~B7! give
12 (334) energy eigenvectors forN52, while Eqs.~B6!
and ~B7! give 20 (435) energy eigenvectors forN53.
Therefore, the total number of the energy eigenvectors in this
appendix is 38. It is easily checked by using the original
Hamiltonian in Eq.~1! that they are correct energy eigenvec-
tors, with the corresponding eigenvalues described by Eq.~8!
in the main text.
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