
Effect of feedback on the decoherence of a Schro¨dinger-cat state:
A quantum trajectory description

Peter Goetsch
Fachbereich Physik, Universita¨t-Gesamthochschule Essen, 45117 Essen, Germany

Paolo Tombesi and David Vitali
Dipartimento di Matematica e Fisica, Universita` di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy

and Istitito Nazionale di Fisica della Materia, Camerino, Italy
~Received 24 May 1996!
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I. INTRODUCTION

The basic aspect of quantum mechanics is linearity which
gives, in particular, the possibility of preparing systems in
linear superposition states. When this superposition principle
is extended to the macroscopic world, conceptual difficulties
arise as pointed out, e.g., by the Einstein-Podolsky-Rosen@1#
and Schro¨dinger-cat@2# paradoxes, because one is forced to
accept the existence, in principle, of linear superposition of
macroscopically distinguishable states. Practically we never
see this curious superposition states at the macroscopic level
because of quantum decoherence. Decoherence is the rapid
destruction of the phase relation between two quantum states
of a system caused by the entanglement of these two states
with two different states of the environment@3,4#. In the case
of macroscopic systems, the interaction with the environ-
ment can never be escaped; since the decoherence rate is
proportional to the ‘‘macroscopic separation’’ between the
two states@3,5,6#, a linear superposition of macroscopically
distinguishable states is immediately changed into the corre-
sponding statistical mixture, with no quantum coherence left.
Nonetheless, a full comprehension of the fuzzy boundary
between classical and quantum world is far from being
reached@7,8#, and, therefore, there is great interest in the
realization of ‘‘Schro¨dinger-cat’’ states inmesoscopicsys-
tems where one can hope to control the decoherence and see
the emergence of classical properties from the quantum do-
main. A first important achievement has been recently ob-
tained by Monroeet al. @9#, who have prepared a trapped
9Be1 ion in a superposition of spatially separated coherent
states and detected the quantum coherence between the two
localized states.

Another promising field for the generation of mesoscopic
Schrödinger-cat states is quantum optics in which a large
number of proposals have appeared for the generation of
linear superpositions of two coherent states of the electro-
magnetic field in a cavity with opposite phases,
uc&5c1ua&1c2u2a& @10#. The decoherence time of this
optical Schro¨dinger cat state due to the interaction with the
outside vacuum modes is equal totdec51/2guau2 (g is the
cavity decay rate! @6#, which becomes very small even for a

moderate number of photons, unless very high-Q cavities are
used. It is, therefore, very important to find a way to control
and possibly increase this decoherence time in optical sys-
tems. A first suggestion has been given by Kennedy and
Walls @11#, who showed that if the vacuum bath could be
replaced by a squeezed bath@12#, the interference fringes
indicating the presence of quantum coherence would in-
crease their lifetime. Two of the present authors have fol-
lowed this suggestion and proved that a squeezed bath can be
simulated by an appropriate use of quantum feedback, show-
ing in this way that an appreciable retardation of the deco-
herence process can be achieved using electro-optical feed-
back@13#. The possibility of controlling the decoherence of a
linear superposition state of a cavity field mode is crucial
also in the developing field of quantum computation@14#.
The revolutionary aspect of quantum computation relies on
the ability of evaluating exponentially many parallel inputs
and to obtain a result depending on the interferences among
various superposed results. The central obstacle for a quan-
tum computer to work is the fragility of the entangled linear
superpositions ofN ‘‘quantum bits’’ with respect to decoher-
ence. The loss of coherence should then be reduced as much
as possible, because the decoherence time should be much
larger than the calculation time. Since the first experimental
realizations of a ‘‘quantum gate,’’ i.e., of the fundamental
building block of a quantum computer, have been performed
in quantum optics@15#, the use of quantum feedback to con-
trol the decoherence process of a radiation mode may be of
great help also for quantum computation.

In this paper we shall illustrate in a very simple model
how the application of a feedback loop may slow down the
decoherence of an optical Schro¨dinger-cat state. To that end
we shall study a field mode in a cavity subject to a homo-
dyne measurement, in which part of the output photocurrent
is fed back to the cavity, and we analyze the mode dynamics
using the technique of quantum trajectories@16#. We shall
derive a linear stochastic Schro¨dinger equation~SSE! for the
dynamics of the system in the presence of feedback which
upon averaging reproduces the homodyne feedback master
equation first given by Wiseman and Milburn@17,18#. The
quantum trajectory approach will give an intuitive and ap-
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pealing picture of the effect of homodyne feedback. In fact,
single stochastic trajectories clearly exhibit, as we shall
show, the stabilizing influence of feedback on the phase fluc-
tuations of the system at the quantum level.

The paper is organized as follows. In Sec. II we present
the model and derive the linear and nonlinear homodyne-
feedback stochastic Schro¨dinger equation. In Sec. III we de-
rive and discuss the feedback master equation of Wiseman
and Milburn @17,18#. In Sec. IV we analytically solve the
master equation and analyze in Sec. V the decoherence pro-
cess by numerically simulating the nonlinear SSE. Section
VI is for concluding remarks.

II. MODEL

Let us consider an electromagnetic mode with bosonic
annihilation operatora inside a cavity with decay ratega . In
the Markov approximation the interaction of the cavity mode
with the vacuum fluctuations of the outside electromagnetic
field may be described by the interaction-picture Hamil-
tonian

Hint~ t !dt5H0dt1 i\Aga@adBin
† ~ t !2dBin~ t !a

†#
~2.1!

with the mode HamiltonianH0 in the cavity; the white-noise
operatordBin(t) and its adjoint satisfy the Ito rules@12#

dBin~ t !
25dBin

† ~ t !250, dBin~ t !dBin
† ~ t !5dt, ~2.2!

dBin
† ~ t !dBin~ t !50,

@dBin~ t !,a~ t8!#5@dBin
† ~ t !,a~ t8!#50 for t>t8.

~2.3!

The interaction of the cavity mode with the input field gen-
erates an output fielddBout(t) given by the input-output re-
lation @12#

dBout~ t !5Agaa~ t !dt1dBin~ t !. ~2.4!

Let us now imagine to perform a homodyne measurement
of the quadrature component

Xw5
1

2
~ae2 iw1a†eiw! ~2.5!

of the cavity field; the corresponding output signal can be
easily expressed in terms of the output field and the phase of
the local oscillatorw as

dQ~ t !5dBout~ t !e
2 iw1dBout

† ~ t !eiw

52AgaXw~ t !dt1dJ~ t !, ~2.6!

where we have introduced the quadrature component

dJ~ t !5dBin~ t !e
2 iw1dBin

† ~ t !eiw ~2.7!

of the input field. In@19# a linear SSE for the cavity mode
wave function conditioned on the homodyne measurement of
Xw was derived as

ducj~ t !&5F2
i

\
H0dt2

ga

2
a†adt

1Agaae
2 iwdj~ t !G ucj~ t !&, ~2.8!

where the real-valued Wiener incrementdj(t) satisfies
dj(t)50, (dj(t))25dt; the indexj of the wave function
ucj(t)& points to the dependence on the previous history of
the noisej(s) with 0<s,t.

We now consider the case of feeding back part of the
homodyne photocurrent into the cavity. It is reasonable to
assume that the effect of feedback is linear in the output
signal dQ(t) @17# and may, therefore, be described by the
Hamiltonian

Hfb~ t !dt5\AgadQ~ t2t!A~ t !, ~2.9!

whereA(t) is a generic system observable andt is the delay
time introduced by the feedback loop. The presence of a
nonzero delay makes the feedback-modified dynamics of the
cavity mode non-Markovian; therefore, we consider the limit
of a vanishing delay time,t→0, which can be physically
justified if the delay time is smaller than the typical time
scale of the cavity mode dynamics, which in the present case
is the decoherence timetdec51/2guau2. With realistic loop
delays of order 1028 sec, this implies that the Markovian
limit is appropriate only for good cavities and not too large
mean photon numbers.

The limit of a zero delay time is quite delicate. First of all,
ambiguities concerning operator ordering can arise. Indeed,
as an output field the incrementdQ(t2t) commutes with all
system operatorsA(t) for t.0, but not fort50; however,
that commutation relation is preserved also in the limit of a
vanishing delay if the condition

lim
t→0

dQ~ t2t!A~ t !5dJ~ t !A~ t !5A~ t !dJ~ t ! ~2.10!

is satisfied, i.e., if the photocurrent fed back into the cavity
equals the input field in the zero-delay limit. Second, one has
to take into account the fact that the feedback always acts
after the cavity mode has interacted with the vacuum input
field, even in the limitt→0 @18#. The total wave function of
the composite system of cavity mode and bath in the pres-
ence of feedback may therefore be written as

uc tot~ t1dt!&5expH 2
i

\
Hfb~ t !dtJ

3expH 2
i

\
Hint~ t !dtJ uc tot~ t !&.

~2.11!

Inserting the HamiltonianHint(t) and Hfb(t) of ~2.1! and
~2.9!, respectively, and using the Ito rules~2.3! we obtain
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uc tot~ t1dt!&5expH 2
i

\
Hfb~ t !dtJ

3H 11Aga@adBin
† ~ t !2dBin~ t !a

†#

2
i

\
H0dt2

ga

2
a†adtJ uc tot~ t !&

5H 11Aga@~a2 iAeiw!dBin
† ~ t !

2dBin~ t !~a
†1 iAe2 iw!#2

i

\
H0dt

2
ga

2
a†adt2

ga

2
A2dt

2 igaAae
2 iwdtJ uc tot~ t !&. ~2.12!

The terms appearing on the right hand side of the foregoing
expression may be further rearranged and we arrive at

uc tot~ t1dt!&5H 11Aga@~a2 iAeiw!dBin
† ~ t !

2dBin~ t !~a
†1 iAe2 iw!#

2
i

\ SH01
\ga

2
~Aae2 iw1a†Aeiw! Ddt

2
ga

2
~a†1 iAe2 iw!~a2 iAeiw!dtJ uc tot~ t !&,

~2.13!

which reads as the total wave functionuc tot& of ~2.12! with
Hfb[0 except for the replacements

a→a2 iAeiw, ~2.14!

H0→H01
\ga

2
~Aae2 iw1a†Aeiw!. ~2.15!

The derivation of the linear SSE~2.8! presented in@19# may
now be taken over and we obtain the following linear SSE
for the cavity mode wave function under the influence of
homodyne feedback,

ducj~ t !&5F2
i

\
H0dt2

ga

2
a†adt2

ga

2
A2dt2 igaAae

2 iwdt

1Aga~ae
2 iw2 iA !djG ucj~ t !&, ~2.16!

which is equivalent to a nonlinear homodyne-feedback SSE
given by Wiseman and Milburn@17#. In fact, renamingj in
~2.16! as u and interpreting the incrementdu(t) as output
noise driven by the input-noise incrementdj(t) according to
~2.4! we arrive at the nonlinear SSE of@17# for a normalized
wave functionufj& @19#,

dufj~ t !&5F2
i

\
H0dt2

ga

2
a†adt2

ga

2
A2dt2 igaAae

2 iwdt

1ga^Xw&~ae2 if2 iA !dt2
ga

2
^Xw&2dt

1Aga~ae
2 iw2 iA2^Xw&!dj G ufj~ t !& ~2.17!

with the mean̂ Xw&5^fjuXwufj&. The equivalence between
linear and nonlinear SSE’s such as~2.16! and~2.17! has also
been shown in@20,21#.

III. HOMODYNE-FEEDBACK MASTER EQUATION

The master equation for the reduced density operator of
the cavity mode may be derived from the linear SSE~2.16!
by taking the differential of the projectorucj(t)&^cj(t)u ac-
cording to

ducj~ t !&^cj~ t !u5udcj~ t !&^cj~ t !u1ucj~ t !&^dcj~ t !u

1udcj~ t !&^dcj~ t !u; ~3.1!

inserting~2.16! and averaging over the Wiener noise leads to
the homodyne-feedback master equation@17,18#

ṙ52
i

\
@H0 ,r#1

ga

2
~2ara†2a†ar2ra†a!

2 iga@A,ae
2 iwr1ra†eiw#2

ga

2
†A,@A,r#‡. ~3.2!

In the absence of feedback that master equation reduces to
the well-known master equation for an oscillator coupled to a
zero temperature heat bath,

ṙ52
i

\
@H0 ,r#1

ga

2
~2ara†2a†ar2ra†a!. ~3.3!

As explained in@17# ~see also@13#!, the third term on the
right hand side of~3.2! is the feedback term itself, while the
fourth one is a diffusionlike term inevitably induced by the
noise introduced in the measurement step of the feedback
loop.

Let us now consider a specific example: We assume that
the cavity mode has no internal dynamics~in the interaction
picture!, i.e.,H0[0, and take the feedback operatorA as

A5gXu5
g

2
~ae2 iu1a†eiu!; ~3.4!

the constantg represents the gain of the feedback process,
while the experimentally controllable phaseu is not specified
further. The particular choice~3.4! of A means that the feed-
back loop adds a driving term to the mode dynamics, which
could be achieved, e.g., by using an electro-optic device with
variable transmittivity driven by the homodyne photocurrent.
Using ~3.4! and redefining the phase ofa so thatw50, the
master equation~3.2! takes the form
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ṙ5
g

2
~N11!~2ara†2a†ar2ra†a!

1
g

2
N~2a†ra2aa†r2raa†!

2
g

2
M ~2a†ra†2a†a†r2ra†a†!

2
g

2
M* ~2ara2aar2raa!

2 i @~da†a1g̃* a†a†1g̃aa!,r#, ~3.5!

which may be read as the master equation of an oscillator
coupled to a squeezed bath at finite temperature with
damping constant g5ga(12g sinu), thermal photon
number N5gag

2/(4g), and squeezing parameter
M52gage

iu(geiu/22 i )/(2g). Furthermore, the feedback
process introduces a Hamiltonian term in the last line of the
right hand side of~3.5! which amounts to a frequency shift
d5(gagcosu)/2 and a second-order self interaction of the
cavity mode with coupling coefficientg̃5gage

2 iu/4.

IV. TIME EVOLUTION OF A SCHRO ¨ DINGER-CAT STATE

Let us now consider the effect of homodyne feedback on
the time evolution of a Schro¨dinger-cat state. In@22# a rig-
orous solution of the homodyne SSE~2.8! for the wave func-
tion ucu(t)& contingent on the output noise starting from an
initial Schrödinger-cat state

uc~0!&5
1

A2
~ ua0&1u2a0&) ~4.1!

with large amplitudea0 of the two coherent statesu6a0&
has been presented, giving an appealing picture of how the
wave vector chooses between the two possible constituents
of ~4.1! in each stochastic realization: In each single run the
mean displacement̂X0(t)&u chooses between the two pos-
sible values6a0e

2gat/2 on a time scale of the order of the
decoherence timetdec5(2gaua0u2)21.

Since there is an enormous interest in the possibility of
generating and detecting linear superpositions of classically
distinguishable states@3,5,6,10# it is certainly interesting to
analyze the effects of feedback processes on the decoherence
of the cat state. In fact, an analysis performed on a different
but related feedback model based on a quantum non-
demolition measurement of a quadrature component@13# has
shown that under appropriate conditions the destruction of
the interference fringes indicating the presence of quantum
coherences between the two coherent states can be retarded.
These fringes are extremely sensitive to decoherence effects
induced, e.g., by the coupling to a dissipative environment,
and any increase in their lifetime would greatly facilitate the
detection of Schro¨dinger-cat states@11,13#.

We begin by solving explicitly the feedback master equa-
tion ~3.2! for initial conditions of the general form
r(0)5(a,bNa,bua&^bu, where ua& and ub& are coherent
states. The exact time evolution of the density operator from
this initial state may be obtained with the help of the nor-

mally ordered characteristic function x(l,l* ;t)
5Tr$r(t)exp(la†)exp(2l*a)%, which reads@13#

x~l,l* ;t !5(
a,b

Na,b^bua&expHB* ~ t !l2A~ t !l*

2n~ t !ulu21
m~ t !

2
l* 21

m~ t !*

2
l2J ~4.2!

with the time-dependent coefficients

A~ t !5
i

2sinu
~ae2 iu1b* eiu!e2gat/2

2
ieiu

2sinu
~a1b* !e2~122gsinu!gat/2, ~4.3!

B* ~ t !52
i

2sinu
~ae2 iu1b* eiu!e2gat/2

1
ie2 iu

2sinu
~a1b* !e2~122gsinu!gat/2, ~4.4!

n~ t !5
g2

4 F12e2~122gsinu!gat

122gsinu G , ~4.5!

m~ t !52e2iun~ t !. ~4.6!

Let us now focus on the time evolution of the interference
terms of the initial density operatorr(0). To that end we
employ the marginal probability distribution of the quadra-
ture componentXw , P(xw)5^xwur(t)uxw&, whereuxw& is the
eigenstate ofXw with eigenvaluexw ; the probability distri-
butionP may be reconstructed directly from the outcome of
the homodyne measurement. The analytical expression of
that distribution may be obtained from the characteristic
function~4.2! as@11,13# ~again, we choose the phases so that
w50)

P~x,t !5(
a,b

Na,b

^bua&

Apsx
2~ t !

expH 2
~x2da,b~ t !!2

sx
2~ t ! J ,

~4.7!

with xw50[x and

sx
2~ t !5

1

2
1n~ t !1Re$m~ t !% ~4.8!

5
1

2 H 11g2sin2uF12e2~122gsinu!gat

122gsinu G J
~4.9!

da,b~ t !5
A~ t !1B* ~ t !

2
. ~4.10!

For the initial density operator

r~0!5
1

2~11e22ua0u2!
~ ua0&1u2a0&)~^a0u1^2a0u!

~4.11!
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pertaining to the cat state~4.1! the distribution~4.7! simpli-
fies as

P~x,t !5
1

2~11e22ua0u2!
$p1

2 ~x,t !1p2
2 ~x,t !

12p1~x,t !p2~x,t !cos@V~x,t !# z^a0u2a0& zh~ t !%.

~4.12!

While the Gaussian distributions

p6
2 ~x,t !5

1

Apsx
2~ t !

expH 2
~x7Re$a0%e

2~122gsinu!gat/2!2

sx
2~ t ! J

~4.13!

pertain to the initial coherent stateu6a0&, the third term in
~4.12! describes the quantum interference between the two
coherent states. The function

V~x,t !5
2x Im$a0%e

2~122gsinu!gat/2

sx
2~ t !

~4.14!

represents probability oscillations associated with the inter-
ference fringes, while the factor z^a0u2a0& zh(t)
5exp$22ua0u2h(t)% describes the suppression of quantum co-
herence due to dissipation. That suppression is practically
immediate for macroscopically distinguishable states~i.e.,
large amplitudeua0u), unless the decoherence function

h~ t !512
e2~122gsinu!gat

2sx
2~ t !

~4.15!

is nearly zero. To determine the conditions under which the
detection of the quantum coherence is facilitated we compare
h(t) with the corresponding decoherence function without
feedback given by@11#

hvac~ t !512e2gat. ~4.16!

Therefore, for timesgat!1 the interference term in~4.12!
decays as exp$22ua0u2gat%, leading to the decoherence time
tdec
vac51/2gaua0u2. On the contrary, in the presence of feed-
back this decoherence time can be significantly increased. In
fact, at small times~4.15! simplifies as

h~ t !.~12gsinu!2gat, ~4.17!

and we may infer the feedback-modified decoherence time

tdec.
1

2gaua0u2~12gsinu!2
, ~4.18!

implying that the destruction of quantum coherence is re-
tarded by the feedback loop provided the feedback param-
eters satisfy the condition 0,gsinu,2.

As can be seen from Eq.~4.18!, the casegsinu51 is par-
ticularly interesting. Indeed, Eqs.~4.15! and ~4.8! yield
h(t)[0, suggesting that decoherence is completely sup-
pressed and the interference pattern is perfectly preserved.
Actually, this is not the whole truth because forgsinu51 the
evolution equations are unstable and the probability distribu-
tion tends to broaden and flatten. To be more specific, from

~4.3!, ~4.4!, and ~4.5! one can immediately see that the dy-
namics is unstable forgsinu>1/2; in the particular case
gsinu51 the probability distributionP(x,t) decreases expo-
nentially according to

P~x,t !5e2gat/2P~xe2gat/2,0! ~4.19!

for all initial states. Therefore, the probability oscillations
eventually vanish at large times but, as can be seen from Fig.
1, the interference pattern remains visible much longer com-
pared to the case without feedback.

A feedback-induced preservation of the probability distri-
bution of the homodyne-measured quadratureX has been
obtained recently also by Wiseman@23#, using a similar
model. He proposed to use feedback to eliminate the mea-
surement backaction, thereby turning the homodyne mea-
surement into a quantum nondemolition measurement ofX.
Actually, the feedback loop proposed in@23# coincides with
the one adopted here in the special casegsinu51. The dif-
ference with the present model is that in@23# a parametric
amplifier is also introduced to stabilize the motion of theX
quadrature without adding any extra noise. In this way the
exponential broadening of Eq.~4.19! is eliminated and
P(x) is perfectly preserved. Our scheme has the advantage
of being simpler and it works well for not too large times.

V. QUANTUM TRAJECTORY DESCRIPTION
OF DECOHERENCE

The analysis of the preceding section clearly reveals that
homodyne feedback can, under appropriate conditions, in-
crease the decoherence time of a Schro¨dinger cat state ac-
cording to ~4.18!. Let us now consider the behavior of the
mean quadrature component^X(t)&j for given realizations of
the noisej and vanishing phasew of the local oscillator. In
the case of a zero temperature heat bath without feedback
@22# the mean ‘‘displacement’’̂X(t)&j was shown to settle,
in each run, at either1a0 or 2a0 within a ‘‘decision time’’
on the order of the vacuum decoherence time, while the sub-
sequent damping towardŝX(`)&j follows on the much

FIG. 1. Marginal density of the eigenvaluex of the quadrature
componentX0 for gat52, g50 ~without feedback, dotted line! and
gsinu51 ~full line!.
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larger time scaleg21. It is therefore quite natural to ask if
feedback is able to delay that decision, i.e., to increase the
decision time. However, the numerical study of single real-
izations of ^X(t)&j according to the nonlinear SSE~2.17!
reveals that this is not the case. In Fig. 2 we compare a
typical run of^X(t)&j ~for a single realization of the vacuum
noisej) without feedback~dashed line! with the feedback-
modified one~full line! for the parameter valuesa053,
g51, andu5p/2. The two curves almost coincide except
for times after the decision has taken place where the mean
evolves as6a0e

2gat/2 and6a0e
2(122gsinu)gat/2 in the case

without and with feedback, respectively@see Eq.~4.13!#. In
particular, in both cases the ‘‘decision’’ takes place at essen-
tially the same time, in contrast to the decoherence process
discussed above@this is quite similar to the behavior of
^X(t)&j at finite temperatures studied in@24#: while the de-
coherence is thermally accelerated, the decision process is
not influenced by thermal fluctuations#. The failure of the
feedback loop to delay the decision can be easily understood
by taking a look at the marginal probability distribution
P(x,t) of ~4.12!. For a real-valued amplitudea0 of the initial
cat state the interference termV(x,t) of P(x,t) is identically
zero and, therefore, the only effect of feedback is to change
the mechanical relaxation of the center of the two Gaussian
peaksp6(x,t).

From the above analysis of the behavior of the mean
^X(t)&j we are, therefore, led to look for a different quantity
which is more appropriate to reveal the effect of homodyne
feedback on the fate of the cat state in a single run of the
homodyne experiment. We shall consider the ‘‘coherence’’
function

Cj~ t !5^2a0ufj~ t !&^fj~ t !ua0&, ~5.1!

where the normalized wave functionufj(t)& is the solution
of the nonlinear SSE~2.17!. The ensemble average of
Cj(t) gives the off-diagonal element

Cj~ t !5^2a0ur~ t !ua0& ~5.2!

of the reduced density operator of the cavity mode. In the
case of a zero temperature heat bath without feedback that
off-diagonal element decays as~in the limit of a ‘‘macro-
scopic’’ initial separation, i.e.,e22ua0u2.0)

Cj~ t !.
1

2
exp$ua0u2~e2gat12e2gat/223!%, ~5.3!

which for small timesgat!1 gives the usual exponential
decoherence as

Cj~ t !.
1

2
exp$22ua0u2gat%. ~5.4!

The corresponding expression in the presence of feedback
may be obtained with the help of the normally ordered char-
acteristic function according to@25#

^2a0ur~ t !ua0&5
e2ua0u2

p E d2le2ul2a0u2x~l,t !; ~5.5!

using expression~4.2! for x(l,t) the averaged coherence
function ~5.2!, again fore22ua0u2.0, takes the form

Cj~ t !5
e24ua0u2

2A2n~ t !11
expH 1

2n~ t !11
„2n~ t !~11e2gat/2!2

3~ Im$a0%cosu2Re$a0%sinu!2

1~ Im$a0%!2~11e2~122gsinu!gat/2!2

1@ Im$a0%cotu~e2~122gsinu!gat/22e2gat/2!

1Re$a0%~11e2gat/2!#2…J . ~5.6!

For times t small compared to the mechanical relaxation
time, gat!1, the foregoing expression simplifies as

Cj~ t !.
1

2
exp†22gat„~Re$a0%!21@Re$a0%gcosu2Im$a0%

3~12gsinu!#2…‡; ~5.7!

note that the previously derived expression~4.18! for the
decoherence time follows from~5.7! by setting Re$a0%50.
In general, the explicit dependence of~5.6! and~5.7! on both
the real and the imaginary part of the amplitude of the initial
coherent stateua0& reveals the ‘‘anisotropic’’ aspect of ho-
modyne feedback. In fact, in the absence of feedback the
dynamics is simply given by the phase invariant vacuum
master equation~3.3!. On the contrary, in the presence of
feedback the homodyne measured quadratureXw50[X be-
comes privileged and one expects that the dynamical effects
of quantum feedback mainly manifest along this quadrature.
This can be seen by taking the initial Schro¨dinger-cat state
along the measured quadrature, i.e., choosing Im$a0%50 in
~5.7!. We thereby obtain

FIG. 2. The mean̂ X(t)&j for a single run of the nonlinear
stochastic Schro¨dinger equation with initial amplitudea053 for
g50 ~without feedback, dashed line! andg51, u5p/2 ~full line!.
The dotted lines show the time evolution of the amplitude of the
coherent stateua(t)& according toa0e

2gat/2 ~without feedback! and
a0e

1gat/2 ~with feedback!.
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Cj~ t !.
1

2
exp@22gat~Re$a0%!2~11g2cos2u!#, ~5.8!

i.e., the coherence function in the presence of feedback al-
ways decays faster than in the vacuum bath case. This is due
to the fact that for Im$a0%50 the interference fringes asso-
ciated to quantum coherence~which always oscillate along
the direction orthogonal to the phase of the Schro¨dinger cat!
are along they direction, i.e., they arep/2 out of phase with
respect to the measured quadratureX, and the feedback
mechanism has no relevant influence on them~see also Fig.
2!. Instead, the retardation induced by the feedback loop can
be observed if we take the interference fringes along the
direction of the measured quadrature, i.e., Re$a0%50. In this
case the fringes are stabilized by feedback and Eq.~5.7! sim-
plifies to expression~4.18! for the retarded decoherence time.
In particular, again choosinggsinu51, one has to approxi-
mate the argument of the exponential in~5.6! up to second
order ingat, which leads to a Gaussian decay forCj(t),

Cj~ t !.
1

2
expH 2S Im$a0%gat

2 D 2J , ~5.9!

instead of the much faster exponential decay. This fact again
indicates the significant retardation of decoherence for the
particular choicegsinu51.

We now propose a closer inspection of single realizations
of the coherence function as predicted by the nonlinear SSE
~2.17! in the ‘‘optimal’’ case for decoherence retardation,
i.e., Re$a0%50. In Fig. 3 we compare, for a single run of the
noisej, the behavior of the real part ofCj(t) without feed-
back~dashed line! and in the presence of feedback~full line!
for parameter valuesg51 and u5p/2 ~the corresponding
curves for the imaginary part ofCj(t) are qualitatively simi-
lar!. For comparison, the exact analytical results~5.3! and
~5.9! for the ensemble averaged quantityCj(t) are displayed
by the two dotted lines; the diamonds show the correspond-
ing numerical results obtained by taking the average over

1000 single trajectories and are in excellent agreement with
the analytical curves. Figure 3 clearly reveals the rather dra-
matic difference between the two stochastic trajectories; es-
pecially, the fluctuations of the coherence function around its
average value are significantly suppressed by the feedback
loop, suggesting that the feedback process induces a strong
stabilization against fluctuations, a well known effect of clas-
sical feedback.

A particular character of the present homodyne feedback
scheme is its phase sensitivity, i.e., it depends on the value of
the experimentally adjustable phaseu. It is now possible to
see that quantum fluctuations manifest themselves through
phase fluctuations of the wave function of the cavity mode
and that, due to the phase sensitivity, feedback is able to
stabilize them provided the phaseu is appropriately chosen.
This is well shown by Figs. 4~a!–4~c!, where single runs of
the real part of the coherence functionCj(t) and the corre-
sponding ensemble averages forg51 and three different
values of the phaseu @u50 in Fig. 4~a!, u5p/4 in Fig. 4~b!,

FIG. 3. Real part of the coherence functionCj(t) for the same
parameter values as in Fig. 2. The dotted lines and diamonds show
the analytical and numerical results for the corresponding ensemble
averaged coherence functionCj(t), respectively.

FIG. 4. The same plot as in Fig. 3 forg51 and u50 ~a!,
u5p/4 ~b!, andu5p/2 ~c!.
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andu5p/2 in Fig. 4~c!# are displayed. The stochastic trajec-
tories become more and more regular asu approaches the
‘‘optimal’’ value p/2. The suppression of the phase fluctua-
tions is also revealed in Fig. 5, where themodulusof Cj(t)
instead of its real part foru5p/2 ~full line!, u5p/4 ~dashed
line!, andu50 ~dotted line! are plotted; the three trajectories
almost coincide and are very similar to the trajectory of
Re$Cj(t)% in the most stable caseu5p/2 @Fig. 4~c!#. We
may conclude that the large coherence fluctuations in the
cases without feedback~Fig. 3! and with feedback, but phase
uÞp/2, are essentially phase fluctuations, which can be
eliminated almost completely by an appropriate choice of the
phaseu of the feedback loop.

In our quantum trajectory description of homodyne feed-
back we have necessarily assumed unit efficiency in the de-
tection of the outgoing light. In fact, the description of a
continuously measured system in terms of a stochastic wave
function requires complete knowledge of its time evolution.
In the more realistic case of an efficiencyh,1, information
about the state of the mode is irretrievably lost and it is only
possible to work with a stochastic master equation for the
conditional density matrix of the system. That stochastic
master equation has been derived in@17,18# and, when aver-
aged over the noise, gives the following non-unit efficiency
generalization of the homodyne feedback master equation
~3.2!,

ṙ52
i

\
@H0 ,r#1

ga

2
~2ara†2a†ar2ra†a!

2 iga@A,ae
2 iwr1ra†eiw#2

ga

2h
†A,@A,r#‡.

~5.10!

The effect of an inefficient detector is to increase the diffu-
sion term induced by the noise during the measurement step.
As can be expected, this increased diffusion limits the capa-
bility of our feedback scheme of retarding the quantum de-
coherence of the Schro¨dinger-cat state. This may be easily
seen from the analytic solution of master equation~5.10!,
which involves only slight modifications of the solution de-

rived in Sec. IV for the caseh51. In fact, the coefficient
n(t) of Eq. ~4.5! is modified according ton(t)→n(t)/h and,
as a consequence, Eq.~4.8! reads

sx
2~ t !5

1

2 H 11
g2

h
sin2uF12e2~122gsinu!gat

122gsinu G J . ~5.11!

According to ~4.15!, an increase ofsx
2(t) implies a worse

coherence preservation of our homodyne feedback scheme.
The decoherence functionh(t), Eq. ~4.17!, generalizes to

h~ t !.S 122gsinu1
g2

h
sin2u Dgat ~5.12!

and leads to the general feedback-modified decoherence time

tdec.
1

2gaua0u2S 122gsinu1
g2

h
sin2u D . ~5.13!

Therefore, the decoherence of the cat state is retarded if the
condition 0,gsinu,2h is satisfied. The results for the aver-
aged coherence functionCj(t) in Sec. V are also modified
only slightly in the case of inefficient detectors. The short-
time expression~5.7! now reads

Cj~ t !.
1

2
expH 22gatF ~Re$a0%!222Re$a0%Im$a0%gcosu

1~ Im$a0%!2~122gsinu!

1
g2

h
~Re$a0%cosu1Im$a0%sinu!2G J . ~5.14!

The above expressions clearly reveal that the casegsinu51
is no more peculiar in the sense that, ifh,1, it does no more
show any perfect fringe preservation but only a slowing
down of decoherence. In fact, in the case of nonunit effi-
ciency, the exponential broadening~4.19! is no more valid.
Moreover, in the casegsinu51 and Re$a0%50 the Gaussian
decay of Eq.~5.9! is replaced by a short-time exponential
decay according to

Cj~ t !.
1

2
expH 22gat~ Im$a0%!2S 1h 21D J . ~5.15!

VI. CONCLUSION

In this paper we have studied the dynamics of a cavity
mode subject to a continuous homodyne measurement and a
feedback loop in which part of the output homodyne photo-
current is fed back to the cavity. Using a nonlinear SSE we
have analyzed numerically the effect of feedback in the Mar-
kovian limit of vanishing feedback delay time and found that
the homodyne-feedback mechanism is able to stabilize the
dynamics at the quantum level by strongly reducing phase
fluctuations of the cavity mode caused by the interaction
with the external vacuum modes, which manifests itself in a
significant retardation of the decoherence of a Schro¨dinger-
cat state@see Eqs.~4.18! and~5.9!#. The capability of homo-
dyne feedback of controlling the decoherence process may
be of great importance both for improving some proposed

FIG. 5. The modulusuCj(t)u for g51 andu50 ~dotted line!,
u5p/4 ~dashed line!, andu5p/2 ~full line!.
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experiments of optical Schro¨dinger cat generation as well as
quantum computation.

The decoherence control offered by the present homodyne
feedback scheme still suffers some important limitations. In
fact, as we have shown, it is ‘‘anisotropic,’’ i.e., it is mostly
efficient along the direction of the homodyne measured
quadratureX, while it is almost completely inefficient in the
direction orthogonal to it. This means that quantum coher-
ence can be preserved by the present scheme only if one has
at least some phase information on the linear superposition
state to be preserved. This is not the case for, e.g., quantum
computers where the linear superposition state can be very
general and one has no information about it.

The best coherence preservation is obtained if the feed-
back parameters are chosen according togsinu51 and unit
detection efficiency. In this case the interference pattern is
perfectly preserved since the probability distributionP(x)
exponentially expands according to Eq.~4.19!. This is also
shown by the behavior of the coherence function~5.2!

which, in this case, is characterized by a very slow Gaussian
decay @see Eq.~5.9!#. As expected, the use of inefficient
detectors limits the coherence preservation properties of the
present feedback scheme. Nonetheless, the slowing down of
the cat decoherence remains well visible also forh,1 and
could be experimentally observed using currently available
high-efficiency detectors. The crossover from the exponen-
tial decay of Eq.~5.15! to the Gaussian decay of~5.9! could
be perceived, at least indirectly, using various detectors of
increasing efficiency.
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