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Effect of feedback on the decoherence of a Schdinger-cat state:
A quantum trajectory description
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The linear stochastic Schatimger equation of a cavity mode subject to a homodyne measurement and to a
phase-sensitive feedback loop realized with part of the output homodyne photocurrent is derived. We show that
guantum feedback has stabilizing effects which manifest themselves in a significant retardation of the deco-
herence of a Schdinger-cat statd.S1050-294706)04411-3

PACS numbd(s): 42.50.Lc, 03.65.Bz

I. INTRODUCTION moderate number of photons, unless very hglavities are

The basic aspect of quantum mechanics is linearity whicﬁjsed' It is, therefore, very important to find a way to control

. . i . . an ibly incr hi oherence time in optical sys-
gives, in particular, the possibility of preparing systems ma d possibly increase this dec P y

7 " . . .. tems. A first suggestion has been given by Kennedy and
linear superposition states. When this superposition pnnupkav(,j\”s [11], who showed that if the vacuum bath could be

is extended to the macroscopic world, conceptual difficultie§ep|aced by a squeezed bdtt], the interference fringes
arise as pointed out, e.g., by the Einstein-Podolsky-REEEN jngicating the presence of quantum coherence would in-

and Schrdinger-cat{2] paradoxes, because one is forced tocrease their lifetime. Two of the present authors have fol-
accept the existence, in principle, of linear superposition ofpwed this suggestion and proved that a squeezed bath can be
maCfOSCOpica”y diStingUiShable states. PraCtica”y we neve§imulated by an appropriate use of quantum feedback' show-
see this curious superposition states at the macroscopic leviglg in this way that an appreciable retardation of the deco-
because of quantum decoherence. Decoherence is the rapidrence process can be achieved using electro-optical feed-
destruction of the phase relation between two quantum statdsack[13]. The possibility of controlling the decoherence of a
of a system caused by the entanglement of these two statégear superposition state of a cavity field mode is crucial
with two different states of the environmém;4]. In the case also in the developing field of quantum computatidm.
of macroscopic systems, the interaction with the environ-The revolutionary aspect of quantum computation relies on
ment can never be escaped; since the decoherence ratetli¢ ability of evaluating exponentially many parallel inputs
proportional to the “macroscopic separation” between theand to obtain a result depending on the interferences among
two stateq3,5,6], a linear superposition of macroscopically various superposed results. The central obstacle for a quan-
distinguishable states is immediately changed into the correum computer to work is the fragility of the entangled linear
sponding statistical mixture, with no quantum coherence leftsuperpositions ol “quantum bits” with respect to decoher-
Nonetheless, a full comprehension of the fuzzy boundarence. The loss of coherence should then be reduced as much
between classical and quantum world is far from beingas possible, because the decoherence time should be much
reached[7,8], and, therefore, there is great interest in thelarger than the calculation time. Since the first experimental
realization of “Schralinger-cat” states ifmesoscopisys- realizations of a “quantum gate,” i.e., of the fundamental
tems where one can hope to control the decoherence and Seegilding block of a quantum computer, have been performed
the emergence of classical properties from the quantum dan quantum optic$15], the use of quantum feedback to con-
main. A first important achievement has been recently obtrol the decoherence process of a radiation mode may be of
tained by Monroeet al. [9], who have prepared a trapped great help also for quantum computation.
%Be" ion in a superposition of spatially separated coherent In this paper we shall illustrate in a very simple model
states and detected the quantum coherence between the thvow the application of a feedback loop may slow down the
localized states. decoherence of an optical ScHinger-cat state. To that end
Another promising field for the generation of mesoscopicwe shall study a field mode in a cavity subject to a homo-
Schralinger-cat states is quantum optics in which a largedyne measurement, in which part of the output photocurrent
number of proposals have appeared for the generation ¢ fed back to the cavity, and we analyze the mode dynamics
linear superpositions of two coherent states of the electrodsing the technique of quantum trajector[@$]. We shall
magnetic field in a cavity with opposite phases,derive a linear stochastic Scliinger equatio{SSB for the
|#y=c,|a)+c_|—a) [10]. The decoherence time of this dynamics of the system in the presence of feedback which
optical Schrdinger cat state due to the interaction with theupon averaging reproduces the homodyne feedback master
outside vacuum modes is equaltip.=1/2y|a|? (y is the  equation first given by Wiseman and Milbuft7,18. The
cavity decay rate[6], which becomes very small even for a quantum trajectory approach will give an intuitive and ap-
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pealing picture of the effect of homodyne feedback. In fact, i Ya
single stochastic trajectories clearly exhibit, as we shall d|¢//§(t)>=[—gHodt—7aTadt
show, the stabilizing influence of feedback on the phase fluc-
tuations of the system at the quantum level. .

The paper is organized as follows. In Sec. Il we present + Yaae_"odf(t)}wg(t)), (2.8
the model and derive the linear and nonlinear homodyne-
feedback stochastic Sclimger equation. In Sec. Il we de-
rive and discuss the feedback master equation of Wisemanhere the real-valued Wiener incremedg(t) satisfies
and Milburn[17,18. In Sec. IV we analytically solve the dé(t)=0, (d&(t))?=dt; the indexé of the wave function
master equation and analyze in Sec. V the decoherence prag,(t)) points to the dependence on the previous history of
cess by numerically simulating the nonlinear SSE. Sectionhe noiseé(s) with 0ss<t.

VI is for concluding remarks. We now consider the case of feeding back part of the
homodyne photocurrent into the cavity. It is reasonable to
1I. MODEL assume that the effect of feedback is linear in the output

_ _ ) _signald®(t) [17] and may, therefore, be described by the
Let us consider an electromagnetic mode with bosonigyamiitonian

annihilation operatoa inside a cavity with decay ratg, . In
the Markov approximation the interaction of the cavity mode

with the vacuum fluctuations of the outside electromagnetic Hfb(t)dt=ﬁ\/ﬁd®(t— T)A(t), (2.9
field may be described by the interaction-picture Hamil-
tonian

whereA(t) is a generic system observable ani$ the delay
. _ : f AR + time introduced by the feedback loop. The presence of a
Hinl(D)dt HOdHIﬁ\/y_a[adB‘“(t) dBin(D)a’] 2.1) nonzero delay makes the feedback-modified dynamics of the
' cavity mode non-Markovian; therefore, we consider the limit

with the mode Hamiltoniai, in the cavity; the white-noise Of @ vanishing delay timer—0, which can be physically

scale of the cavity mode dynamics, which in the present case

dBi,(1)2=dB/ (1)2=0, dB,,(t)dB} (t)=dt, (2.2 is the decoherence timge.= 1/2y|a|?. With realistic loop
delays of order 108 sec, this implies that the Markovian

dB! (1)dB;,(t)=0 limit is appropriate only for good cavities and not too large
" " ' mean photon numbers.
[dB,,(1),a(t’)]=[dB! (t),a(t’)]=0 for t=t' The limit of a zero delay time is quite delicate. First of all,
in ' in ' =t

2.3 ambiguities concerning operator ordering can arise. Indeed,
' as an output field the incremedh® (t — 7) commutes with all

The interaction of the cavity mode with the input field gen- System operatorA(t) for 7>0, but not forr=0; however,

erates an output fieldB,(t) given by the input-output re- that commutation relation is preserved also in the limit of a
lation [12] vanishing delay if the condition

dBoui(t) = Vyaa(t)dt+dBiy(t). 2.4 imdO(t—r)A(t)=d= (DAt =A)dE(t) (2.10
—0

Let us now imagine to perform a homodyne measurement
of the quadrature component
is satisfied, i.e., if the photocurrent fed back into the cavity
3 oyt equals the input field in the zero-delay limit. Second, one has
X,=5(ae¥+ale’) (2.9 to take into account the fact that the feedback always acts
after the cavity mode has interacted with the vacuum input

of the Cavity f|e|d, the Corresponding Output Signa' can beﬂeld, even in the limitr—0 [18] The total wave function of

easily expressed in terms of the output field and the phase #i€ composite system of cavity mode and bath in the pres-
the local oscillatorp as ence of feedback may therefore be written as

dO(t)=dB, (t)e '*+dB] (t)e'¢ i
|ror(t+dt))= eXP‘ 7 Hfb(t)dt]

=2y X, (Ddt+dE (), 2.6
[ i
where we have introduced the quadrature component Xexpl’ B gHim(t)dt]Wtot(t))-
dE(t)=dBj,(H)e '¢+dB] (t)e'® (2.7) 211

of the input field. In[19] a linear SSE for the cavity mode
wave function conditioned on the homodyne measurement dhserting the HamiltoniarH;,(t) and H¢,(t) of (2.1) and
X, was derived as (2.9), respectively, and using the Ito rulé€z.3) we obtain
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i i )
Jor(t+dt)y=exp — —H;,(t)dt d|ds(t))=| — —Hodt— Y2 atadt— EAzdt—iyaAae"“’dt

h ¢ h 2 2

x| 1+ \y,[adB], (1) —dB(1)a'] +7a(X,)(@ae P —iA)dt— ?(X(p)zdt

[ Y e
— 7 Hodt— fa*adt]lm(t» +ra(ae P mIA= (X)) dE| (1) (2.17)
— ! 1+ \y[(a—iAe®)dB! (1) with the mean(X,)= (¢ X,| ;). The equivalence between
" linear and nonlinear SSE’s such @16 and(2.17) has also

i been shown i20,21].
—dBj,(t)(at+iAe '¥)]— 7 Hodt
ll. HOMODYNE-FEEDBACK MASTER EQUATION

— ﬁa‘fadt_ ﬁAzdt The master equation for the reduced density operator of
2 2 the cavity mode may be derived from the linear SQE.6
_ by taking the differential of the projectdu(t)){(t)| ac-
—i yaAae"Pdt] | hior(1))- (2.12  cording to
The terms appearing on the right hand side of the foregoing dlgO) (PO =g O)(Pre(O] + | () {d (V)]
expression may be further rearranged and we arrive at +|dyp (1)) (dyre(b)]; (3.2
+ =1+ _iaaeyqrt inserting(2.16 and averaging over the Wiener noise leads to
|10 t+dD) [1 Vrd(a-iAe)dBl(t) the homodyne-feedback master equafibi, 18

—dBj,(t)(aT+iAe '¥)] .
] Ya t_gt f
i p=—7[Ho.pl+ > (2apa’—a'ap—pa‘a)

h

h ) .
Ho+ %(Aae*"“r aTAe"P))dt

) ~iydAae ¥+ pale¥]- Z[ALAp]]. (32)

- f(a“riAe“")(a—iAe‘@)dt]|¢tot(t)>,

21 In the absence of feedback that master equation reduces to
(2.13 the well-known master equation for an oscillator coupled to a

which reads as the total wave functipp.;) of (2.12) with zero temperature heat bath,
H¢,=0 except for the replacements

] Ya t_gt t
a—a—iAe®, (2.14 p=—7[Hopl+ 5 (2apa’—a'ap—pa‘a). (3.3

iy B P As explained in[17] (see alsd13]), the third term on the
Ho—Ho+ —~(Aae Y+a'Ad?). (2.19  right hand side of3.2) is the feedback term itself, while the
fourth one is a diffusionlike term inevitably induced by the

The derivation of the linear SSE.8) presented ifi19] may noise introduced in the measurement step of the feedback

now be taken over and we obtain the following linear SSECOP- . . _
for the cavity mode wave function under the influence of L€t US now consider a specific example: We assume that
homodyne feedback, the cavity mode has no internal dynami@gs the interaction

picture, i.e.,Hy=0, and take the feedback operatoras

[ Ya Ya . i
d|g(t))=| — ~Hodt— —a'adt— —A2dt—iy,Aae '¢dt , ,
[t O 2 2 7a A=gX9=g(aef”’+aTe”’); (3.9
+\ya(ae e —iA)dE (1)), (2.16

the constang represents the gain of the feedback process,
while the experimentally controllable phagés not specified
which is equivalent to a nonlinear homodyne-feedback SSHurther. The particular choices.4) of A means that the feed-
given by Wiseman and Milburfil7]. In fact, renamingt in  back loop adds a driving term to the mode dynamics, which
(2.16 as # and interpreting the incrememntd(t) as output could be achieved, e.g., by using an electro-optic device with
noise driven by the input-noise incremelt#(t) according to variable transmittivity driven by the homodyne photocurrent.
(2.4) we arrive at the nonlinear SSE [df7] for a normalized Using (3.4) and redefining the phase afso thate=0, the
wave function| ¢,) [19], master equatiofi3.2) takes the form
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Y + 4 + mally ordered characteristic  function y(\,\*;t)
p= E(N+1)(2apa —a'ap—pa‘a) =Tr{p(t)exp(a’exp(—\*a)}, which readg13]
+ %N(Zana—aan—paaT) XM )= 2;,; Na,B<B|a)exp{ B* (t)A —A(t)\*
t t)*
- %M(ZanaT—aTan—paTaT) —v(t)|\ %+ 'u; ))\* 24 M(Z) )\ZJ (4.2
B %M *(2apa—aap— paa) with the time-dependent coefficients
i . .
—i[(sa’a+g*a'a’+gaa),p], (3.5 A(t)= Zsine(ae_|0+ B*e'%)e a2
which may be read as the master equation of an oscillator jel? 1 sasing o2
coupled to a squeezed bath at finite temperature with iy B*)e (1r2esniyatiz (4.3
damping constant y=vy,(1—g sind), thermal photon
number N= ya_gzl(4y), and squeezing parameter
M= —y,g€'%(g€e?2—i)/(2y). Furthermore, the feedback B*(t)=— =——(ae '+ p*e' %) e 7?2
process introduces a Hamiltonian term in the last line of the 2sing
right hand side of3.5 which amounts to a frequency shift ieif _
5=(7ya9c09)/2 and a second-order self interaction of the + 2Sin@(aJr,B*)e*(lfzgs'”a)ya“z, (4.9
cavity mode with coupling coefficierg= y,ge'%/4.
. gz 1_67(1fzgsinﬁ)yat
IV. TIME EVOLUTION OF A SCHRO DINGER-CAT STATE v(t)= 7 1-2gsind , 4.5

Let us now consider the effect of homodyne feedback on '
the time evolution of a Schdinger-cat state. If22] a rig- w(t)=—e?%p(t). (4.6)
orous solution of the homodyne S$ES) for the wave func- _ _ _
tion |4,(t)) contingent on the output noise starting from anlLet us now focus on the time evolution of the interference

initial Schradinger-cat state terms of the initial density operatgr(0). To that end we
employ the marginal probability distribution of the quadra-

1 ture componenX,,, P(x,) =(x,|p(t)|x,), where|x,) is the

|(0))= —=(|ag) +|— ap)) (4.)  eigenstate o, with eigenvaluex,; the probability distri-
\/E bution P may be reconstructed directly from the outcome of

. ) the homodyne measurement. The analytical expression of
with large amplitudea, of the two coherent statgs- @g)  that distribution may be obtained from the characteristic

has been presented, giving an appealing picture of how thgnction (4.2) as[11,13 (again, we choose the phases so that
wave vector chooses between the two possible constituen{s— o)

of (4.1) in each stochastic realization: In each single run the
mean displacemeRrXy(t)), chooses between the two pos-
sible values+ age™ 722 on a time scale of the order of the P(x,)=2> N
decoherence timeye.= (24| ag|?) 2. “p
Since there is an enormous interest in the possibility of
generating and detecting linear superpositions of classicallyity, x _o=x and
distinguishable statgs$,5,6,1Q it is certainly interesting to ¢
analyze the effects of feedback processes on the decoherence 5 1
of the cat state. In fact, an analysis performed on a different ox()=5+v(t) +Re{u(t)} (4.8
but related feedback model based on a quantum non-
demolition measurement of a quadrature compofE3ithas 1
shown that under appropriate conditions the destruction of =—1{1+g?sirfe
the interference fringes indicating the presence of quantum 2
coherences between the two coherent states can be retarded.
These fringes are extremely sensitive to decoherence effects A()+B* (1)
induced, e.g., by the coupling to a dissipative environment, Sapt) = ————. (4.10
and any increase in their lifetime would greatly facilitate the ' 2
detection of Schidinger-cat stategl1,13. o _
We begin by solving explicitly the feedback master equa-FOr the initial density operator
tion (3.2 for initial conditions of the general form 1
MO)ZEWN%B'“X'B" wherg |@) and |B) are coherent 0):W(MOH|—ao>)(<ao|+<—ao|)
states. The exact time evolution of the density operator from 2(1+e el
this initial state may be obtained with the help of the nor- (4.11

(Bla) p[_ (x—éa,gm)zj
“p \/170')2((t) 0'>2<(t) '
(4.7

l1—e” (1—2gsing) y,t
1—2gsind } ]
4.9
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pertaining to the cat stai@.l) the distribution(4.7) simpli-
fies as

0.9

POGD = S5 (P2 G P2 ()

2(1+e” ag| )
2. (x,0p-(x,)cog A(x, ) I arg| = )"V}
(4.12

While the Gaussian distributions

p2(x,t)= ! exp{
BN )
(4.13

pertain to the initial coherent state: a), the third term in
(4.12 describes the quantum interference between the two
coherent states. The function

Q( t) 2% |m{ a,o}ef(lfzgsine) Yall2
X, )= Vi
oy ()

(X ¥ Re{ ao}ef (1—2gsing) yatIZ) 2
- 3(0)

FIG. 1. Marginal density of the eigenvalxeof the quadrature
componeni,, for y,t=2,g=0 (without feedback, dotted lineand
gsing=1 (full line).

(4.19

N o ) ) ) (4.3), (4.4), and (4.5 one can immediately see that the dy-
represents probability oscillations associated with the interysmics is unstable fogsing=1/2; in the particular case
ference fr|2nges, while  the  factor [{aol — @)™ gsing=1 the probability distributiorP(x,t) decreases expo-
=exp{—2|ag|°7(t)} describes the suppression of quantum COpentially according to
herence due to dissipation. That suppression is practically
immediate for macroscopically distinguishable states.,

, , P(x,t)=e" 7P (xe” %a"20)
large amplitudd «o|), unless the decoherence function

(4.19

for all initial states. Therefore, the probability oscillations
eventually vanish at large times but, as can be seen from Fig.
1, the interference pattern remains visible much longer com-
. ) - ) pared to the case without feedback.

is nearly zero. To determine the conditions under which the A feedback-induced preservation of the probability distri-
detectlpn of the quantum c_:oherence is facilitated we compargytion of the homodyne-measured quadratiréhas been
7(t) with the corresponding decoherence function withoutoptained recently also by Wisemd@3], using a similar
feedback given by11] model. He proposed to use feedback to eliminate the mea-
surement backaction, thereby turning the homodyne mea-
surement into a guantum nondemolition measuremetx. of
Actually, the feedback loop proposed[ia3] coincides with

the one adopted here in the special cgsmf=1. The dif-
ference with the present model is that[28] a parametric
ﬁmplifier is also introduced to stabilize the motion of the
quadrature without adding any extra noise. In this way the
exponential broadening of Eg4.19 is eliminated and

ef(lfzgsino) Yat

202(0) “

n(t)=1-— .15

t

Nyac(t) =1—e" 7, (4.16

Therefore, for timesy,t<1 the interference term .12

decays as exXp-2|ag/?y.t}, leading to the decoherence time
t436=1/2y,| ag|2. On the contrary, in the presence of feed-
back this decoherence time can be significantly increased. |

fact, at small timeg4.15 simplifies as
7(t)=(1—gsind)?y,t, (4.17  P(x) is perfectly preserved. Our scheme has the advantage
of being simpler and it works well for not too large times.
and we may infer the feedback-modified decoherence time

V. QUANTUM TRAJECTORY DESCRIPTION

1 OF DECOHERENCE

274l | *(1—gsing)?’

(4.18

tec™
The analysis of the preceding section clearly reveals that

implying that the destruction of quantum coherence is rehomodyne feedback can, under appropriate conditions, in-
tarded by the feedback loop provided the feedback paranerease the decoherence time of a Sdhwger cat state ac-

eters satisfy the condition<0gsing<2.
As can be seen from E¢4.18), the casegsing=1 is par-
ticularly interesting. Indeed, Eqs4.15 and (4.8) yield

cording to(4.18. Let us now consider the behavior of the
mean quadrature componégix(t)), for given realizations of
the noise¢ and vanishing phase of the local oscillator. In

7n(t)=0, suggesting that decoherence is completely supthe case of a zero temperature heat bath without feedback

pressed and the interference pattern is perfectly preserve
Actually, this is not the whole truth because ff8ing=1 the
evolution equations are unstable and the probability distribu

2] the mean “displacement{X(t)), was shown to settle,
in each run, at eithet ag or — @ within a “decision time”
on the order of the vacuum decoherence time, while the sub-

tion tends to broaden and flatten. To be more specific, fronsequent damping towardéX(«)), follows on the much
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) | Ca)=(~ aolp(t) o) 52

I s AR — of the reduced density operator of the cavity mode. In the
case of a zero temperature heat bath without feedback that
off-diagonal element decays &% the limit of a “macro-

scopic” initial separation, i.ee~2%l°~0)

— 1
Ce(t)= Eexp{| ap|?(e” 7l +2e77%2—3)1 (5.3

2 which for small timesy,t<<1 gives the usual exponential
decoherence as

— 1
0.0 0.2 04 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0 ~ _ 2
t/tdecvac 7 Cg(t) =3 eXF{ 2| (10| ’yat} . (54)

The corresponding expression in the presence of feedback
may be obtained with the help of the normally ordered char-
acteristic function according t®5]

FIG. 2. The mean(X(t)), for a single run of the nonlinear
stochastic Schidinger equation with initial amplitudex,=3 for
g=0 (without feedback, dashed linandg=1, 6= #/2 (full line).
The dotted lines show the time evolution of the amplitude of the
coherent statpx(t)) according towge™ 722 (without feedbackand _
ape’ a2 (with feedback (—aolp(t)]ag)=

~lagl?

fdz)\e’“’%‘zx()\,t); (5.5

larger time scaley L. It is therefore quite natural to ask if using expression(4.2) for y(\,t) the averaged coherence
feedback is able to delay that decision, i.e., to increase thﬁmction(S.Z), again fore*Z‘”‘O‘z:O, takes the form
decision time. However, the numerical study of single real-
izations of (X(t)), according to the nonlinear SSR.17)

reveals that this is not the case. In Fig. 2 we compare a W:
typical run of(X(t)), (for a single realization of the vacuum

noise &) without feedbackdashed ling with the feedback-

modified one(full line) for the parameter valueg,=3,

e_4|a0‘2

1
2\/2v(t)+1ex 2v(t)+1

X (Im{ ag}cosf— Re{ g} sink)?

Qu(t)(1+e 7?2

g=1, and §=w/2. The two curves almost coincide except +(Im{agh)2(1+ e~ (1~ 205n0) y,t/2)2

for times after the decision has taken place where the mean _

evolves ast age” a2 and + age™ (1 7295M%2 in the case +[Im{ao}cotg(e™ (1205 vatl2_ o= 7atl2)
without and with feedback, respectivdlyee Eq.(4.13]. In

particular, in both cases the “decision” takes place at essen- +Re{aph(l+e yatIZ)]z)]_ (5.6)
tially the same time, in contrast to the decoherence process

discussed abovéthis is quite similar to the behavior of
(X(t)) at finite temperatures studied [@4]: while the de- For timest small compared to the mechanical relaxation
coherence is thermally accelerated, the decision process figne, y,t<1, the foregoing expression simplifies as
not influenced by thermal fluctuatiohsThe failure of the
feedback loop to delay the decision can be easily understoo
by taking a look at the marginal probability distribution
P(x,t) of (4.12. For a real-valued amplitude, of the initial
cat state the interference tef(x,t) of P(x,t) is identically X(1-gsing)19)]; (5.7
zero and, therefore, the only effect of feedback is to change
the mechanical relaxation of the center of the two Gaussiafote that the previously derived expressi@hl8 for the
peaksp. (x,t). decoherence time follows froits.7) by setting Réay}=0.
From the above analysis of the behavior of the mearin general, the explicit dependence(6f6) and(5.7) on both
(X(t)); we are, therefore, led to look for a different quantity the real and the imaginary part of t_he amplltude of the initial
which is more appropriate to reveal the effect of homodynecoherent stat¢a,) reveals the “anisotropic” aspect of ho-
feedback on the fate of the cat state in a single run of thénhodyne feedback. In fact, in the absence of feedback the
homodyne experiment. We shall consider the “coherence’dynamics is simply given by the phase invariant vacuum
function master equatior3.3). On the contrary, in the presence of
feedback the homodyne measured quadrakye,=X be-
C(t)=(—ag|p(1)){p:(t)]ap), (5.1)  comes privileged and one expects that the dynamical effects
of quantum feedback mainly manifest along this quadrature.
where the normalized wave functide,(t)) is the solution ~ This can be seen by taking the initial ScHimger-cat state
of the nonlinear SSE2.17). The ensemble average of along the measured quadrature, i.e., choosinfgxy=0 in
C,(t) gives the off-diagonal element (5.7). We thereby obtain

1
& 0= 5 exi— 27,t(Rel o))+ [Re{ o gcosd— Im{ o)
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FIG. 3. Real part of the coherence functiGy(t) for the same %0-3
parameter values as in Fig. 2. The dotted lines and diamonds show ©
the analytical and numerical results for the corresponding ensemble &
averaged coherence functi@(t), respectively. 02
1 0.1
Celt)= 5 exd —2y,t(Relao})*(1+g’c0S0)], (5.8
0.0
. . . 0.5
i.e., the coherence function in the presence of feedback al-
ways decays faster than in the vacuum bath case. This is due  ,
to the fact that for Ifieg} =0 the interference fringes asso-
ciated to quantum coheren¢ehich always oscillate along 03
the direction orthogonal to the phase of the Sdimger cat el
. . . . @)
are along thegy direction, i.e., they arer/2 out of phase with 302

respect to the measured quadratx¢e and the feedback

mechanism has no relevant influence on theee also Fig.

2). Instead, the retardation induced by the feedback loop can

be observed if we take the interference fringes along the

direction of the measured quadrature, i.e{&g=0. In this ol

case the fringes are stabilized by feedback and &@) sim- 00 01 02 03 04 05 06 07 08 09 10

plifies to expressiofd.18 for the retarded decoherence time. Tt

In particular, again choosingsind=1, one has to approxi- S

ma?e the argunqlent of the e(iponential(!hG) up to sFe)Eond afFIG' 4. The iame plot as in Fig. 3 fg=1 and 6=0 (a),
. . . —_— =7/4 (b), and 8= =/2 (c).

order iny,t, which leads to a Gaussian decay @g(t),

e

e
=

Im{arg} yat) 2 1000 single trajectories and are in excellent agreement with
—073) ] (5.9 the analytical curves. Figure 3 clearly reveals the rather dra-
2 ’ matic difference between the two stochastic trajectories; es-
pecially, the fluctuations of the coherence function around its
instead of the much faster exponential decay. This fact agaiaverage value are significantly suppressed by the feedback
indicates the significant retardation of decoherence for th¢oop, suggesting that the feedback process induces a strong
particular choicegsingd=1. stabilization against fluctuations, a well known effect of clas-
We now propose a closer inspection of single realizationsical feedback.
of the coherence function as predicted by the nonlinear SSE A particular character of the present homodyne feedback
(2.17) in the “optimal” case for decoherence retardation, scheme is its phase sensitivity, i.e., it depends on the value of
i.e., Rgap}=0. In Fig. 3 we compare, for a single run of the the experimentally adjustable phagelt is now possible to
noise¢, the behavior of the real part @,(t) without feed- see that quantum fluctuations manifest themselves through
back(dashed lingand in the presence of feedbagull line)  phase fluctuations of the wave function of the cavity mode
for parameter valueg=1 and #=/2 (the corresponding and that, due to the phase sensitivity, feedback is able to
curves for the imaginary part @,(t) are qualitatively simi-  stabilize them provided the phages appropriately chosen.
lar). For comparison, the exact analytical resys3) and  This is well shown by Figs. @—4(c), where single runs of
(5.9 for the ensemble averaged quantty(t) are displayed the real part of the coherence functin(t) and the corre-
by the two dotted lines; the diamonds show the correspondsponding ensemble averages fpe=1 and three different
ing numerical results obtained by taking the average ovevalues of the phasé[6=0 in Fig. 4a), 6= /4 in Fig. 4b),

— 1
Cg(t): E€X4 -
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rived in Sec. IV for the casegy=1. In fact, the coefficient
v(t) of Eq. (4.5 is modified according te(t) — v(t)/ 7 and,
as a consequence, Ed@..8) reads

1— e—(1—2gsina)yat
1—-2gsing

2

1 2
az(t)=—{1+%sin20 ] (5.11)
According to(4.15, an increase ofrf(t) implies a worse
coherence preservation of our homodyne feedback scheme.
The decoherence function(t), Eq. (4.17), generalizes to

2
n(t)z( 1—2gsing+ %sinze) Yat (5.12
000 ol 02 03 o4 05 06 07 o0& 09 10 and leads to the general feedback-modified decoherence time
Yat
1
tec™ > . (5.13
FIG. 5. The modulu$C,(t)] for g=1 and#=0 (dotted ling, 2yila |2(1_ngin0+ _sza)
9= /4 (dashed ling and 6= /2 (full line). al™o n

and 9= /2 in Fig. 4c)] are displayed. The stochastic trajec- Therefore, the decoherence of the cat state is retarded if the

tories become more and more regular éagpproaches the condition 0<gsing<27 is satisfied. The results for the aver-

“optimal” value 7/2. The suppression of the phase fluctua-2ged coherence functio@.(t) in Sec. V are also modified

tions is also revealed in F|g 5, where ttdulusof Cg(t) Only Sllghtly in the case of inefficient detectors. The short-

instead of its real part fop= /2 (full line), = /4 (dashed time expressior5.7) now reads

line), and9= 0 (dotted ling are plotted; the three trajectories p[
—2y,t

almost coincide and are very similar to the trajectory of Cg(t)zéex

R 2-2R | 9
Re[C,(1)} in the most stable casé= /2 [Fig. 4c)]. We (Retaol)"~ 2R ao}lM{ac}gco

may conclude that the large coherence fluctuations in the 2,1 ;

cases without feedbadkig. 3) and with feedback, but phase T (Im{ao})*(1=2gsind)

0+ /2, are essentially phase fluctuations, which can be 2 o,

eliminated almost completely by an appropriate choice of the + ;(Re{ao}cosﬂﬁt Im{eo}sing)“ | (. (5.19

phased of the feedback loop.

In our quantum trajectory description of homodyne feed-The above expressions clearly reveal that the gaser=1
back we have necessarily assumed unit efficiency in the dgs no more peculiar in the sense thatyi 1, it does no more
tection of the outgoing light. In fact, the description of a show any perfect fringe preservation but only a slowing
continuously measured system in terms of a stochastic wavgown of decoherence. In fact, in the case of nonunit effi-
function requires complete knowledge of its time evolution.ciency, the exponential broadenir.19 is no more valid.

In the more realistic case of an efficiengy<1, information  Moreover, in the casgsind=1 and Ré¢a,} =0 the Gaussian
about the state of the mode is irretrievably lost and it is Oﬂ|ydecay of Eq(59) is rep|aced by a short-time exponentia|
possible to work with a stochastic master equation for thejecay according to

conditional density matrix of the system. That stochastic

master equation has been derivedii,18 and, when aver- — 1 ,(1

aged over the noise, gives the following non-unit efficiency Cy(t)=5ex —27at(Im{ag}) ;_1 - (519
generalization of the homodyne feedback master equation
3.2, VI. CONCLUSION

In this paper we have studied the dynamics of a cavity
mode subject to a continuous homodyne measurement and a
feedback loop in which part of the output homodyne photo-

—iy,[Aae " ?p+palel?]— E[A,[A,p]]. current is fed back to the cavity. Using a nonlinear SSE we
27 have analyzed numerically the effect of feedback in the Mar-
(5.10 kovian limit of vanishing feedback delay time and found that
the homodyne-feedback mechanism is able to stabilize the
The effect of an inefficient detector is to increase the diffu-dynamics at the quantum level by strongly reducing phase
sion term induced by the noise during the measurement stefiuctuations of the cavity mode caused by the interaction
As can be expected, this increased diffusion limits the capawith the external vacuum modes, which manifests itself in a
bility of our feedback scheme of retarding the quantum designificant retardation of the decoherence of a Sdimger-
coherence of the Schilinger-cat state. This may be easily cat statdsee Eqs(4.18 and(5.9)]. The capability of homo-
seen from the analytic solution of master equatiéri0, dyne feedback of controlling the decoherence process may
which involves only slight modifications of the solution de- be of great importance both for improving some proposed

. i 07
p=—7[Ho.p]+ 5 (2apa’—a'ap—pa'a)
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experiments of optical Schdinger cat generation as well as which, in this case, is characterized by a very slow Gaussian
guantum computation. decay[see Eq.(5.9)]. As expected, the use of inefficient
The decoherence control offered by the present homodyngetectors limits the coherence preservation properties of the
feedback scheme still suffers some important limitations. Irpresent feedback scheme. Nonetheless, the slowing down of
fact, as we have shown, it is “anisotropic,” i.e., it is mostly the cat decoherence remains well visible also#fet1 and
efficient along the direction of the homodyne measurec;ould be experimentally observed using currently available
quadratureX, while it is almost completely inefficient in the - high-efficiency detectors. The crossover from the exponen-
direction orthogonal to it. This means that quantum cohertjg| decay of Eq(5.15) to the Gaussian decay ¢5.9) could

ence can be preserved by the present scheme only if one hgg perceived, at least indirectly, using various detectors of
at least some phase information on the linear superpositiopcreasing efficiency.

state to be preserved. This is not the case for, e.g., quantum
computers where the linear superposition state can be very

general and one has no information about it. ACKNOWLEDGMENTS
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