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We study the phase sensitivity of SU~2! and SU~1,1! interferometers fed by two-mode field states which are
intelligent states for Hermitian generators of the SU~2! and SU~1,1! groups, respectively. Intelligent states
minimize uncertainty relations and this makes possible an essential reduction of the quantum noise in inter-
ferometers. Exact closed expressions for the minimum detectable phase shift are obtained in terms of the Jacobi
polynomials. These expressions are compared with results for some conventional input states, and some known
results for the squeezed input states are reviewed. It is shown that the phase sensitivity for an interferometer
that employs squeezing-producing active devices~such as four-wave mixers! should be analyzed in two
regimes:~i! fixed input state and variable interferometer, and~ii ! fixed interferometer and variable input state.
The behavior of the phase sensitivity is essentially different in these two regimes. The use of the SU~2!

intelligent states allows us to achieve a phase sensitivity of order 1/N̄ ~whereN̄ is the total number of photons
passing through the phase shifters of the interferometer! without adding four-wave mixers. This avoids the
duality in the behavior of the phase sensitivity that occurs for the squeezed input. On the other hand, the
SU~1,1! intelligent states have the property of achieving the phase sensitivity of order 1/N̄ in both regimes.
@S1050-2947~96!04311-9#

PACS number~s!: 42.50.Dv, 07.60.Ly

I. INTRODUCTION

Much attention has been recently paid to the improvement
of measurement accuracy of interferometers, because this
problem is of great importance in many areas of experimen-
tal physics. A very promising way to reduce quantum fluc-
tuations in interferometers is based on the use of input light
fields prepared in special quantum states. Therefore, with
further development of technology, high-accuracy
interferometry seems to have become one of the most impor-
tant applications of nonclassical photon states whose proper-
ties are now extensively studied in the quantum optics litera-
ture.

The first steps in this area were taken by Caves@1# and
Bondurant and Shapiro@2#, who showed that the use of
squeezed light can reduce the quantum noise in interferom-
eters @3#. Yurke, McCall, and Klauder@4# used powerful
group-theoretic methods for the study of interferometers em-
ploying passive and active optical devices. The interferom-
eters considered in@1,2# employ passive lossless devices,
such as beam splitters. Yurke, McCall, and Klauder@4#
showed that such interferometers can be characterized by the
SU~2! group. They also introduced a class of interferometers
which employ active lossless devices, such as four-wave
mixers, and are characterized by the SU~1,1! group. The ac-
tual problem of high-accuracy interferometry is the improve-
ment of the phase sensitivity, i.e., the optimization of the
minimum detectable phase shiftdf for a given mean total
numberN̄ of photons passing through phase shifters. This
problem arises because of the back-action effect of the radia-
tion pressure. It was shown@4# that SU~2! interferometers

can achieve a phase sensitivitydf;1/N̄ provided that light
entering the input ports is prepared in a two-mode squeezed
state. SU~1,1! interferometers can achieve this sensitivity
even when the vacuum fluctuations enter the input ports@4#.
Holland and Burnett@5# have considered the reduction of the
uncertainty in the relative quantum phase of two field modes
propagating in an SU~2! interferometer fed by two Fock
states with equal numbers of photons. They considered@5#
the specific ‘‘reduced’’ situation of the measurement with
the sensitivity measure different from that used in Ref.@4#.

In a separate line of research, considerable efforts have
been devoted during the past few years to generalize the idea
of squeezing to the SU~2! and SU~1,1! Lie groups. The usual
squeezed states are the generalized coherent states of
SU~1,1! @6#, i.e., they are produced by the action of the group
elements on the extreme state of the group representation
Hilbert space. Another interesting class of states which has
been considered is the class of the so-called intelligent states
@7#, which minimize the uncertainty relations for the Hermit-
ian generators of the group. Squeezing properties of the
SU~2! and SU~1,1! intelligent states have been widely dis-
cussed in the literature@8–20#. Recently, Nieto and Truax
@14# showed that a generalization of squeezed states for an
arbitrary dynamical symmetry group leads to the intelligent
states for the group generators. Connections between the
concepts of squeezing and intelligence were further investi-
gated by Trifonov@17#. It turns out that the intelligent states
for two Hermitian operators can provide an arbitrarily strong
squeezing in either of these observables@17#. Some schemes
for the experimental production of the SU~2! and SU~1,1!
intelligent states in nonlinear optical processes have been
suggested recently by a number of authors@12,16,19,21#.
The most recent scheme, developed by Luis and Perˇina @21#,
is of remarkable physical elegance and conceptual clarity and
seems to be technically realizable.
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The group-theoretic analysis of interferometers and the
group-theoretic generalization of squeezing~i.e., intelli-
gence! were brought together by Hillery and Mlodinow@22#,
who proposed to use intelligent states of the two-mode light
field for increasing the precision of interferometric measure-
ments. They derived@22# approximate results for the phase
sensitivity of an SU~2! interferometer fed with the SU~2!
intelligent states. The possibility to improve further the ac-
curacy of SU~1,1! interferometers by using specially pre-
pared input states has been also studied recently@23#. It was
shown@23# that the use of two-mode SU~1,1! coherent states
which are simultaneously the SU~1,1! intelligent states can
improve the measurement accuracy when the photon-number
difference between the modes is large.

In the present work we consider in detail both SU~2! and
SU~1,1! interferometers whose input ports are fed with intel-
ligent light. We use powerful analytic methods that employ
representations of intelligent states in the generalized
coherent-state bases. Thus we are able to obtain exact ana-
lytic expressions for the phase sensitivity and examine them
in various limits. These results are compared with those ob-
tained in the cases when the input field is prepared in the
usual coherent state, in the generalized coherent state and in
the squeezed state. We show that the use of squeezing-
producing active devices~such as four-wave mixers! intro-
duces a duality in the behavior of the phase sensitivity. For
example, when the squeezed input states are used, the inter-
ferometer can be operated in two regimes: with variable
squeezing parameter and fixed coherent amplitude, and vice
versa. The regime of variable squeezing leads to the phase
sensitivity df;1/N̄, whereas the technically preferable re-
gime of variable coherent amplitude gives onlydf;1/N̄1/2

~the standard noise limit!. The use of the SU~2! intelligent
states avoids this dual behavior and leads to the phase sen-
sitivity df;1/N̄ without adding a four-wave mixer to the
interferometer. The SU~1,1! intelligent states also allow us to
obtain a significant improvement of the measurement accu-
racy. These states exhibit a very specific behavior providing
phase sensitivity of order 1/N̄ in the two regimes: variable
interferometer, and variable input state. We emphasize that
the optimization of the phase sensitivity by the intelligent
input states is a consequence of their remarkable squeezing
properties.

II. SU„2… INTERFEROMETERS
WITH CONVENTIONAL INPUT STATES

A. The interferometer

An SU~2! interferometer is described schematically in
Fig. 1. Two light beams represented by the mode annihila-
tion operatorsa1 and a2 enter the first beam splitter BS1.
After leaving BS1, the beams accumulate phase shiftsf1

andf2, respectively, and then they enter the second beam
splitter BS2. The photons leaving the interferometer are
counted by detectors D1 and D2.

For the analysis of such an interferometer it is convenient
to consider the Hermitian operators

J15
1

2
~a1

†a21a2
†a1!,

J25
1

2i
~a1

†a22a2
†a1!, ~2.1!

J35
1

2
~a1

†a12a2
†a2!.

These operators form the two-mode boson realization of the
su~2! Lie algebra:

@J1 ,J2#5 iJ3 ,

@J2 ,J3#5 iJ1 , ~2.2!

@J3 ,J1#5 iJ2 .

It is also useful to introduce the raising and lowering opera-
tors

J15J11 iJ25a1
†a2 ,

J25J12 iJ25a2
†a1 .

~2.3!

The Casimir operator for any unitary irreducible representa-
tion of SU~2! is a constant

J25J1
21J2

21J3
25 j ~ j11!, ~2.4!

and a representation of SU~2! is determined by a single num-
ber j that acquires discrete positive valuesj5 1

2,1,
3
2,2, . . . .

By using the operators of Eq.~2.1!, one gets

J25
N

2 SN2 11D , ~2.5!

where

N5a1
†a11a2

†a2 ~2.6!

is the total number of photons entering the interfer-
ometer. We see thatN is an SU~2! invariant related to the
index j via j5N/2. The representation Hilbert space is
spanned by the complete orthonormal basisu j ,m&
(m52 j ,2 j11, . . . ,j21,j ) that can be expressed in terms
of Fock states of two modes:

FIG. 1. An SU~2! interferometer. Two light modesa1 and a2
are mixed by beam splitter BS1, accumulate phase shiftsf1 and
f2, respectively, and then they are again mixed by beam splitter
BS2. The photons in the output modes are counted by detectors D1
and D2.
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u j ,m&5u j1m&1u j2m&2 . ~2.7!

The actions of the interferometer elements on the vector
J5(J1 ,J2 ,J3) can be represented as rotations in the three-
dimensional space@4#. BS1 acts onJ as a rotation about the
1st axis by the anglep/2. The transformation matrix of this
rotation is

R1~p/2!5S 1 0 0

0 0 21

0 1 0
D . ~2.8!

The transformation matrix of BS2 isR1(2p/2), i.e., the two
beam splitters perform rotations in opposite directions. The
phase shifters rotateJ about the third axis by an angle
f5f22f1. The transformation matrix of this rotation is

R3~f!5S cosf 2sinf 0

sinf cosf 0

0 0 1
D . ~2.9!

The overall transformation performed onJ is

Jout5R1~2p/2!R3~f!R1~p/2!J. ~2.10!

The information on the phase shiftf is inferred from the
photon statistics of the output beams. One should measure
the difference between the number of photons in the two
output modes, (Nd)out, or, equivalently, the operator
J3 out5

1
2(Nd)out. Since there are fluctuations inJ3 out, a

phase shift is detectable only if it induces a change in
^J3 out& which is larger thanDJ3 out. Therefore, the minimum
detectable phase shift~i.e., the uncertainty of the phase mea-
surement! is determined by

~df!25
~DJ3 out!

2

u]^J3 out&/]fu2
. ~2.11!

The value ofdf characterizes the accuracy of the interfer-
ometer. The expression forJ3 out can be easily found by us-
ing Eq. ~2.10!:

J3 out52~sinf!J11~cosf!J3 . ~2.12!

B. Standard noise limit

We consider some typical input states for which the phase
sensitivity of an SU~2! interferometer is restricted by the
so-called standard noise limit~SNL!. Let the input state be
u j ,m&5u j1m&1u j2m&2 ~an eigenstate ofJ3 with eigenvalue
m). The phase sensitivity for this input state is obtained from
Eq. ~2.11! by a straightforward calculation:

~df!25
j 22m21 j

2m2 , fÞ0 ~modp!. ~2.13!

In this situation the best phase sensitivity is obtained for
m56 j . Thus for the input stateu j , j &5u2 j &1u0&2, one gets
@4#

~df!SNL
2 51/~2 j !51/N, fÞ0 ~modp!. ~2.14!

This means that the phase sensitivitydf of the interferom-
eter goes as 1/AN. The phase sensitivity~2.14! is usually
referred to as the standard noise limit@4#.

It follows from Eq. ~2.13! that for the input stateu j ,m&
with m50 ~i.e., when the interferometer is fed by two Fock
states with equal numbers of photons!, the phase measure-
ment is absolutely uncertain@under the conditionf
Þ0 (modp)#. This result is in accordance with qualitative
arguments of Yurke, McCall and Klauder~see Fig. 2 of Ref.
@4#!. However, it has been shown by Holland and Burnett@5#
that this input state can be used in an SU~2! interferometer
with the specific ‘‘reduced’’ situation of the measurement of
the relative quantum phase between two field modes. In the
Holland-Burnett situation the use of the simplified sensitivity
measure~2.11! is excluded.

In what follows we assume, for the sake of simplicity,
f50. This can be achieved by controllingf2 with a feed-
back loop which maintainsf5f22f150 @4#. Then Eq.
~2.11! with J3 out given by ~2.12! can be simplified to the
form

~df!25
~DJ3!

2

^J1&
2 , ^J1&Þ0. ~2.15!

Consider now the input stateua&1ua8&2, where

ua&5exp~2uau2/2! (
n50

`
an

An!
un& ~2.16!

is the familiar Glauber coherent state. A simple calculation
yields

~DJ3!
25~ uau21ua8u2!/4, ~2.17!

^J1&5uauua8ucos~u1u8!, ~2.18!

where a5uaueiu, a85ua8ueiu8. For the optimal choice
u1u850, we get

~df!25
uau21ua8u2

4uau2ua8u2
. ~2.19!

The total number of photons isN5uau21ua8u2. Hence the
best phase sensitivity is obtained foruau25ua8u25N/2 and it
achieves the standard noise limit of Eq.~2.14!.

We also consider the SU~2! generalized coherent states
that are defined by@6#

u j ,z&5exp~jJ12j* J2!u j ,2 j &5
exp~zJ1!

~11uzu2! j
u j ,2 j &

5~11uzu2!2 j (
m52 j

j F ~2 j !!

~ j1m!! ~ j2m!! G
1/2

z j1mu j ,m&,

~2.20!

where z5(j/uju)tanuju. Expectation values of the SU~2!
generators can be easily calculated for theu j ,z& states:

~DJ3!
252 j uzu2/~11uzu2!2, ~2.21!

^J1&52 j ~Rez!/~11uzu2!. ~2.22!
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Then Eq.~2.15! reads

~df!coh
2 5

uzu2

2 j ~Rez!2
. ~2.23!

This phase uncertainty is minimized whenz is real. Then
(df)coh

2 achieves the standard noise limit of Eq.~2.14!. We
see that the use of the Glauber coherent states and of the
SU~2! generalized coherent states does not improve the mea-
surement accuracy over the standard noise limit.

C. Squeezed input states, the role of active devices
and a duality of the phase sensitivity

There have been attempts to surpass the standard noise
limit by using squeezed input states@1,2,4#. We reconsider
here the scheme proposed by Yurke, McCall, and Klauder
@4#. They considered the SU~2! interferometer outlined in
Fig. 1, whose input ports are fed by the output beamsb1 and
b2 of a four-wave mixer~see Fig. 5 of Ref.@4#!. The trans-
formation caused by the four-wave mixer on the light beams
a1 anda2 entering its input ports is an SU~1,1! transforma-
tion @4,24#:

S b1b2†D 5S cosh~b/2! sinh~b/2!

sinh~b/2! cosh~b/2!
D S a1a2†D . ~2.24!

The parameterb is related to the reflectivityr of the four-
wave mixer~when it is used as a phase-conjugating mirror!
via sinh2(b/2)5r @25#. In the scheme considered here the
Glauber coherent stateua& enters one input port of the four-
wave mixer and the vacuum stateu0& enters the other. Since
the transformation~2.24! is a squeezing Bogoliubov transfor-
mation, the output state of the four-wave mixer is the two-
mode squeezed state.

The generatorJ3 representing the photon-number differ-
ence between the two modes is invariant under the transfor-
mation ~2.24!. Therefore one finds

~DJ3!
25uau2/4. ~2.25!

The generatorJ1 at the output of the four-wave mixer is
given by

J15
1

4
sinhb~a1

†21a1
21a2

†21a2
2!

2
i

4
sinhb~a1

†22a1
21a2

†22a2
2!

1
1

2
coshb~a1

†a21a2
†a1!. ~2.26!

Its expectation value for the input stateua&1u0&2 is

^J1&5
1

2
uau2sinhb cos2u ~2.27!

where a5uaueiu. The phase uncertainty of Eq.~2.15! is
minimized whenu50. Then one obtains@4#

~df!a,b
2 5

1

uau2sinh2b
. ~2.28!

The measurement accuracy can be improved in two ways:
~i! by increasing the parameterb of the four-wave mixer, or
~ii ! by increasing the coherent-state intensityuau2. The first
way can be viewed as related to the interferometer~including
the four-wave mixer!, while the second is related to the input
state. Therefore, when we consider the phase sensitivity
df(N), we should distinguish between the sensitivity for
fixed input state (a5const) and the sensitivity for fixed in-
terferometer (b5const). This distinction seems formal at
first look, but it has a crucial physical importance for an
interferometer employing active devices because they do not
conserve the total number of photons. Indeed, when the four-
wave mixer is applied, the total number of photons is not
constant any more. The mean total numberN̄ of photons
passing through the phase shifters depends on botha and
b. In the scheme presented hereN̄ is the mean total number
of photons emitted by the four-wave mixer:

N̄5^b1
†b11b2

†b2&5~ uau211!coshb21. ~2.29!

Then we find the phase sensitivity for fixed input state:

~df!2ua5
~ uau211!2

uau2@~N̄11!22~ uau211!2#
, ~2.30!

and for fixed interferometer:

~df!2ub5
coshb

sinh2b

1

~N̄112coshb!
. ~2.31!

When uau2 is close to 1 andN̄ is large, Eq.~2.30! yields

dfua'
2

N̄
. ~2.32!

This is much better than the standard noise limit, but there is
a subtlety. Actually, foruau2;1 the range ofN̄ is restricted
by available four-wave mixers. It is much more convenient
for the experimenter to improve the measurement accuracy
by increasing the intensity of the coherent stateua&. How-
ever, Eq.~2.31! shows that in this regime the standard noise
limit cannot be surpassed. Therefore, when speaking about
the phase sensitivity achieved with the squeezed input states,
it is necessary to specify the regime of operation of the in-
terferometer.

III. SU „2… INTERFEROMETERS
WITH INTELLIGENT INPUT STATES

A. SU„2… intelligent states

It is known @22# that the standard noise limit for SU~2!
interferometers can be surpassed by using the SU~2! intelli-
gent states. However, an expression fordf was found in
Ref. @22# only for a special limiting case. We would like to
derive an exact analytic expression fordf, that holds for a
wide class of the SU~2! intelligent states. The commutation
relation @J2 ,J3#5 iJ1 implies the uncertainty relation
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~DJ2!
2~DJ3!

2> 1
4 ^J1&

2. ~3.1!

Therefore, Eq.~2.15! reads

~df!2>
1

4~DJ2!
2 . ~3.2!

For intelligent states an equality is achieved in the uncer-
tainty relation. SuchJ2-J3 intelligent states with large values
of DJ2 would allow us to measure small changes inf. The
J2-J3 intelligent statesul,h& are determined by the eigen-
value equation

~hJ21 iJ3!ul,h&5lul,h&, ~3.3!

wherel is a complex eigenvalue andh is a real parameter
given by uhu5DJ3 /DJ2. For uhu.1, these states are
squeezed inJ2, and for uhu,1, they are squeezed inJ3. In
what follows we will consider only the regionuhu,1, that
guarantees, as we will see, an improvement of the measure-
ment accuracy. The states of Eq.~3.3! can be generated from
the vacuum in two parametric down-conversion crystals with
aligned idler beams after a measurement of the photon num-
ber in some of the modes@21#. For the J2-J3 intelligent
states, Eq.~3.2! reads

~df! int
2 5

1

4~DJ2!
2 5

h2

4~DJ3!
2 . ~3.4!

Our aim is now to evaluate the variance (DJ3)
2. In order

to do that, we use the analytic representation of the intelli-
gent states in the coherent-state basisu j ,z&. This basis is
overcomplete and any state in the Hilbert space can be ex-
panded in it@6#. For example, the SU~2! intelligent state

ul,h&5 (
m52 j

j

Cmu j ,m& ~3.5!

is represented by the entire analytic function

L~ j ,l,h;z!5~11uzu2! j^ j ,z* ul,h&

5 (
m52 j

j

CmF ~2 j !!

~ j1m!! ~ j2m!! G
1/2

z j1m. ~3.6!

The SU~2! generators act onL(z) as first-order differential
operators@6#:

J152z2
d

dz
12 j z, J25

d

dz
, J35z

d

dz
2 j . ~3.7!

Then Eq.~3.3! can be converted into a first-order linear ho-
mogeneous differential equation forL(z):

~h12z1hz2!
dL

dz
12~ il2 j2 jhz!L50. ~3.8!

The solution of this equation can be easily found to be

L~ j ,m0 ,h;z!5N21/2~11z/t! j1m0~11tz! j2m0,
~3.9!

whereN is a normalization factor, and we have defined

t[~12A12h2!/h, ~3.10!

l~m0![ im0A12h2. ~3.11!

The analyticity condition for the functionL(z) requires that
m0 can take only the values:

m052 j ,2 j11, . . . ,j21,j . ~3.12!

Then Eq. ~3.11! becomes a quantization condition which
means that the operatorhJ21 iJ3 has a discrete spectrum,
and the corresponding eigenstates and eigenvalues are char-
acterized by the quantum numberm0.

In the special casesm056 j , the J2-J3 intelligent states
ul,h& become the SU~2! generalized coherent statesu j ,z0&
with z05t71, respectively. Sinceh is real anduhu,1, z0 is
also real. Thus we have an intersection between the intelli-
gent and coherent states. The SU~2! coherent states which
are simultaneously theJ2-J3 intelligent states allow us to
achieve the standard noise limit~2.14! due to the fact that
z0 is real. It means that the states in the coherent-intelligent
intersection lead to the best phase sensitivity among all the
coherent states. However, the standard noise limit can be
surpassed by using the intelligent states which are not the
generalized coherent states.

The decomposition of the intelligent statesul,h& over the
orthonormal basis is obtained by expanding the function
L( j ,m0 ,h;z) of Eq. ~3.9! into a Taylor series inz. It is
known @26,27# that a function of the form~3.9! is the gener-
ating function for the Lagrange polynomials:

L~ j ,m0 ,h;z!5N21/2(
n50

`

gn
~2 j2m0 ,2 j1m0!

~21/t,2t!zn.

~3.13!

Actually, this series is finite, because we have

gn
~2 j2m0 ,2 j1m0!

50 for n.2 j . ~3.14!

The Lagrange polynomials are related to the Jacobi polyno-
mials via @26#

gn
~a,b!~u,v !5~v2u!nPn

~2a2n,2b2n!S u1v
u2v D . ~3.15!

Using this relation, we can write

ul,h&5N21/2 (
m52 j

j F ~ j1m!! ~ j2m!!

~2 j !! G1/2
3Pj1m

~m02m,2m02m!
~x!t ~ j1m!/2u j ,m&, ~3.16!

where we have defined

x[~12h2!21/2,

t[4~12h2!/h254/~x221!. ~3.17!

The normalization factor is

N5 (
n50

2 j
n! ~2 j2n!!

~2 j !!
@Pn

~ j1m02n, j2m02n!
~x!#2tn. ~3.18!
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It follows from Eq. ~3.14! that the summation in~3.18! can
be continued up to infinity. Then, by using the summation
theorem for the Jacobi polynomials@26#, we find the closed
expression for the normalization factor:

N5~21! j2um0uS
1

j1m0S
2

j2m0
~ j2m0!! ~ j1m0!!

~2 j !!

3Pj2um0u
~22 j21,0!S 12

2t

S1S2
D , ~3.19!

where

S6[11~x61!2t/4. ~3.20!

The expression~3.18! of N as a power series int is very
convenient, because it enables us to write moments of the
generatorJ3 over the statesul,h& as derivatives ofN with
respect tot. By using the propertyJ3u j ,m&5mu j ,m&, we
obtain

~DJ3!
25

t2

N
]2N
]t2

1
t

N
]N
]t

2S tN ]N
]t D

2

. ~3.21!

By using the formula

dPn
~a,b!~x!

dx
5
n1a1b11

2n
Pn21

~a11,b11!~x! ~3.22!

and the differential equation for the Jacobi polynomials, we
obtain the exact analytic expression for the variance ofJ3:

~DJ3!
25

h2 j

2 F11
~ j1um0u!

j
~12h2!

Pj2um0u21
~1,22 j ! ~122h2!

Pj2um0u
~0,22 j21!~122h2!G .

~3.23!

B. Phase sensitivity

Substituting the above expression for (DJ3)
2 into Eq.

~3.4!, we find the phase sensitivity of the interferometer fed
with the SU~2! intelligent states:

~df! int
2 5

G~ j ,m0 ,h!

2 j
, ~3.24!

where we have introduced the factor

G~ j ,m0 ,h![F11
~ j1um0u!

j
~12h2!

3
Pj2um0u21

~1,22 j ! ~122h2!

Pj2um0u
~0,22 j21!~122h2!G21

. ~3.25!

In the casem056 j , i.e., for a state in the coherent-
intelligent intersection, we haveG( j ,m0 ,h)51, so the
phase sensitivity is at the standard noise limitdf51/AN.
However, the use of the SU~2! intelligent states that do not
belong to the coherent-intelligent intersection~i.e., with
um0uÞ j ) can yield a considerable improvement of the mea-
surement accuracy in comparison with the standard noise
limit. The quantitative measure of the improvement is the
G-factor that can be expressed as the ratio between the in-
telligent phase uncertainty and the standard noise limit:

G~ j ,m0 ,h!5~df! int
2 /~df!SNL

2 . ~3.26!

It follows from the properties of the Jacobi polynomials that
in the range considered here (uhu,1) we always have
G( j ,m0 ,h)<1, so the measurement accuracy is improved
for SU~2! interferometers fed with intelligent light.

Numerical results are presented in Figs. 2 and 3. The
functionG( j ,m0 ,h) is plotted in Fig. 2 versush for j515
and various values ofm0. It is seen that for givenh the
smaller the value ofm0, the smaller theG-factor. We also
see that the minimum value ofG( j ,m0 ,h) ~i.e., the best
measurement accuracy! for given j andm0 is achieved when
h→0. On the other hand, whenh→1, the G-factor ap-
proaches unity. The phase sensitivity, i.e., the dependence of
the minimum detectable phase shiftdf on the number
N52 j of photons passing through the interferometer is illus-
trated in Fig. 3 where lndf is shown as a function of lnN for
m050 and various values ofh. It is seen that for a given
value ofh the power lawdf}N2E is a good approximation
for large N. In order to express formally the slope of the
curves in Fig. 3 for largeN, we introduce the exponent

FIG. 2. The factorG( j ,m0 ,h) of Eq. ~3.25! versush for
j515 and various values ofm0.

FIG. 3. lndf as a function of lnN for an SU~2! interferometer
using the SU~2! intelligent states withm050 and various values of
h.
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E52
d~ lndf!

d~ lnN!
U
N→`

. ~3.27!

This quantity is plotted versush in Fig. 4. Forh→0 the
exponentE approaches unity, which is the best available
phase sensitivity. Ash increases, the exponentE rapidly
decreases to one half~the standard noise limit!.

The dependence of the phase sensitivity on various pa-
rameters can be further studied by considering limiting val-
ues of theG-factor. We start from the limith→1. Putting
«512h2, we find, for«!1,

G~ j ,m0 ,h!'@112«~ j 22m0
2!#21, ~3.28!

It means that forh near 1 the phase sensitivity approaches
the standard noise limit. It is also not difficult to see that

lim
h→0

G~ j ,m0 ,h!5@11~ j 22m0
2!/ j #21, ~3.29!

and in this case we recover the approximate result of Hillery
and Mlodinow@22#:

~df! int
2 '

1

2~ j 22m0
21 j !

, ~3.30!

that holds forh near zero. Form050 the phase uncertainty
is minimized:

~df! int'
1

A2 j ~ j11!
. ~3.31!

Becausej is just half the total numberN of photons passing
through the interferometer, the phase sensitivity is of order
1/N. We note that this sensitivity is achieved for the SU~2!
intelligent states without adding an active device to the in-
terferometer. Therefore, the total number of photons depends
only on the value ofj for the input state. This allows us to
avoid the duality in the behavior of the phase sensitivity that
occurs for the squeezed input.

We also consider a subtlety that is concerned with the
limit h→0. It follows from the eigenvalue equation~3.3!
that for h50 the J2-J3 intelligent stateul,h& transforms
into the stateu j ,m0& ~an eigenstate ofJ3 with eigenvalue
m0). However, this transition should be treated with a great

care, because it does not preserve some basic properties of
the intelligent states. In Eq.~3.4!, that defines the phase sen-
sitivity for the J2-J3 intelligent states, we have used the re-
lation

~DJ2!
25~DJ3!

2/h2. ~3.32!

This property holds for any intelligent state with arbitrarily
small uhu. Therefore, we can take the limith→0 for the
phase uncertainty (df) int

2 calculated with the use of the rela-
tion ~3.32!. But we see that the result~3.30! obtained in this
way is quite different from the phase uncertainty~2.13! for
the input statesu j ,m&. The reason for this discrepancy is that
the ‘‘intelligent’’ relation ~3.32! does not exist for the states
u j ,m&. In other words, the result depends on the order in
which we use the relation~3.32! and take the limith→0. It
means that the intelligent statesul,h& with arbitrarily small
uhu and the statesu j ,m0& may lead to different results.

This phenomenon arising for the SU~2! intelligent states
in the limit h→0 can be made more familiar if we recall a
similar situation that occurs for the canonical squeezed
states. Consider two canonically conjugate field quadratures,
Q5(a†1a)/2 andP5 i (a†2a)/2, which satisfy the uncer-
tainty relationDQDP>1/4. It is well known that this uncer-
tainty relation is minimized by the canonical squeezed states
uz,a&, which satisfy the eigenvalue equation (hQ
1 iP)uz,a&5luz,a&. Here a and z are displacement and
squeezing amplitudes, respectively, andh5(12z)/(11z),
l5(a2za* )/(11z). It is seen that the statesuz,a& can be
regarded as the intelligent states for the Weyl-Heisenberg
group. For instance, the relationDQ5DP/uhu does hold for
the Q-P intelligent states with arbitrarily small values of
uhu. However, forh50 theQ-P intelligent states transform
into the eigenstates of the ‘‘momentum’’ operatorP, and the
above relation does not exist. Therefore, properties of the
canonical squeezed states calculated using this relation may
be different in the limith→0 from corresponding properties
of the momentum eigenstates.

C. Quasi-intelligent states

The standard noise limit can also be surpassed by using
two-mode states which are not exactly intelligent, but are
close to optimizing the uncertainty relation~3.1!. We will
call such states ‘‘quasi-intelligent.’’ For example, we can
imagine a state for which the uncertainty product
(DJ2)

2(DJ3)
2 is equal to its minimum̂ J1&

2/4 times a nu-
merical factor of order 1. For such a state we will get
(df)25n/@4(DJ2)

2#, wheren is the numerical factor. If this
state is squeezed inJ3 and swelled inJ2 ~i.e., DJ2; j for
j@1), thendf will be of order 1/N. An example of such a
quasi-intelligent state was given by Yurke, McCall, and
Klauder @4# who considered the input state (u j ,0&
1u j ,1&)/A2. A simple calculation yields

~DJ3!
25 1

4 , ~3.33!

~DJ2!
25 1

2 j ~ j11!2 1
4 , ~3.34!

^J1&5 1
2 @ j ~ j11!#1/2. ~3.35!

FIG. 4. The exponentE of Eq. ~3.27! versush for an SU~2!
interferometer using the SU~2! intelligent states withm050.
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We see that forj@1 this state gives the uncertainty product
(DJ2)

2(DJ3)
2' j ( j11)/8 that is greater than its minimum

^J1&
2/45 j ( j11)/16 only by the factorn52. Then one ob-

tains

~df!2'
1

2~DJ2!
2'

1

j ~ j11!
. ~3.36!

Therefore the phase sensitivity isdf'2/N that differs from
(df) int'A2/N only by the factorA2. This example shows
that the optimization of the phase sensitivity is intimately
related to the optimization of the uncertainty relation~i.e.,
the intelligence! and to the corresponding SU~2! squeezing.

IV. SU„1,1… INTERFEROMETERS
WITH CONVENTIONAL INPUT STATES

A. The interferometer

In SU~1,1! interferometers four-wave mixers are em-
ployed instead of beam splitters. The application of active
optical devices, that do not preserve the total number of pho-
tons, makes it possible to achieve high measurement accu-
racy, especially when intelligent light is used. On the other
hand, this leads to the dual behavior of the phase sensitivity,
as in the case of the squeezed input. Mathematical descrip-
tions of SU~2! and SU~1,1! interferometers are rather similar,
but the noncompactness of the SU~1,1! Lie group leads to
important physical distinctions between interferometers em-
ploying passive and active devices.

An SU~1,1! interferometer is described schematically in
Fig. 5. Two light beams represented by mode annihilation
operatorsa1 and a2 enter the input ports of the first four-
wave mixer FWM1. After leaving FWM1, the beams accu-
mulate phase shiftsf1 andf2, respectively, and then they
enter the second four-wave mixer FWM2. The photons leav-
ing the interferometer are counted by detectors D1 and D2.

For the analysis of such an interferometer it is convenient
to consider the Hermitian operators

K15
1

2
~a1

†a2
†1a1a2!,

K25
1

2i
~a1

†a2
†2a1a2!, ~4.1!

K35
1

2
~a1

†a11a2a2
†!.

These operators form the two-mode boson realization of the
su~1,1! Lie algebra:

@K1 ,K2#52 iK 3 ,

@K2 ,K3#5 iK 1 , ~4.2!

@K3 ,K1#5 iK 2 .

It is also useful to introduce raising and lowering operators

K15K11 iK 25a1
†a2

† ,

K25K12 iK 25a1a2 .
~4.3!

The Casimir operator for any unitary irreducible representa-
tion is a constant

K25K3
22K1

22K2
25k~k21!. ~4.4!

Thus a representation of SU~1,1! is determined by a single
numberk that is called the Bargmann index. For the discrete-
series representations@28# the Bargmann index acquires dis-
crete valuesk5 1

2,1,
3
2,2, . . . . By using the operators of Eq.

~4.1!, one gets

K25 1
4 Nd

22 1
4 , ~4.5!

where

Nd5a1
†a12a2

†a2 ~4.6!

is the photon-number difference between the modes. We see
thatNd is an SU~1,1! invariant related to the Bargmann in-
dex k via k5 1

2(Nd11). The representation Hilbert space is
spanned by the complete orthonormal basisuk,n&
(n50,1,2,. . . ) that can be expressed in terms of Fock states
of two modes:

uk,n&5un12k21&1un&2 . ~4.7!

The actions of the interferometer elements on the vector
K5(K1 ,K2 ,K3) can be represented as Lorentz boosts and
rotations in the~211!-dimensional space-time@4#. FWM1
acts onK as a Lorentz boost along the negative direction of
the second axis with the transformation matrix

L2~2b!5S 1 0 0

0 coshb 2sinhb

0 2sinhb coshb
D . ~4.8!

As mentioned above,b is related to the reflectivityr of the
four-wave mixer~when it is used as a phase-conjugating mir-
ror! via sinh2(b/2)5r @25#. The transformation matrix of
FWM2 is L2(b), i.e., the two four-wave mixers perform
boosts in opposite directions. Phase shifters rotateK about
the third axis by an anglef52(f11f2). The transforma-
tion matrix of this rotation isR3(f) of Eq. ~2.9!. The overall
transformation performed onK is

Kout5L2~b!R3~f!L2~2b!K. ~4.9!

FIG. 5. An SU~1,1! interferometer. Two light modesa1 and
a2 are mixed by four-wave mixer FWM1, accumulate phase shifts
f1 andf2, respectively, and then are again mixed by four-wave
mixer FWM2. The photons in the output modes are counted by
detectors D1 and D2.
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The information onf is once again inferred from the
photon statistics of the output beams. One should measure
the total number of photons in the two output modes,Nout,
or, equivalently, the operatorK3 out5

1
2(Nout11). Fluctua-

tions in ^K3 out& restrict the accuracy of the phase measure-
ment. The phase uncertainty that determines the minimum
detectable phase shift is given by

~df!25
~DK3 out!

2

u]^K3 out&/]fu2
. ~4.10!

From Eq.~4.9!, we find

K3 out5~sinhb sinf!K11sinhb coshb~cosf21!K2

1~cosh2b2sinh2b cosf!K3 . ~4.11!

B. Vacuum and coherent input states

We consider here some typical cases when the input field
is prepared in the vacuum state, in the generalized coherent
state and in the Glauber coherent state. If only vacuum fluc-
tuations enter the input ports, then Eq.~4.10! with K3 out of
Eq. ~4.11! reduces to the known result@4#

~df!vac
2 5

sin2f1cosh2b~12cosf!2

sin2f sinh2b
, fÞ0. ~4.12!

As f→0, these phase fluctuations are minimized,
(df)vac

2 →1/sinh2b. We also consider a more complicated
input state uk,n&5un12k21&1un&2. The corresponding
phase uncertainty is obtained from Eq.~4.10! by a straight-
forward calculation:

~df!25
sin2f1cosh2b~12cosf!2

sin2f sinh2b

k1n~2k1n!

2~k1n!2
,

fÞ0. ~4.13!

The vacuum state is obtained forn50, k51/2. Then Eq.
~4.13! reduces to Eq.~4.12!. The phase uncertainty~4.13! is
minimized asf→0:

lim
f→0

~df!25
k1n~2k1n!

2sinh2b~k1n!2
. ~4.14!

In what follows we take for simplicityf50, as in the
SU~2! case. Once again, the experimenter can controlf2
with a feedback loop which maintainsf52(f11f2)50
@4#. Then Eq.~4.10! with K3 out given by ~4.11! can be sim-
plified to the form

~df!25
~DK3!

2

sinh2b^K1&
2 , ^K1&Þ0. ~4.15!

We next consider the SU~1,1! generalized coherent states.
These states are defined by@6#

uk,z&5exp~jK12j*K2!uk,0&

5~12uzu2!kexp~zK1!uk,0&

5~12uzu2!k(
n50

` FG~n12k!

n!G~2k! G1/2znuk,n&, ~4.16!

wherez5(j/uju)tanhuju, so uzu,1. In the case of the two-
mode boson realization, the SU~1,1! coherent states can be
recognized as the well-known two-mode squeezed states
with j being the squeezing parameter@8#. A simple calcula-
tion yields expectation values of the SU~1,1! generators over
the uk,z& coherent states@8#:

~DK3!
252kuzu2/~12uzu2!2, ~4.17!

^K1&52k~Rez!/~12uzu2!. ~4.18!

Then Eq.~4.15! reads

~df!coh
2 5

uzu2

2k sinh2b~Rez!2
. ~4.19!

This phase uncertainty is minimized whenz is real. Then one
gets@23#

~df!k,b
2 5

1

2ksinh2b
. ~4.20!

We see that this phase sensitivity depends only on the pa-
rameterb of the four-wave mixer and on the photon-number
difference between the two input modes (Nd52k21).
Therefore,z can be taken to be zero, i.e., one can choose an
input state with a fixed number of photons in the one mode
and the vacuum in the other. This is in accordance with the
result ~4.14! for the input stateuk,n& with n50.

The mean total numberN̄ of photons passing through the
phase shifters depends on both the input state and the four-
wave mixer. For the interferometer considered here,N̄ is the
total number of photons emitted by FWM1:

N̄52^K38&21, ~4.21!

whereK85L2(2b)K, so we have

K385~coshb!K32~sinhb!K2 . ~4.22!

Calculating the expectation value for a coherent state with
real z, we obtain

N̄52k
11z2

12z2
coshb21. ~4.23!

Since (df)2 of Eq. ~4.20! is independent ofz, we may take
z50; thenN̄52k coshb21. Once again, we have two ways
for improving the measurement accuracy of the interferom-
eter: ~i! by increasing the parameterb of the four-wave
mixer, or ~ii ! by increasing the photon-number difference
Nd52k21 for the input state. In the first regime we obtain
the phase sensitivity for fixed input state (k5const):
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~df!2uk5
2k

~N̄11!22~2k!2
. ~4.24!

For k51/2 (Nd50), we recover the result for the vacuum
input @4#:

~df!vac
2 5

1

N̄~N̄12!
. ~4.25!

We see that the phase sensitivity approaches 1/N. However,
there is a problem with improvement of the measurement
accuracy because the value ofb is restricted by properties of
available four-wave mixers. On the other hand, the phase
sensitivity for fixed interferometer (b5const) is

~df!2ub5
coshb

sinh2b

1

~N̄11!
. ~4.26!

We see that the standard noise limit cannot be surpassed in
this regime.

Next we consider the input stateua&1ua8&2 whereua& and
ua8& are the Glauber coherent states. We easily find the fol-
lowing expectation values:

^K3&5~ uau21ua8u211!/2, ~4.27!

~DK3!
25~ uau21ua8u2!/4, ~4.28!

^K1&5uauua8ucos~u1u8!, ~4.29!

^K2&5uauua8usin~u1u8!, ~4.30!

where a5uaueiu, a85ua8ueiu8. For u1u850 and
uau5ua8u, we obtain

~df!a,b
2 5

1

2uau2sinh2b
, ~4.31!

N̄5~2uau211!coshb21. ~4.32!

These results are almost identical to Eqs.~2.28! and ~2.29!
for the SU~2! interferometer with squeezed input states; the
only difference is the factor 2 beforeuau2. We again have
two regimes:~i! fixed input state (a5const) and variable
interferometer, or~ii ! fixed interferometer (b5const) and
variable input state. The first regime leads to the phase sen-
sitivity of order 1/N̄, but is technically more complicated.
The second regime is much more preferable from the tech-
nical point of view, but the phase sensitivity cannot be im-
proved over the standard noise limit. This duality in the be-
havior of the phase sensitivity is a direct consequence of the
fact that the SU~1,1! transformations performed by the four-
wave mixers do not preserve the total number of photons.

V. SU„1,1… INTERFEROMETERS
WITH INTELLIGENT INPUT STATES

A. SU„1,1… intelligent states

We would like to surpass the standard noise limit by using
the SU~1,1! intelligent states. The commutation relation
@K2 ,K3#5 iK 1 implies the uncertainty relation

~DK2!
2~DK3!

2> 1
4 ^K1&

2. ~5.1!

Therefore, Eq.~4.15! can be written as

~df!2>
1

4sinh2b~DK2!
2 . ~5.2!

For intelligent states an equality is achieved in the uncer-
tainty relation. Therefore, suchK2-K3 intelligent states with
large values ofDK2 would allow us to measure small
changes inf. TheK2-K3 intelligent statesul,h& are deter-
mined by the eigenvalue equation

~hK21 iK 3!ul,h&5lul,h&, ~5.3!

wherel is a complex eigenvalue andh is a real parameter
given by uhu5DK3 /DK2. For uhu.1, these states are
squeezed inK2, and foruhu,1, they are squeezed inK3. We
consider here all the values ofh. The scheme of Luis and
Peřina @21# can be used for producing both the SU~2! and the
SU~1,1! intelligent states. In particular, theK2-K3 intelligent
states of Eq.~5.3! can be generated in this scheme quite
conveniently. For these states, Eq.~5.2! reads

~df! int
2 5

1

4sinh2b~DK2!
2 5

h2

4sinh2b~DK3!
2 . ~5.4!

We will use the analytic representation in the basis of the
SU~1,1! generalized coherent statesuk,z& @6#. This basis is
overcomplete, and any state in the Hilbert space can be ex-
panded in it. For example, the SU~1,1! intelligent state

ul,h&5 (
n50

`

Cnuk,n& ~5.5!

is represented by the function

L~k,l,h;z!5~12uzu2!2k^k,z* ul,h&

5 (
n50

`

CnFG~2k1n!

n!G~2k! G1/2zn, ~5.6!

which is analytic in the unit diskuzu,1. The analytic repre-
sentation of the SU~1,1! intelligent states was studied in Ref.
@18#. The SU~1,1! generators act onL(z) as first-order dif-
ferential operators@6#:

K15z2
d

dz
12kz, K25

d

dz
, K35z

d

dz
1k. ~5.7!

Then Eq.~5.3! can be converted into a first-order linear ho-
mogeneous differential equation forL(z):
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~h12z2hz2!
dL

dz
12~ il1k2khz!L50. ~5.8!

The solution of this equation can be easily found to be

L~k,l ,h;z!5N21/2~11z/t! l~12tz!22k2 l , ~5.9!

whereN is a normalization factor, and we have defined

t[~Ah21121!/h, utu,1, ~5.10!

l~ l !5 i ~k1 l !Ah211. ~5.11!

The analyticity condition for the functionL(k,l,h;z) re-
quires that l can be only a positive integer or zero:
l50,1,2,. . . . Then Eq.~5.11! becomes a quantization con-
dition which means that the operatorhK21 iK 3 has a dis-
crete spectrum, and the corresponding eigenstates and eigen-
values are characterized by the quantum numberl .

In the simplest casel50, the functionL(k,l ,h;z) repre-
sents theK2-K3 intelligent states which are simultaneously
the SU~1,1! generalized coherent statesuk,z0& with z05t.
Sinceh is real,z0 is also real. Hence there is an intersection
between the intelligent and coherent states. States which be-
long to this intersection allow us to achieve the measurement
accuracy~4.20! due to the fact thatz0 is real. Therefore,
these states lead to the best phase sensitivity among all the
coherent states. However, we will see that the noise level
~4.20! can be surpassed by using the SU~1,1! intelligent
states which are not the generalized coherent states.

As in Sec. III A, the functionL(k,l ,h;z) of Eq. ~5.9! is
expanded into a Taylor series inz as the generating function
for the Lagrange polynomials@26,27#:

L~k,l ,h;z!5N21/2(
n50

`

gn
~2 l ,2k1 l !~21/t,t!zn. ~5.12!

By using the relation~3.15! between the Lagrange and Ja-
cobi polynomials, we obtain the decomposition of the
SU~1,1! intelligent states over the orthonormal basis:

ul,h&5N21/2(
n50

` F n!G~2k!

G~2k1n!G
1/2

Pn
~ l2n,22k2 l2n!~x!tn/2uk,n&,

~5.13!

where we have defined

x[~h211!21/2,

t[4~h211!/h254/~12x2!. ~5.14!

By using the summation theorem for the Jacobi polynomials
@26#, we find the normalization factor:

N5 (
n50

`
n!G~2k!

G~2k1n!
@Pn

~ l2n,22k2 l2n!~x!#2tn

5S1
l S2

22k2 l l !G~2k!

G~2k1 l !
Pl

~2k21,0!S 11
2t

S1S2
D , ~5.15!

where

S6[12~x61!2t/4. ~5.16!

We can write moments of the generatorK3 over the states
ul,h& as derivatives ofN with respect tot. By using the
propertyK3uk,n&5(k1n)uk,n&, we obtain

~DK3!
25

t2

N
]2N
]t2

1
t

N
]N
]t

2S tN ]N
]t D

2

. ~5.17!

By using formula~3.22!, we find the exact analytic expres-
sion for the variance ofK3:

~DK3!
25

h2k

2 F11
~2k1 l !

k

~h211!Pl21
~1,2k!~2h211!

Pl
~0,2k21!~2h211!

G .
~5.18!

B. Phase sensitivity

Substituting the above result for (DK3)
2 into Eq. ~5.4!,

we find the phase sensitivity of the interferometer fed with
the SU~1,1! intelligent states:

~df! int
2 5

G~k,l ,h!

2k sinh2b
, ~5.19!

where we have introduced the factor

G~k,l ,h![F11
~2k1 l !

k

~h211!Pl21
~1,2k!~2h211!

Pl
~0,2k21!~2h211!

G21

.

~5.20!

In the case of the coherent-intelligent intersection,l50,
and thenG(k,l ,h)51. Then the phase uncertainty is on the
noise level~4.20!. The use of the SU~1,1! intelligent states
that do not belong to the coherent-intelligent intersection
~i.e., with lÞ0) can yield a great improvement of the mea-
surement accuracy. The quantitative measure of the improve-
ment is theG-factor that can be expressed as the ratio be-
tween the intelligent phase uncertainty and the SU~1,1!
coherent noise level~4.20!:

G~k,l ,h!5
~df! int

2

~df!k,b
2 52k

~df! int
2

~df!vac
2 . ~5.21!

It follows from the properties of the Jacobi polynomials that
theG-factor is always less than unity, so the measurement
accuracy is improved for the SU~1,1! interferometers fed
with intelligent light. Quantitative results are presented in
Fig. 6, where the factorG(k,l ,h) is shown as a function of
h for k51/2 and different values ofl . We see that for given
h the larger the value ofl , the smaller theG factor. The best
measurement accuracy for givenl and k is achieved when
h→0. For large values ofh, the G factor approaches a
limiting value. By using the properties of the Jacobi polyno-
mials, we find

lim
h→0

G~k,l ,h!5@11 l ~2k1 l !/k#21, ~5.22!

lim
h→`

G~k,l ,h!5~11 l /k!21. ~5.23!
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An interesting property of SU~1,1! interferometers is that for
lÞ0 the coherent noise level~4.20! is surpassed for any
value ofh. The phase uncertainty~5.19! for h→0 reads

lim
h→0

~df! int
2 5

1

2sinh2b@k1 l ~2k1 l !#
. ~5.24!

We have seen for the SU~2! interferometer that there is a
subtlety concerned with the limith→0. A similar problem
also arises for the SU~1,1! interferometer. It follows from the
eigenvalue equation~5.3! that forh50 theK2-K3 intelligent
stateul,h& transforms into the stateuk,l & ~an eigenstate of
K3 with eigenvaluek1 l ). However, this transition does not
preserve the relation

~DK2!
25~DK3!

2/h2, ~5.25!

which has been used in Eq.~5.4! that defines the phase sen-
sitivity for the intelligent states. The property~5.25! holds
for any intelligent state with arbitrarily smalluhu. Therefore,
we can take the limith→0 for the phase uncertainty
(df) int

2 calculated with the use of the relation~5.25!. But we
see that the result~5.24! obtained in this way is different
from the result~4.14! for the input statesuk,n&. This discrep-
ancy occurs because the ‘‘intelligent’’ relation~5.25! does
not exist for the statesuk,n&. Therefore, the intelligent states
ul,h& with arbitrarily small uhu and the statesuk,l & lead to
different phase uncertainties.

We proceed by examining the phase sensitivitydf(N̄)
for the intelligent input. The mean total numberN̄ of photons
passing through the phase shifters is given by Eq.~4.21!. It
follows directly from the eigenvalue equation~5.3! that
^K2&5(Rel)/h, ^K3&5Iml. Then we use the quantization
condition ~5.11! and find

^K2&50, ^K3&5~k1 l !Ah211. ~5.26!

Then N̄ is given by

N̄52 coshb~k1 l !Ah21121. ~5.27!

We see thatN̄ depends on the parametersk, l , h of the input
state and on the parameterb of the interferometer. The phase
sensitivity for fixed input state is

~df!2uk,l ,h5
1

k

2~k1 l !2~h211!G~k,l ,h!

~N̄11!224~k1 l !2~h211!
. ~5.28!

For h→0 this phase sensitivity is

~df!2uk,l5
2~k1 l !2

~ l 212kl1k!

1

~N̄11!224~k1 l !2
. ~5.29!

For l50 andk51/2, this result reduces to Eq.~4.25! for the
vacuum input. Fork51, we obtain

~df!2u l5
2

~N̄11!224~ l11!2
. ~5.30!

We see that this regime can yield a phase sensitivity of order
1/N̄, that, of course, depends on the available range ofb.

In the regime of fixed interferometer (b5const) and vari-
able input state, the phase sensitivity depends on the three
parameters of the state:k, l , andh. We study the dependence
df(N̄) numerically: for fixed sinh2b51 and some values of
k andh, we evaluate numerically (df)2 of Eq. ~5.19! and
N̄ of Eq. ~5.27! for l51,2, . . . ,150. These results are pre-
sented in Fig. 7 where lndf is plotted versus lnN̄ for
k51/2 and various values ofh. In the region of largeN̄
~small phase uncertainty!, a good approximation is the power
law df}N̄2E. We introduce the exponent

E52
d~ lndf!

d~ lnN̄!
U
N̄→`

, ~5.31!

which expresses the slope of the curves in Fig. 7 for large
N̄. This quantity is plotted in Fig. 8 versush. It is seen that
E approaches unity forh→0 and rapidly decreases to one
half ash increases.

Using the limit ~5.22!, we find the phase sensitivity for
fixed interferometer (b5const) and the input state with
h→0, fixedk and variablel :

FIG. 6. The factorG(k,l ,h) of Eq. ~5.20! versush for k51/2
and different values ofl .

FIG. 7. lndf as a function of lnN̄ for an SU~1,1! interferometer
with sinh2b51, using the SU~1,1! intelligent states withk51/2 and
various values ofh. The values ofdf and N̄ are calculated for
l51,2, . . . ,150.
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~df!2uk,b'
2 coth2b

~N̄11!224~k22k!cosh2b
. ~5.32!

This phase sensitivity is optimized fork51/2:

~df!2ub'
2 coth2b

~N̄11!21cosh2b
. ~5.33!

Thus we see that the interferometer operated in the regime of
fixedb can achieve a phase sensitivity of order 1/N̄. It means
that SU~1,1! interferometers with intelligent input states can
surpass the standard noise limit in both regimes: for fixed
input state, and for fixed interferometer. This remarkable
property distinguishes the intelligent states from the other
states discussed above.

VI. DISCUSSION AND CONCLUSIONS

In this paper we considered in detail the phase sensitivity
of passive and active interferometers characterized by the
SU~2! and SU~1,1! groups respectively, for various types of
input states. A usual method to reduce the quantum noise in
interferometers is by the application of squeezing-producing
active devices. We showed that the use of such active de-
vices ~e.g., four-wave mixers! leads to a duality in the be-
havior of the phase sensitivity. If the total numberN̄ of pho-
tons passing through the phase shifters is determined by
means of the squeezing parameterb of the four-wave mixer,
the interferometer can achieve the phase sensitivity
df;1/N̄. However, ifN̄ is determined by changing param-
eters of an input state~e.g., the intensity of a coherent laser
beam!, the phase sensitivity cannot generally surpass the

standard noise limitdf;1/N̄1/2. We showed that these limi-
tations can be overcome by the use of the remarkable squeez-
ing properties of the intelligent states. On the one hand, the
SU~2! intelligent states can lead to the phase sensitivity
df;1/N̄ in SU~2! interferometers without additional
squeezing-producing devices. This avoids the duality men-
tioned above. On the other hand, SU~1,1! interferometers fed
with the SU~1,1! intelligent states achieve phase sensitivity
of order 1/N̄ in both regimes: for variable squeezing param-
eterb of the four-wave mixer, and for variable intensity of
the input state.

The quantum noise is formally expressed via the uncer-
tainty relations. Quantum states which optimize the uncer-
tainty relations lead to minimum noise. This property is
called intelligence and it can be manifested in arbitrarily
strong squeezing achieved by the intelligent states. It means
that while the uncertainty of a quantum observable is dra-
matically reduced, the uncertainty of a conjugate observable
is increased as little as allowed by quantum theory. The
quantum noise in SU~2! and SU~1,1! interferometers is ex-
pressed via the uncertainty relations for the Hermitian gen-
erators of the corresponding groups. Therefore, the best way
to reduce this noise is by using the SU~2! and SU~1,1! intel-
ligent states respectively, which are highly squeezed for an
appropriate group generator (J3 andK3, respectively, in the
schemes considered here!. The production of these states by
means of advanced experimental techniques looks quite re-
alistic in the near future. We also note that the powerful
analytic method used for calculations with the intelligent
states can be of considerable interest to workers in quantum
optics.

In the present paper we adopted an ideal assumption that
the input two-mode state has a definite total number of pho-
tons N52 j @for an SU~2! interferometer# or a definite
photon-number differenceNd52k21 @for an SU~1,1! inter-
ferometer#. In other words, we considered input states be-
longing to irreducible representations of SU~2! and SU~1,1!.
A more realistic assumption should deal with an input state
which is a superposition of the intelligent states with differ-
ent values ofj or k. Properties of such a superposition state
will depend on the photon-number sum and difference dis-
tribution in the SU~2! and the SU~1,1! case, respectively.
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