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Nonclassical interferometry with intelligent light
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We study the phase sensitivity of 8)J and SU1,1) interferometers fed by two-mode field states which are
intelligent states for Hermitian generators of the(3Uand SU1,1) groups, respectively. Intelligent states
minimize uncertainty relations and this makes possible an essential reduction of the quantum noise in inter-
ferometers. Exact closed expressions for the minimum detectable phase shift are obtained in terms of the Jacobi
polynomials. These expressions are compared with results for some conventional input states, and some known
results for the squeezed input states are reviewed. It is shown that the phase sensitivity for an interferometer
that employs squeezing-producing active devigsch as four-wave mixershould be analyzed in two
regimes:(i) fixed input state and variable interferometer, @mgfixed interferometer and variable input state.

The behavior of the phase sensitivity is essentially different in these two regimes. The use of(the SU
intelligent states allows us to achieve a phase sensitivity of orélefvihereN is the total number of photons
passing through the phase shifters of the interferometéhout adding four-wave mixers. This avoids the
duality in the behavior of the phase sensitivity that occurs for the squeezed input. On the other hand, the
SU(1,)) intelligent states have the property of achieving the phase sensitivity of ofdein doth regimes.
[S1050-294@6)04311-9

PACS numbds): 42.50.Dv, 07.60.Ly

. INTRODUCTION can achieve a phase sensitivilyp~ 1/N provided that light
entering the input ports is prepared in a two-mode squeezed
Much attention has been recently paid to the improvemenétate. SW1,1) interferometers can achieve this sensitivity
of measurement accuracy of interferometers, because this/en when the vacuum fluctuations enter the input ddits
problem is of great importance in many areas of experimenHolland and Burnetf5] have considered the reduction of the
tal physics. A very promising way to reduce quantum fluc-uncertainty in the relative quantum phase of two field modes
tuations in interferometers is based on the use of input lighpropagating in an S(2) interferometer fed by two Fock
fields prepared in special quantum states. Therefore, witBtates with equal numbers of photons. They considgséd
further development of technology, high-accuracythe specific “reduced” situation of the measurement with
interferometry seems to have become one of the most impothe sensitivity measure different from that used in Ré4f.
tant applications of nonclassical photon states whose proper- |n a separate line of research, considerable efforts have
ties are now extensively studied in the quantum optics literabeen devoted during the past few years to generalize the idea
ture. of squeezing to the SQ) and SU1,1) Lie groups. The usual
The first steps in this area were taken by CaMdsand  squeezed states are the generalized coherent states of
Bondurant and Shapir2], who showed that the use of SU(1,1)[6], i.e., they are produced by the action of the group
squeezed light can reduce the quantum noise in interferonelements on the extreme state of the group representation
eters[3]. Yurke, McCall, and Klaudef4] used powerful Hilbert space. Another interesting class of states which has
group-theoretic methods for the study of interferometers emheen considered is the class of the so-called intelligent states
ploying passive and active optical devices. The interferom{7], which minimize the uncertainty relations for the Hermit-
eters considered ifil,2] employ passive lossless devices, jan generators of the group. Squeezing properties of the
such as beam splitters. Yurke, McCall, and Klauddt  sSu(2) and SU1,1) intelligent states have been widely dis-
showed that such interferometers can be characterized by th@ssed in the literaturf8—20. Recently, Nieto and Truax
SU(2) group. They also introduced a class of interferometer§14] showed that a generalization of squeezed states for an
which employ active lossless devices, such as four-waverbitrary dynamical symmetry group leads to the intelligent
mixers, and are characterized by the(8) group. The ac-  states for the group generators. Connections between the
tual problem of high-accuracy interferometry is the improve-concepts of squeezing and intelligence were further investi-
ment of the phase sensitivity, i.e., the optimization of thegated by Trifono[17]. It turns out that the intelligent states
minimum detectable phase shifip for a given mean total  for two Hermitian operators can provide an arbitrarily strong
numberN of photons passing through phase shifters. Thissqueezing in either of these observaljtEg. Some schemes
problem arises because of the back-action effect of the radider the experimental production of the &) and SU1,1)
tion pressure. It was showj#] that SU2) interferometers intelligent states in nonlinear optical processes have been
suggested recently by a number of authfitg,16,19,21
The most recent scheme, developed by Luis anthRE21],
*Electronic address: costya@physics.technion.ac.il is of remarkable physical elegance and conceptual clarity and
TElectronic address: ady@physics.technion.ac.il seems to be technically realizable.
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The group-theoretic analysis of interferometers and the a, 0 DI
group-theoretic generalization of squeezifige., intelli- \ > \
gence were brought together by Hillery and Mlodind&2],

who proposed to use intelligent states of the two-mode light / \f
field for increasing the precision of interferometric measure- g o,
ments. They derive@22] approximate results for the phase
sensitivity of an SW2) interferometer fed with the SQ)
intelligent states. The possibility to improve further the ac- FIG. 1. An SU2) interferometer. Two light modea; and a,
curacy of SU1,)) interferometers by using specially pre- are mixed by beam splitter BS1, accumulate phase shiftand
pared input states has been also studied recg28ly It was  #2. respectively, and then they are again mixed by beam splitter
shown[23] that the use of two-mode SW,1) coherent states BS2. The photons in the output modes are counted by detectors D1
which are simultaneously the $U1) intelligent states can a"d D2.
improve the measurement accuracy when the photon-number 1
difference between the modes is large. Jl=§(a1a2+ aja),
In the present work we consider in detail both (8)JJand
SU(1,)) interferometers whose input ports are fed with intel- 1
ligent light. We use powerful analytic methods that employ Jzzz(a’{az—agal), (2.1
representations of intelligent states in the generalized
coherent-state bases. Thus we are able to obtain exact ana- 1
lytic expressions for the phase sensitivity and examine them J3=§(a1a1—a;a2).
in various limits. These results are compared with those ob-
tained in the cases when the input field is prepared in thehese operators form the two-mode boson realization of the
usual coherent state, in the generalized coherent state andgn(2) Lie algebra:
the squeezed state. We show that the use of squeezing-

producing active devicetsuch as four-wave mixersntro- [J1,d2]=0J3,
duces a duality in the behavior of the phase sensitivity. For
example, when the squeezed input states are used, the inter- [J5,35]=id, 2.2

ferometer can be operated in two regimes: with variable
squeezing parameter and fixed coherent amplitude, and vice
versa. The regime of variable squeezing leads to the phase [J3,d1]=1J5.

sgnsﬂmty 5¢~ LN, whereas thg techr?lcally preferable re- It is also useful to introduce the raising and lowering opera-
gime of variable coherent amplitude gives omiyp~1N'2 .o

(the standard noise limit The use of the S(2) intelligent

states avoids this dual behavior and leads to the phase sen- I =9 +id=aja,,

sitivity 8¢~ 1/N without adding a four-wave mixer to the 2.3
interferometer. The S({,1) intelligent states also allow us to '
obtain a significant improvement of the measurement accu-
racy. These states exhibit a very specific behavior providinghe Casimir operator for any unitary irreducible representa-
phase sensitivity of order li/in the two regimes: variable tion of SU2) is a constant

interferometer, and variable input state. We emphasize that

J,:Jl_i\]zza;al.

f[he optimizaFion of the phase sensit_ivity by the intelligenF J2=324 324 32=j(j+1), (2.4
input states is a consequence of their remarkable squeezing
properties. and a representation of $2) is determined by a single num-

berj that acquires discrete positive values3,1,3,2, .. ..
By using the operators of E@2.1), one gets
Il. SU(2) INTERFEROMETERS

WITH CONVENTIONAL INPUT STATES 3222(24- 1], (2.5
A. The interferometer
where
An SU(2) interferometer is described schematically in
Fig. 1. Two light beams represented by the mode annihila- N=a{al+a§a2 (2.6)

tion operatorsa; anda, enter the first beam splitter BS1.
After leaving BS1, the beams accumulate phase shifts is the total number of photons entering the interfer-
and ¢,, respectively, and then they enter the second bearometer. We see thall is an SU2) invariant related to the
splitter BS2. The photons leaving the interferometer ardéndex j via j=N/2. The representation Hilbert space is
counted by detectors D1 and D2. spanned by the complete orthonormal basism)

For the analysis of such an interferometer it is convenienfm=—j,—j+1,...,j—1,) that can be expressed in terms
to consider the Hermitian operators of Fock states of two modes:
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[j,m)=1j+m)|j—m),. (2.7 This means that the phase sensitivéiy of the interferom-
eter goes as UN. The phase sensitivity2.14) is usually
The actions of the interferometer elements on the vectofeferred to as the standard noise lif#i.
J=(J1,J2,J3) can be represented as rotations in the three- |t follows from Eq. (2.13 that for the input statéj,m)
dimensional spacgt]. BS1 acts on) as a rotation about the with m=0 (i.e., when the interferometer is fed by two Fock
1st axis by the angler/2. The transformation matrix of this states with equal numbers of photgnthe phase measure-
rotation is ment is absolutely uncertaifunder the condition ¢
#0 (modm)]. This result is in accordance with qualitative
100 arguments of Yurke, McCall and Klaud&ee Fig. 2 of Ref.
Ry(m/2)=[ 0 0 -1/, (2.9 [4]). However, it has been shown by Holland and Burfieft
01 0 that this input state can be used in an(3Unterferometer
with the specific “reduced” situation of the measurement of
The transformation matrix of BS2 R,(— 7/2), i.e., the two  the relative quantum phase between two field modes. In the
beam splitters perform rotations in opposite directions. Thdlolland-Burnett situation the use of the simplified sensitivity
phase shifters rotatd about the third axis by an angle Measurg2.1)) is excluded.

¢=¢,— ¢;. The transformation matrix of this rotation is In what follows we assume, for the sake of simplicity,
¢=0. This can be achieved by controllin, with a feed-
cosp —sing 0O back loop which maintaingp= ¢,— ;=0 [4]. Then Eq.
. (2.11) with J iven by (2.12 can be simplified to the
Re(¢)=| sing cosp O 29 o 3out GIVEN BY P
0 0 1
, (AJ3)?
The overall transformation performed dris (6¢) BREALE (J1)#0. (2.19
Jou=Ru(— 7/2)R3(#)Ry(7/2)J. (210 consider now the input stater)|a’),, where
The information on the phase shiftis inferred from the c 0
photon statistics of the output beams. One should measure |a)=exp(—|a|?2) D [n) (2.16
the difference between the number of photons in the two i=0 \n!
output modes, Ng)ou, Of, equivalently, the operator . . . .
Jsou=3(Ng)our. Since there are fluctuations iy oy, @ is the familiar Glauber coherent state. A simple calculation
phase shift is detectable only if it induces a change in/!€lds
(J3oup Which is larger tham\ J; .. Therefore, the minimum 2 (lal2+ 10’2
detectable phase shifte., the uncertainty of the phase mea- (835)°=(laf*+[a’[/4, .19
surementis determined by (31)=|al|a’|cog 6+ 6"), (2.18
2 (AJSOUI)Z — i [ A4 : H
(8¢p)2= 1t (2.1)  where a=|ale'’, a'=|a'|e'”. For the optimal choice
|6(J3 0wt/ 0| 6+6'=0, we get
The value of6¢ characterizes the accuracy of the interfer- la|2+|a’|?
ometer. The expression fdg ,, can be easily found by us- (8¢)°=——3—r17- (2.19
: . 4 al?a’|
ing Eq. (2.10:
o The total number of photons N=|a|?+|a’|?. Hence the
Ja ou= ~(SiNg)Jy +(COSH) . (212 et phase sensitivity is obtained faf?=|a’|?=N/2 and it

S achieves the standard noise limit of Eg.14).
B. Standard noise limit We also consider the SP) generalized coherent states

We consider some typical input states for which the phaséhat are defined bj6]
sensitivity of an SW2) interferometer is restricted by the exp(£d.)
so-called standard noise ImﬁSNL). Let the input state be  |j r\=exp(£d, —&*3_)|j,— )= TZ_J,“’_J)
|j,my=]j+m)1|j —m), (an eigenstate of; with eigenvalue (1+Z1%

m). The phase sensitivity for this input state is obtained from i

. - . (2j)! ve o
Eq.(2.11) by a strilghtftz)rw-ard calculation: =(1+]¢]?) Jm;j TG —m)!} A, m),
(5(,5)2:%21, $+#0 (modm).  (2.13 (2.20

o o . where (= (¢/|&|)tan€|. Expectation values of the $B)
In this situation the best phase sensitivity is obtained fofyenerators can be easily calculated for hé) states:
m==j. Thus for the input stat§,j)=1|2j),|0),, one gets

[4] (AJ3)2=2j1Z21(1+]{]%)3, (2.20)

(6¢)e=1/(2))=1N, ¢#0 (modm). (2.14 (3))=2j(Rel)/(1+]Z]?). (2.22
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Then Eq.(2.15 reads ) 1
P (5¢)a,3=|alstth- (2.28

2 _
(5¢)Coh_2j(Re§)2' (223)

The measurement accuracy can be improved in two ways:
(i) by increasing the parametgrof the four-wave mixer, or
This phase uncertainty is minimized whénis real. Then (i) by increasing the coherent-state intengigy®. The first
(5¢)§0h achieves the standard noise limit of Eg.14. We  way can be viewed as related to the interferomételuding
see that the use of the Glauber coherent states and of tfiee four-wave mixey; while the second is related to the input
SU(2) generalized coherent states does not improve the me&tate. Therefore, when we consider the phase sensitivity
surement accuracy over the standard noise limit. d¢(N), we should distinguish between the sensitivity for
fixed input state ¢=const) and the sensitivity for fixed in-
terferometer B=const). This distinction seems formal at
first look, but it has a crucial physical importance for an
interferometer employing active devices because they do not

There have been attempts to surpass the standard noiggnserve the total number of photons. Indeed, when the four-
limit by using squeezed input statgk,2,4. We reconsider wave mixer is applied, the total number of photons is not
here the scheme proposed by Yurke, McCall, and Klaudegonstant any more. The mean total numberof photons
[4]. They considered the SP) interferometer outlined i passing through the phase shifters depends on bo#nd
Fig. 1, whose input ports are fgd by the output beagand B. In the scheme presented hé&tds the mean total number
b, of a four-wave mixer(see Fig. 5 of.Ref[4]). Thg trans- of photons emitted by the four-wave mixer:
formation caused by the four-wave mixer on the light beams
a; aEld az]entering its input ports is an U,1) transforma- N_=(bIb1+b;b2>=(|a|2+ 1)cosiB—1. (2.29
tion [4,24]:

b, _[costipl2) sinh(Bl2)| (&
bi) | sinnBr2) coshipr2))\ al)"

C. Squeezed input states, the role of active devices
and a duality of the phase sensitivity

Then we find the phase sensitivity for fixed input state:
(224 (5] (Ja?+1)?
“ Jal[(N+1)2=(|a|?*+1)%)’

(2.30

The parametep is related to the reflectivity of the four-
wave mixer(when it is used as a phase-conjugating mjrror and for fixed interferometer:
via sintf(B/2)=r [25]. In the scheme considered here the
Glauber coherent stater) enters one input port of the four- o costp 1
wave mixer and the vacuum std@® enters the other. Since (0¢) |B_sinhz,8 (N+1-costB)’ (239
the transformatior(2.24) is a squeezing Bogoliubov transfor-
mation, the output state of the four-wave mixer is the two-\when|«|? is close to 1 andN is large, Eq.(2.30 yields
mode squeezed state.

The generatod; representing the photon-number differ-
ence between the two modes is invariant under the transfor- 8P|~ = (2.32
mation (2.24). Therefore one finds N

This is much better than the standard noise limit, but there is
a subtlety. Actually, fof @|?>~1 the range oN is restricted
by available four-wave mixers. It is much more convenient
for the experimenter to improve the measurement accuracy
by increasing the intensity of the coherent stat¢. How-
1 ever, Eq.(2.31) shows that in this regime the standard noise
J.=-sinhB(al?+ a2+ al?+a?) limit cannot be surpassed. Therefore, when speaking about
4 1 1 2 2

the phase sensitivity achieved with the squeezed input states,

it is necessary to specify the regime of operation of the in-

(AJg)?%=|al?4. (2.25

The generatold; at the output of the four-wave mixer is
given by

i
- ZsinhB(aIZ—aiJr aj?—a?) terferometer.

1 lll. SU (2) INTERFEROMETERS
+ Ecosh@(a{aﬁ aja,). (2.26 WITH INTELLIGENT INPUT STATES

A. SU(2) intelligent states

It is known [22] that the standard noise limit for $2)
1 interferometers can be surpassed by using thé&Sidtelli-
— T2 ent states. However, an expression fap was found in
(= 2 |al"sinh5 cos2 2.29 gRef. [22] only for a special Iiml?ting case. We would like to
derive an exact analytic expression &, that holds for a
where a=|ale'’. The phase uncertainty of Eq2.15 is  wide class of the S(2) intelligent states. The commutation
minimized whend=0. Then one obtaingt] relation[J,,J3]=iJ, implies the uncertainty relation

Its expectation value for the input stde),|0), is
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(AJ)2(AJg)%= 1 (3,)2. 3.1 r=(1-\1- )7, (3.10
Therefore, Eq(2.15 reads )\(mo)zimo\/l——nz. (3.11
) 1 The analyticity condition for the functioA (£) requires that
(6¢)"= 4(AJ,)? (3.2 mg can take only the values:
For intelligent states an equality is achieved in the uncer- mo=—j,—j+1,...j—1]. (3.12

tainty relation. Sucll,-J; intelligent states with large values
of AJ, would allow us to measure small changes¢inThe
J,-J3 intelligent stateg\,n) are determined by the eigen-
value equation

Then Eg.(3.11) becomes a quantization condition which
means that the operateyJ,+iJ; has a discrete spectrum,
and the corresponding eigenstates and eigenvalues are char-
acterized by the quantum numbmayg.

(9d+id3) N, m)=\|\, 7), (3.3 In the special casesy=*j, the J,-J5 intelligent states

IN,7) become the S(2) generalized coherent statgs{y)

where\ is a complex eigenvalue angl is a real parameter with =771, respectively. Sincey is real and 5|<1, ¢, is
given by |n|=AJ3/AJ,. For |y|>1, these states are also real. Thus we have an intersection between the intelli-
squeezed i,, and for| 7| <1, they are squeezed . In  gent and coherent states. The (8Ucoherent states which
what follows we will consider only the regiojy|<1, that are simultaneously thd,-J; intelligent states allow us to
guarantees, as we will see, an improvement of the measurachieve the standard noise linf2.14) due to the fact that
ment accuracy. The states of Eg.3) can be generated from ¢, is real. It means that the states in the coherent-intelligent
the vacuum in two parametric down-conversion crystals withintersection lead to the best phase sensitivity among all the
aligned idler beams after a measurement of the photon nuntoherent states. However, the standard noise limit can be
ber in some of the modeR1]. For the J,-J5 intelligent  surpassed by using the intelligent states which are not the

states, Eq(3.2) reads generalized coherent states.
) The decomposition of the intelligent stafds ») over the
(8¢)2,= __ 7 (3.4) orthonormal basis is obtained by expanding the function
Nt4(AJy)? 4(AJg)* '

A(j,mg,7;{) of Eq. (3.9 into a Taylor series ir/. It is

o ) 5 known[26,27] that a function of the fornt3.9) is the gener-

to do that, we use the analytic representation of the intelli-

gent states in the coherent-state bdgig). This basis is _ S e

overcomplete and any state in the Hilbert space can be ex-A(j,Mg,7;{)=N 1/220 gﬁ e T Yol
panded in if6]. For example, the S@) intelligent state n= (3.13

J
. Actually, this series is finite, because we have
)= 2 Calim) (35 g
gl i TmeTI*MI=0  for n>2j. (3.14
is represented by the entire analytic function
The Lagrange polynomials are related to the Jacobi polyno-

AN 70 = (1+[2DI,2 N m) mials via[26]
j ; 1/2
(2))! fem u+
:m;j Col G =my| ¢ - GO 951“"3)(u,v)=(v—U)”PL‘”‘”"B‘”)(U_Z)- (3.19

The SUZ2) generators act on({) as first-order differential ~ Using this relation, we can write
operatord6]:

) i+m)!(j—m)!]¥2
R T YD S AR R N2 %}
+ dg J I} — dg 1] 3 dé, J . . =—] .
(mg—m,—mgp—m) (j+m)i2|;
Then Eq.(3.3) can be converted into a first-order linear ho- X IDJ+m (x)t j,m), (3.1
mogeneous differential equation far({): where we have defined
dA . _
(p+20+ ngz)d—§+2(i)\—j—jn§)/\=0. (3.9 x=(1-7%"",
t=4(1— 7?) *=4/(x*>—1). (3.17

The solution of this equation can be easily found to be

Ay, 7 &)= N1+ £ 7)1+ Mo( 1+ 7)i Mo The normalization factor is
(3.9 2 ni(2j—n)!

N=2

(j+mg—n,j—mg—n) 2:n
- P X)]4t". 3.1
where N is a normalization factor, and we have defined n=o  (2))! [Py (x)] (3.18
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1
0.8 =14
06 my=10
G(jmy,m) e =0
0.4
0.2
j=15
0 0.2 0.4 0.6 0.8 1
n
FIG. 2. The factorG(j,my,s) of Eq. (3.25 versus  for FIG. 3. Ind¢ as a function of IN for an SU2) interferometer
j=15 and various values ofy. using the SW2) intelligent states withimy=0 and various values of

7.
It follows from Eg. (3.14) that the summation i63.18 can

be continued up to infinity. Then, by using the summationwhere we have introduced the factor
theorem for the Jacobi polynomidl26], we find the closed
expression for the normalization factor:

. (j+[mgl)
N:(_l)j—|mo‘sj+mosj—mo(j_mo)!.(j—’—mo)! G(j.mg,7)= 1+-—(1_7]2)
o (2))! (1,-2j) 2y1-1
‘ ot ijf’|m9|71(1_277) (325
><P}:2r{1;|l‘°)(1— s+s)’ (3.19 PO D(1-277) '

where In the casemy==j, i.e., for a state in the coherent-

S.=1+(x+1)t/4 (3.20 intelligent intersection, we havé&s(j,mg,n)=1, so the
- B ' ' phase sensitivity is at the standard noise lidit=1/\/N.

The expressioni3.18 of A’ as a power series inis very However, the use of the SP) intelligent states that do not
convenient, because it enables us to write moments of thgelong to the coherent-intelligent intersecti¢ne., with

generator); over the state), ) as derivatives of\" with  |Mol #J) can yield a considerable improvement of the mea-
respect tot. By using the propertys|j,my=m|j,m), we surement accuracy in comparison with the standard noise
obtain limit. The quantitative measure of the improvement is the

G-factor that can be expressed as the ratio between the in-

2PNt N [t N\ ? telligent phase uncertainty and the standard noise limit:
(Adg)?=m— + o= | M) (3.29)
N ot N gt \N at
, G(j, Mo, 7)= ()l (5)3n1- (3.26
By using the formula
dP@A(x) n+ atB+1 It follows from the properties of the Jacobi polynomials that
n

pg‘lelﬁ”)(x) (3.22 in the range considered herén(<1) we always have
G(j,my,n)<1, so the measurement accuracy is improved
for SU(2) interferometers fed with intelligent light.

€ Numerical results are presented in Figs. 2 and 3. The
function G(j,mg, n) is plotted in Fig. 2 versus; for j=15

and various values ofn,. It is seen that for givery the

dx 2n

and the differential equation for the Jacobi polynomials, w
obtain the exact analytic expression for the variancé;of

2. . P(l,—Zj) (1_27’2)
(AJg)P= 7°) 1+(J +|mg|) _ oy 1 -Imoltt smaller the value ofng, the smaller theG-factor. We also
3 2 i K ’p}@l—an‘—D(l_gnZ) : see that the minimum value d&(j,my,7) (i.e., the best
0

(3.23 measurement accurgcfpr givenj andmy is achieved when
n—0. On the other hand, whep—1, the G-factor ap-
proaches unity. The phase sensitivity, i.e., the dependence of
the minimum detectable phase shifip on the number

Substituting the above expression fohJ;)? into Eq.  N=2j of photons passing through the interferometer is illus-

(3.4), we find the phase sensitivity of the interferometer fedtrated in Fig. 3 where 6 is shown as a function of i for

B. Phase sensitivity

with the SU2) intelligent states: my=0 and various values of. It is seen that for a given
) value of 7 the power laws$=N~E is a good approximation
(56)2 _G(,mo,7) (3.24 for large N. In order to express formally the slope of the
int 2] ' ' curves in Fig. 3 for largdN, we introduce the exponent
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FIG. 4. The exponenE of Eq. (3.27) versusy for an SU2)
interferometer using the SP) intelligent states withmy=0.
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This quantity is plotted versug in Fig. 4. For n—0 the
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care, because it does not preserve some basic properties of
the intelligent states. In E¢3.4), that defines the phase sen-
sitivity for the J,-J5 intelligent states, we have used the re-
lation

(AJ5)2=(AJ3)% 72 (3.32
This property holds for any intelligent state with arbitrarily
small | |. Therefore, we can take the limig—0O for the
phase uncertaintyd¢) ﬁ,t calculated with the use of the rela-
tion (3.32. But we see that the resu[8.30 obtained in this
way is quite different from the phase uncertaii®y13 for
the input state§j,m). The reason for this discrepancy is that
the “intelligent” relation (3.32 does not exist for the states
|i,m). In other words, the result depends on the order in
which we use the relatiof8.32 and take the limity—0. It
means that the intelligent statps, ) with arbitrarily small
| 7| and the statel§,mg) may lead to different results.

This phenomenon arising for the 8) intelligent states
in the limit »—0 can be made more familiar if we recall a

exponentE approaches unity, which is the best availablesimilar situation that occurs for the canonical squeezed

phase sensitivity. Asp increases, the exponeit rapidly
decreases to one hdthe standard noise linjit

states. Consider two canonically conjugate field quadratures,
Q=(a'+a)/2 andP=i(a'—a)/2, which satisfy the uncer-

The dependence of the phase sensitivity on various paainty relationAQAP=1/4. It is well known that this uncer-
rameters can be further studied by considering limiting val+tainty relation is minimized by the canonical squeezed states

ues of theG-factor. We start from the limity— 1. Putting
e=1—7? we find, fore<1,

G(j,mo, ) ~[1+28(j2—m3]™ Y, (3.28

It means that fory near 1 the phase sensitivity approache

the standard noise limit. It is also not difficult to see that

lim G(j,mo,m)=[1+(j2~m3)/j]"",  (3.29

7—0

|¢,@), which satisfy the eigenvalue equation7@
+iP)|{,@)=\|{,a). Here a and ¢ are displacement and
squeezing amplitudes, respectively, ane (1—-)/(1+¢),
N=(a—{a*)/(1+). It is seen that the statés,a) can be
regarded as the intelligent states for the Weyl-Heisenberg

Sgroup. For instance, the relatidrQ =AP/| 7| does hold for

the Q-P intelligent states with arbitrarily small values of

| 7|. However, forp=0 the Q-P intelligent states transform
into the eigenstates of the “momentum” opera®yrand the
above relation does not exist. Therefore, properties of the

and in this case we recover the approximate result of Hillerycanonical squeezed states calculated using this relation may

and Mlodinow[22]:

(54’)%{% (3.30

2(j2=mg+j)’
that holds fory near zero. Fomy=0 the phase uncertainty

is minimized:

1
(00)in~ ﬁ (3.3)

be different in the limity— 0 from corresponding properties
of the momentum eigenstates.

C. Quasi-intelligent states

The standard noise limit can also be surpassed by using
two-mode states which are not exactly intelligent, but are
close to optimizing the uncertainty relatid8.1). We will
call such states “quasi-intelligent.” For example, we can
imagine a state for which the uncertainty product
(AJ,)?(AJ3)? is equal to its minimum(J,)%/4 times a nu-
merical factor of order 1. For such a state we will get

Becausg is just half the total numbeN of photons passing (s¢)2=1/[4(AJ,)2], wherew is the numerical factor. If this
through the interferometer, the phase sensitivity is of ordegiate is squeezed iy and swelled inJ, (i.e., AJ,~j for

1/N. We note that this sensitivity is achieved for the (3U

j>1), thens¢ will be of order 1IN. An example of such a

intelligent states without adding an active device to the i”'quasi-intelligent state was given by Yurke, McCall, and

terferometer. Therefore, the total number of photons dependg,

only on the value of for the input state. This allows us to

avoid the duality in the behavior of the phase sensitivity that

occurs for the squeezed input.

lauder [4] who considered the input state|j,0)
+1j,2))/v2. A simple calculation yields

We also consider a subtlety that is concerned with the

limit »—0. It follows from the eigenvalue equatiai3.3)
that for »=0 the J,-J; intelligent state|\,#) transforms
into the state]j,my) (an eigenstate ofi; with eigenvalue

mg). However, this transition should be treated with a great

(AJ3)%=1, (3.33
(AJ)2=3j(j+1)—1, (3.39
(J)=3[iG+D]¥2 (3.35
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These operators form the two-mode boson realization of the

a, su1,1) Lie algebra:
-FWMI ‘-me
K{,Ky]=—iKj,
. [K1,Kz] 3

[Kz,K3]:iK1, (42)

FIG. 5. An SU1,)) interferometer. Two light modea, and [Ks,Kq]=iK,.
a, are mixed by four-wave mixer FWM1, accumulate phase shifts '

1 and ¢, respectively, and then are again mixed by four-wavey js g1so useful to introduce raising and lowering operators
mixer FWM2. The photons in the output modes are counted by

. _ iK.—alal
detectors D1 and D2 K.=K;+iK,=a;a,,

We see that foj>1 this state gives the uncertainty product K_=K;—iK,=a,a,. 43
(AJ)2(AJ3)%2=j(j+1)/8 that is greater than its minimum

(31)%/4=j(j +1)/16 only by the factow=2. Then one ob- The Casimir operator for any unitary ireducible representa-
tains tion is a constant

1 1 2?2 K2 K2 (ke
(88)*~ 5 352~ TG+ 1) (3.36 K*=K3—Ki=Kz=k(k-1). (4.4

Thus a representation of $11) is determined by a single

Therefore the phase sensitivity #&~2/N that differs from  numberk thatis called the Bargmann index. For the discrete-
(56)m~V2/N only by the factory2. This example shows S€ries represenltatlglﬁ%] the Bargmann index acquires dis-
that the optimization of the phase sensitivity is intimatelyCrete valuek=31,2, .... Byusing the operators of Eg.
related to the optimization of the uncertainty relatiore., (-1 one gets
the intelligencg and to the corresponding $2) squeezing.

K2=%Nj— 1, (4.5
IV. SU(1,1) INTERFEROMETERS where
WITH CONVENTIONAL INPUT STATES
_ At T
A. The interferometer Ng=a;a;—aa, (4.6)

In SU(L,1) interferometers four-wave mixers are em- s the photon-number difference between the modes. We see

ployed inst_ead of beam splitters. The application of aCtive[hatNd is an SU1,1) invariant related to the Bargmann in-
optical devices, that do not preserve the total number of phogay K vig k= 1(N4+1). The representation Hilbert space is

tons, makes it possible to achieve high measurement aCClhanned by the complete orthonormal basik n)

racy, especially when intelligent light is used. On the other, n=0,1,2,...) that can be expressed in terms of Fock states
hand, this leads to the dual behavior of the phase sensitivity, twc; r’no'deS'

as in the case of the squeezed input. Mathematical descrip-

tions of SU2) and SU1,1) interferometers are rather similar, |k,n)=|n+2K—1)4|n),. 4.7)

but the noncompactness of the @\1) Lie group leads to

important physical distinctions between interferometers ém-  The actions of the interferometer elements on the vector

ploying passive and active devices. . ~ K=(Ky,K;,K3) can be represented as Lorentz boosts and
An SU(1,)) interferometer is described schematically in yotations in the(2+1)-dimensional space-timp4]. FWM1

Fig. 5. Two light beams represented by mode annihilationy¢ts onK as a Lorentz boost along the negative direction of
operatorsa, and a, enter the input ports of the first four- {he second axis with the transformation matrix
wave mixer FWM1. After leaving FWM1, the beams accu-

mulate phase shiftg; and ¢,, respectively, and then they 1 0 0

enter the second four-wave mixer FWM2. The photons leav- :

ing the interferometer are counted by detectors D1 and D2. L,(—B)=| 0 costB —sinh3 |, (4.9
For the analysis of such an interferometer it is convenient 0 -—sinhB cosiB

to consider the Hermitian operators

As mentioned aboves is related to the reflectivity of the

four-wave mixer(when it is used as a phase-conjugating mir-

ror) via sintf(B/2)=r [25]. The transformation matrix of

FWM2 is L,(B), i.e., the two four-wave mixers perform

1 boosts in opposite directions. Phase shifters roatgbout

Kzzz(aiag—alaz), (4.)  the third axis by an anglé=—($,+ ¢,). The transforma-
tion matrix of this rotation iR;(¢) of Eq.(2.9). The overall
transformation performed oK is

Kou=L2( B)R3(#)Lo(— BIK. (4.9

K zl(aTaTnLa a,)
1 2 192 142/,

K zi(aTa +a,al)
3 2 191 2¢2)-
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The information on¢ is once again inferred from the

4513

|k, ) =exp(éK, — £ K_)[k,0)

photon statistics of the output beams. One should measure

the total number of photons in the two output modes,;,
or, equivalently, the operatoKs,,=3(No,+1). Fluctua-

tions in (K3, restrict the accuracy of the phase measure-
ment. The phase uncertainty that determines the minimum

detectable phase shift is given by

(AK3 our)2

R (410

(8¢)°
From Eq.(4.9), we find

K3 ou= (SINhB sing)K, +sinhB coshB(cosp— 1)K,
+ (costtB—sint?B cosp)K ;. (4.11)

B. Vacuum and coherent input states

We consider here some typical cases when the input field
is prepared in the vacuum state, in the generalized coherent
state and in the Glauber coherent state. If only vacuum fluc-

tuations enter the input ports, then E4.10 with K3 4 of
Eq. (4.11) reduces to the known resuyH]

, _Sir¢+costB(1-cosp)?
(0¢)ac= sirf¢ sintB ’

$+0. (4.12

As ¢—0,

input state |k,n)=|n+2k—1)4|n),. The corresponding
phase uncertainty is obtained from E¢.10 by a straight-
forward calculation:

_sinf¢p+ cositB(1—cosp)® k+n(2k+n)
B sirf¢ sintB 2(k+n)?

(6¢)°

¢+0. (4.13
The vacuum state is obtained far=0, k=1/2. Then Eq.
(4.13 reduces to Eq(4.12. The phase uncertaintg.13 is
minimized as¢—0:

) ) k+n(2k+n)

In what follows we take for simplicityp=0, as in the
SU(2) case. Once again, the experimenter can control
with a feedback loop which maintaing= — (¢, + ¢,)=0
[4]. Then Eq.(4.10 with K5, given by (4.11) can be sim-
plified to the form

(AKy)?

(5¢)2=W<Kl>z, (Kq)#0.

(4.15

We next consider the SW,1) generalized coherent states.

These states are defined |8/

these phase fluctuations are minimized
(5¢)\2,ac—>1/sinr?,8. We also consider a more complicated

=(1-1[¢1®)*exp( K 4)|K,0)

“ [T(n+2k)

1/2
:(1—|§|2)kn§=:0 W} {"k,ny, (4.16

where (= (¢/|&))tanhg, so|¢|<1. In the case of the two-
mode boson realization, the §1)1) coherent states can be
recognized as the well-known two-mode squeezed states
with & being the squeezing paramef8t. A simple calcula-

tion yields expectation values of the 8lJ1) generators over
the|k,Z) coherent statel8]:

(AKg)?=2k|¢|?(1-]¢[%)?, (4.17
(K)=2k(Re)/(1=[¢[?). (4.18
Then Eq.(4.15 reads
2 _ |¢?
(6¢)con™ 51 sin B(Rel)2" (4.19

This phase uncertainty is minimized whéis real. Then one
gets[23]

1
2 _
(0¢)icp= 2ksint? 3" (4.20

'We see that this phase sensitivity depends only on the pa-

rameterg of the four-wave mixer and on the photon-number
difference between the two input modedly&2k—1).
Therefore,{ can be taken to be zero, i.e., one can choose an
input state with a fixed number of photons in the one mode
and the vacuum in the other. This is in accordance with the
result(4.14) for the input staték,n) with n=0.

The mean total numbed of photons passing through the
phase shifters depends on both the input state and the four-
wave mixer. For the interferometer considered hakés the
total number of photons emitted by FWML1:

N=2(K})—1, (4.21)
whereK’ =L,(— B)K, so we have
K3=(coshB)Kz—(sinhB)K,. (4.22

Calculating the expectation value for a coherent state with
real {, we obtain

_ 2

1+¢
N= ZKWCOSW— 1. (4.23
Since (8¢)? of Eq. (4.20 is independent of, we may take
{=0; thenN= 2k coshB—1. Once again, we have two ways
for improving the measurement accuracy of the interferom-
eter: (i) by increasing the parametg of the four-wave
mixer, or (i) by increasing the photon-number difference
Ng=2k—1 for the input state. In the first regime we obtain
the phase sensitivity for fixed input statie={ const):
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2k V. SU(1,1) INTERFEROMETERS
(8 )2 = (4.29 WITH INTELLIGENT INPUT STATES
P N D (2 o
A. SU(1,)) intelligent states

For k=1/2 (N4=0), we recover the result for the vacuum We would like to surpass the standard noise limit by using
input [4]: the SU1,l) intelligent states. The commutation relation

[K,,K3]=iK4 implies the uncertainty relation

1 (AK,)?(AK3)%= §(K,)2 (5.1
Sp)2,=——. 4.2 2 3 A
(6¢)vac N(N+2) (4.29 |
Therefore, Eq(4.15 can be written as

We see that the phase sensitivity approachisks However,
there is a problem with improvement of the measurement
accuracy because the value@fs restricted by properties of
available four-wave mixers. On the other hand, the phas
sensitivity for fixed interferometerd= const) is

1

Eor intelligent states an equality is achieved in the uncer-
tainty relation. Therefore, sudk,-K ; intelligent states with
large values ofAK, would allow us to measure small

, _costp 1 changes inp. The K,-K 5 intelligent stateg\, ») are deter-
(6¢) |B:sink?,8 (N_+ 1) (428 mined by the eigenvalue equation
(7K +iK3) [N, 7)=X[\, 7), (5.3

We see that the standard noise limit cannot be surpassed in

this regime. . . where\ is a complex eigenvalue angl is a real parameter
Next we consider the input state),|e"), where[a) and  given by |7|=AK3/AK,. For |7|>1, these states are

|a') are the Glauber coherent states. We easily find the folsqueezed i ,, and for| | <1, they are squeezed ify. We

lowing expectation values: consider here all the values of. The scheme of Luis and
Peina[21] can be used for producing both the @Jand the
(Ka)=(|a)?+|a’|?+1)/2, 4.27 SU(1,1) intelligent states. In particular, th€,-K; intelligent

states of Eq.5.3) can be generated in this scheme quite
conveniently. For these states, E§.2) reads

(AKg)?=(la|>+]a’[*)/4, (4.28
7]2
2 = =
(Ky)=lalla’|cos 6+ 6"), (4.29 (0)in= s B(AK,)? ~ 4snRB(AKy? oY
(Ky)=|al|a'|sin(6+ 6") (4.30 We will use the analytic representation in the basis of the
2/ y .

SU(1,1) generalized coherent statds{) [6]. This basis is
overcomplete, and any state in the Hilbert space can be ex-
where a=|ale’’, a'=|a’le'”. For 6+6'=0 and panded in it. For example, the $1J1) intelligent state
|a|=|a’|, we obtain

\7)= 2 Colk,n) (5.5
, =
(6h)e,p= 2| a|?sink?B’ (4.3) _ _
is represented by the function
N=(2|a|*+1)costB—1. (4.32 AN, 750 = (1= 21375k, \ )
* 1/2
These results are almost identical to E28 and (2.29 - C, m o, (5.6)
for the SU?2) interferometer with squeezed input states; the n=0 n!I'(2k)

only difference is the factor 2 befoler|>. We again have

two regimes:(i) fixed input state ¢=const) and variable Which is analytic in the unit disk| <1. The analytic repre-
interferometer, orii) fixed interferometer g=const) and sentation of the S{,1) intelligent states was studied in Ref.
variable input state. The first regime leads to the phase seh18]. The SU1,1) generators act oA ({) as first-order dif-
sitivity of order 1N, but is technically more complicated. ferential operator$6]:

The second regime is much more preferable from the tech-

nical point of view, but the phase sensitivity cannot be im-K =§Zi+2k§ K

proved over the standard noise limit. This duality in the be- " dg ' -
havior of the phase sensitivity is a direct consequence of the

fact that the S\(L,1) transformations performed by the four- Then Eq.(5.3) can be converted into a first-order linear ho-
wave mixers do not preserve the total number of photons. mogeneous differential equation far({):

. d _.d
—d—g, Ky={¢—+k. (5.7
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, A , L =1—(x=1)%t/4. (5.16
(p+2¢—n¢ )d—§+2(|)\+k—kn§)/\:0. (5.9

We can write moments of the generakoy over the states

The solution of this equation can be easily found to be |\, 7) as derivatives of\" with respect tot. By using the
propertyKs|k,n)=(k+n)|k,n), we obtain

AL 7 0)=N"Y(1+ 7)) (1-7) 72, (5.9

, PPN taN [t N2
where N is a normalization factor, and we have defined (AK3) v TN \wNatl (5.17
=(?+1-Diy, |d<1, (5.10 By using formula(3.22), we find the exact analytic expres-
sion for the variance oKj:
A =i(k+1)Vp?+1. (5.11
. g _ , k[ 2k (FP+ )P+ 1)
The analyticity condition for the functiom (k,\,%;{) re- (AK3) = 1+ K B0 T 5,2, 1
quires thatl can be only a positive integer or zero: [ (27°+1) 51
[=0,1,2,....Then Eq.(5.11) becomes a quantization con- (5.18
dition which means that the operatgK,+iK3 has a dis- o
crete spectrum, and the corresponding eigenstates and eigen- B. Phase sensitivity
values are characterized by the quantum nunhber Substituting the above result foAK3)? into Eq. (5.4),

In the simplest case=0, the functionA (k,1,7;{) repre- e find the phase sensitivity of the interferometer fed with
sents theK,-K; intelligent states which are simultaneously the SU1,1) intelligent states:

the SU1,1) generalized coherent statds {,) with o= 1.

Since is real,{, is also real. Hence there is an intersection , Gkl 7

between the intelligent and coherent states. States which be- (5¢)im:2k—sinh?§’ (5.19
long to this intersection allow us to achieve the measurement

accuracy(4.20 due to the fact that, is real. Therefore, where we have introduced the factor

these states lead to the best phase sensitivity among all the

coherent states. However, we will see that the noise level (2k+1) (PP+1)PE2 292+ 1)] 1
(4.20 can be surpassed by using the (31) intelligent Gkl =1+ — POZ T (5,71 1)
states which are not the generalized coherent states. ! 7 (5.20

As in Sec. lll A, the functionA (k,I,#%;{) of Eq. (5.9 is ’
expanded into a Taylor series {nas the generating function In the case of the coherent-intelligent intersection0,
for the Lagrange polynomialg6,27: and thenG(k,l,»)=1. Then the phase uncertainty is on the

- noise level(4.20. The use of the S{,]) intelligent states
CN A2 (=1,2k+1), _ n that do not belong to the coherent-intelligent intersection

Alkl =N ,20 On (=Unm)eh (.12 (i.e., with1#0) can yield a great improvement of the mea-

surement accuracy. The quantitative measure of the improve-
By using the relation(3.15 between the Lagrange and Ja- ment is theG-factor that can be expressed as the ratio be-
cobi polynomials, we obtain the decomposition of thetween the intelligent phase uncertainty and the(S1)

SU(1,)) intelligent states over the orthonormal basis: coherent noise level.20:
o [ niT(2k) 12 (6B)m (5

IN, ) =N || P M2 mm 002k n), G(k,1l,7)= =2k : (5.21)
2 | Taken| P b=z, = Gz,

(5.13
] It follows from the properties of the Jacobi polynomials that
where we have defined the G-factor is always less than unity, so the measurement
K=( 2+ 1)~ 12 accuracy is improved for the SU,1) interferometers fed
7 ' with intelligent light. Quantitative results are presented in
Fig. 6, where the factoG(k,l, ) is shown as a function of
n for k=1/2 and different values df We see that for given
J the larger the value df the smaller th& factor. The best
measurement accuracy for givérandk is achieved when
n—0. For large values ofp, the G factor approaches a

t=4( %+ 1)/ ?=4/(1—x?). (5.19

By using the summation theorem for the Jacobi polynomial
[26], we find the normalization factor:

= nIT(2K) limiting value. By using the properties of the Jacobi polyno-
N=2 m[Pﬂ*“v*Zk*'*m(x)]ztn mials, we find
n=0
| lim G(k,l,7)=[1+1(2k+1)/k] "%, (5.22
—g g2k I'T'(2k) (2k=10 1 4 (5.15 7—0
U T(2k+) ! S.S.)’ '
lim G(k,l,7)=(1+1/k) L. (5.23

where n—®
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FIG. 6. The factorG(k,l,7) of Eq. (5.20 versusy for k=1/2
and different values of.

An interesting property of S(1,1) interferometers is that for
[#0 the coherent noise levéh.20 is surpassed for any
value of . The phase uncertaint.19 for »—0 reads

1

. 2 _
M (00 )in= 3 sinR ATk +1(2k+1)]

7—0

(5.29

We have seen for the §B) interferometer that there is a
subtlety concerned with the limig—0. A similar problem
also arises for the SW,1) interferometer. It follows from the
eigenvalue equatiofb.3) that for =0 theK,-K; intelligent
state|\, ) transforms into the statgk,l) (an eigenstate of
K3 with eigenvaluek+1). However, this transition does not
preserve the relation

(AKz)ZZ(AK3)2/772, (5.29
which has been used in Ep.4) that defines the phase sen-
sitivity for the intelligent states. The proper{$.25 holds
for any intelligent state with arbitrarily smdll|. Therefore,
we can take the limity—0 for the phase uncertainty
(69) 5“ calculated with the use of the relatiéh.25. But we
see that the result5.24) obtained in this way is different
from the resul(4.14) for the input stategk,n). This discrep-
ancy occurs because the “intelligent” relatidb.25 does
not exist for the statelk,n). Therefore, the intelligent states
IN,7) with arbitrarily small| 7| and the statefk,|) lead to
different phase uncertainties. L

We proceed by examining the phase sensitidg(N)
for the intelligent input. The mean total numb¢of photons
passing through the phase shifters is given by BRD. It
follows directly from the eigenvalue equatiof.3) that
(Ky)=(Re\)/ 5, (Kz)=Im\. Then we use the guantization
condition(5.11) and find

(K2)=0, (Kg)=(k+1)y7p*+1. (5.26
ThenN is given by
N=2 costB(k+1)Vn2+1-1. (5.27)

We see thaN_depends on the parametérd, » of the input
state and on the paramejgiof the interferometer. The phase
sensitivity for fixed input state is

C. BRIF AND A. MANN

FIG. 7. InS¢ as a function of IN for an SU1,1) interferometer
with sinf?8=1, using the S(L,) intelligent states withk=1/2 and
various values ofp. The values of§¢ and N are calculated for
1=1,2,...,150.

1 2(k+D2(5?+1)G(k,1,7)
54)2 - . .2
( ¢) |k,|,77 k (N+1)2_4(k+|)2(7]2+1) (5 8)
For »—0 this phase sensitivity is
56 = - (5.29
(09 b=z 21410 (N+1)2—4(k+1)?’ '

Forl=0 andk=1/2, this result reduces to Ef.25 for the
vacuum input. Fok=1, we obtain

2 e
(5&)% (N+1)2—4(1+1)2

(5.30
We see that this regime can yield a phase sensitivity of order
1/N, that, of course, depends on the available rangg.of

In the regime of fixed interferometeBE& const) and vari-
able input state, the phase sensitivity depends on the three
parameters of the statee; |, and». We study the dependence
8¢ (N) numerically: for fixed sinf3=1 and some values of
k and 5, we evaluate numericallydg)? of Eqg. (5.19 and
N of Eq. (5.27) for I=1,2,...,150. These results are pre-
sented in Fig. 7 where ¥ is plotted versus IN for_

k=1/2 and various values ofy. In the region of largeN
(small phase uncertaintya good approximation is the power

law <N~ E. We introduce the exponent

B d(Inéo)
d(InN_) N oo ’

(5.31)

which expresses the slope of the curves in Fig. 7 for large
N. This quantity is plotted in Fig. 8 versug It is seen that
E approaches unity forp—0 and rapidly decreases to one
half as» increases.

Using the limit (5.22), we find the phase sensitivity for
fixed interferometer g§=const) and the input state with
n—0, fixedk and variabld:
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1 standard noise limis¢~ 1/NY2 We showed that these limi-
tations can be overcome by the use of the remarkable squeez-

09 ing properties of the intelligent states. On the one hand, the
SU(2) intelligent states can lead to the phase sensitivity

o8 8¢~1IN in SU2) interferometers without additional

E

squeezing-producing devices. This avoids the duality men-
tioned above. On the other hand, @1) interferometers fed
with the SU1,1) intelligent states achieve phase sensitivity
of order 1N in both regimes: for variable squeezing param-
05 eter B of the four-wave mixer, and for variable intensity of
0.0002 0.0004 0.0006 0.0008 0.001 the input State.
g L .

The quantum noise is formally expressed via the uncer-
tainty relations. Quantum states which optimize the uncer-
tainty relations lead to minimum noise. This property is
called intelligence and it can be manifested in arbitrarily
strong squeezing achieved by the intelligent states. It means
that while the uncertainty of a quantum observable is dra-

S|, .~ 2 cotfB 3 matically reduced, the uncertainty of a conjugate observable
(06) %[ 5~ (N_+ 1)2—4(k2—k)cosf?,8' (5.32 is increased as little as allowed by quantum theory. The
guantum noise in S(2) and SU1,1) interferometers is ex-

0.7

06

FIG. 8. The exponenE of Eq. (5.3) versusyn for an SU1,1)
interferometer with siMB=1, using the SUL,1) intelligent states
with k=1/2.

This phase sensitivity is optimized fér=1/2: pressed via the uncertainty relations for the Hermitian gen-
erators of the corresponding groups. Therefore, the best way

(56 2 cotttB (5.33 to reduce this noise is by using the @Jand SU1,1) intel-
d)lp (N_+ 12+ coskg’ . ligent states respectively, which are highly squeezed for an

appropriate group generataly(andKs, respectively, in the

Thus we see that the interferometer operated in the regime §€hemes considered hgré&he production of these states by
fixed 8 can achieve a phase sensitivity of orde it means means of advanced experimental techniques looks quite re-

that SU1,1) interferometers with intelligent input states can alistic in the near future. We aiso note that the poweriul

surpass the standard noise limit in both regimes: for fixeoanalytlc method used for calculations with the intelligent

input state, and for fixed interferometer. This remarkabIeSt"‘}{'Eg: can be of considerable interest to workers in quantum

property distinguishes the intelligent states from the othef In the present paper we adopted an ideal assumption that

states discussed above. the input two-mode state has a definite total number of pho-
tons N=2j [for an SU2) interferometef or a definite
photon-number differency=2k—1 [for an SU1,1) inter-

In this paper we considered in detail the phase sensitivijerometet. In other words, we considered input states be-
of passive and active interferometers characterized by th®nging to irreducible representations of @Jand SU1,1).
SU(2) and SU1,1) groups respectively, for various types of A more realistic assumption should deal with an input state
input states. A usual method to reduce the quantum noise iwhich is a superposition of the intelligent states with differ-
interferometers is by the application of squeezing-producingnt values off or k. Properties of such a superposition state
active devices. We showed that the use of such active davill depend on the photon-number sum and difference dis-
vices (e.g., four-wave mixejsleads to a duality in the be- tribution in the SU2) and the SUL,1) case, respectively.
havior of the phase sensitivity. If the total numid¢iof pho-
tons passing through the phase shifters is determined by
means of the squeezing paramegeof the four-wave mixer, C.B. gratefully acknowledges the financial help from the
the interferometer can achieve the phase sensitivityrechnion. A.M. was supported by the Fund for Promotion of
8¢~ 1IN. However, ifN is determined by changing param- Research at the Technion, by the Technion—VPR Fund, and
eters of an input statée.g., the intensity of a coherent laser by GIF—German-Israeli Foundation for Research and De-
bean), the phase sensitivity cannot generally surpass theelopment.

VI. DISCUSSION AND CONCLUSIONS

ACKNOWLEDGMENTS

[1] C. M. Caves, Phys. Rev. R3, 1693(198)). [4] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev.38,
[2] R. S. Bondurant and J. H. Shapiro, Phys. Rev3® 2548 4033(1986.
(1984. [5] M. J. Holland and K. Burnett, Phys. Rev. Leftl, 1355

[3] The influence of the detector efficiency on the measurement  (1993.
accuracy in interferometers fed by squeezed light has been[6] A. M. Perelomov, Commun. Math. Phy26, 222(1972; Usp.
recently considered in M. G. A. Paris, Phys. Lett281, 132 Fiz. Nauk 123 23 (1977 [Sov. Phys. Usp20, 703 (1977];
(1995. Generalized Coherent States and Their Applicati(®ringer,



4518

Berlin, 1986.

C. BRIF AND A. MANN 54

[19] C. C. Gerry and R. Grobe, Phys. Rev.54, 4123(1995.

[7] C. Aragone, G. Guerri, S. Salamo, and J. L. Tani, J. Phy&. A [20] G. S. Prakash and G. S. Agarwal, Phys. Rev52 2335

L149 (1974; C. Aragone, E. Chalbaud, and S. Salamo, J.

Math. Phys.17, 1963(1976; S. Ruschin and Y. Ben-Aryeh,
Phys. Lett. A58, 207 (1976.

[8] K. Wodkiewicz and J. H. Eberly, J. Opt. Soc. Am. 2B 458
(1985.

[9] C. C. Gerry, Phys. Rev. 81, 2721(1985; 37, 2683(1988.
[10] M. Hillery, Phys. Rev. A36, 3796(1987; 40, 3147(1989.
[11] G. S. Agarwal, J. Opt. Soc. Am. B, 1940(1988.

[12] G. S. Agarwal and R. R. Puri, Phys. Rev.44, 3782(1990.

[13] V. Buzek, J. Mod. Opt37, 303(1990.

[14] M. M. Nieto and D. R. Truax, Phys. Rev. Let?1, 2843
(1993.

[15] J. A. Bergou, M. Hillery, and D. Yu, Phys. Rev. A3 515
(199; D. Yu and M. Hillery, Quantum Opt6, 37 (1994.
[16] G. S. Prakash and G. S. Agarwal, Phys. Rev5@ 4258

(1994).
[17] D. A. Trifonov, J. Math. Phys35, 2297(1994).
[18] C. Brif and Y. Ben-Aryeh, J. Phys. 27, 8185(1994).

(1995.

[21] A. Luis and J. Péna, Phys. Rev. A3, 1886(1996.

[22] M. Hillery and L. Mlodinow, Phys. Rev. A18, 1548(1993.

[23] C. Brif and Y. Ben-Aryeh, Quantum Semiclass. Oft. 1
(1996.

[24] U. Leonhardt, Phys. Rev. A9, 1231(1994.

[25] More details on four-wave mixers can be found in M. D. Reid
and D. F. Walls, Phys. Rev. 81, 1622(1985, and references
therein.

[26] H. M. Srivastava and H. L. Manocha, Treatise on Generat-
ing Functions(Ellis Horwood, Chichester, 1984Secs. 2.3,
8.5. Useful formulas for generating functions can be also
found in W. Miller Jr., Lie Theory and Special Functions
(Academic Press, New York, 1958

[27] Higher Transcendental FunctionsBateman Manuscript
Project, edited by A. Erdgi (McGraw-Hill, New York, 1953,
Vol. 3, Sec. 19.11.

[28] V. Bargmann, Ann. Math48, 568 (1947).



