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We further develop the theory of the superradiant laser by allowing for submaximal atomic collectivity and
spontaneous emission. In the absence of spontaneous emission we obtain a set of stationary solutions for
different degrees of atomic cooperativity and investigate their fluctuation properties and interrelations with
respect to the underlying U~3! symmetry. We use this set of solutions to discuss the breaking of U~3! by
spontaneous emission.@S1050-2947~96!10510-2#

PACS number~s!: 42.50.Fx, 42.50.Dv, 42.50.Ar

I. INTRODUCTION

Superfluorescent pulses can be produced byN collec-
tively radiating identical atoms@1–3# as these atoms decay
from an initially excited state to the ground state. In contrast
to such transient behavior would be the stationary output of
the superradiant laser@4,5# to be discussed here. Collective
behavior would be manifested in the proportionality of the
output intensity toN2 and of the linewidth toN22. More-
over, as was shown in@4,5#, such a laser could display nearly
perfect squeezing of the intensity fluctuations. While inco-
herent processes like pump fluctuations or spontaneous emis-
sion are in principle detrimental to the noise suppression of
the fully cooperative and coherently pumped ideal case, a
considerable degree of squeezing can survive in the presence
of such perturbations@5#.

The present paper extends the previous investigations of
the superradiant laser in several aspects. Most importantly,
we relax the restriction to the maximal cooperativity ofN
atoms which would arise in the absence of incoherent per-
turbations if the atoms were initially prepared in a fully sym-
metric state like the overall ground state. Since our model
assumes identical three-level atoms coupled to resonator
modes through the collective population and polarization op-
eratorsSi j5(m51

N (u i &^ j u)m, with u i &m the i th state of the
mth atom, i50,1,2, the time evolution has U~3! symmetry
and stays in a fully symmetric subspace if it starts there. We
here allow for partially symmetric subspaces and thus sub-
maximal cooperativity. An interesting surprise is incurred in
the semiclassical analysis: Depending on the values chosen
for the conserved operators of U~3!, C15( iSii5N,
C25( i , jSi j Sji , C35( i , j ,kSi j SjkSki , the classical phase
space~relevant for the limitN→`) may have either four or
six-dimensions. In the former case, a stationary regime is
attained which differs from the one previously found for
maximal cooperativity (C25C1

2, C35C1
3) only by some res-

caling: Roughly speaking, submaximal cooperativity ofN
atoms is equivalent to maximal cooperativity of a smaller

number of atoms. In the case of a six-dimensional atomic
phase space more complicated behavior arises. In particular,
the frequencies of the radiated modes are shifted away from
the bare resonances. In no case have we found partial coop-
erativity to fully undo the noise suppression characteristic of
maximal cooperativity.

We then take up spontaneous emission once more. The
partial-cooperativity solution pertaining to the four-
dimensional atomic phase space in the absence of spontane-
ous emission turns out to play an important role for the treat-
ment of spontaneous emission as well, even though this
perturbation breaks the U~3! symmetry of the atomic dynam-
ics.

The paper is organized as follows. In Sec. II we describe
in detail the model of the superradiant laser, the Heisenberg
equations of motion which govern its evolution, and the cor-
responding constants of motion. In Sec. III we determine, in
the semiclassical limitN@1, the admissible values of the
constants of motion. There we also discuss the construction
of solutions with partial atomic cooperativity, based on a
particular invariance property@related to U~3!# of the equa-
tions of motion. In Sec. IV we find the stationary solutions of
the superradiant laser with partial atomic cooperativity and
investigate their stability and fluctuation properties. In Sec.
V we establish the stationary regime corresponding to a six-
dimensional atomic phase space. In Sec. VI we employ a bit
of group theory to investigate the interrelations between the
solutions with partial atomic cooperativity and the underly-
ing U~3! symmetry of the superradiant laser. Finally, in Sec.
VII we discuss the breaking of the U~3! symmetry by spon-
taneous emission using the set of solutions with partial
atomic cooperativity.

II. DYNAMICS OF THE SUPERRADIANT LASER AND
ITS CONSTANTS OF MOTION

As in Refs. @4,5#, we consider the simplest model of a
superradiant laser which accounts forN three-level atoms
~see Fig. 1! placed inside a resonator. We assume a pump
process 0→2 consisting of a classical resonant~two-photon!
excitation. A coupling of the atoms to a cavity mode is as-
sumed in tune with the transition 2↔1. We shall refer to this
mode as to the ‘‘active’’ one. Finally, a certain relaxation
process 1→0 has to be included to recycle the atoms back to
the influence of the pump. If spontaneous emission between
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levels 1 and 0 serves that purpose one has the so-called Ra-
man laser whose quantum noise properties were recently in-
vestigated by Ritsch, Marte, and Zoller in Ref.@6#.

We require a different type of relaxation by coupling the
atoms to another cavity mode resonant with the transition
1→0. With respect to the latter mode the resonator does not
need to have a high finesse. In fact, in order to simplify the
model we assume that this mode is damped sufficiently
strongly so that it can be eliminated adiabatically. That is
why we refer to this mode as the ‘‘passive’’ mode. The situ-
ation in consideration would, in the absence of level 2 and
with level 1 populated initially, entail the no-ringing limit of
superfluorescence on the transition 1→0 , as observed in
Ref. @3#. As we have shown in Refs.@4,5#, such a scheme
with a third level and a stationary coherent pump yields sta-
tionary superradiance on both transitions, 2↔1 and 1↔0.

As long as we neglect spontaneous emission and other
incoherent processes, the dynamics of the atoms is fully col-
lective and can be described in terms of global operators
Si j5(m51

N Si j
m5(m(u i &^ j u)m. There are nine suchSi j ; those

with iÞ j refer to polarizations while each ‘‘diagonal’’ one,
Sii , measures the global occupation of leveli ; they obey
Si j
†5Sji and@Si j ,Skl#5d jkSil2d i l Sk j . By choosing suitable
linear combinations@namely, i (Si j1Sji ) and Si j2Sji # one
obtains nine anti-Hermitian generators of the Lie algebra of
the group U~3!. Denoting the creation and annihilation op-
erators of photons in the active~passive! mode bya and
a† (b andb†), we have the interaction Hamiltonian

H05 i\ga~a
†S122aS21!1 i\V~S202S02!

1 i\gb~b
†S012bS10!. ~2.1!

In order to secure a ring of allowed transitions we assume
that the pump process consists of a two-photon absorption;
the pump strengthV is proportional to the product of the
amplitudes of the two classical pump waves and is chosen
real; ga(gb) is the coupling constant of the active~passive!
mode with the corresponding atomic transition.

When neglecting the spatial dependence of the atomic op-
erators in the Hamiltonian~2.1! we assume either the dimen-
sion of the atomic system much smaller than the wavelength
of the laser light, or a running-wave setup with suitable
phase matching.

The Heisenberg equations of motion generated by the
Hamiltonian ~2.1! must be complemented by the damping
terms for the mode amplitudes and the corresponding Lange-
vin forces which provide the conservation of the Bose com-
mutators@a(t),a†(t)#5@b(t),b†(t)#51 at all times. Assum-
ing that the damping ratekb of the passive mode is much
larger thanka of the active one and eliminating adiabatically

the passive mode, we arrive at the following set of equations
of motion for the superradiant laser@5#:

Ṡ0252gaaS012V~S222S00!1gS12S012A2gS12hb ,

Ṡ125gaa~S222S11!1VS102gS10S021A2ghb
†S02,

Ṡ015gaa
†S022VS211g~S112S00!S012A2g~S112S00!hb ,

~2.2!

Ṡ0052V~S021S20!12gS10S012A2g~S10hb1hb
†S01!,

Ṡ115ga~aS211a†S12!22gS10S011A2g~S10hb1hb
†S01!,

Ṡ225V~S021S20!1ga~aS211a†S12!,

ȧ~ t !5gaS122kaa~ t !1A2kaha~ t !.

Here g5gb
2/kb is a rate constant for the collective atomic

relaxation 1→0. The quantum Langevin noise forcesha
with a5a,b are taken as independent with Gaussian statis-
tics and white spectra according to

@ha~ t !,hb
†~ t8!#5^ha~ t !hb

†~ t8!&5dabd~ t2t8!,

^ha~ t !&5^ha
†~ t !hb~ t8!&5^ha~ t !hb~ t8!&50, ~2.3!

and may be considered as representatives of the vacuum
fluctuations of the electromagnetic field outside the resona-
tors.

The system of equations~2.2! possesses a set of constants
of the motion. First, it is easy to verify invariance under a
phase shiftf of the form

a→eifa, S12→eifS12, S10→eifS10, ha→eifha ,

hb→e2 ifhb . ~2.4!

Moreover, the three operators

C15(
i
Sii , C25(

i , j
Si j Sji , C35(

i , j ,k
Si j SjkSki

~2.5!

commute with the Hamiltonian~2.1!. The operatorsC2 and
C3 are the Casimir invariants of the group U~3! which com-
mute with all operatorsSi j , @Ck ,Si j #50. In Sec. VI we shall
calculate the spectra of these Casimir operators and discuss
the corresponding irreducible representations of U~3!.

As in @4,5# we shall confine ourselves to the semiclassical
limit, N@1. Each of the eleven operatorsSi j ,a,a

† in the
Heisenberg equations~2.2! can then be represented as a sum
of a dominant ‘‘classical’’ termX̄;N and a ‘‘small’’
operator-valued fluctuationdX,

X5X̄1dX. ~2.6!

To find the dominant partX̄ from the Heisenberg equations
~2.2! we drop the Langevin noise forces and degrade each
operatorX to a c numberX̄.

The solution of the classical equations of motion depend
on the expectation values of the three constants of motion

FIG. 1. Scheme of three-level superradiant laser.
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C1 ,C2 ,C3. To within corrections of relative order 1/N we
may factorize the expectation values of operator products as,
e.g.,Si j (t)Skl(t)5S̄i j (t)S̄kl(t), and obtain

C̄15(
i
S̄i i5N, C̄25(

i , j
S̄i j S̄j i5c2N

2,

C̄35(
i , j ,k

S̄i j S̄jkS̄ki5c3N
3. ~2.7!

Clearly, the mean value ofC1 is just the number of atoms
that is preserved in our scheme. The two other quantities
depend upon the atomic initial state. We shall refer to their
scaled versionsc2 andc3 as to cooperativity parameters.

III. ADMISSIBLE COOPERATIVITY PARAMETERS

To be physically acceptable, the solutions of the classical
equations of motion have to satisfy two requirements of
quantum-mechanical origin. First, the mean valuesS̄i j must
form a nonnegative Hermitian matrix. Second, the diagonal
elements sum up to the number of atoms. These restrictions
imply three Schwartz’ inequalities,S̄ii S̄j j2S̄i j S̄j i>0 and
0<S̄ii /N<1. As further consequences we now propose es-
tablishing minimum and maximum values ofc3 for given
c2 andN.

We can obviously writec2 andc3 as the traces of powers
of the Hermitian and non-negative matrixS̄i j ,

N2c25trS̄2, N3c35trS̄3. ~3.1!

The eigenvaluesl i ,i51,2,3, of S̄i j must be real and non-
negative. From ~3.1! we have c25 l 1

21 l 2
21 l 3

2 and
c35 l 1

31 l 2
31 l 3

3. Observing that (S̄001S̄111S̄22)/N5 l 11 l 2
1 l 351 we immediately obtain

1

3
<c2<1,

1

9
<c3<1. ~3.2!

Using Newton’s formulas@7# we express the coefficients of
the characteristic polynomial of the matrixS̄i j via its traces
and arrive at

~ l2 l 1!~ l2 l 2!~ l2 l 3!5 l 32 l 21
1

3
~12r 2!l2

1

3
~c32r 2!,

~3.3!

where we introduced the participation parameter

r5A3c221

2
, 0<r<1. ~3.4!

The three roots of the third-order polynomial~3.3! are real
only if its discriminant

D52
1

9
r 619S c32 2

r 2

3
2

1

18D
2

~3.5!

is smaller than zero@7#, which gives

116r 222r 3

9
<c3<

116r 212r 3

9
. ~3.6!

Applying the Hurwitz criterion@8# to the third-order poly-
nomial ~3.3! we find that all rootsl i ,i51,2,3 are non-
negative only if

r 2<c3 . ~3.7!

Hence we finally obtain the following relation between the
admissible cooperativity parametersr andc3:

c3
2~r !<c3<c3

1~r !, ~3.8!

where

c3
2~r !5min$r 2,~116r 222r 3!/9%

5H ~116r 222r 3!/9, 0<r<1/2,

r 2, 1/2<r<1,

c3
1~r !5~116r 212r 3!/9, 0<r<1. ~3.9!

This region is shown in Fig. 2;r51 brings us back to the
case of the full cooperativity,c25c351; minimal cooperat-
ivity is attained forc251/3, c351/9, i.e.,r50; in this case
the mean values of the atomic populations are all equal,
S̄ii5N/3, and all stationary polarizations vanish,S̄i j50,
iÞ j .

The system of Heisenberg equations of motion~2.2! has a
particular symmetry. Suppose that we have found a time-
dependent solutionSi j (t),a(t) of the system~2.2! for Ñ at-
oms in full cooperativity, i.e., C̃15Ñ, C̃25Ñ2,
C̃35Ñ3. Using this solution we can construct two other so-
lutions as follows:

FIG. 2. The region of admissible cooperativity parametersc2
andc3 according to~3.9!. In the text we refer to curvec3

1(r ) as the
upper boundary and to the two segments ofc3

2(r ) as the lower
(0<r<1/2) and right (1/2<r<1) boundaries.
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Sii
e ~ t !5

12er

3r
C̃11eSii ~ t !, ae~ t !5ea~ t !, for e561,

S02
e ~ t !5S02~ t !, S12

e ~ t !5S12~ t !, S01
e ~ t !5S01~ t !,

for e511, ~3.10!

S02
e ~ t !5S02

† ~ t !, S12
e ~ t !52S12

† ~ t !, S01
e ~ t !5S01

† ~ t !,

for e521.

Here we have introduced a bivalued parametere561 which
we will use throughout the paper. Using the fact thatC̃1

commutes with allSi j it is easy to verify thatSi j
e (t) and

ae(t) obey the same commutation relations asSi j (t) and
a(t). By direct substitution of these solutions into the evolu-
tion equations~2.2! we observe that the first one, i.e., the one
with e511, satisfies the same equations asSi j (t),a(t)
while the second, withe521, formally solves the time re-
versed system, dSi j

e /dt52dSi j /dt, dae/dt52da/dt.
Since time reversal,t→2t, does not affect the stationary
solution, we can use the transformation~3.10! to construct
two new stationary solutions of the system~2.2! using a
given solutionS̄i j ,ā for Ñ atoms.

Requiring that the new solutions describeN atoms we
immediately get from the transformation~3.10! that
Ñ5rN. Inasmuch as all populationsSii

e andSii must be posi-
tive the first new solution makes physical sense only as long
as 0<(12r )N/3<N/3. It also follows for e511 that
S̄ii
e>(12r )N/3, i.e., that all atomic levels are populated by

at leastN(12r )/3 atoms. Upon semiclassically evaluating
the Casimir constants for the casee511 we find the coop-
erativity parameterc25(112r 2)/3, c35c3

1(r ), i.e., ac-
cording to the upper boundary in Fig. 2. In conclusion, the
transformation~3.10! with e511 reveals that all points on
the upper boundaryc3

1(r ), 0<r<1, of the allowed range
of c3 andr actually correspond to stationary solutions of the
superradiant laser. These solutions are all related to one an-
other such that, summarily speaking, submaximal cooperat-
ivity corresponds to full cooperativity of a smaller number of
atoms.

Similarly, for the second new solution (e521) to make
physical sense both theSii andSii

e must be nonnegative. This
gives the restrictions 0<(122r )N/3<Sii

e<(11r )N/3. The
participation parameter is thus confined to the reduced range
0<r<1/2. Moreover, none of the atomic levels can accom-
modate more than (11r )N/3<N/2 atoms. Once more evalu-
ating the Casimir constants we again findc25(112r 2)/3
but c35(116r 222r 3)/95c3

2(r ), the latter equality due to
0<r<1/2. We conclude that all points on the lowest bound-
ary of the allowed range in ther ,c3 plane correspond to
stationary states of the superradiant laser. These solutions
connect continuously to the one of smallest cooperativity but
not, in contrast to the one on the upper boundaryc3

1(r ), to
the point of maximal cooperativity.

The upper and the lower boundaries,c3
6(r ), are distin-

guished from all the other points within the region of admis-
sible c2 and c3 by the fact that the Schwartz inequalities
generalize to identities on these lines. Indeed, we have

shown in Ref.@5# that for the pointr51, c351 we have
uS̄i j u25S̄ii S̄j j and, in addition,c[arg(S̄10S̄02S̄21)50. Using
the transformation~3.10! we can expressS̄i j throughS̄i j

e and
obtain the following relations between the mean values of
polarizations and populations holding on the upper bound-
ary, c3

1(r ), 0<r<1,

uS̄i j
e u25S S̄iie2N

12r

3 D S S̄j je 2N
12r

3 D , iÞ j ,

ce50, e511. ~3.11!

The corresponding relations for the lower boundary,
c3

2(r ), 0<r<1/2, read as

uS̄i j
e u25S S̄iie2N

11r

3 D S S̄j je 2N
11r

3 D , iÞ j ,

ce5p, e521. ~3.12!

As for the full collectivity investigated in Ref.@5#, these
relations offer an opportunity to simplify the analysis of the
superradiant laser for the collectivity parameters 0<r<1/2,
c3

2(r ) and 0<r<1, c3
1(r ). The simplification is based on

the four arising constants of motion of the classical dynami-
cal equations. Indeed, if the initial atomic configurations are
chosen so that the conditions~3.11! or ~3.12! hold at t50,
they will be preserved for all other times. The set of seven
constants of the motion consisting ofN,C2 ,C3 and~3.11! or
~3.12! contains five independent ones. These reduce the
number of independent atomic variablesS̄i j

e from nine to
four. Solutions withr andc3 inside the allowed range shown
in Fig. 2 have two constants of the motion less.

A conclusion may be drawn which is worth a little em-
phasis. Quantum-mechanical U~3! dynamics ~as executed
here by a collection ofN identical three-level atoms! may
have a limiting classical dynamics~attained here asN→`)
taking place in a phase space of dimension either four or six,
depending on the initial state. The dimension is six for pairs
c3 ,r inside the range shown in Fig. 2 as well as on the right
boundary,c35c3

2(r ), 1/2<r<1. The dimension four arises
for pairsc3 ,r on either the upper or the lower boundary. No
such dimensional ambiguity is possible for U~2! dynamics
while the number of different possible phase space dimen-
sions increases for U(n) asn grows,n53,4, . . . .

IV. STATIONARY SOLUTIONS AND FLUCTUATION
PROPERTIES OF THE SUPERRADIANT LASER

WITH PARTIAL COOPERATIVITY

In this section we shall investigate the stationary solutions
and the fluctuation spectra of the superradiant laser for the
boundary cooperativity parametersc3

1(r ), 0<r<1 and
c3

2(r ), 0<r<1/2. We confine ourselves, as before, to the
semiclassical limit,N@1.

To describe the stationary solution of the classical equa-
tions of motion we introduce the same dimensionless param-
eters as in@4#, namely, a dimensionless coupling strength
c, an effective pump strengthp, and a time scale ratioj,
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c5
ga
2

kag
, p5

V

NgAc
, j5

Ng

ka
. ~4.1!

Note that the pump parameterp and the time scale ratioj
depend on the number of atoms in the cavity.

Solving the equations of motion in the stationary regime
we obtain two real valued solutions (e561) which are ex-
pressed in terms of a single amplitudex as

S̄01
e /N5x, S̄02

e /N5
x2

pAc
, S̄12

e /N5e
x

Ac
,

S̄00
e /N5

1

3 F12eS p1~122c!
x2

pcD G ,
S̄11
e /N5

1

3 F12eS 22p1~11c!
x2

pcD G , ~4.2!

S̄22
e /N5

1

3 F12eS p1~c22!
x2

pcD G ,
āe/N52

e

Ac
x.

We would like to point out here that in the case of full
cooperativity the alternativee561 formally arises as well.
However, the minus sign leads to a physically unacceptable
solution in conflict with the Schwartz inequality,
uS̄i j u2<S̄ii S̄j j . In our previous publication@5#, devoted to
full cooperativity, we had employed the Schwinger represen-
tationSi j5zi

†zj which enforcesuS̄i j u25S̄ii S̄j j . Therefore, the
solution with the minus sign was automatically ruled out.

Inserting the solutions~4.2! into the expression for the
mean value of the Casimir operatorC2 we obtain an equation
for the amplitudex which entails

x5Apc~r2p!

11c
. ~4.3!

Surprisingly, we do not need the expectation valueC̄3 to
determine the stationary solutions but rather obtain the two
corresponding collectivity parametersc3

6(r )5(116r 2

12er3)/9 after inserting the stationary solutions~4.2! into
C̄3. We may thus infer that resonant stationary solutions can
be achieved only when the collectivity parameters lie on the
upper or lower boundaries of the allowed region in Fig. 2.

To see explicitly how the stationary solutions for partial
cooperativity given by~4.2! are related to those for full co-
operativity found in Ref.@5#, we rewrite~4.2! in terms of the
following rescaled parameters:

Ñ5Nr, p̃5p/r , j̃5r j. ~4.4!

Note that the rescaled pump strengthp̃ now is allowed to
take on values from 0 to 1, i.e., as isp for full cooperativity.
In terms of these parameters the amplitudex reads

x5rAp̃c~12 p̃!

11c
, ~4.5!

and the stationary solutions~4.2! take on the form

S̄01
e 5Ap̃c~12 p̃!

11c
Ñ, S̄02

e 5
c~12 p̃!

~11c!Ac
Ñ,

S̄12
e 5eAp̃~12 p̃!

11c
Ñ,

S̄00
e 5ÑF12er

3r
1e

c~12 p̃!

11c G ,

S̄11
e 5ÑF12er

3r
1ep̃G , ~4.6!

S̄22
e 5ÑF12er

3r
1e

12 p̃

11cG ,

āe52eAp̃~12 p̃!

11c
Ñ.

These reflect precisely the transformation~3.10!. On the
other hand, all terms containing the pump strengthp̃ are the
same as for full cooperativity withÑ atoms. The additional
p̃-independent terms in the atomic populations are necessary
to keep the total number of atoms equal toN. However, it is
now obvious from~4.6! that in the case of partial cooperat-
ivity with participation parameterr only rN of the totalN
atoms take part in the collective interaction.

The linear stability analysis for the partially cooperative
stationary solutions is done analogously to the case of full
collectivity, investigated in Ref.@5#. We linearize the
Heisenberg equations~2.2! around the stationary state~4.2!
with respect to small fluctuationsdSi j

e and dae and split
these fluctuations into Hermitian real and imaginary parts.
The linearized equations separate into two independent
blocks, a seven-dimensional one for the real parts~amplitude
fluctuations! and a four-dimensional one for the imaginary
parts~phase fluctuations!. Stability requires that all eigenval-
ues have positive real parts. With the help of the Hurwitz
criterion we obtain the following stability conditions:

ep̃,e
c1e~11c!/ j̃

112c
,

12c1e~12c2!/~ j̃c!

2
, p̃,

31c2e~12c2!/~ j̃c!

2
,

~4.7!

4444 54SEEGER, KOLOBOV, KUS´, AND HAAKE



0,eF2
12c

j̃2
1e

p̃~112c!22c

j̃

2c
@ p̃~112c!2c#~322p̃1c!

~11c!2 G .
In particular, fore511 we recover the stability conditions
of full collectivity found in Ref. @5#, now for properly res-
caled parametersp̃ and j̃. It is important to realize that the
two solutions obtained fore561 cannot coexist since they
arise for different values ofc3, i.e., c3

1(r ) for e511 and
c3

2(r ) for e521. We thus incur no bistability.
In Fig. 3 we have plotted the regions of stability in the

p̃,c plane for various time scale ratiosj̃. As we know al-
ready from the case of full cooperativity, good squeezing
arises forp!1 andc'1. Figure 3 reveals both solutions to
be stable in this region whenj̃!1 or j̃@1, i.e., in the bad-
and good-cavity cases.

Beyond the fluctuations whose stability is secured by
~4.7! we meet with six marginally stable eigenmodes, four
from the amplitude block and two from the phase block.
Four of these modes have vanishing eigenvalues and three of
these are related to displacementsdSi j

e changing the values
of the global constants of the motionC1 ,C2, and the phase
f appearing in the phase symmetry~2.4!. We cannot count
on C3 as yielding the fourth vanishing eigenvalue since for

the stationary state under discussionC3 is not independent of
C1 andC2.

In fact, infinitesimal displacementsdSi j
e changing global

constants of the motion must lead to vanishing eigenvalues.
This can be seen by considering such a constantC(X) and an
eigenmodedXi(t)5e2NgltdXi(0) of the linearized evolu-
tion equations~with Xi a shorthand for the various observ-
ables andl a dimensionless eigenvalue!. We then rewrite the
conservation lawC@X̄1dX(t)#5C@X̄1dX(0)# by keeping
only first-order terms in the displacementdX from the sta-
tionary pointX̄ and differentiate with respect to the time. We
thus obtainl( i(]C/]Xi)X5 X̄dXi50. Indeed then, the eigen-
value l must vanish for adX not confined to the plane
tangential to the surfaceC(X)5C(X̄) in the fixed pointX̄.

Quite different is the fate of displacements away from a
nonglobal constant of the motion~which yields only a single
isolated invariant surface in phase space! @10# such as the
three independent ones contained in~3.11! or ~3.12!. An ei-
genvalue associated with such a deviationdX may but need
not vanish@10#. In our present case the three independent
nonglobal constants of the motion actually still entail one
eigenmode~the one associated with a change of the phase
ce) with vanishing eigenvalue. The other two eigenmodes
come with breakings of the generalized Schwartz equalities
in ~3.11! or ~3.12! and yield a pair of purely imaginary ei-
genvalues

l56 i2rAp̃c. ~4.8!

FIG. 3. Stability domains of the stationary solutions~4.6! according to~4.7! in the (p̃,c) plane for various values of the time scale ratio
j̃. Cases~a!, ~b! pertain toe511; cases~c!, ~d! to e521. In ~a! the range of stability lies upwards of the curve for the respective value
of j̃ and in ~b!, ~c!, and~d! below.

54 4445SUPERRADIANT LASER WITH PARTIAL ATOMIC . . .



The latter two eigenmodes obviously correspond to values of
c2 and c3 away from the upper and lower boundaries
@c3

1(r ) with 0<r<1 andc3
2(r ) with 0<r<1/2# of the al-

lowed area in Fig. 2 and thus signal the behavior of the
system, to be discussed in the next section, forc2 and c3
inside the allowed area.

In Sec. VII we shall see that under the influence of spon-
taneous emission four of the six marginally stable eigen-
modes acquire negative real parts for the eigenvalues, i.e.,
become stable, due to the breaking of U~3!. Only two van-
ishing eigenvalues will then survive since only two globally
conserved quantities remain, the phasef from the phase
symmetry~2.4! and the number of atomsN.

Similarly to stationary solutions and stability analysis, the
fluctuation spectra of the superradiant laser with partial co-
operativity can be obtained from those for full cooperativity
by rescalingp→ p̃, j→ j̃. In Ref. @5# we had obtained a
particularly simple result for the amplitude fluctuation spec-
trum in the good-cavity limit,j@1. Now this result holds
true for j̃@1 and reads as follows:

^duout~v!duout~v8!&5~1/4!d~v1v8!H 12
S0~ p̃,c!

11v2ta
2 J ,
~4.9!

with the squeezing strengthS0( p̃,c),

S0~ p̃,c!5
1

2
1

2c

~11c!2
2

p̃2

2~12 p̃!2
, ~4.10!

and the width

1

ta
54ka

~12 p̃!~11c!

31c22p̃
. ~4.11!

Positive values of the squeezing strength indicate noise re-
duction below the vacuum level. Ideal squeezing is incurred
at p̃50, c51. Since zero pumping is admittedly not a par-
ticularly interesting working point of a laser it is important
that the squeezing strengthS0 has a rather flat maximum at
that point so that good squeezing prevails for weak nonvan-
ishing pumping.

Another quantity of interest is the low-frequency asymp-
totic version of the fluctuation spectrum of the phase quadra-
ture since it gives the linewidthDna of the laser output
through ^dvout(v)dvout(v8)&→d(v1v8)(āe)2Dna /v

2 for
v→0. The low-frequency divergence of
^dvout(v)dvout(v8)& as;1/v2 is characteristic of phase dif-
fusion ~see also@9#!. In the limit j@1 we obtain the line-
width

Dna
05

ka

~ āe!2
p̃2~11c!21~12 p̃!2~12c!2

c2112p̃
. ~4.12!

It may be well to point out that the low-frequency divergence
of ^dvout(v)dvout(v8)& as;1/v2 is related to the vanishing
eigenvalue associated with the phase symmetry~2.4!. Inter-
estingly, the other five eigenvalues with zero real parts do
not cause an analogous divergency in either amplitude or

phase quadratures. This is because the corresponding eigen-
modes are not driven by Langevin forces and thus have zero
diffusion coefficients.

V. SHIFTED-FREQUENCY SOLUTIONS

Up to this point we have been concerned with stationary
solutions of the classical equations of motion pertaining to
special values of the collectivity parameters, i.e.,
c35c3

2(r ), 0<r<1/2 orc35c3
1(r ), 0<r<1. Our numeri-

cal simulations of the classical versions of the evolution
equations~2.2! indicate that forc3 not on the lower or upper
boundary the laser field exhibits temporally periodic behav-
ior after some transient. To find this periodic solution we
recall the phase symmetry~2.4! and introduce new atomic
and field variablesS̃i j ,ã,b̃ as

ã~ t !5a~ t !eiDt, b̃~ t !5b~ t !e2 iDt,

S̃12~ t !5S12~ t !e
iDt, S̃01~ t !5S01~ t !e

2 iDt,

S̃02~ t !5S02~ t !, S̃ii ~ t !5Sii ~ t !, ~5.1!

whereD is a frequency shift to be determined. This transfor-
mation allows for frequency shifts of the polarizationsS12
andS01 asṽ125v121D andṽ015v012D ~and similarly for
the mode amplitudes! such as to keep intact the sum fre-
quencyṽ025v02. When the so transformed observables ap-
proach constant values,X̃(t)→X̃(`), one may of course
speak of a stationary state with respect to a suitable ‘‘rotating
frame.’’

When again eliminating adiabatically the passive mode
we have to assume that the damping ratekb of the passive
mode is much larger thanD. We obtain a closed system of
equations of motion analogous to~2.2! for the new atomic
variables and the amplitude of the active mode. The fre-
quency shiftD now is an additional unknown quantity so
that we must invoke the conservation ofc3 to fully specify a
stationary solution.

While we have not succeeded in finding closed-form so-
lutions for general values ofr and c3 inside the allowed
range, the behavior forr andc3 close to the upper and lower
boundaries, c3

1(r ) with 0<r<1 and c3
2(r ) with

0<r<1/2, is accessible perturbatively. The ‘‘boundary lay-
ers’’ in question can be defined by a small positive parameter
d as

c35c3
1~r !2d for 0<r<1

or

c35c3
2~r !1d for 0<r<1/2, ~5.2!

with 0<d!1. For the sake of simplicity we also restrict
ourselves to the good-cavity limitj@1 andD!(12c)ka .
Under these assumptions we may use perturbation expan-
sions in powers of the small parameter

e5
D

~12c!ka
~5.3!
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for the deviations from the former stationary solutions, given
by ~4.2!. Including second-order terms ine we obtain~we
drop the ‘‘tilde’’ sign for brevity so that the overbar now
distinguishes the new stationary state!

S̄01
e /N5x, S̄12

e /N5
ex

Ac
F12 ice1

1

2
~12c!2e2G ,

S̄02
e /N5

x2

pAc
F11 i e

p2c2x2

x2
1

e2

2 S p2c2x2

x2 D 2G ,

S̄00
e /N5

1

3 F112eS 11
e2

2 D S p1~122c!
x2

pcD G ,
S̄11
e /N5

1

3 F12eS 11
e2

2 D S 22p1~11c!
x2

pcD G , ~5.4!

S̄22
e /N5

1

3 F12eS 11
e2

2 D S p1~c22!
x2

pcD G ,

āe/N52
e

Ac
x~12 i e!,

with

x5Apc~r2p!

11c F12
18cp223cpr~52c!1r 2~11c!

4~11c!~r2p!
e2G .
~5.5!

The parametere or, equivalently, the frequency shiftD is
determined by the deviationd of c3 from the boundary value
c3

6(r ) as

d5
3cp@2p2r ~12c!#2

~12c2!2 S D

ka
D 2. ~5.6!

It follows that the assumption of a small frequency shift,
D/(12c)ka!1, is consistent withd!1, i.e., for collectivity
parameters close to the upper and lower boundary of the
domain in Fig. 2. Moreover, we find two frequency shifts
D6 with different signs, i.e., two different nonresonant sta-
tionary solutions with symmetric frequency shifts.

To save space we do not present a full semiclassical
analysis of these frequency-shifted solutions. We only point
out that the characteristic polynomial of the linearized equa-
tions of motion is a function ofD6

2 . We may therefore infer
that the domains of stability of the two solutions, determined
by D6 , coincide.

VI. ANALYSIS OF THE ATOMIC HILBERT SPACE

In this section we shall interpret the results obtained
above using the theory of group representations. Group
theory comes in due to the fact that the operatorsC2 ,C3 are

the Casimir operators of the group U~3!, i.e., they commute
with all the Si j . Consequently, the atomic Hilbert space,
consisting of 3N product states of the form
uk1&1uk2&2•••ukN&N with ki50,1,2, may be split into or-
thogonal eigenspaces of the Casimir operators. These eigens-
paces are invariant under the application of the collective
atomic operators and are called invariant subspaces or
irreducible-representation spaces of the group U~3!. For ex-
ample, for two atoms the sextet of fully symmetric states
(1/A2)(u i 1&u i 2&1u i 2&u i 1&) and the triplet of antisymmetric
states (1/A2)(u i 1&u i 2&2u i 2&u i 1&) form two orthogonal invari-
ant subspaces of the nine-dimensional atomic Hilbert space.
Due to the exponential increase of the dimension of the Hil-
bert space withN, the explicit construction of invariant sub-
spaces becomes a cumbersome task for largeN. Neverthe-
less, the theory of group representations allows us to
construct the basis states of any arbitrary invariant subspace
in the form of Young tableaus@11,12#.

Provided each of theN atoms is represented by a box,
each invariant subspace is uniquely specified by arranging
the boxes into a diagram, a Young frame~see Fig. 4! which
consists of at most three rows. The lengthsm1 ,m2 ,m3 of the
rows, called highest weights, monotonically decrease from
above,m1>m2>m3, and sum up toN, m11m21m35N.
The basis states of a given invariant subspace are represented
by Young tableaux which are constructed from a Young
frame by inserting one of the numbers 0,1,2~the possible
values of the level index! into each box, following two rules:
(a) numbers within each row are distributed in nondecreas-
ing order from left to right, and (b) numbers in every col-
umn are strictly increasing from top to bottom. Figure 5
shows an example. In the space spanned by the 3N states of
N three-level atoms with levelsu0& i ,u1& i , and u2& i ,
51, . . . ,N, a Young tableau corresponds to a linear combi-
nation of the product states of the formuk1&1uk2&2•••ukN&N
with ki50,1,2, obtained by first symmetrizing with respect to
the atoms in each row and then antisymmetrizing in each
column.

To classify the invariant subspaces of ourN three-level
atoms it is convenient to introduce two non-negative integer

FIG. 4. Young frame for an irreducible representation with the
highest weightsm1 ,m2 ,m3.

FIG. 5. Example of a Young tableau.
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numbersQ15m12m2 andQ25m22m3. The weights can
be expressed in terms ofQ1 , Q2, andN,

m15
1

3
~N12Q11Q2!, m25

1

3
~N2Q11Q2!,

m35
1

3
~N2Q122Q2!. ~6.1!

The dimensiond of the corresponding invariant subspace
and the Casimir invariantsC2 andC3 are given by@11#

d~Q1 ,Q2!5
1

2
~Q111!~Q211!~Q11Q212!, ~6.2!

C25
1

3
N21

2

3
~Q1

21Q2
21Q1Q213Q113Q2!, ~6.3!

C35
1

9
N31

2

3
N~Q1

21Q2
21Q1Q213Q113Q2!

1
1

9
~2Q1

313Q1
2Q223Q1Q2

222Q2
3118Q1

219Q1Q2

136Q1118Q2!. ~6.4!

Let us consider a representation withm3Þ0 ~see Fig. 5!.
According to the rules for constructing Young tableaux there
is only one possibility to fill the columns consisting of three
boxes, as shown in Fig. 5. All states in that representation
behave under the action of the polarizationsSi j with iÞ j as
well as of the population differencesSii2Sj j as if the three-
box columns were absent, i.e., as ifm3 were zero withQ1
andQ2 unchanged. The reader can easily verify that state-
ment, at least for some examples: The simplest case is the
fully antisymmetric singlet state forN53 which is annihi-
lated by all polarizations andSii2Sj j ; the triplet of states for
N54 withm152,m25m351 behaves like the fundamental
triplet for N51, etc. Since the atomic dynamics in our su-
perradiant laser can be formulated in terms of the polariza-
tionsSi j , iÞ j , and two population differences~note that the
populationsSii can be expressed in terms of the two inver-
sionsS222S11, S112S00 and theconserved N) we reach the
following conclusion. If the initial state belongs to a repre-
sentation withm3Þ0 the subsequent evolution may be said
to take place among the boxes outside the three-box col-
umns. In other words, onlyN23m35Q112Q2 atoms are
responsible for the evolution leading to changes in the state
of the electromagnetic field since at each instant of time the
occupation numbers of the states 0, 1, and 2 are at least
equal tom3. From this point of view the essentially different
representations are characterized by different pairsQ1 ,Q2.
The physical irrelevance of three-box columns, i.e., the pos-
sibility to add three-box columns without changing the dy-
namics beyond changing the number of atoms, is precisely
the content of the transformation~3.10!.

As follows from Eq.~6.2!, the invariant subspaces char-
acterized byQ1, Q2 and Q̃15Q2, Q̃25Q1 have the same
dimension. However, there is no unitary transformation
which maps one representation into the other. As a conse-
quence, these two representations lead to different physical

behavior of the system. As an example, let us compare the
three-dimensional invariant subspace of two atoms with fully
antisymmetric basis states,

u0&85
1

A2
~ u1&u2&2u2&u1&), u1&85

1

A2
~ u2&u0&2u0&u2&),

u2&85
1

A2
~ u0&u1&2u1&u0&), ~6.5!

and the Hilbert space of a single atom~see Fig. 6!. Applying
the collective atomic operatorsSi j to the states of a single
atom we obtainSi j uk&5dk ju i &. For the antisymmetric states
given by Eq. ~6.5! the following relation takes place:
Sji
† uk&852dkiu j &8. Thus, for the antisymmetric two-atom
states the atomic raising and lowering operators change their
role. This transformation of operators is not unitary.

The two triplets of states$u i &% and$u i &8% form two ‘‘fun-
damental representations’’ of the group U~3!. With the help
of the fundamental representations all invariant subspaces or
irreducible representations of the group U~3! can be con-
structed. In the case of U~3! there are two fundamental rep-
resentations since there are two Casimir invariantsC2 and
C3. This is in distinction to the case of two-level atoms,
corresponding to the symmetry group U~2!, where only a
single fundamental representation is needed to construct all
invariant subspaces of the single Casimir operatorJW2, in
quantum optics called squared Bloch vector.

We would like to mention an interesting analogy between
the antisymmetric states~6.5! and the ‘‘hole’’ states in solid-
state physics@13#. As we already mentioned, for these states
the atomic raising and lowering operators change their role.
Moreover, the new atomic operators obtained under such
transformation satisfy the Heisenberg equations~2.2! with
time reversed. Analogously, holes behave like electrons un-
der time reversal. Finally, adding a third box to the column
consisting of two boxes we obtain the state which does not
show any time evolution and can be eliminated from the
dynamics. This is analogous to annihilation of a hole put
together with an electron. In elementary-particle physics the
two fundamental representations of U~3! can often be asso-
ciated with particles and their antiparticles; one then even
speaks of triplet and antitriplet. We refrain from carrying
over such jargon into our context of three-level atoms where
the fundamental triplet is formed by single-atom states while
the ‘‘fundamental antitriplet’’ is formed by two-atom states.

In the semiclassical limit, N@1, we put
Q15q1N, Q25q2N, where 0<qi<1, i51,2. Up to 1/N
corrections we obtain from~6.3! and ~6.4!

FIG. 6. Young tableaus for the two fundamental representations
of U~3!: ~a! single atom states, and~b! antisymmetric two-atom
states.
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c25
C2

N2 5
1

3
@112q2q112q2

212q1
2#,

c35
C3

N3 5
1

9
@116~q1

21q2
21q2q1!

1~2q1
322q2

323q2
2q113q1

2q2!#. ~6.6!

Now we can interpret the results obtained in the preceding
sections in terms of symmetry properties of the invariant
subspaces. Comparing~6.6! with ~3.9! we observe that we
recover the upper boundaryc3

1(r ) of the cooperativity pa-
rameter c3 setting q15r and q250. The corresponding
Young tableaux are given in Fig. 7~a! and show that in this
caseq1N5rN atoms are active as if in totally symmetric
states. This result makes it particularly transparent why the
semiclassically calculated stationary solutions and fluctua-
tion spectra are simply obtained from the results for full co-
operativity by rescaling asp→ p̃ andj→ j̃.

Conversely, forq150, q25r , 0<r<1/2 we obtain the
lower boundaryc3

2(r ) of the cooperativity parameterc3. The
corresponding Young tableaux are shown in Fig. 7~b!. Now
2q2N52rN atoms are active as if inrN antisymmetric an-
titriplets ~6.5!. Since for a single antitriplet we need two
atoms, the maximal number of antitriplets isN/2.

Finally, the right boundaryc3
2(r )5r 2 of the cooperativity

parameter c3 for 1/2<r<1 is recovered by
q15(1/6)A12r 223, q25(1/2)(12q1). The corresponding
Young tableaux are shown in Fig. 7~c!. To construct the
atomic Hilbert space in this case we need both fundamental
representations. Correspondingly, in the semiclassical case
the atomic dynamics is described by six independent
equations, two more than in the case whenc3
5c3

1(r ), 0<r<1 or c35c3
2(r ) for 0<r<1/2 @see the

above discussion of the additional conservation laws~3.11!
and ~3.12!#. As we have seen in the preceding section, this
results in more complex behavior of the superradiant laser
exemplified by ‘‘nonresonant’’ stationary solutions.

The atomic Hilbert space corresponding to the nonreso-
nant stationary solutions found in the preceding section is
constructed as follows. Forc35c3

1(r )2d we start from a

Young tableau shown in Fig. 8~a! with almost all atoms
packed in a three-row block. A sequence of ‘‘transforma-
tions’’ Q1→Q113, Q2→Q2 indicated in Fig. 8~a! leads to
the set of representations close to the upper boundary. The
number of such transformations must, of course, be a finite
fraction ofN in order to be semiclassically perceptible. For
d!1 the resultingqi5Qi /N must obeyq2!q1. Similarly,
we obtain the set of representations close to the lower bound-
ary c35c3

2(r )1d by a succession of transformations indi-
cated in Fig. 8~b! for whichQ1→Q1 andQ2→Q213 such
that in the endq1!q2.

In conclusion, in this section we have employed the
theory of group representations which gives a natural classi-
fication of solutions of the superradiant laser with partial
cooperativity in terms of irreducible representations of U~3!
group.

VII. SYMMETRY BREAKING BY SPONTANEOUS
EMISSION

In Ref. @5# we had already addressed the question of spon-
taneous emission. In particular, we have shown that in the
semiclassical limit,N@1, even with spontaneous emission
included, stationary superradiance is still possible and good
squeezing available over some range of frequencies in the
amplitude noise spectrum. However, in Ref.@5# we were not
able to give the full explanation of the role of spontaneous
emission since we did not have the set of solutions with
partial cooperativity. In this section we want to interpret the
results obtained in Ref.@5# using the notion of partial coop-
erativity and the symmetry properties of the invariant spaces
of the Casimir operatorsC2 andC3.

For simplicity we restrict ourselves, as in Ref.@5#, to
spontaneous emission only from the upper level 2 to the
intermediate level 1.~Taking into account spontaneous emis-
sion from the intermediate level 1 to the ground state 0
leaves the results qualitatively unchanged@14#. Note that
2↔0 is considered to be a two photon transition such that
spontaneous emission on this transition can be neglected.!

We assume that the rate of spontaneous emissiongs is
much slower than the rate of collective relaxationgN and the

FIG. 7. Young frames for c35c3
1(r ), 0<r<1 ~a!,

c35c3
2(r ), 0<r<1/2 ~b!, andc35c3

2(r ), 1/2<r<1 ~c!.

FIG. 8. Construction of the Young frames close to the upper
boundary, c35c3

1(r )2d ~a!, and the lower boundary
c35c3

2(r )1d, r<1/2 ~b!.
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decay rate of the laser fieldka ,

gs!Ng,ka . ~7.1!

As already mentioned in Ref.@5#, there is an important dif-
ference between the collective and noncollective relaxation
terms in dynamical equations of the superradiant laser: The
first ones scale with the number of atoms asN2 while the
second are proportional only toN. Therefore, for the semi-
classical approximation,N@1, we may confine ourselves to
the limit gs→0 without incurring more than an error of rela-
tive order 1/N which is inherent in the semiclassical approxi-
mation anyway.

However, the limitgs→0 must not be taken blindly by
setting gs50 in the dynamical equations from the outset.
The reason for this is that the incoherent terms proportional
to gs break the collectivity of the dynamics and destroy the
conservation of the Casimir operatorsC2 andC3. Instead of
being constants, bothC2 andC3 now evolve in time with a
rate of the order ofgs ,

d

dt
C̄254gs@S̄02S̄201S̄21S̄121S̄22~S̄112S̄22!#, ~7.2!

d

dt
C̄356gs@~S̄221S̄11!S̄21S̄121S̄01S̄12S̄021S̄10S̄02S̄21

1S̄20S̄02S̄001S̄22~S̄11
2 2S̄22

2 1S̄01S̄10!#. ~7.3!

To find a stationary solution we must setdC̄2 /dt50 and
dC̄3 /dt50. Obviously, now, forgs50 both conditions are
trivially fulfilled. For gsÞ0 the square brackets in~7.2! and
~7.3! must vanish and these conditions take the role previ-
ously played by the conservation ofC2 andC3 in nailing
down all stationary means. Only at this point, i.e., after di-
viding ~7.2! and ~7.3! by gs , we may letgs→0.

We proceed by parametrizing the stationary valuesS̄i j
e in

search as in~4.2!. Entering with this ansatz into the square
bracket in~7.2! and equating the latter to zero, we obtain a
biquadratic equation for the parameterx,

2~11c!x41cp~e1cp!x21p3c2~p2e!50, ~7.4!

which allows for the four solutions,

~x1,2
e !25

cp~11cpe!

4~11c! H 2e6S 12
8e~11c!p~12pe!

~11cpe!2 D 1/2J .
~7.5!

Here ‘‘1 ’’ corresponds tox1
e and ‘‘2 ’’ to x2

e . One of these
four solutions, namely (x2

1)2, is negative and must be dis-
carded as nonphysical. The other three are the solutions
found in Ref. @5# which we had labeled ‘‘alpha,’’ ‘‘beta,’’
and ‘‘gamma,’’

x1
25xa , x2

25xb , x1
15xg . ~7.6!

On the other hand, these three stationary solutions may be
viewed as former resonant stationary solutions with partial
cooperativity given by~4.2! with some particular value of
participation parameterr . To find that value for each of the
three solutions we may substitutex1,2

e from ~7.5! into the

relation ~4.3! betweenx and the participation parameterr .
Thus we obtainr a with a5a,b,g,

r a5p1
11c

pc
xa
2 . ~7.7!

From the way we have constructed the alpha, beta, and
gamma solutions it is clear that upon substitution of these
solutions into the expression forc3 we obtainc3

a,b5c3
2(r )

andc3
g5c3

1(r ). These semiclassical values now have a dif-
ferent status, however: They are the stationary means of
C3 /N

3 obtained in the limitgs→0 as time goes to1`,
rather than constants of the motion determined by the initial
state. In Fig. 9 we have plotted the participation parameter
together with stationary intensities for the three solutions as a
function of p for c50.1. Note that the participation param-
eter for alpha and beta solutions does not exceed the value
1/2 as it must be the case for the lower boundaryc3

2(r ) in
accord with Schwartz’s inequalities.

Figures 10~a! and 10~b! show the time development of the
field amplitude, occupation numbers, and cooperativity pa-
rameters according to the classical equations of motion. As
expected, the time development of the cooperativity param-
etersc2 andc3 takes place on a time scalegs

21 , i.e., much
slower than that of the occupation numbers and field ampli-
tude. From Fig. 10~b! we observe that in the good-cavity
case even with spontaneous emission there is a possibility for

FIG. 9. Stationary intracavity field intensity and participation
parameters vs pump-strengthp without ~uppermost curve for field
intensities! and with (a, b, andg) spontaneous emission. The cou-
pling strengthc50.1 and the limitgs→0.
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oscillating behavior of the laser field amplitude which corre-
sponds to the nonresonant solution discussed in the preced-
ing section.

Turning to the stability analysis we see that the stability
conditions~4.7! remain unchanged forgs→0. However, as
we mentioned in Sec. IV, some of the former marginally
stable eigenvaluesl1 , . . . ,l6 now acquire real parts of order
gs /(Ng). Therefore, we have to check whether these real
parts are positive. Since the zero eigenvaluesl1 andl5 are
related to the constant number of atoms and the conservation
law ~2.4!, respectively, they remain zero also with spontane-
ous emission included. We have checked the other four ei-
genvalues in the limit of smallp̃ and a bad-cavity,j̃!1,
when good squeezing is expected to arise. In this particular
limit these eigenvalues are

l25
gs

Ng

2

11c
, l3,45

gs

Ng

1

2p̃j̃
6 irA4p̃c,

l65
gs

Ng

c

2p̃~11c!
, ~7.8!

i.e., they do not give rise to additional stability conditions.

In Ref. @5# we have described the influence of spontane-
ous emission on the squeezing spectrum of the amplitude
quadrature component. We have shown that spontaneous
emission leads to the appearance of a high peak around zero
frequency in the spectrum. That peak has a height}Ng/gs
and a width}gs , such that the area underneath remains
constant in the limitgs→0, indicating an asymptoticd peak.
However, in a broad intermediate frequency range outside
this peak squeezing persists and is not qualitatively changed
from the one obtained forgs50.

The situation is different for the linewidth. While without
spontaneous emission the linewidthDna

0 scales as}1/N2

@see Eq.~4.12!#, with spontaneous emission it acquires an
additional factorNg/gs and now is only proportional to
1/N, Dna}1/N.
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