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Superradiant laser with partial atomic cooperativity
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We further develop the theory of the superradiant laser by allowing for submaximal atomic collectivity and
spontaneous emission. In the absence of spontaneous emission we obtain a set of stationary solutions for
different degrees of atomic cooperativity and investigate their fluctuation properties and interrelations with
respect to the underlying (8) symmetry. We use this set of solutions to discuss the breaking(3f by
spontaneous emissiof51050-294{®6)10510-4

PACS numbeis): 42.50.Fx, 42.50.Dv, 42.50.Ar

I. INTRODUCTION number of atoms. In the case of a six-dimensional atomic
phase space more complicated behavior arises. In particular,
Superfluorescent pulses can be producedNbyollec- the frequencies of the radiated modes are shifted away from
tively radiating identical atomgl—3] as these atoms decay the bare resonances. In no case have we found partial coop-
from an initially excited state to the ground state. In contras@rativity to fully undo the noise suppression characteristic of
to such transient behavior would be the stationary output offaximal cooperativity. o
the superradiant las¢#,5] to be discussed here. Collective ~ We then take up spontaneous emission once more. The
behavior would be manifested in the proportionality of thePartial-cooperativity ~ solution pertaining to the four-
output intensity toN? and of the linewidth toN 2. More- dlmens!on_al atomic phase space in the absence of spontane-
over, as was shown j#,5], such a laser could display nearly ous emission turns out to play an important role for the treat-

perfect squeezing of the intensity fluctuations. While inco—ment of .spontaneous emission as well, even though this
h . . .Bgrturbatlon breaks the(B) symmetry of the atomic dynam-
erent processes like pump fluctuations or spontaneous emi

sion are in principle detrimental to the noise suppression o%c The paper is organized as follows. In Sec. Il we describe

the fglly cooperative and cohgrently pumped_ldeal CaS€, & detail the model of the superradiant laser, the Heisenberg
considerable degree of squeezing can survive in the presengg, ations of motion which govern its evolution, and the cor-

of such perturbationgs]. o o responding constants of motion. In Sec. Ill we determine, in
The present paper extends the previous investigations Qhe semiclassical limitN>1, the admissible values of the
the superradiant laser in several aspects. Most importantlyonstants of motion. There we also discuss the construction
we relax the restriction to the maximal cooperativity f  of solutions with partial atomic cooperativity, based on a
atoms which would arise in the absence of incoherent pemparticular invariance propertyelated to W3)] of the equa-
turbations if the atoms were initially prepared in a fully sym- tions of motion. In Sec. IV we find the stationary solutions of
metric state like the overall ground state. Since our modethe superradiant laser with partial atomic cooperativity and
assumes identical three-level atoms coupled to resonatrvestigate their stability and fluctuation properties. In Sec.
modes through the collective population and polarization opy/ we establish the stationary regime corresponding to a six-
eratorsS;==0_, (|i)(j[)*, with [i)* the ith state of the dimensional atomic phase space. In Sec. VI we employ a bit
uth atom,i=0,1,2, the time evolution has(B) symmetry  of group theory to investigate the interrelations between the
and stays in a fully symmetric subspace if it starts there. Wesolutions with partial atomic cooperativity and the underly-
here allow for partially symmetric subspaces and thus subing U(3) symmetry of the superradiant laser. Finally, in Sec.
maximal cooperativity. An interesting surprise is incurred inVIl we discuss the breaking of the(8) symmetry by spon-
the semiclassical analysis: Depending on the values chosd¢aneous emission using the set of solutions with partial
for the conserved operators of (), C;=3;S;=N, atomic cooperativity.
CZZEi’jS”Sji s C3=Ei,j,kSiijkSki, the classical phase
space(relevant for the limitN— o) may have either four or
six-dimensions. In the former case, a stationary regime is
attained which differs from the one previously found for
maximal cooperativity C,=C2, C3=C3) only by some res- As in Refs.[4,5], we consider the simplest model of a
caling: Roughly speaking, submaximal cooperativity df superradiant laser which accounts fdrthree-level atoms
atoms is equivalent to maximal cooperativity of a smaller(see Fig. 1 placed inside a resonator. We assume a pump
process 6-2 consisting of a classical resondtwo-photon
excitation. A coupling of the atoms to a cavity mode is as-
“Also at Physics Institute, St. Petersburg University, 198904 Petsumed in tune with the transition21. We shall refer to this

II. DYNAMICS OF THE SUPERRADIANT LASER AND
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) J— the passive mode, we arrive at the following set of equations
/ of motion for the superradiant lasgs]:
e active + ]
pump . mode(me”) Soo=~ 02801~ Sz~ So) + ¥S12S01~ V27S107p,
/ passive S12= 0ad(Spo— S11) + QS16— ¥S10S02+ V27 7402
mode (b, b*)

==
FIG. 1. Scheme of three-level superradiant laser.

So1=9aa" Soo— QSp1+ ¥(S11— So0) Sor— V2¥(S11— soo>(727b2,)

levels 1 and 0 serves that purpose one has the so-called Ra-Soo= — 2(Soz+ S20) +2¥S10S01~ V2¥(S1075+ 75500,
man laser whose quantum noise properties were recently in-.

vestigated by Ritsch, Marte, and Zoller in RES]. S11=0a(8S:1+a"S1) — 2¥S16S0u+ V2 ¥(S10m0+ 71 S0n).
We require a different type of relaxation by coupling the .

atoms to another cavity mode resonant with the transition Sy= 0 (St Sp0) +9a(aSy+a’s,),

1—0. With respect to the latter mode the resonator does not

need to have a high finesse. In fact, in order to simplify the a(t)=g,S1,— ka(t)+ \/Z_Kana(t).

model we assume that this mode is damped sufficiently

strongly so that it can be eliminated adiabatically. That isHere y= 97/ is a rate constant for the collective atomic
why we refer to this mode as the “passive” mode. The situ-relaxation 1-=0. The quantum Langevin noise forceg,
ation in consideration would, in the absence of level 2 andvith a=a,b are taken as independent with Gaussian statis-
with level 1 populated initially, entail the no-ringing limit of tics and white spectra according to

superfluorescence on the transition-0 , as observed in

Ref. [3]. As we have shown in Ref$4,5], such a scheme [ 74(1), 75t 1= (na(t) ph(t")) = S,pd(t—t"),
with a third level and a stationary coherent pump yields sta- ‘ ’ )
tionary superradiance on both transitions;»2 and 0. (7a(D)=( () 7p(t"))=(na(t) 7p(t'))=0, (2.3

As long as we neglect spontaneous emission and other
incoherent processes, the dynamics of the atoms is fully coNd may be considered as representatives of the vacuum
lective and can be described in terms of global Operatorguctuatlons of the electromagnetic field outside the resona-
S;=3)_18=2,([li)(j})“. There are nine suc;; those
with i#] refer to polarizations while each “diagonal” one,
S,;, measures the global occupation of levelthey obey
S =S;i and[S;j,Sq]= 6xSii — 61 S - By choosing suitable

The system of equation®.2) possesses a set of constants
of the motion. First, it is easy to verify invariance under a
phase shiftp of the form

linear combinationgnamely,i(S;+S;) and S§;—S;;] one a—e'%a, S,-€9%S,, S;-e%Sy,  7.—€%n.,
obtains nine anti-Hermitian generators of the Lie algebra of
the group W3). Denoting the creation and annihilation op- w—e %y, (2.9
erators of photons in the actiy@passivé mode bya and
a' (b andb"), we have the interaction Hamiltonian Moreover, the three operators
Ho=171ga(a'S1z~aS) +iA0(Se0~ oo =Y Si. Co=2 S, Co= S S5
. i i,] i,j,k
+ifigp(b'Sp;—bSyo). (2.1) 2.5

In order to secure a ring of allowed transitions we assum&ommute with the Hamiltonia2.1). The operator<, and
that the pump process consists of a two-photon absorptior;s are the Casimir invariants of the groug3dy which com-
the pump strengtif) is proportional to the product of the mute with all operator§;;, [Cy,S;;]=0. In Sec. VI we shall
amplitudes of the two classical pump waves and is chosefalculate the spectra of these Casimir operators and discuss
real; g,(gp) is the coupling constant of the actiypassiveé  the corresponding irreducible representations (8)U
mode with the corresponding atomic transition. As in[4,5] we shall confine ourselves to the semiclassical
When neglecting the spatial dependence of the atomic ogimit, N>1. Each of the eleven operato8 ,a,a’ in the
erators in the Hamiltoniat2.1) we assume either the dimen- Heisenberg equatior(2.2) can then be represented as a sum
sion of the atomic system much smaller than the wavelengtbf a dominant “classical” termX~N and a “small”
of the laser light, or a running-wave setup with suitableoperator-valued fluctuatiofX,
phase matching. _
The Heisenberg equations of motion generated by the X=X+ 6X. (2.6
Hamiltonian (2.1) must be complemented by the damping
terms for the mode amplitudes and the corresponding LangéFo find the dominant parX from the Heisenberg equations
vin forces which provide the conservation of the Bose com{2.2 we drop the Langevin noise forces and degrade each
mutatorg a(t),a’(t)]=[b(t),bT(t)]=1 at all times. Assum- operatorX to ac numberX.
ing that the damping rate,, of the passive mode is much The solution of the classical equations of motion depend
larger thank, of the active one and eliminating adiabatically on the expectation values of the three constants of motion
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C,,C,,C3. To within corrections of relative order N/we 1.0
may factorize the expectation values of operator products as,
e.9.,S (1) Sq(t) =S;; () S(t), and obtain
5%
_ — — S 5 0.75
C1=Ei Si=N, sziZj SijSji =caN?, 5
| 2
S
— — g
Cs=2 S;SpSui=CaN’. 2.7 B 00 +
i,k g C3
&=
Clearly, the mean value o, is just the number of atoms g
that is preserved in our scheme. The two other quantities §* 0.25 -
depend upon the atomic initial state. We shall refer to their Cs
scaled versions, andc; as to cooperativity parameters.
0.0 : -
1. ADMISSIBLE COOPERATIVITY PARAMETERS 0.0 0.25 05 0.75 10
To be physically acceptable, the solutions of the classical participation parameter r
equations of motion have to satisfy two requirements of
quantum-mechanical origin. First, the mean valGgsmust FIG. 2. The region of admissible cooperativity parameteys

form a nonnegative Hermitian matrix. Second, the diagonafndcs according to(3.9). In the text we refer to curve (r) as the
elements sum up to the number of atoms. These restrictiorgper boundary and to the two segmentscg{r) as the lower

imply three Schwartz’ inequalities$;S;; —S;S;=0 and (0=r=1/2) and right (1/&r<1) boundaries.
0=<S;;/N=<1. As further consequences we now propose es-

tablishing minimum and maximum values of for given 1+6r2—2r3$0 < 1+6r’+2r (3.6)
c, andN. 9 3 9 .
We can obviously write€, andc; as the traces of powers ) o )
of the Hermitian and non-negative matf , Applying the Hurwitz criterior{8] to the third-order poly-
nomial (3.3 we find that all rootsl;,i=1,2,3 are non-
N2c,=trS?, N3cg=trs®. (3.1  hegative only if
r’<c;. (3.7

The eigenvalues;,i=1,2,3, ofsJ must be real and non-

2
negative. From (3.1) we have cp=13+I5+15 and  popce e finally obtain the following relation between the

—13 3 3 . ..
Cs=Ii+15+13. Observing that oot Si1tSp5)/N=11+1,  admissible cooperativity parameterandc;:
+13=1 we immediately obtain

L L ¢ (r)yscs=cj(r), (3.9
3 =C2< 1, g =Cs= 1. (3.2 where
Using Newton’s formulag7] we express the coefficients of c5 (r)=min{r?,(1+6r2—2r3)/9}
the characteristic polynomial of the matr§; via its traces 5 3
and arrive at (1+6r —-2r )/9, 0$r$1/2,
=\r? l/2<r<1,
1 1
(=)= 1) (1= 1g)=1*=12+ Z(1=r2) = 3 (cs=1?),
3.3 cy(r)=(1+6r2+2r3/9, oO=rs<1. (3.9
where we introduced the participation parameter This region is shown in Fig. 2,=1 brings us back to the
case of the full cooperatlwty:z—cg,—l, minimal cooperat-
3c,—1 ivity is attained forc,=1/3, c3=1/9, i.e.,r =0; in this case
r= 5 Os=rs<1. 3.9 the mean values of the atomic populations are all equal,

Si=N/3, and all stationary polarizations vanisB;;=0,
The three roots of the third-order polynomid@.3) are real 1#].

only if its discriminant The system of Heisenberg equations of moii@12) has a
particular symmetry. Suppose that we have found a time-
1, [cg r? 1)2 dependent solutio;;(t),a(t) of the system2.2) for N at-
D=-3" +9(?_§_1_8) (3.5 oms in full cooperativity, ie., C;=N, C,=N2,

Cg— NG Using this solution we can construct two other so-
is smaller than zer§7], which gives lutions as follows:
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l—er~ shown in Ref.[5] that for the pointr=1, c;=1 we have

Sih=—3,—CiteSi(t), a’t)=eat), for e==x1, |5 |2=gs; and, in additiony=arg(SySy;S;)=0. Using

the transformatiori3.10 we can express;; throughSﬁ- and
SoAt)=Soat),  SiAt)=Spat), Spa(t)=Sn(t), obtain the following relations between the mean values of
polarizations and populations holding on the upper bound-

for e=+1, (3.10  ary.csz(r), O=r=<i,
SAD=SH,  SHH=-SLD),  SuH=Sh(v), gmz:(gei_Nﬂ)(—_e,_Nl;f), ],
3 1] 3
for e=—1.
$°=0, e=+1. (3.1)

Here we have introduced a bivalued parametert 1 which

we will use throughout the paper. Using the fact tiat  The corresponding relations for the lower boundary,
commutes with allS;; it is easy to verify thatSﬁ-(t) and cs (r), 0s<r=<1/2, read as
a®(t) obey the same commutation relations §gt) and
a(t). By direct substitution of these solutions into the evolu- _ S r
tion equationg2.2) we observe that the first one, i.e., the one |Sﬁ' = ( Si— NT)
with e=+1, satisfies the same equations §g(t),a(t)
while the second, witle=—1, formally solves the time re-
versed system, dSﬁ/dtz—de/dt, da®/dt=—da/dt.
Since time reversalt— —t, does not affect the stationary
solution, we can use the transformati®10 to construct
two new stationary solutions of the systef®.2) using a
given solutionS;; ,a for N atoms.

Requiring that the new solutions describeatoms we

5 1+ry

Ye=m, e=—1. (3.12

As for the full collectivity investigated in Ref5], these
relations offer an opportunity to simplify the analysis of the
superradiant laser for the collectivity parametersrG=1/2,
c5(r) and Osr=<1, c; (r). The simplification is based on
immediately get from the transformatior{3.10 that the four qrising constaljts of .m_o'tion of t_he cIasisicaI _dynami-
~ . . cal equations. Indeed, if the initial atomic configurations are
Ner. Ir_1asmuch as a_II populatior®y ands" must be posi- chosen so that the conditiori8.11) or (3.12 hold att=0,
tive the first new solution makes physical sense only as Iong1ey will be preserved for all other times. The set of seven
as 0<(1- r)N/3§ N/3. It also fpllows fore=+1 that  ,nstants of the motion consisting §fC,,C5 and(3.11) or
Si=(1-r)N/3, i.e., that all atomic levels are populated by (312 contains five independent ones. These reduce the
at Ieast[\l(}—r)/3 atoms. Upon semiclassic;ally evaluating number of independent atomic variable® from nine to
the Q§S|m|r constants for the case +1 We+ find the COOP-  four. Solutions withr andcj inside the allowed range shown
erativity parameterc,=(1+2r%)/3, c3=c3(r), ie., ac- Fig. 2 have two constants of the motion less.
cording to the upper boundary in Fig. 2. In conclusion, the A conclusion may be drawn which is worth a little em-
transformation(3.10 with e= +1 reveals that all points on phasis. Quantum-mechanical(3) dynamics (as executed
the upper boundarg; (r), 0<r<1, of the allowed range here by a collection ofN identical three-level atomamay
of ¢z andr actually correspond to stationary solutions of thehaye a limiting classical dynamidsttained here abl— )
Superradiant laser. These solutions are all related to one a[hk”']g p|ace ina phase space of dimension either four or SiX,
other such that, summarily speaking, submaximal cooperatepending on the initial state. The dimension is six for pairs
ivity corresponds to full cooperativity of a smaller number of cs.r inside the range shown in Fig. 2 as well as on the right
atoms. _ boundarycs=c; (r), 1/2<r<1. The dimension four arises

Similarly, for the second new solutiore€= —1) to make o pairsc,,r on either the upper or the lower boundary. No
physical sense both tr#; andS; must be nonnegative. This guch dimensional ambiguity is possible foX dynamics
gives the restrictions € (1—2r)N/3<Si<(1+r)N/3. The  while the number of different possible phase space dimen-
participation parameter is thus confined to the reduced rangsions increases for W) asn grows,n=34, ... .
0=<r=1/2. Moreover, none of the atomic levels can accom-
modate more than (£r)N/3<N/2 atoms. Once more evalu-
ating the Casimir constants we again fingk=(1+2r?)/3
but c;=(1+6r2—2r%)/9=c; (r), the latter equality due to
0=<r=1/2. We conclude that all points on the lowest bound-
ary of the allowed range in the,c; plane correspond to In this section we shall investigate the stationary solutions
stationary states of the superradiant laser. These solutiomsd the fluctuation spectra of the superradiant laser for the
connect continuously to the one of smallest cooperativity buboundary cooperativity parameters; (r), O<r<1 and
not, in contrast to the one on the upper boundafyr), to  c;(r), 0<r=<1/2. We confine ourselves, as before, to the
the point of maximal cooperativity. semiclassical limitN>1.

The upper and the lower boundaries,(r), are distin- To describe the stationary solution of the classical equa-
guished from all the other points within the region of admis-tions of motion we introduce the same dimensionless param-
sible ¢, and c; by the fact that the Schwartz inequalities eters as in4], namely, a dimensionless coupling strength
generalize to identities on these lines. Indeed, we have, an effective pump strength, and a time scale ratig,

IV. STATIONARY SOLUTIONS AND FLUCTUATION
PROPERTIES OF THE SUPERRADIANT LASER
WITH PARTIAL COOPERATIVITY
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Note that the pump parametprand the time scale ratié
depend on the number of atoms in the cavity.

N
e=—.

Ka
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e

and the stationary solutior(g.2) take on the form
c(1-p) ~
2_ N

N /M~ _7p
S0 1rc v (1+c)\ec

Solving the equations of motion in the stationary regime

we obtain two real valued solutiong€ = 1) which are ex-
pressed in terms of a single amplitudes

2

— — X — X
So/N=Xx, S‘Sz/NZﬁ, SiZIN:e%,
— .. 1 x2)
SOOIN—§ l1-e p+(1—2c)p—C ,
-1 X2
11/N—§ 1—e(—2p+(1+c)p—c) , (4.2

— .1 XZ)
SZZIN_§ 1—e p+(C—2)R ,
=N e
a®/N=— —x.
Jc

We would like to point out here that in the case of full
cooperativity the alternative= =1 formally arises as well.
However, the minus sign leads to a physically unacceptabl
solution _in conflict with the Schwartz inequality,
|3j|2sais”. In our previous publicatiori5], devoted to
full cooperativity, we had employed the Schwinger represen
tation S;; =zisz which enforcesS;|?=S;S;; . Therefore, the
solution with the minus sign was automatically ruled out.

Inserting the solutiong4.2) into the expression for the
mean value of the Casimir operatoy we obtain an equation
for the amplitudex which entails

__[pc(r=p)
X= l+c °

Surprisingly, we do not need the expectation vallig to
determine the stationary solutions but rather obtain the tw
corresponding  collectivity parameters; (r)=(1+6r2
+2er’)/9 after inserting the stationary solutio4.2) into

4.3

- [p(1-P)~
Sip=e Trc v

1—erJr c(1-p)
3r  1+c

Soo=N

’

(4.6

1-p
1+c

3r

— [p(1-Pp)~
e_ _
a*=-—e Trc N.

These reflect precisely the transformati¢®10. On the
other hand, all terms containing the pump strergidre the
same as for full cooperativity with atoms. The additional
‘p-independent terms in the atomic populations are necessary
to keep the total number of atoms equaNoHowever, it is
now obvious from(4.6) that in the case of partial cooperat-
ivity with participation parameter only rN of the totalN
atoms take part in the collective interaction.

The linear stability analysis for the partially cooperative
stationary solutions is done analogously to the case of full
collectivity, investigated in Ref[5]. We linearize the
Heisenberg equation®.2) around the stationary stafd.2)
with respect to small quctuation§S$j and sa® and split

e

these fluctuations into Hermitian real and imaginary parts.

The linearized equations separate into two independent
blocks, a seven-dimensional one for the real pamtsplitude

C;. We may thus infer that resonant stationary solutions cafuctuations and a four-dimensional one for the imaginary
be achieved only when the collectivity parameters lie on theyarts(phase fluctuations Stability requires that all eigenval-
upper or lower boundaries of the allowed region in Fig. 2. yes have positive real parts. With the help of the Hurwitz

To see explicitly how the stationary solutions for partial
cooperativity given by4.2) are related to those for full co-
operativity found in Ref[5], we rewrite(4.2) in terms of the
following rescaled parameters:

E=ré&.

Note that the rescaled pump strengimow is allowed to
take on values from 0 to 1, i.e., aspdor full cooperativity.
In terms of these parameters the amplitdeeads

__[pc(1-Pp)
=f 1+c

N=Nr, p=plr, (4.9

(4.9

criterion we obtain the following stability conditions:

ct+e(l+c)/é
1+2c

ep<e

1—c+e(l-c?)/(éc) _ 3+c—e(l—c?)/(&c)
2 = 2

(4.7)
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_ FIG. 3. Stability domains of the stationary solutigs6) according to4.7) in the (p,c) plane for various values of the time scale ratio
g._(}ases(a), (b) pertain toe=+1; caseqc), (d) to e=—1. In (a) the range of stability lies upwards of the curve for the respective value

of £ and in(b), (c), and(d) below.

0<el — 1~—2c+ep(1+ac)—2c:
3 &
[P(1+2c)—c](3—2p+c)
B (1+c)? '

In particular, fore= +1 we recover the stability conditions
of full collectivity found in Ref.[5], now for properly res-
caled parameter@ and &. It is important to realize that the
two solutions obtained foe= +1 cannot coexist since they
arise for different values o€, i.e., c; (r) for e=+1 and
C5 (r) for e=—1. We thus incur no bistability.

In Fig. 3 we have plotted the regions of stability in the
P.c plane for various time scale ratigs As we know al-
ready from the case of full cooperativity, good squeezin
arises forp<1 andc~1. Figure 3 reveals both solutions to
be stable in this region whefi<1 or £>1, i.e., in the bad-
and good-cavity cases.

the stationary state under discussgis not independent of
C, andC,.

In fact, infinitesimal displacemenTSS«lej changing global
constants of the motion must lead to vanishing eigenvalues.
This can be seen by considering such a constdi) and an
eigenmodesX;(t)=e N"5X;(0) of the linearized evolu-
tion equationgwith X; a shorthand for the various observ-
ables and\ a dimensionless eigenvaju&Ve then rewrite the
conservation lawC[ X+ 6X(t)]=C[ X+ 6X(0)] by keeping
only first-order terms in the displaceme#iX from the sta-
tionary pointX and differentiate with respect to the time. We
thus obtain\ =;(dC/dX;)x=x0X;= 0. Indeed then, the eigen-
value A must vanish for asX not confined to the plane
tangential to the surfac€(X)=C(X) in the fixed pointX.

Quite different is the fate of displacements away from a
nonglobal constant of the motigwhich yields only a single

Ysolated invariant surface in phase spafB0] such as the

three independent ones contained3mll) or (3.12. An ei-
genvalue associated with such a deviati may but need
not vanish[10]. In our present case the three independent

Beyond the fluctuations whose stability is secured byngngiobal constants of the motion actually still entail one
(4.7) we meet with six marginally stable eigenmodes, fourgjgenmodethe one associated with a change of the phase

from the amplitude block and two from the phase block.

Four of these modes have vanishing eigenvalues and three
these are related to displacemeﬁa?j changing the values
of the global constants of the motidy, ,C,, and the phase
¢ appearing in the phase symmet8:4). We cannot count

on C; as yielding the fourth vanishing eigenvalue since for

) with vanishing eigenvalue. The other two eigenmodes
Ebme with breakings of the generalized Schwartz equalities
in (3.11) or (3.12 and yield a pair of purely imaginary ei-
genvalues

)\ziin\/&.

4.9



4446 SEEGER, KOLOBOV, KUSAND HAAKE 54

The latter two eigenmodes obviously correspond to values gfhase quadratures. This is because the corresponding eigen-
¢, and c; away from the upper and lower boundaries modes are not driven by Langevin forces and thus have zero
[c3 (r) with O<r=<1 andc; (r) with 0<r<1/2] of the al-  diffusion coefficients.

lowed area in Fig. 2 and thus signal the behavior of the

system, to be discussed in the next section,dprand cy V. SHIFTED-FREQUENCY SOLUTIONS

inside the allowed area. ) ) ) )

In Sec. VII we shall see that under the influence of spon- UP to this point we have been concerned with stationary
taneous emission four of the six marginally stable eigensolut!ons of the classical equations _of motion pertaining to
modes acquire negative real parts for the eigenvalues, i.eSpecial values of the collectivity parameters, ie.,
become stable, due to the breaking ol Only two van-  C3=C3 (), OSr<1/2 orcg=c5(r), O<r=1. Our numeri-
ishing eigenvalues will then survive since only two globally cal simulations of the classical versions of the evolution
conserved quantities remain, the phasefrom the phase €quationg2.2) indicate that forc; not on the lower or upper
symmetry(2.4) and the number of atons. boundary the laser field exhibits temporally periodic behav-

Similarly to stationary solutions and stability analysis, theior after some transient. To find this periodic solution we
fluctuation spectra of the superradiant laser with partial cotecall the phase symmeti(2.4) and introduce new atomic
operativity can be obtained from those for full cooperativity and field variabless;; ,a,b as
by rescalingp—p, é—&. In Ref. [5] we had obtained a

particularly simple result for the amplitude fluctuation spec- a(t)=a(t)e'*, b(t)=b(t)e ',
trum in the good-cavity limit¢>1. Now this result holds _ _
true for £&>1 and reads as follows: SiAt)=S(t)e',  Spy(t)=Sgy(t)e 4,
,C = (1) =S,
<5u0ut(w)5uout(w’)):(1/4)5(w+w') 1— 18_(:—(227)2 , SOZ(t) 802('[)’ Su(t) S|(t)v (51)
a(4,9) whereA is a frequency shift to be determined. This transfor-
mation allows for frequency shifts of the polarizatio8g,
with the squeezing streng®,(p,c), andSy; aswy,= w1+ A andwy;= wp;— A (and similarly for
the mode amplitudgssuch as to keep intact the sum fre-
_ 1 2c P2 quencywg,= wp. When the so transformed observables ap-
So(P.0)=5+ A2 201-)2 (410 proach constant value(t)— X(), one may of course
speak of a stationary state with respect to a suitable “rotating
: frame.”
and the width When again eliminating adiabatically the passive mode
1 (1-P)(1+c) we have to assume that the damping regeof the passive
S PR (4.11) mode is much larger thaa. We obtain a closed system of
Ta 3+c—2p equations of motion analogous (8.2) for the new atomic

variables and the amplitude of the active mode. The fre-

Positive values of the squeezing strength indicate noise requency shiftA now is an additional unknown quantity so
duction below the vacuum level. Ideal squeezing is incurredhat we must invoke the conservationafto fully specify a
atp=0, c=1. Since zero pumping is admittedly not a par- stationary solution.
ticularly interesting working point of a laser it is important  \hijle we have not succeeded in finding closed-form so-
that the squeezing streng8 has a rather flat maximum at |ytions for general values of and c, inside the allowed
that point so that good squeezing prevails for weak nonvanrange, the behavior far andc, close to the upper and lower
ishing pumping. _ _ boundaries, c5(r) with O<r<1 and cz(r) with

Another quantity of interest is the low-frequency asymp-g<r<1/2 is accessible perturbatively. The “boundary lay-

totic version of the fluctuation spectrum of the phase quadrag g i question can be defined by a small positive parameter
ture since it gives the linewidtlA v, of the laser output

through ( 8v ou{ ©) v gu{ ©") ) — 8w+ ") (8%)?A v,/ w? for

w—0, The low-frequency divergence of ca=ci(r)—5 for O=r=<1
(80 o @) Sv o ®')) as~ 1lw? is characteristic of phase dif-

fusion (see alsd9]). In the limit £&1 we obtain the line-

width

S as

C3=C5(r)+4 for 0=r=<1/2, (5.2

o Ka PA1+C)?+(1-P)*(1-c)?
Ava:(¥)z c—1+2p . (412 \ith 0=5<1. For the sake of simplicity we also restrict
ourselves to the good-cavity limg>1 andA<<(1—c)«k,.
Under these assumptions we may use perturbation expan-

It may be well to point out that the low-frequency divergence - .
sions in powers of the small parameter

of {Sv oy @) Sv o ®')) as~1lw? is related to the vanishing
eigenvalue associated with the phase symmgr). Inter- A
estingly, the other five eigenvalues with zero real parts do €

. L : = T (5.3
not cause an analogous divergency in either amplitude or (1-C)kq
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for the deviations from the former stationary solutions, given ~~ —— 717 _ }
by (4.2). Including second-order terms inwe obtain(we | || |1 |7 D
drop the “tilde” sign for brevity so that the overbar now | |- —Q—
distinguishes the new stationary spate [ |.. ___QZ__,
— — ex 1
SS:LIN:X, Seile:T[l_iCG'f'z(l—c)zez}, m2
c mg
o 2 2. 2 2/.2. L2\ 2 FIG. 4. Young frame for an irreducible representation with the
Se/N= X 1+i6p CZX +6_(p Cz X ) ’ highest weightsn, ,m,,ms.
p\/E X 2 X
the Casimir operators of the group3), i.e., they commute
_ 1 €2 X2 with all the §;. Consequently, the atomic Hilbert space,
Sod/N= 3 1+—e(1+ > p+(1—20)a:” consisting of 3 product states of the form
[ki)1lKo)oe - - [kn)n With kj=0,1,2, may be split into or-
thogonal eigenspaces of the Casimir operators. These eigens-
/N 1 € x? paces are invariant under the application of the collective
W/N=31-¢ 1+ —2p+(1+c)ﬁ + 549 atomic operators and are called invariant subspaces or
irreducible-representation spaces of the grodp)U~or ex-
) 5 ample, for two atoms the sextet of fully symmetric states
= 1 € X (12)(li )i +]io)]i1)) and the triplet of antisymmetric
N=Z|1-el 1+ || p+(c-2)—]|, il T l2)11y) & P ymmetr
7 3 ( 2/\P ( )pc” states (142)(|i1)]io)—i,)|i1)) form two orthogonal invari-
ant subspaces of the nine-dimensional atomic Hilbert space.
Due to the exponential increase of the dimension of the Hil-
EIN= — ix(l— i) bert space witlN, the explicit construction of invariant sub-

The parametee or, equivalently, the frequency shift is
determined by the deviatiof of c; from the boundary value
c(r) as

A

Ka

_ 3cp[2p-r(1-c)]?
- (1-c?)?

Jc spaces becomes a cumbersome task for largbleverthe-
less, the theory of group representations allows us to
with construct the basis states of any arbitrary invariant subspace
in the form of Young tableaugl1,12.
5 2 Provided each of th& atoms is represented by a box,
= /pc(r—p){l_ 18cp”—3cpr(5—c)+ri(1+c) 2 each invariant subspace is uniquely specified by arranging
1+c | 4(1+c)(r—p) ' the boxes into a diagram, a Young frarfsee Fig. 4 which
(5.9  consists of at most three rows. The lengtins m,,m; of the
rows, called highest weights, monotonically decrease from
above,m;=m,=m,;, and sum up ta\, m;+m,+mz=N.
The basis states of a given invariant subspace are represented
by Young tableaux which are constructed from a Young
frame by inserting one of the numbers 0,1tBe possible
2 values of the level indexnto each box, following two rules:
(5.6 (a) numbers within each row are distributed in nondecreas-
ing order from left to right, and ) numbers in every col-
It follows that the assumption of a small frequency shift, Umn are strictly increasing from top to bottom. Figure 5
A/(1—c) k<1, is consistent witts<1, i.e., for collectivity ~Shows an example. In the space spanned by thet&tes of
parameters close to the upper and lower boundary of thdl three-level atoms with levelq0);,|1);, and [2);,

domain in Fig. 2. Moreover, we find two frequency shifts =1, ... N, a Young tableau corresponds to a linear combi-
A with different signs, i.e., two different nonresonant sta-nation of the product states of the forkn)s|ka),- - - [kn)n
tionary solutions with symmetric frequency shifts. with kj=0,1,2, obtained by first symmetrizing with respect to

To save space we do not present a full semiclassicdhe atoms in each row and then antisymmetrizing in each
analysis of these frequency-shifted solutions. We only poingolumn.
out that the characteristic polynomial of the linearized equa- To classify the invariant subspaces of durthree-level
tions of motion is a function oA2. We may therefore infer atoms it is convenient to introduce two non-negative integer
that the domains of stability of the two solutions, determined
by A., coincide.

VI. ANALYSIS OF THE ATOMIC HILBERT SPACE

In this section we shall interpret the results obtained
above using the theory of group representations. Group
theory comes in due to the fact that the opera@ysC, are FIG. 5. Example of a Young tableau.
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numbersQ;=m;—m, and Q,=m,—m,. The weights can (a) @

be expressed in terms §f;, Q,, andN,

1 1 b 1
M=z (N+2Q:+Qz), mM=3(N-Q1+Qo), v

_ 1 FIG. 6. Young tableaus for the two fundamental representations
m3—§(N—Q1—2Q2). 6.0 of U(3): (a) single atom states, an@) antisymmetric two-atom
states.
The dimensiond of the corresponding invariant subspace
and the Casimir invariantS, andC; are given by[11] behavior of the system. As an example, let us compare the

1 three-dimensional invariant subspace of two atoms with fully
d(Q1,Q)=5(Qu 1)(Qe+1)(Q+Qp+2), (6.9 ~ Antisymmetric basis states,

1 1
1 2 '=—(]21)|2)—2)|1)), 1) =—(|2)|0)—|0)|2)),
13,2 2, ~2 1
C3:§N +§N(Q1+Q2+Q1Q2+3Q1+3Q2) [2) ZE(|O)|1)—|1>|O>), (6.5

1
+ 5(2Qf+ 3Q7Q,—3Q;Q5—2Q3+18Q7+9Q,Q, and the Hilbert space of a single atdgee Fig. 6. Applying
the collective atomic operatol§; to the states of a single

+36Q,+18Q,). (6.4  atom we obtair§;|k)= &|i). For the antisymmetric states

given by Eg. (6.5 the following relation takes place:

Let us consider a representation withy#0 (see Fig. 5. S!|k)'=—&4|j)’. Thus, for the antisymmetric two-atom
ji

According to the rules for constructing Young tableaux therestates the atomic raising and lowering operators change their
is only one possibility to fill the columns consisting of three role. This transformation of operators is not unitary.
boxes, as shown in Fig. 5. All states in that representation The two triplets of state§|i)} and{|i)’} form two “fun-
behave under the action of the polarizati@swith i#j as  damental representations” of the groug3 With the help
well as of the population difference; — §;; as if the three-  of the fundamental representations all invariant subspaces or
box columns were absent, i.e., asnik were zero withQ, irreducible representations of the groug3lcan be con-
and Q, unchanged. The reader can easily verify that statestructed. In the case of(B) there are two fundamental rep-
ment, at least for some examples: The simplest case is thesentations since there are two Casimir invariabgsand
fully antisymmetric singlet state fo=3 which is annihi- Cj;. This is in distinction to the case of two-level atoms,
lated by all polarizations anl; — S;; ; the triplet of states for  corresponding to the symmetry groupd) where only a
N=4 with m;=2, m,=m3;=1 behaves like the fundamental single fundamental representation is needed to construct all
triplet for N=1, etc. Since the atomic dynamics in our su-invariant subspaces of the single Casimir operal@r in
perradiant laser can be formulated in terms of the polarizagyantum optics called squared Bloch vector.
tionsS;;, i+], and two population differencéaote that the We would like to mention an interesting analogy between
populationsS;; can be expressed in terms of the two inver-the antisymmetric state$.5) and the “hole” states in solid-
sionsSy,—Sp1, Sy~ Spp and theconserved )N we reach the  state physic§13]. As we already mentioned, for these states
following conclusion. If the initial state belongs to a repre-the atomic raising and lowering operators change their role.
sentation withm;#0 the subsequent evolution may be saidMoreover, the new atomic operators obtained under such
to take place among the boxes outside the three-box cotransformation satisfy the Heisenberg equati¢®®) with
umns. In other words, onlN—3m;=Q;+2Q, atoms are time reversed. Analogously, holes behave like electrons un-
responsible for the evolution leading to changes in the statger time reversal. Finally, adding a third box to the column
of the electromagnetic field since at each instant of time theonsisting of two boxes we obtain the state which does not
occupation numbers of the states 0, 1, and 2 are at leashow any time evolution and can be eliminated from the
equal toms. From this point of view the essentially different dynamics. This is analogous to annihilation of a hole put
representations are characterized by different pifsQ,.  together with an electron. In elementary-particle physics the
The physical irrelevance of three-box columns, i.e., the postwo fundamental representations of3) can often be asso-
sibility to add three-box columns without changing the dy-ciated with particles and their antiparticles; one then even
namics beyond changing the number of atoms, is preciselgpeaks of triplet and antitriplet. We refrain from carrying
the content of the transformatid8.10). over such jargon into our context of three-level atoms where
As follows from Eq.(6.2), the invariant subspaces char- the fundamental triplet is formed by single-atom states while
acterized byQ;, Q, and Q;=Q,, Q,=Q; have the same the “fundamental antitriplet” is formed by two-atom states.
dimension. However, there is no unitary transformation In the semiclassical limit, N>1, we put
which maps one representation into the other. As a cons&;=q;N, Q,=q,N, where G<qg;<1, i=1,2. Up to 1IN
guence, these two representations lead to different physicabrrections we obtain front6.3) and (6.4)
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[ L[] ] 1)
(a) — Q— -
Qy=0
(a)
(b)
<—Q2_> Q1=0 | ‘ %
i EEEE _
(© — Qi
—Q— Qu+2Q=N ()

FIG. 8. Construction of the Young frames close to the upper
boundary, cs=c3(r)—é& (@, and the lower boundary
C3=cC3 (r)+6, r<1/2 (b).

FIG. 7. Young frames for cz=c5(r), O<r<1 (a),
C3=C5(r), 0<r=<1/2(b), andcsz=c5 (r), 1l/2<r=<1 (c).

Co
CZZW

%[1+2q2q1+2q§+2q§], Young tableau shown in Fig.(® with almost all atoms
packed in a three-row block. A sequence of “transforma-
tions” Q;—Q;+3, Q,—Q, indicated in Fig. 8) leads to
the set of representations close to the upper boundary. The
number of such transformations must, of course, be a finite
3 3 ) ) fraction of N in order to be semiclassically perceptible. For
+(291 — 203~ 39501+ 39102) |- (6.6 5<1 the resultingg;=Q; /N must obeyq,<q,. Similarly,
) . . . We obtain the set of representations close to the lower bound-
Now we can interpret the results obtained in the precedln%lry cs=c3(r)+ 6 by a succession of transformations indi-

sections in terms of symmetry properties of the invariantCated in Ei :
. - g. &) for which Q;—Q; andQ,—Q,+3 such
subspaces. Comparir(.6) with (3.9) we observe that we that in the encty;<d,.

recover the upper boundang (r) of the cooperativity pa- In conclusion, in this section we have employed the
rameter c; setting q,=r and q,=0. The corresponding heqry of group representations which gives a natural classi-
Young tableaux are given in Fig(&) and show that in this  fication of solutions of the superradiant laser with partial

caseq;N=rN atoms are active as if in totally symmetric .qqnerativity in terms of irreducible representations 68U
states. This result makes it particularly transparent why th roup.

semiclassically calculated stationary solutions and fluctua-
tion spectra are simply obtained from the results for full co-

C; 1
Ca=13 = g 1+6(ai+a5+0,0:)

Conversely, forq;=0, g,=r, 0<r=<1/2 we obtain the EMISSION
lower boundaryc; (r) of the cooperativity parameteg. The In Ref.[5] we had already addressed the question of spon-

corresponding Young tableaux are shown in Fig).7Now  taneous emission. In particular, we have shown that in the
2g,N=2rN atoms are active as if ilN antisymmetric an-  semjclassical limitN>1, even with spontaneous emission
titriplets (6.5). Since for a single antitriplet we need two inclyded, stationary superradiance is still possible and good
atoms, the maximal number of antitripletsNg2. squeezing available over some range of frequencies in the
Finally, the right boundarg; (r)=r? of the cooperativity  amplitude noise spectrum. However, in R we were not
parameter cg for 1/2<r<1 is recovered by able to give the full explanation of the role of spontaneous
9,=(1/6)\12r?—3, q,=(1/2)(1—qy). The corresponding emission since we did not have the set of solutions with
Young tableaux are shown in Fig(cJ. To construct the partial cooperativity. In this section we want to interpret the
atomic Hilbert space in this case we need both fundamentaksults obtained in Ref5] using the notion of partial coop-
representations. Correspondingly, in the semiclassical cassrativity and the symmetry properties of the invariant spaces
the atomic dynamics is described by six independenbf the Casimir operator€, andCs.
equations, two more than in the case whem For simplicity we restrict ourselves, as in R¢f], to
=c3(r), O<r<1 or cg=c5(r) for O<r<1/2 [see the spontaneous emission only from the upper level 2 to the
above discussion of the additional conservation 14841 intermediate level 1(Taking into account spontaneous emis-
and(3.12]. As we have seen in the preceding section, thission from the intermediate level 1 to the ground state O
results in more complex behavior of the superradiant laseleaves the results qualitatively unchangédf]. Note that
exemplified by “nonresonant” stationary solutions. 20 is considered to be a two photon transition such that
The atomic Hilbert space corresponding to the nonresospontaneous emission on this transition can be neglécted.
nant stationary solutions found in the preceding section is We assume that the rate of spontaneous emissiois
constructed as follows. Far;=c; (r)— & we start from a  much slower than the rate of collective relaxatigh and the
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decay rate of the laser field,, 1.0
75<N7!Ka' (71)
. . . . . 0.75
As already mentioned in Ref5], there is an important dif- 3
ference between the collective and noncollective relaxation @
terms in dynamical equations of the superradiant laser: Thefa% 05
first ones scale with the number of atoms N while the =
second are proportional only fd. Therefore, for the semi- E 2
classical approximatior\>1, we may confine ourselves to 0.25
the limit ys— 0 without incurring more than an error of rela- o
tive order 1N which is inherent in the semiclassical approxi- g
mation anyway. _ %0 0.25 0.5 0.75 1.0
However, the limitys—0 must not be taken blindly by
setting ys=0 in the dynamical equations from the outset. 1.0
The reason for this is that the incoherent terms proportional |
to ys break the collectivity of the dynamics and destroy the %
conservation of the Casimir operatd@s andCj. Instead of % 0.75
being constants, boti, and C; now evolve in time with a 5
&
rate of the order ofy, 5 o5lo Y
d — 2 N
=4y SxSa0t SuSiot A Su—S2)1, (7.2 =y 8
dt )
2 0.25
5
d_— - a
dt —:C3=6 75[(522+ S11) $21S12+ Sp151202+ S10502521 0.0
0.0 0.25 0.5 0.75 1.0
+ S20500500t S i1~ Soo+ SoiSi0)]. (7.3 pump strength p
To find a stationary solution we must sdzaldt—o and FIG. 9. Stationary intracavity field intensity and participation

dC;/dt=0. Obviously, now, fory;=0 both conditions are parameters vs pump-strengphwithout (uppermost curve for field
trivially fulfilled. For y,#0 the square brackets {i#.2) and  intensitieg and with (, 8, andy) spontaneous emission. The cou-
(7.3) must vanish and these conditions take the role previpling strengthc=0.1 and the limity,—0.

ously played by the conservation @f, and C; in nailing

down all stationary means. Only at this point, i.e., after di-relation (4.3) betweenx and the participation parameter

viding (7.2 and (7.3 by ys, we may lety,—0. Thus we obtairr, with a=«a, 8,7,

We proceed by parametrizing the stationary vaIB%sn
search as in4.2). Entering with this ansatz into the square =p+ ﬂx 7.7
bracket in(7.2) and equating the latter to zero, we obtain a pc

biquadratic equation for the parameter
From the way we have constructed the alpha, beta, and
2(1+c)x*+cp(et+cp)x?+p3ci(p—e)=0, (7.4  gamma solutions it is clear that upon substitution of these
solutions into the expression fag we obtaincs’ ﬁ—c3 (r)
andcl=cj (r). These semiclassical values now have a dif-
cp(l+cpe) 8e(1+c)p(1—pe)| L2 ferent status, however: They are the stationary means of
(leZ)ZZW[_ t( - 1r 5 ) ] C3/N? obtained in the limity.—0 as time goes to+,
(1+0) (1+cpe) 7 rather than constants of the motion determined by the initial
(7.9 state. In Fig. 9 we have plotted the participation parameter
Here “+” corresponds to¢ and “—" to x5. One of these together with stationary intensities for the three solutions as a

four solutions, namely>()?, is negative and must be dis- function of p for c=0.1. Note_that the participation param-
carded as nonphysical. The other three are the solutioner for alpha and beta solutions does not exceed the value

found in Ref.[5] which we had labeled “alpha,” “beta,” 1/2 as it must be the case for the lower boundagyr) in
and “gamma,” accord with Schwartz's inequalities.

Figures 10a) and 1@b) show the time development of the
X; =X, Xy =Xg, Xf:Xy- (7.6) field amplitude, pccupation num_bers, and_ cooperativ_ity pa-
rameters according to the classical equations of motion. As
On the other hand, these three stationary solutions may bexpected, the time development of the cooperativity param-
viewed as former resonant stationary solutions with partiaktersc, andc, takes place on a time scajg *, i.e., much
cooperativity given by(4.2) with some particular value of slower than that of the occupation numbers and field ampli-
participation parametar. To find that value for each of the tude. From Fig. 1) we observe that in the good-cavity
three solutions we may substituté’2 from (7.5 into the case even with spontaneous emission there is a possibility for

which allows for the four solutions,
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-0.0015

-0.003

time

FIG. 10. Semiclassical time evolution of the
field amplitudea(t), populations of atomic levels
S;i (t)/N, and cooperativity parametecg(t) and
ca(t) for p=0.05, ¢=0.02, andy,=10"3N7y;
time is given in units of Iys.

C;

Cs

i t b time

—
1 2 3 4 5

oscillating behavior of the laser field amplitude which corre- In Ref.[5] we have described the influence of spontane-
sponds to the nonresonant solution discussed in the precedus emission on the squeezing spectrum of the amplitude
ing section. guadrature component. We have shown that spontaneous
Turning to the stability analysis we see that the stabilityemission leads to the appearance of a high peak around zero
conditions(4.7) remain unchanged foy.—0. However, as frequency in the spectrum. That peak has a heigNty/ vy
we mentioned in Sec. IV, some of the former marginallyand a width«yg, such that the area underneath remains
stable eigenvalues,, . . . ,A\g NOw acquire real parts of order constant in the limitys— 0, indicating an asymptotié peak.
vs/(Nvy). Therefore, we have to check whether these reaHowever, in a broad intermediate frequency range outside
parts are positive. Since the zero eigenvalugand\s are  this peak squeezing persists and is not qualitatively changed
related to the constant number of atoms and the conservatidrom the one obtained foys=0.
law (2.4), respectively, they remain zero also with spontane- The situation is different for the linewidth. While without
ous emission included. We have checked the other four esspontaneous emission the linewidttw? scales asx1/N2
genvalues in the limit of smalp and a bad-cavity¢<1, [see Eq.(4.12], with spontaneous emission it acquires an
when good squeezing is expected to arise. In this particulardditional factorN+y/ys and now is only proportional to
limit these eigenvalues are 1/N, Avy<1/N.
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