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The coupled ion pairs were modeled by two coupled two-level systems. The resulting Bloch equations were
derived by the density-matrix formalism. They were solved numerically for identical ions and for slightly
detuned ions with identical wave functions as a first approximation to the problem of inhomogeneous line
broadening in solids. The following results were found:~1! intrinsic optical bistability as a function of the
applied laser field;~2! regions of stability, instability, and multistability for different detunings and couplings
of the ions at different laser fields;~3! asymmetric shapes of the absorption lines with unstable regions; and~4!
suppression of the photon echo due to the nonlinear chaotic dynamics of the coupled ions. Experimental
evidence is given which supports the computer calculations.@S1050-2947~96!09810-1#

PACS number~s!: 42.50.Md

I. INTRODUCTION

Coupled atoms or ions can behave quite differently in a
radiation field as compared to the isolated species. Concern-
ing the absorption and emission probabilities this fact was
demonstrated by Dicke@1# introducing the concept of super-
radiance. The influence of ion-ion coupling on the photon
echo was studied by Skinner, Andersen, and Fayer@2# using
a model of a pair of weakly coupled two-level systems and
including relaxation and energy transfer processes. The in-
fluence of purely electronic interactions on optical dephasing
and photon echo for both diagonal and substitutional disor-
der in solids was treated by Root and Skinner@3#. In both
latter papers the influence of the ion-ion interaction was
treated in a perturbative way not taking into account the
renormalization of the resonance frequency of the ions due to
the excitation status of their neighbors they interact with.
Because of the narrow homogeneous linewidth of the ions,
especially at low temperatures, the renormalization of the
resonance frequency can easily be of the order of the homo-
geneous linewidth or even much greater already for moderate
ion-ion interactions~see Appendix!. From this point of view
drastic changes in the resonance response of coupled ions
compared to single ones can be expected including strong
nonlinearities. Hopf, Bowden, and Louisell@4# have been the
first ones to demonstrate this fact. They could show that
already the near-field coupling of the ionic transition dipoles
can lead to an intrinsic optical bistability~IOB!, i.e., a bista-
bility without any external feedback. In a number of follow-
ing papers@5–9# this concept has been developed further. In
this sense one of the authors of this paper@10# could show
that the interaction leading to IOB is not restricted to the
electromagnetic near-field coupling only but can be of more
general character. Furthermore, he could show that the diag-
onal and nondiagonal matrix elements of the ion-ion interac-
tion can compensate one another completely or partly in their
influence on the inversion-dependent renormalization of the
resonance frequency. So all effects based on this renormal-
ization including IOB can disappear for certain interactions
and wave functions of the ions.

Unfortunately, there is not much experimental work done
in this field. IOB which can be explained on the basis of the

discussed renormalization was found only recently for
Cs3Y2Br9:Yb

31 @11#.
The effect of the inversion-dependent renormalization of

the resonance frequency and the IOB based on it has been
discussed so far only in systems of identical two-level sys-
tems @4–10#. But in real doped solids the ions sit on sites
with slightly different crystal fields. This fact gives rise to a
slight detuning of the energy levels of the ions resulting in
the well known inhomogeneous spectral line broadening.
The question now arises how an ion pair behaves in a coher-
ent radiation field as a function of mutual detuning and cou-
pling. To answer this question we studied the dynamics of a
pair of two-level systems in a classical electromagnetic ra-
diation field by means of the density matrix formalism. To
take into account the inhomogeneous line broadening, we
assumed slightly different energy levels of the ions but as-
sumed the wave functions and all other matrix elements to be
identical.

In Sec. II we formulate the problem and set up the differ-
ential equations for the matrix elements of the density opera-
tor in a general form for two coupled different two-level
systems. By a proper transformation we introduce the Bloch
equations of the coupled pair and show how the resonance
frequency and the Rabi frequency of the ions are changed by
the ion-ion coupling: they become dependent on the current
status of the other ion. The resulting system of Bloch equa-
tions cannot be solved anymore in an analytical form. In Sec.
III we formulate the conditions for our numerical computer
treatment of the problem for some characteristic couplings
and detunings of the two ions. The calculations are made in
relative units using the dephasing time and the homogeneous
halfwidth ~HWHM! of the unperturbed ions as the units of
time and energy, respectively. Furthermore, the approxima-
tion for the inhomogeneous line broadening has been intro-
duced as discussed above. In Sec. IV we discuss the results
of the computer calculations concerning IOB, regions of sta-
bility and instability, spectral line shape, and quenching of
the photon echo. Some experimental evidences supporting
the theoretical results are presented in Sec. V. Section VI
finally gives a discussion and summary of the results.

The parameters of the computer calculations are adapted
to experiments with rare-earth and transition metal ions in
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solids at low temperatures. In the Appendix we give a nu-
merical example to our calculations for characteristic param-
eters of these ions.

II. FORMULATION OF THE PROBLEM

The physical situation is shown in Fig. 1. The Hamil-
tonian for the two ions~1! and ~2! has the form

H5H0
~1!1H0

~2!1H ~12!1Hr
~1!1Hr

~2! . ~1!

The first two terms are the Hamiltonians for the unperturbed
ions with the two energy valuesE 1

( i ) andE 2
( i ) belonging to

the wave functionsu1( i )& and u2( i )&, i51,2. H ~12! represents
the interaction between the two ions. For reasons of math-
ematical simplicity we assume that it factorizes into two
single-ion factors:

H ~12!5h~1!h~2!. ~2!

Physically, this is not a real restriction, because the interac-
tion can usually be represented by products of spin or mul-
tipole operators.

The last two terms of Eq.~1! represent the interaction of
the two ions with the radiation field. We take them in the
usual dipole approximation:

Hr
~ i !5EW ~rW ~ i !,t !pW ~ i !. ~3!

The first factor represents the electric field vector of the in-
cident classical radiation field at the positionsrW ( i ) of the ions
~1! or ~2!. The second one is the electric transition dipole
moment between the two statesu1( i )& and u2( i )&. Because the
distancerW ~1,2! between the interacting ions is usually small as
compared to the wavelength of the radiationl, the phase of
the electrical field can be chosen identical for both ions:

EW ~rW ~ i !,t !5EW ~ t !5 1
2 jW~ t !„exp~2 ivt !1c.c.…. ~4!

jW (t) means the slowly varying amplitude of the radiation
field ~j̇/j!v! and v its frequency. The calculations are
analogous to@10# using the reduced density matrix formal-
ism and the slow-varying-amplitude approximation. As in
@10# we use for the off-diagonal elements of the reduced
density matrixr the form

r12
~ i !5 iR12

~ i !~ t !exp~2 ivt !, ~5!

whereR12
( i )(t) means the slowly varying amplitude of the

matrix element. For ion~2! the results of the calculations are
the following differential equations:

dr22
~2!

dt
5
1

\
$2 1

2 jWpW ~2!~R12
~2!1R21

~2!!2 ih12
~1!h21

~2!R21
~1!R12

~2!

1 ih21
~1!h12

~2!R12
~1!R21

~2!%2g22
~2!r22

~2! , ~6!

dR21
~2!

dt
5
1

\
$2 i ~E0

~2!2E!R21
~2!2 i ~h22

~2!2h11
~2!!~h11

~1!r11
~1!

1h22
~1!r22

~1!!R21
~2!1 1

2 ~r22
~2!2r11

~2!!~jWpW ~2!

12ih12
~1!h21

~2!R21
~1!!%2g12

~2!R21
~2! , ~7!

dr11
~2!

dt
52

dr22
~2!

dt
, ~8!

dR12
~2!

dt
5
dR21

~2!*

dt
. ~9!

E 0
( i ) is the resonance energy of the ions andE the quantum

energy of the radiation field~Fig. 1!. For ion ~1! we get the
same set of differential equations by interchanging the ion
indices~1! and ~2!.

g 22
( i ) andg 12

( i ) represent the phenomenologically introduced
relaxation rate of the population of the excited state and the
dephasing rate, respectively, both for the single ions. As re-
laxations to a bath both are assumed to be exponential. For
metastable states in solids both relaxations are generally
dominated by different processes. Therefore they are not di-
rectly related with each other, and the loss of coherence is
usually much faster than the decay of the population of the
excited state. Thusg 12

( i ) describes dominantly the phase re-
laxation of the ions.

Following Feynman, Vernon, and Hellwarth@12# the dy-
namics of a two-level system can be described by a ‘‘Bloch
vector’’ with the three components

w~ i !5r22
~ i !2r11

~ i ! ,

u~ i !5R21
~ i !1R12

~ i ! ,

v ~ i !5 i ~R21
~ i !2R12

~ i !!. ~10!

For the computer calculations this transformation has the ad-
vantage that we have to deal for every ion with three real
variables only. Furthermore, the resulting coupled Bloch
equations can easily be compared with the well known Bloch
equations for the uncoupled ions@13# and the alterations due
to the ion-ion coupling show up directly. For ion~2! under
the influence of the electromagnetic field and of ion~1! we
get the following Bloch equations:

dw~2!

dt
5
1

\
@2x̃~2!~u~1!,v ~1!!u~2!1~au~1!1bv ~1!!v ~2!#

2g22
~2!~w~2!11!,

FIG. 1. Scheme of the two interacting ions in the coherent ra-
diation field.
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du~2!

dt
5
1

\
@x̃~2!~u~1!,v ~1!!w~2!2 d̃ ~2!~w~1!!v ~2!#2g12

~2!u~2!,

dv ~2!

dt
5
1

\
@d̃~2!~w~1!!u~2!2~au~1!1bv ~1!!w~2!#2g12

~2!v ~2!,

~11!

with the following abbreviations.
~1! The detuningd̃ between the photon energy of the

electromagnetic fieldE5\v and the renormalized resonance
energy of the coupled ions

d̃ ~2!~w~1!!5d~2!1 1
2 ~h22

~2!2h11
~2!!~h22

~1!2h11
~1!!w~1!. ~12!

The first termd contains the basic detuning and a constant
additional shift due to the ion-ion coupling

d~2!5~E0
~2!2E!1 1

2 ~h22
~1!1h11

~1!!~h22
~2!2h11

~2!!. ~13!

The second term represents a detuning which depends on the
inversionw of the other ion. In both cases the renormaliza-
tion depends only on the diagonal matrix elements of the
interaction Hamiltoniansh~1! andh~2!.

~2! The renormalized Rabi frequency

x̃~2!~u~1!,v ~1!!5jWpW ~2!1av ~1!2bu~1!, ~14!

with the abbreviations

b5Im$h12
~1!%Re$h12

~2!%2Re$h12
~1!%Im$h12

~2!%,

a5Re$h12
~1!%Re$h12

~2!%1Im$h12
~1!%Im$h12

~2!%. ~15!

Thus the renormalization of the Rabi frequency depends only
on the phase status of the other ion and on the off-diagonal
matrix elements of the interaction Hamiltonians.

In addition to the renormalizations of the detuning and of
the Rabi frequency, the coupling between the ions introduces
into Eq. ~11! another factor depending on the status of the
partner ion. It is

~au~1!1bv ~1!!, ~16!

which connects the phase componentv ~2! with the time de-
rivative of the inversionw~2! and vice versa.

The Bloch equations are, of course, symmetric in the ions
~1! and ~2!. So the Bloch equations for ion~1! are given by
Eq. ~11! by interchanging the ion indices~1! and~2!. In this
sense the asymmetric parameterb @Eq. ~15!# changes its
sign. The full set of coupled Bloch equations for both ions is
a complex nonlinear system of differential equations. It can-
not be solved analytically. To get an idea about the physical
behavior of such a system of two coupled two-level ions in a
coherent radiation field, the differential equations were inte-
grated numerically for a set of reasonable parameters.

III. NUMERICAL CALCULATIONS

To make a reasonable choice of the parameters for the
numerical calculations, it is useful to discuss first the prob-
lem of inhomogeneous line broadening. For rare-earth ions at
low temperatures the typical inhomogeneous linewidth due

to variations in the crystal field is of the order of 1021 cm21

at transition energies of the order of 104 cm21. So, the rela-
tive detunings between the rare-earth ions in the same elec-
tronic state are of the order of 1025. Let us assume that the
relative variations of the other matrix elements and param-
eters are of the same order of magnitude, too. As long as
these quantities enter the Bloch equations directly their
variations can be neglected and their values can be assumed
to be identical. This argument holds for the electric dipole
moment, for the ion-ion interaction, and for the relaxation
rates. So we can take

pW ~1!5pW ~2!5pW ,

h~1!5h~2!5h,

g12
~1!5g12

~2!5g12,

g22
~1!5g22

~2!5g22. ~17!

The situation is different for the energies of the ions. They
do not enter the Bloch equations explicitly but only via the
detuning between the ions and the radiation field,E 0

( i )2E.
As resonant systems the ions respond very sensitively to
variations of the detuning of the order of the homogeneous
linewidth. In solids this linewidth is primarily determined by
the dephasing rate. At low temperatures the homogeneous
linewidth is only of the order of 1023 of the inhomogeneous
one or even less. So, different ions in the same state may be
detuned one from another by 103 homogeneous linewidths or
more. By these arguments it is clear that the differences in
the energies of the ions due to the inhomogeneous crystal
field have to be taken into account and the ion energiesE 0

( i )

cannot be taken identical.
Next it is useful to rewrite the Bloch equations in relative

units. This way the results of the computer calculations have
a more general meaning and can be compared easier with
real experiments. Looking at the physical processes and at
the Bloch equations it is suggested to take the reciprocal
dephasing rate as the unit of time and half of the homoge-
neous linewidth as the unit of energy. Denoting the relative
units by a prime, we have for the time and the energies

t85tg12, «85
«

\g12
, ~18!

respectively.
There is some arbitrariness in the choice of the parameters

of the ion-ion interaction. From experiment we know that for
rare-earth ions the ion-ion interaction is of the order of the
inhomogeneous linewidth, for the close pairs somewhat
stronger@14#. So, we chose for our calculations the following
interaction matrix:

ih8i5U h118h128* h128

h228
U5U2h228

h128*
h128

h228
U5U 20

20210i
20110i

220 U.
~19!

The diagonal matrix elements were chosen to be equal by
their absolute values but different in signs. This way we
allow for different ion-ion interactions in the excited and in
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the ground states but avoid, for mathematical simplicity, a
constant renormalization of the detuning. So, Eq.~13! re-
duces to

d85E082E8. ~20!

To get an idea about the relation of the chosen parameters to
the experiment we give some characteristic numerical values
in the Appendix.

Since in crystals doped with rare-earth and transition
metal ions the transverse relaxation rateg12 is usually much
faster than the longitudinal one,g22, we took in all our fol-
lowing numerical calculations:

g228 51022g128 . ~21!

With the discussed simplifications and parameters the Bloch
equations@Eqs. ~11!–~15!# used for our computer calcula-
tions take the form

dw~2!

dt8
52x̃~2!8~v ~1!!u~2!1uh128 u2u~1!v ~2!2g228 ~w~2!11!,

du~2!

dt8
5x̃~2!8~v ~1!!w~2!2 d̃ ~2!8~w~1!!v ~2!2u~2!,

dv ~2!

dt8
5 d̃ ~2!8~w~1!!u~2!2uh128 u2u~1!w~2!2v ~2!. ~22!

The renormalized detuning and the renormalized Rabi fre-
quency are given by

d̃ ~2!8~w~1!!5~E0
~2!82E8!12uh228 u2w~1! ~23!

and

x̃~2!8~v ~1!!5~jWpW !81uh128 u2v ~1!, ~24!

respectively.
The Bloch equations for the ion~1! can be found by in-

terchanging the ion indices~1! and~2! as before. The result-
ing system of Bloch equations for both ions was solved nu-
merically for the inversionsw~1! andw~2! as functions of the
Rabi frequency of the uncoupled ions

x85~jW•pW !8. ~25!

The numerical calculations were carried out by the damped
Newton method. Because of the limited local convergence of
this procedure a number of different starting values had to be
taken to find the various possible solutions. The results were
proved for stability by a linear stability analysis@15#.

IV. NUMERICAL RESULTS

A. Stationary solutions

First, we want to discuss the stationary solutions for the
inversion as a function of the Rabi frequency, i.e., of the
applied electromagnetic field. Figure 2 shows the calculated
diagrams for two identical coupled ions in a resonant elec-
tromagnetic field. The diagrams are given for three different
couplings, off-diagonal, diagonal, and both together. As can

be seen the diagrams are qualitatively identical and confirm
the results of@10#. They show the characteristic behavior of
a bistability: a stable increase of the inversionw from 21
up to about20.5 and an unstable region with negative slope
betweenw'20.5 to 0 where the system becomes stable
again. Increasing the Rabi frequency the inversion rises up to
the first critical point atw'20.5 where it jumps into satu-
ration and stays there. Coming back the system stays satu-
rated until it reaches the second or upper critical point from
where the inversion drops down to almost21. The Rabi
frequencies for both critical points are quite different, so that
safe optical switching is feasible. The switching time for this
IOB can be expected to be of the order of the phase relax-
ation timeg12

21. This means that it can be quite fast and can
be chosen suitable for applications by a proper choice of the
temperature of the host lattice. The question which now
arises is of course the question of the effect of inhomoge-
neous line broadening on the IOB, i.e., the question of how
the system behaves if the ions are slightly detuned one from
another. To answer this question we calculated the stationary
solutions for the case that the ions are detuned symmetrically
to both sides from the frequency of the electromagnetic field.
The results are shown in Fig. 3. Already at small detunings
of d ( i )85610 we find for real off-diagonal coupling a strong

FIG. 2. Stationary solutions for the inversion as a function of the

Rabi frequencyx8 for identical ions (E0
(1)85E0

(2)8) and no detuning

(d ( i )85E0
( i )82E850). g12851; g22851022. ~a! Real off-diagonal

interaction.~b! Real diagonal interaction.~c! Complex off-diagonal
and real diagonal interaction. Energies in relative units of\g125D
~HWHM of the homogeneous linewidth!.
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deviation from the case of identical ions. Stable solutions are
found only for low Rabi frequencies up to the first critical
point which is located almost at the same Rabi frequency as
before. The rest of the solutions is unstable. In addition to the
two open branches we find two loops of unstable solutions. If
we go to higher detunings ofd ( i )85620 @Fig. 3~b!# the open
branches do not change very much. Their critical points stay
almost at the same Rabi frequencies. But the loops of un-
stable solutions reduce in size considerably and are easier to
recognize. Again, the open branches are stable only up to the
first critical point except for some small isolated regions. If
we go further tod ( i )85660 @Fig. 3~c!# the unstable loops
disappear and the open branches become stable regions for
higher Rabi frequencies again. So useful IOB cannot be
found anymore at these detunings.

Figure 4 compares the three different couplings at a quite
high detuning ofd ( i )856100. The coupling between the
ions is obviously still strong enough to show coupled dynam-
ics. In all three cases the Rabi frequencies of the first critical
points can still be recognized as characteristic points of the
inversion, whereas the second critical points are strongly
shifted or have disappeared at all. For the off-diagonal inter-
action @Fig. 4~a!# the inversion is stable over almost the
whole range of Rabi frequencies except for a small range
around the first critical point. So an IOB does not exist any-

more. Figure 4~b! shows the situation for diagonal coupling.
Although the absolute value of the coupling is of the same
magnitude as for the former off-diagonal case, the depen-
dence of the inversion on the Rabi frequency looks quite
different. It resembles more the behavior of the pair of iden-
tical ions demonstrating that the diagonal interaction de-
stroys the IOB to a smaller degree than the off-diagonal one
does. Nevertheless, the system is not useful for applications
anymore because of its instability for Rabi frequencies just
above the upper critical point. Figure 4~c! finally shows the
case of mixed diagonal and off-diagonal coupling. The sys-
tem does not show any tendency to IOB anymore. It has
stable solutions for the inversion up to Rabi frequencies
slightly higher than the first critical point. Then it becomes
unstable. Calculations for still higher detunings show that the
solutions for both ions get more and more stable and inde-
pendent one from another as expected.

B. Spectral line shape

An interesting question is the question of the spectral line
shape of a coupled ion pair in a coherent radiation field.
Since the macroscopic scanning of the laser frequency is
expected to be much slower than the relaxation rate of the
microscopic system of the ions into equilibrium with the
radiation field, we can calculate the spectral lineshape as a
succession of steady-state solutions of the inversion as a
function of the detuningd8 between the ions and the radia-

FIG. 3. Stationary solutions for the inversion of two ions with
different resonance frequencies. The detuningd( i )8 of the ions is
symmetrical to the frequency of the electromagnetic field. Real off-
diagonal interactionh128 520, different detunings. Relative units
D5\g12.

FIG. 4. Stationary solutions for the inversion of two ions with a
detuningd( i )856100 symmetrical to the frequency of the electro-
magnetic field.
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tion field. Of course the spectral line shape of such a strongly
nonlinear system will depend on the intensity of the incident
radiation field. So we have the problem of a suitable choice
of the Rabi frequency for which we want to do our calcula-
tions. Looking at the previous results given in Fig. 2 a Rabi
frequency ofx8515 seems to be reasonable for the off-
diagonal and mixed couplings between the ions andx8525
for the diagonal one. This way the Rabi frequencies are lo-
cated in the interesting region of strong nonlinearity. First,
we want to discuss the line shape for a pair of identical ions.
Figure 5~a! shows the inversion of the ions as a function of
the detuning for real off-diagonal interaction. Starting from
negative detuningsd85E082E8 the inversion shows a quite
flat increase over hundreds of homogeneous linewidths and
reaches its maximum at zero detuning. Behind the maximum
the inversion drops very steeply through an unstable region
with even some backlash to negative detunings. After this
the inversion becomes stable again and approaches its mini-
mum value.

Figure 5~b! shows the spectral line shape for real diagonal
coupling between the ions. As before the line shape is
strongly asymmetric but inverted with the flat wing on the
side of positive detunings. The backlash of the steep wing is
even stronger. In contrast to the previous case both wings of
the line have unstable solutions. Only for zero inversion,
where the inversion-dependent detuning disappears@Eq.
~23!#, we have a small region of stability. The region of
instability on the flat wing side covers a detuning range of
about 800. This is just the maximum range of the inversion-
dependent detuning as given by Eq.~23!. Outside of this
region the inversion is stable again.

Figure 5~c! finally gives the line shape for mixed diagonal
and off-diagonal coupling. Obviously the diagonal part
dominates the line shape resulting in the flat wing on the side
of positive detuning. But in contrast to pure diagonal cou-
pling this wing shows no instability. The steep wing on the
other side has again a region of instability, but it is smaller
than in both cases before and has a smaller backlash, too.
Obviously, the mixed coupling stabilizes the inversion to
some degree and makes the line shape more symmetric.

All three cases show that in a coherent radiation field,
even for identical ions, the ion-ion coupling can cause strong
deviations from the line shape of the uncoupled ions. The
lines become asymmetric with partly unstable regions. Fur-
thermore, the halfwidth of the lines can be increased drasti-
cally and reach the order of the ion-ion coupling energies, in
our case several hundred halfwidths of the single ions. The
nonlinearity of the system allows the external field to drag
the ‘‘resonance response’’ of the pair on the flat wing of the
resonance line over quite a wide frequency region whereas at
the other side of the line the nonlinearity causes a sharp
cutoff at the inversion-independent resonance frequency.

As expected the line shape becomes more complicated if
both ions have different resonance frequencies. The simplest
case we get is for off-diagonal coupling of the ions. It is
shown in Fig. 6~a! for a relative detuning of the ions of 100.
For reasons of better understanding the inversions of both
ions are given separately. The experimental line shape would
be the sum of both. As can be seen, the general linewidth is
broader than the ion-ion detuning. This means that the line-
width is again influenced by the ion-ion coupling. As for the
identical pair@Fig. 5~a!# the line shape is asymmetric with

FIG. 5. Spectral line shape of a pair of coupled identical ions.
d85E082E8.

FIG. 6. Spectral line shapes of a pair of coupled detuned ions.
The relative detuning isd~1!82d~2!85100.
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the flat wing on the side of negative detunings. Whereas ion
~1! has, as expected, a stable maximum inversion atd~1!850
ion ~2! has neither a stable nor an unstable maximum at
d~2!850, d~1!85100. It is obviously suppressed by the ion-ion
coupling. The inversion for positive detunings consists of
stable and unstable solutions. As a consequence the line
shape becomes different scanning the laser frequency from
negative to positive detunings or in the reverse way. The
situation becomes more complicated for diagonal coupling as
demonstrated in Fig. 6~b!. Around its resonance frequency
d~1!850 ion ~1! behaves similar to the case of identical ions
@Fig. 5~b!#, but its halfwidth is smaller and the resonance
frequency is slightly shifted to positive detunings. Ion~2!
behaves quite differently: it shows two inversion maxima.
This fact nicely demonstrates the meaning of the inversion-
dependent resonance frequency as given by Eq.~23!. The
resonance conditiond̃ ~2!850 can have two extreme solutions
for d~2!8 differing by 2uh228 u2 for the two limiting cases of the
inversion w~1!50 and w~1!521. With our choice of
parameters this difference is 800 and reproduces nicely the
difference between the two maxima found by computer cal-
culations. So the two maxima can be explained by the
inversion-dependent detuning of ion~2! by ion ~1!. Since the
inversion of ion ~2! is almost constant in the ‘‘resonance
region’’ such a double maximum cannot be expected for ion
~1! by the same arguments. This is in accordance with the
computer calculations.

With our set of parameters the line shape for a mixed
diagonal and off-diagonal interaction looks quite similar to
the case of a pure diagonal one. As before ion~1! shows only
one maximum of inversion and ion~2! two of them. But in
the region between the two maxima the number of unstable
solutions increases considerably.

C. Dynamics and photon echo

Exciting a two-level system with a coherent radiation field
results in a transient behavior of the inversion which is called
optical nutation. It is given by a damped oscillation of the
inversion around its future steady state. The frequency of the
nutation is given by@13#

V85Ad821x82. ~26!

In the case of two identical coupled ions the detuningd8
between the ions and the radiation field has to be replaced by
its inversion dependent quantityd̃8 @Eq. ~12!# and the Rabi
frequencyx8 by its corresponding quantityx̃8 @Eq. ~14!#. So,
both of these quantities are not constants of the dynamics
anymore but depend on the current status of excitation. If in
addition the ions are detuned one from another, the harmonic
character of the oscillations gets lost more and more. Figure
7 shows an example for off-diagonal ion-ion coupling and
symmetric detuning of the ions relative to the radiation field.
The small asymmetry due to the relative detuning of the ions
is already sufficient for a well pronounced asymmetry in the
inversion dynamics of both ions. For higher couplings and
relative detunings of the ions the modulation of the inver-
sions of the ions gets smaller and faster and under certain
conditions instabilities can occur.

Switching off the laser field leads to a free relaxation
process of the coupled ions. For a symmetric ion pair with

identical conditions at the end of the applied laser field the
coupled Bloch equations~22! take the following form for
both ions:

dw

dt8
52g228 ~w11!,

du

dt8
52@d81~2uh228 u22uh128 u2!w#v2u,

dv
dt8

5@d81~2uh228 u22uh128 u2!w#u2v. ~27!

They can be solved analytically. The inversion decays expo-
nentially with the time constant of the single ions

w~ t8!5K exp~2g228 t8!21. ~28!

The constantK is given by the initial conditions att850.
The phase componentsu andv show an oscillatory time

dependence with a time-dependent frequency due to the ion-
ion coupling. The solutions are

u~ t8!5e2t8@u0cosa~ t8!2v0sina~ t8!#,

v~ t8!5e2t8@u0sina~ t8!1v0cosa~ t8!#. ~29!

The phase anglea~t8! after switching off the laser field is
given by

FIG. 7. Coherent transients of a weakly coupled and slightly
detuned pair of two-level ions in a coherent radiation field. Time in
relative units ofg12

21.
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a~ t8!5d8t82~2uh228 u22uh128 u2!@ t81g228
21
„w~ t8!2w~0!…#.

~30!

The first term represents the standard single-ion dynamics
with a fixed detuningd8. The second term contains the cor-
rections of the phase angle due to the ion-ion coupling and
the inversion-dependent resonance frequency. Its first linear
part in the square bracket can be interpreted as a constant
correction of the detuningd8. The second part is not linear in
time anymore and describes the dependence of the phase
angle on the inversion:

Da~ t8!52~2uh228 u22uh128 u2!g228
21
„w~ t8!2w~0!….

~31!

With our set of parameters it amounts toDa~t8!
5233104„w(t8)2w~0!…. This gives an idea about the phase
corrections due to the inversion dependence of the resonance
frequency.

A combination of the transient behavior in an applied
electromagnetic field and the following free relaxation after
switching it off is the photon echo@13#. The photon echo is
often used to probe the loss of coherence in an inhomoge-
neous ensemble of single two-level ions. It is generated by a
sequence of two pulses of coherent radiation with a delay
time t between them. The first pulse calledp/2 pulse is used
to bring the ions into a state with inversionw>0. In the
following time of free relaxation the ions dephase one from
another because of the inhomogeneous detuning between
them. The second pulse calledp pulse is of double pulse
area and turns the phase componentsu to 2u. As a conse-
quence the dephased ions rephase in the following time of
free relaxation with the same speed as they dephased before
and after a second time intervalt all ions are in phase again.
This means that the electric dipoles of the ions

^pW &5Tr~rpW !5pWu ~32!

are in phase, too, and emit a coherent radiation burst called
the photon echo. Of course, the photon echo is produced
only by those ions which did not undergo a phase destroying
process. So, the intensity of the photon echo is a measure of
conservation of coherence of the ions. These arguments hold
for ions with identical resonance frequencies in the dephas-
ing and rephasing process. But for coupled pairs of two-level
ions we have to deal with a nonlinear system with renormal-
ized resonance and Rabi frequencies which depend on the
time-dependent status of the partner ion. So the question
arises if we still can expect to find a photon echo and if it is
still a measure of conservation of coherence of the ion pairs.

To answer this question we modeled the photon echo ex-
periment by computer calculations. The calculations were
made with pairs of identical ions. This is the optimum case
for expecting a photon echo. The inhomogeneous line broad-
ening was simulated by distributing 500 ion pairs over an
energy range of 400 in a statistical way without any weight-
ing to generate a specific inhomogeneous line shape. The
applied laser field was simulated with a Rabi frequency
x854000 for both pulses. The laser frequency was located in
the center of the ion frequencies. The length of the first pulse
was taken to generate an inversionw>0 at the center fre-

quency. The second pulse of the laser field after the delay
time t was taken twice as long according to the theory of
photon echo generation. The dynamics of the photon echo
experiment was calculated for every ion pair separately. The
results for the phase componentsu responsible for the light
emission and for the inversionw were averaged over all 500
ion pairs. The computer calculations were done for a number
of coupling parameters and delay times between the pulses
using the classical Runge-Kutta method. To check the pro-
gram, first the echo signal was calculated setting all interac-
tion matrix elements equal to zero. The result is given in Fig.
8. It shows the increase of the mean inversionw̄ from 21 to
a small positive value due to thep/2 pulse. Thep pulse is
applied att85t850.5 and can be recognized by the change
of the small inversion to a negative value. The mean phase
componentū increases by thep/2 pulse to its maximum
value. After the pulse the ions dephase andū shows small
irregular fluctuations around the ideal value of zero due to
the finite number of interfering ions taken for the calcula-
tions. At the timet852t851 we see the constructive inter-
ference of the rephased ions with the expected negative value
for ū which represents the photon echo. For longer times the
fluctuations ofū disappear due to the relaxation of the phase
components of all ions to zero.

Figure 9~a! and 9~b! show the simulation of the same
experiment, but now with off-diagonal and diagonal ion-ion
coupling of the pairs, respectively. The positions of the ex-
pected echo signals are given. No echo signal exceeding the
statistical fluctuations ofū can be seen. A reduction of the
pulse separation down tot850.2 did not give any other re-
sults. Only fort850.1 ~Fig. 10! we found a small signal for
ū which exceeded the statistical fluctuations to some extend
but had the wrong sign in the sense of the classical photon
echo. The reason for this partial rephasing is not clear to us
yet. Maybe, it is by accident. But in experiment it would
show up as a weak echo signal.

Looking at Figs. 8–10, we see that the statistical fluctua-
tions of the mean phase componentū of the uncoupled ions
and of the coupled ion pairs last over the same time period.
They result from interferences of the individual phase com-

FIG. 8. Simulated echo signal for uncoupled ions.w̄ and ū are
the mean values of the inversions and phase components of the
chosen ensemble of ions, respectively. Time in relative units of
g12

21.

54 4435COUPLED ION PAIRS IN SOLIDS UNDER THE . . .



ponentsu. This means that the phase memory of the ions is
not reduced or quenched by coupling them to pairs. The
missing photon echo of the pairs on the time scale of coher-
ence of the single ions simply means that the coupling be-
tween the ions in the pair leads to phase dynamics which

cannot be rephased anymore by the usual photon echo pro-
cedure. This can be understood on the basis of the renormal-
ization of the resonance and Rabi frequencies by the partner
ion: The parts of the phase anglea @Eq. ~30!# linear in time
compensate during the dephasing and rephasing period of the
photon echo experiment as in the case of uncoupled ions. But
the inversion-dependent parts of the phase angles cannot
compensate because the inversionw is different during both
periods. The resulting uncompensated phase angle can be
calculated by means of Eq.~31!. It is given by the difference
of the phase angles during both periods:

Da12Da252~2uh228 u22uh128 u2!g22
21
„w1~t8!2w1~0!

2w2~2t8!1w2~t8!…. ~33!

Because of the inhomogeneous line broadening different
pairs are excited to different degrees of inversion by the pho-
ton echo generating pulses. This results in different values of
Da12Da2. Even if the differences in the inversions are small
from pair to pair, the great value of the prefactor, with our
parameters 33104, leads to strong relative statistical dephas-
ings of the ion pairs and consequently to quenching of the
photon echo as found by our computer simulations.

So, the photon echo experiment, even if it succeeds for
short delay times, may not give a meaningful measure of the
phase memory or dephasing time of the individual ion pairs.

V. EXPERIMENTAL EVIDENCES

The presented computer calculations were undertaken af-
ter we tried to do coherent-transient experiments on Pr31

pairs in Pr31:LaF3 without success. Although we could re-
produce the known results for Pr31 single ions in LaF3 and
LaAlO3 @16,17#, we could not find the corresponding signals
for ion pairs. But negative results do not mean very much.
Usually, they can have more than one explanation.

A better and more convincing experiment is demonstrated
in Fig. 11. It shows the fluctuations of the fluorescence in-
tensity of thea

1D2→ a
3H4 transition of a Pr

31 pair in LaF3 at
low temperature over a time interval of 600 sec. The fluo-
rescence was excited by a tunable dye ring laser~Spectra
Physics 380A! into the resonance levela

1D2 and into the
higher crystal field componentb

1D2 . Single-mode operation
and frequency stability of the laser were monitored by a
high-resolution Fabry-Pe´rot interferometer. The experiment
was done with ‘‘weakly’’ coupled Pr31 pairs with their ab-
sorption lines in the central region of the inhomogeneously
broadened transitiona

3H4→ a
1D2 and a

3H4→ b
1D2 . Tuning on

a pair transition was accomplished by monitoring and opti-
mizing the upconverted Pr31 fluorescence from the higher
3P0 level @14#. Upconversion by energy transfer means a
process in which one ion in a doubly excited pair is trans-
ferred into a higher excited level on expense of the other one.
The intensity of the upconverted fluorescence was quite
weak. So it can be used as an indicator for a pair transition
but with negligible influence on the basic pair dynamics.

Because of this tuning procedure one can expect that a
considerable part of the measureda

1D2 fluorescence origi-
nates from the selected pair. Unfortunately, the crystallo-
graphic character of the pair cannot be given by its transition
frequency having in mind the variety of pair transitions@14#

FIG. 9. Simulated photon echo experiment for pairs of identical
ions. ~a! Off-diagonal ion-ion interaction.~b! Diagonal ion-ion in-
teraction.

FIG. 10. Simulated photon echo experiment for pairs of identi-
cal ions at a short pulse delay. Diagonal ion-ion interaction.
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found in this relatively complicated crystal.
Already at excitation densities of 0.5 W/mm2 the fluctua-

tions of the a
1D2 fluorescence are remarkably stronger for

direct excitation into the fluorescence level@~1! Fig. 11# than
for indirect excitation into the higher crystal-field component
~2!. The mean statistical deviations from the average inten-
sities ares15918 ands25388 photon counts, respectively,
at almost the same intensity. The energy difference between
the two crystal field components is 23 cm21. Due to one-
phonon emission the lifetime and dephasing time of the up-
per crystal-field component are of the order of 1 ns or even
less @18,19#. Therefore, even by coherent pumping into the
upper crystal-field componentb

1D2 the following spontane-
ous radiationless transition leads to an incoherent population
of the fluorescent levela

1D2 and the fluctuations of the emit-
ted fluorescence represent photon statistics and instrumental
noise. The situation is different for direct coherent pumping
of the level a

1D2 . At lower temperatures the dephasing time
of this level is dominated by one-phonon scattering pro-
cesses between the two crystal-field components@18,19#. At
2 K it has a value of the order of several microseconds
@16,17# and decreases with rising temperature according to
the thermal population of resonant phonons of 23 cm21. So,
at low temperatures coherence effects can be expected for
ion pairs pumped directly by coherent radiation into the reso-
nance levela

1D2 . As was shown in Figs. 3 and 4 ion pairs
can have unstable solutions for the inversion at higher Rabi
frequencies, i.e., with increasing laser power density. So
fluctuations of the inversion can be expected at higher power
densities resulting in additional noise of the fluorescence.

Indeed, the fluorescence ofa
1D2 shows stronger fluctuations

~sa5918! for direct coherent pumping than for indirect
pumping~s25388! already at 0.5 W/mm2. The interpretation
of the fluctuations as coherent pair effects is supported by the
following additional facts.

~a! Increasing the laser power density to 2 W/mm2 in-
creases the mean statistical deviations for direct pumping to
s152092 whereas the deviations for indirect pumping stay
with s25419 almost at the previous value. At this power
level the fluctuations by direct pumping are so strong that
they can easily be seen by the naked eye. This is in accor-
dance with the expected increasing number of unstable pairs
with increasing intensity.

~b! Increasing the temperature from 1.6 to 4.2 K decreases
the mean statistical deviations for direct pumping to the
value for indirect pumping in accordance with the strong
decrease of the dephasing time of the metastable levela

1D2
@18,19#.

~c! Detuning the laser within the inhomogeneous line-
width from a position with pair absorption to a position with
single-ion absorption only, i.e., with no upconversion, re-
duces the fluctuations of thea

1D2 fluorescence for direct ex-
citation to the same level as for indirect excitation.

Instabilities of a similar kind were already reported by
Wannemacher and Heber in 1987 for ruby@20#. In this paper
the cooperative emission of photons from doubly excited
weakly coupled Cr31 pairs has been reported. Taking the
excitation spectra of the cooperative emission in the region
of the R lines with a ring laser, strong fluctuations of the
emission intensity have been detected. For Cr31 concentra-
tions c<0.3% only fast fluctuations were detected which
could be explained by the model calculations presented in
Fig. 6. For higher concentrations asymmetric line shapes
were found depending on the direction of scan. In addition a
deep decrease of the absorption in the center of the inhomo-
geneous line was found with persistent character. This de-
crease, of course, cannot be explained by coherent pair in-
stabilities and probably is due to other effects like two-step
or cooperative ionization of Cr31 ions @21#.

VI. DISCUSSION AND SUMMARY

The ions of a coupled pair in a coherent radiation field are
exposed to two phase-sensitive and nonlinear interactions,
the interaction with the pair partner and with the electromag-
netic field. The calculations have shown that if these interac-
tions are of the same order of magnitude, instabilities and
multistabilities can occur. If in addition the detuning of the
two ions is of the same order of magnitude the tendency to
these effects is generally increased. If the detunings are in-
creased further the pairs of course tend to behave more and
more like isolated ions. The general explanation of these
effects is that the two phase-sensitive interactions are com-
peting one with another and the ions can lock in either to the
one or to the other interaction. If one of the interactions is
dominating we get more or less stable or metastable regimes.
Changing between the regimes or if none of both interactions
can dominate leads to unstable situations with deterministic-
chaotic changes of the status of the ions. Experimentally this
can show up, e.g., by strong fluctuations of the fluorescence
intensity under direct coherent excitation.

FIG. 11. Fluorescence of the transitiona
1D2→ a

3H4 of Pr
31 pairs

in LaF3 under single mode cw excitation into the levelsa
1D2 ~1! and

b
1D2 ~2! at two different power densities.
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The free decay of the excited pairs is strongly influenced
by the ion-ion interaction, too. The dynamics of the ions
depends on the current status of the partner ion. The simplest
documentation of this fact is the renormalized resonance fre-
quency of the ions depending on the inversion of the other
one. As a result of this dependence the photon echo becomes
quenched. This quenching has nothing to do with a loss of
phase memory. The pairs keep their phase memory on the
time scale of the dephasing time of the uncoupled ions but
the standard method of rephasing as used for photon echos of
single ions does not work anymore due to renormalization.

An important question to be answered is if the IOB found
for pairs of identical ions can be used for applications in
photonics. The calculations give the answer in the way that
the detuning of the two ions making up the pair should not
exceed their homogeneous linewidth. In real crystals this
means that the inhomogeneous linewidth should be smaller
than the homogeneous one. This means very perfect crystals
to reduce the inhomogeneous linewidth or a reduction of the
dephasing time to increase the homogeneous linewidth. The
last solution is not a very prospective one because short
dephasing times mean high power densities for driving the
IOB @10#. But, maybe, a combination of both ways can give
an acceptable solution.

The last question to be discussed is the one why the fluo-
rescence instabilities could be observed by us only for
‘‘weakly’’ coupled Pr31 pairs with their absorptions near the
center of the inhomogeneous line. The answer is simply that
the interaction between the ions, the mutual detuning, and
the Rabi frequency have to be of the same order of magni-
tude. Because of the small dipole moments of the involved
transitions, which are parity forbidden in first approximation,
the resulting Rabi frequencies are only small. Therefore co-
herence instabilities can be expected only from weakly
coupled pairs in the center of the inhomogeneous line as
found by us experimentally. For higher Rabi frequencies
these instabilities should be observable for stronger coupled
pairs, too.

APPENDIX

To relate the model calculations with reality it is useful to
compare the model parameters with characteristic data of
optical centers in solids, e.g., of rare-earth ions. This is done
in Table I. The resonance energy of the characteristic ion
was takenE0520 000 cm21 and the radiative lifetime of the
excited stateg22

2151 ms. From both data the transition dipole
momentp can be evaluated. With this result the Rabi fre-
quencyx was calculated for a power density of the radiation
field of 0.1 W/mm2. The dephasing rateg12 and the interac-

tion matrix elements were taken like in the model calcula-
tions.

An interesting role in the ion-ion interaction plays the
near-field interaction of the coherently driven transition di-
poles which also is called the local-field correction to the
externally applied electromagnetic field. This interaction is
always present independently of other interactions. For par-
allel dipoles it is given by

W~12!5
p2

4p«0k~r ~12!!3
~123 cos2Q~12!!. ~A1!

Here k denotes the dielectric constant at the transition fre-
quency andQ~12! the angle between the direction of the par-
allel dipoles and the distance vectorr ~12! between them. In
stoichiometric crystals of higher symmetry the local-field en-
ergies to all neighbors cancel completely or almost com-
pletely for geometrical reasons. This is not the case in mod-
erately doped crystals. Because of the strong dependence of
the dipole-dipole interaction on distance, the interaction with
the nearest neighbor ion is the dominating one and no sig-
nificant cancellation by other ions can be expected. Thus the
order of magnitude of the near-field interaction can be esti-
mated knowing the transition dipole moment from the radia-
tive lifetime and neglecting the directional dependence. Iden-
tifying the near-field interaction with the interaction of our
model calculations we have

W~12!5~Reh12!
2'

p2

4p«0k~r ~12!!3
. ~A2!

Setting~Reh12!
25400 as in our calculations and solving for

the ion-ion distancer ~12! we get for our characteristic ions a
quite great value of

r 0
~12!;14 Å. ~A3!

This value is reasonable for weakly coupled pairs as used in
our experiment on Pr31:LaF3.

From @10# we know that the diagonal matrix elements of
the ion-ion interaction contribute to the inversion-dependent
renormalization of the resonance frequency, too~Eqs. ~22!
and~23! in @10#!. In our notation the full renormalization1 is
given by

1For identical ions the renormalization of the resonance frequency
can be done in another way not renormalizing the Rabi frequency.

TABLE I. Comparison of our model parameters with the parameters of a characteristic ion with the following data: Resonance energy
E0520 000 cm21 ~l050.5 mm!, radiative lifetimeg22

2151 ms, and transverse relaxation timeg12
21510 ms. Radiation fields50.1 W/mm2

~j573103 V/mm!. ~t8! and ~«8! are the chosen relative units of time and energy.

g22 g125102 g22 ~t8! ~«8! ~Reh12!
25uhii u

2 uh12u
2 x p

Abs.
units

103 s21 105 s21 10 ms 105 Hz
5.331027 cm21

43107 Hz
2.131024 cm21

53107 Hz
2.731024 cm21

3.65 MHz 3.431023 e Å

Rel.
units

1022 1 1 1 400 500 36.5
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~«2«12!w5
w

2\
@~h112h22!

222uh12u2#. ~A4!

Hereh11 andh22 mean the static dipole-dipole interaction of
the ions in the ground and in the excited states, respectively.
Following Judd, Ofelt, and Peacock@22–24# the transition
dipole moments of the rare-earth ions are induced by the
noninversion symmetric parts of the crystal field admixing
wave functions of opposite parity to the 4f n wave functions.
The same mechanism induces static dipole moments as well.
So both dipole moments, the off-diagonal and diagonal ones,
are of the same origin. Therefore they can be expected to be
of the same order of magnitude as well and some mutual
reduction of their influence on the inversion-dependent
renormalization of the resonance frequency@Eq. ~A4!# can
be expected. So the estimate forr 0

~12! @Eq. ~A3!# is rather an
upper limit.

Another way to relate our calculations to experiment is to
compare the near-field interaction energy of our characteris-
tic ions over a characteristic distance of aboutr ~12!510 Å
with typical homogenous linewidths which we used as rela-
tive units. The orientation independent part of Eq.~A1! gives

W0
~12!

\
5112 MHz. ~A5!

Typical homogeneous linewidths of rare-earth ions at low
temperatures are of the order of MHz and KHz and extend
down to 122 Hz@25#. This proves our choice of the order of
magnitude of the interaction parameters for the model calcu-
lations which introduce an interesting field of nonlinear mo-
lecular dynamics.
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