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Coupled ion pairs in solids under the influence of a coherent radiation field
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The coupled ion pairs were modeled by two coupled two-level systems. The resulting Bloch equations were
derived by the density-matrix formalism. They were solved numerically for identical ions and for slightly
detuned ions with identical wave functions as a first approximation to the problem of inhomogeneous line
broadening in solids. The following results were foundl) intrinsic optical bistability as a function of the
applied laser field(2) regions of stability, instability, and multistability for different detunings and couplings
of the ions at different laser field&3) asymmetric shapes of the absorption lines with unstable regiongdand
suppression of the photon echo due to the nonlinear chaotic dynamics of the coupled ions. Experimental
evidence is given which supports the computer calculatig®s050-294{©6)09810-1

PACS numbd(s): 42.50.Md

[. INTRODUCTION discussed renormalization was found only recently for
Cs;Y,Bro:Yb®" [11].

Coupled atoms or ions can behave quite differently in a The effect of the inversion-dependent renormalization of
radiation field as compared to the isolated species. Concerithe resonance frequency and the IOB based on it has been
ing the absorption and emission probabilities this fact wasliscussed so far only in systems of identical two-level sys-
demonstrated by DickEl] introducing the concept of super- tems[4—10]. But in real doped solids the ions sit on sites
radiance. The influence of ion-ion coupling on the photonwith slightly different crystal fields. This fact gives rise to a
echo was studied by Skinner, Andersen, and Fg®kusing  slight detuning of the energy levels of the ions resulting in
a model of a pair of weakly coupled two-level systems andhe well known inhomogeneous spectral line broadening.
including relaxation and energy transfer processes. The infFhe question now arises how an ion pair behaves in a coher-
fluence of purely electronic interactions on optical dephasingnt radiation field as a function of mutual detuning and cou-
and photon echo for both diagonal and substitutional disorpling. To answer this question we studied the dynamics of a
der in solids was treated by Root and Skinfg}. In both  pair of two-level systems in a classical electromagnetic ra-
latter papers the influence of the ion-ion interaction waddiation field by means of the density matrix formalism. To
treated in a perturbative way not taking into account thetake into account the inhomogeneous line broadening, we
renormalization of the resonance frequency of the ions due tassumed slightly different energy levels of the ions but as-
the excitation status of their neighbors they interact with.sumed the wave functions and all other matrix elements to be
Because of the narrow homogeneous linewidth of the iongdentical.
especially at low temperatures, the renormalization of the In Sec. Il we formulate the problem and set up the differ-
resonance frequency can easily be of the order of the homantial equations for the matrix elements of the density opera-
geneous linewidth or even much greater already for moderat®r in a general form for two coupled different two-level
ion-ion interactiongsee Appendix From this point of view systems. By a proper transformation we introduce the Bloch
drastic changes in the resonance response of coupled iosguations of the coupled pair and show how the resonance
compared to single ones can be expected including stronfgequency and the Rabi frequency of the ions are changed by
nonlinearities. Hopf, Bowden, and Louisfdl] have been the the ion-ion coupling: they become dependent on the current
first ones to demonstrate this fact. They could show thastatus of the other ion. The resulting system of Bloch equa-
already the near-field coupling of the ionic transition dipolestions cannot be solved anymore in an analytical form. In Sec.
can lead to an intrinsic optical bistabilityOB), i.e., a bista- 1ll we formulate the conditions for our numerical computer
bility without any external feedback. In a number of follow- treatment of the problem for some characteristic couplings
ing paperg5-9] this concept has been developed further. Inand detunings of the two ions. The calculations are made in
this sense one of the authors of this paf#] could show relative units using the dephasing time and the homogeneous
that the interaction leading to 10B is not restricted to thehalfwidth (HWHM) of the unperturbed ions as the units of
electromagnetic near-field coupling only but can be of mordime and energy, respectively. Furthermore, the approxima-
general character. Furthermore, he could show that the diagion for the inhomogeneous line broadening has been intro-
onal and nondiagonal matrix elements of the ion-ion interacduced as discussed above. In Sec. IV we discuss the results
tion can compensate one another completely or partly in theiof the computer calculations concerning IOB, regions of sta-
influence on the inversion-dependent renormalization of thdility and instability, spectral line shape, and quenching of
resonance frequency. So all effects based on this renormahe photon echo. Some experimental evidences supporting
ization including IOB can disappear for certain interactionsthe theoretical results are presented in Sec. V. Section VI
and wave functions of the ions. finally gives a discussion and summary of the results.

Unfortunately, there is not much experimental work done The parameters of the computer calculations are adapted
in this field. IOB which can be explained on the basis of theto experiments with rare-earth and transition metal ions in
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H12 p=IRO(t)exp —iwt), (5)
where R{)(t) means the slowly varying amplitude of the
matrix element. For ioii2) the results of the calculations are

(1) () the following differential equations:
E, 12'> E(zz) 122> )
dp; 1 p
— = 2 2 i (1 2 1 2
m (2) Tw=E W_ % {_ % p(z)(Rng)'f_R(Zl))_m(lz)h(Zl)R(Zl)RgLZ)
(DR ()RR 2) (2
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1 lon'"! NI lon'?! dRyY 1, o (2)_i (h@ _ h2)y( D L)
dt % {—1(Eg"—BE)Ry —i(hy3' —hi7) (hif piy
FIG. 1. Scheme of the two interacting ions in the coherent ra- 2 2 2\( 2R
diation field. ’ +h55 PR + 3(p%) - pi3)(£p?
il (1 2 1 2 2
solids at low temperatures. In the Appendix we give a nu- +2Ih(12)h(21)R(21))}_ y(lz)R(ﬂ)’ @)
merical example to our calculations for characteristic param- dp'? dp?
. P11 P22
eters of these ions. G- di (8)

Il. FORMULATION OF THE PROBLEM (2) (2)*
The physical situation is shown in Fig. 1. The Hamil- at  dt - €)
tonian for the two iong1) and(2) has the form

Eg) is the resonance energy of the ions dahdhe quantum
H=H{+HP +HI2+HP + R (1)  energy of the radiation fiel@Fig. 1). For ion (1) we get the
same set of differential equations by interchanging the ion
The first two terms are the Hamiltonians for the unperturbedndices(1) and (2).
ions with the two energy values{’ andE{’ belonging to vY} andy{) represent the phenomenologically introduced
the wave functiong1”) and [2)), i=1,2. H®® represents relaxation rate of the population of the excited state and the
the interaction between the two ions. For reasons of mathdephasing rate, respectively, both for the single ions. As re-
ematical simplicity we assume that it factorizes into twojaxations to a bath both are assumed to be exponential. For
single-ion factors: metastable states in solids both relaxations are generally
12— (DR dominated by d!fferent processes. Therefore they are not d|
H=h""hte (20 rectly related with each other, and the loss of coherence is
) o o ) usually much faster than the decay of the population of the
Physically, this is not a real restriction, because the interacaycited state. Thus/{) describes dominantly the phase re-
tion can usually be represented by products of spin or muliayation of the ions.
tipole operators. Following Feynman, Vernon, and Hellwarfthi2] the dy-

The last two terms of Eq(1) represent the interaction of namics of a two-level system can be described by a “Bloch
the two ions with the radiation field. We take them in theector” with the three components
usual dipole approximation:
(i) — ) _ (D)
s W =227 P11 s
HY=ErD,1)p". ) S
. o . uV=RE}+ Ry,
The first factor represents the electric field vector of the in-
cident classical radiation field at the positiaii8 of the ions v=i(RE)—R{)). (10)
(1) or (2). The second one is the electric transition dipole
moment between the two statd$’) and|2”). Because the For the computer calculations this transformation has the ad-
distancer>? between the interacting ions is usually small asvantage that we have to deal for every ion with three real
compared to the wavelength of the radiationthe phase of variables only. Furthermore, the resulting coupled Bloch
the electrical field can be chosen identical for both ions:  equations can easily be compared with the well known Bloch
L . . equations for the uncoupled iof3] and the alterations due
E(rV,t)=E(t)= 3&(t)(exp —iwt) +c.c). (4)  to the ion-ion coupling show up directly. For ig@) under
R the influence of the electromagnetic field and of idn we
£(t) means the slowly varying amplitude of the radiation get the following Bloch equations:
field (¢é/é<w) and w its frequency. The calculations are
. . . dw® 1
analogous tq10] using the reduced density matrix formal- %W~ % [~ 3@ U0 ®)u@ + (auD+ by D)y @]
ism and the slow-varying-amplitude approximation. As in dt h X ’
[10] we use for the off-diagonal elements of the reduced

) . _ 22
density matrixp the form Y53 (W +1),
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du® 1 to variations in the crystal field is of the order of Zocm !

TR X2, pM)yw? — 52 (w)y @] Pu@, at transition energies of the order of*1@m™ . So, the rela-
tive detunings between the rare-earth ions in the same elec-
1 - tronic state are of the order of 18 Let us assume that the
= [82wWMu® —(au+ bv(l))w<2>]—y(122>v(2>, relative variations of the other matrix elements and param-
h eters are of the same order of magnitude, too. As long as
1D these guantities enter the Bloch equations directly their
variations can be neglected and their values can be assumed
to be identical. This argument holds for the electric dipole
moment, for the ion-ion interaction, and for the relaxation
rates. So we can take

dv@
dt

with the following abbreviations.

(1) The detunings between the photon energy of the
electromagnetic fielE=7%w and the renormalized resonance
energy of the coupled ions

~ 5 =p2)=pn
S (W)= 6@+ 3(h —hi?) (%~ hi)w?. (12) L

. . . . (1) —Rh(2) —
The first termé contains the basic detuning and a constant h*=h'*'=h,
additional shift due to the ion-ion coupling

(D — (2
Yi2 = Y12 = Y12,
8% =(E’—E)+ 3(hyy +hiy)(hey —hi7). (13 o o
. . Y22 = V2 = V22 17

The second term represents a detuning which depends on the
inversionw of the other ion. In both cases the renormaliza-The situation is different for the energies of the ions. They
tion depends only on the diagonal matrix elements of thelo not enter the Bloch equations explicitly but only via the

interaction Hamiltoniane™ andh®. detuning between the ions and the radiation fi&l§; —E.
(2) The renormalized Rabi frequency As resonant systems the ions respond very sensitively to
. variations of the detuning of the order of the homogeneous
X2 o) =¢p?+av™—bu?, (14 linewidth. In solids this linewidth is primarily determined by
_ o the dephasing rate. At low temperatures the homogeneous
with the abbreviations linewidth is only of the order of 10° of the inhomogeneous

one or even less. So, different ions in the same state may be
detuned one from another by3lBlomogeneous linewidths or

3 D @ D @ more. By .these argu.ments it is clear.that the differences in

a=Re(hi; }Re(hy5 )+ Im{hiz}Him{hy3}. (15 the energies of the ions due to the inhomogeneous crystal

o . field have to be taken into account and the ion energighs
Thus the renormalization of the Rabi frequency depends onl¥, 0t be taken identical.

on the phase status of the other ion and on the off-diagonal Next it is useful to rewrite the Bloch equations in relative

matrix elements of the interaction Hamiltonians. units. This way the results of the computer calculations have

In addition to the renormalizations of the detuning and of; ,ore general meaning and can be compared easier with
the Rabi frequency, the coupling between the ions introduceg,5| experiments. Looking at the physical processes and at
into Eq. (11) another factor depending on the status of theyhe loch equations it is suggested to take the reciprocal

partner ion. It is dephasing rate as the unit of time and half of the homoge-
neous linewidth as the unit of energy. Denoting the relative
units by a prime, we have for the time and the energies

b=Im{hi3}Re(h}3'} — Re{hizHim{hi3},

(auV+bpD), (16)

which connects the phase componefft with the time de-
rivative of the inversiow® and vice versa. =ty &=
The Bloch equations are, of course, symmetric in the ions ’ fiyo'
(1) and(2). So the Bloch equations for iofl) are given by )
Eq. (11) by interchanging the ion indicg4) and(2). In this respectlvgly. o . '
sign. The full set of coupled Bloch equations for both ions isOf the ion-ion interaction. From experiment we know that for
a complex nonlinear system of differential equations. It canfare-earth ions the ion-ion interaction is of the order of the
not be solved analytically. To get an idea about the physicanhomogeneous linewidth, for the close pairs somewhat
coherent radiation field, the differential equations were intelNtéraction matrix:
grated numerically for a set of reasonable parameters. N h
11 12|

% !
h12 h22

&

(18

’ !
_|=hy hyy

= 1% ’
‘ h12 h22

20 20+10i
20-100  —20 |’
(19

||h’||=‘
Ill. NUMERICAL CALCULATIONS

To make a reasonable choice of the parameters for the
numerical calculations, it is useful to discuss first the prob-The diagonal matrix elements were chosen to be equal by
lem of inhomogeneous line broadening. For rare-earth ions dheir absolute values but different in signs. This way we
low temperatures the typical inhomogeneous linewidth duellow for different ion-ion interactions in the excited and in
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the ground states but avoid, for mathematical simplicity, a

constant renormalization of the detuning. So, EB) re- 0074

11 lon 1 stable
duces to 0.2+ !
04 ; ' o lon 1 unstable
S = E(’)— E’. (20) 06]. o v lon 2 stable
08 E Siy=0 ¢ lon2 unstable
To get an idea about the relation of the chosen parameters to 10.] ! h ' =20 (VA
the experiment we give some characteristic numerical values =] . : : —12 ~ (. ) , :
in the Appendix. a
Since in crystals doped with rare-earth and transition 0.0 4
metal ions the transverse relaxation rgtg is usually much 02 ]
faster than the longitudinal onegy,, we took in all our fol- S 54l
lowing numerical calculations: -% bR
£ 0.6
GJ -
¥2,=10"%y1,. (21 E 0.8
With the discussed simplifications and parameters the Bloch 1.0 i T : T . T . T
equations[Egs. (11)—(15)] used for our computer calcula-
tions take the form 0.0
dw? @) (D)@ 2,,(1),,(2) @ -g.i I o0r=0
— _~ ! J— ! U,
v - X (v™u?+|hif?u Mo Yo W +1), ool h,, =20 +10i (VA)
du® 08} hy=hy, =20 (VA)
=32 (1, WYW?@ =52 (W)@ — @ 10k
Te (vMHw? — 52 (w)y u'?, 1.0 . L
0 10 20 30 40
@ ~ c Rabi frequency ' (units of A
do =5 (w(l))u<2>—|h’ [PuPw@ 4@ (22 a yu )
dt’ 12 A=h
V12

The renormalized detuning and the renormalized Rabi fre-

guency are given by FIG. 2. Stationary solutions for the inversion as a function of the

) D @) - Ra_bi freq_ugncy(’ for identical ions EY' =E®") and no detuning

8@ (wt)=(EY —E’)+2[hy)*w (23 (6W'=ED'—E'=0). v,,/=1; 7,,’ =10 2. (a) Real off-diagonal
interaction.(b) Real diagonal interactioric) Complex off-diagonal

and and real diagonal interaction. Energies in relative unitégf,=A
/ > (HWHM of the homogeneous linewidth
2 (wM)=(£p) +|hil %W, (29
respectively. be seen the diagrams are qualitatively identical and confirm

The Bloch equations for the iofl) can be found by in- the results of10]. They show the characteristic behavior of
terchanging the ion indiced) and(2) as before. The result- @ bistability: a stable increase of the inversiorfrom —1
ing system of Bloch equations for both ions was solved nuUp to about-0.5 and an unstable region with negative slope
merically for the inversionsv'® andw® as functions of the betweenw~—0.5 to 0 where the system becomes stable

Rabi frequency of the uncoupled ions again. Increasing the Rabi frequency the inversion rises up to
R the first critical point atv=—0.5 where it jumps into satu-
X' =(&p). (25)  ration and stays there. Coming back the system stays satu-

rated until it reaches the second or upper critical point from
The numerical calculations were carried out by the dampeevhere the inversion drops down to almostl. The Rabi
Newton method. Because of the limited local convergence ofrequencies for both critical points are quite different, so that
this procedure a number of different starting values had to beafe optical switching is feasible. The switching time for this
taken to find the various possible solutions. The results werfOB can be expected to be of the order of the phase relax-

proved for stability by a linear stability analydi5]. ation timeyl‘zl. This means that it can be quite fast and can
be chosen suitable for applications by a proper choice of the
IV. NUMERICAL RESULTS temperature of the host lattice. The question which now

arises is of course the question of the effect of inhomoge-
neous line broadening on the IOB, i.e., the question of how
First, we want to discuss the stationary solutions for thethe system behaves if the ions are slightly detuned one from
inversion as a function of the Rabi frequency, i.e., of theanother. To answer this question we calculated the stationary
applied electromagnetic field. Figure 2 shows the calculatedolutions for the case that the ions are detuned symmetrically
diagrams for two identical coupled ions in a resonant electo both sides from the frequency of the electromagnetic field.
tromagnetic field. The diagrams are given for three differenfThe results are shown in Fig. 3. Already at small detunings
couplings, off-diagonal, diagonal, and both together. As carf 6 '=+10 we find for real off-diagonal coupling a strong

A. Stationary solutions
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(X0 e — USSR 00d._.
0.2] o o, lon 1 stable 0g ]30=F100(4) y
041 &7 WW% o lon 1 unstable 04 ]2 =208 % e lon1stable
B v lon 2 stable -~ o lon 1 unstable
0.6 ] A Y lon 2 0.6 7] v lon 2 stable
-0.8 4 VWWW o Slr= 3 10V(A) on 2 unstable -0.8 4 v lon 2 unstable
-1.0 5 h,,' =20 (VA) -1.0
b T T T T T T T a T T T T T T T T
00 _ T pmoswommrmmmmee
< _ 2] O=%100(8) ,
= Q 1 h,'=-h_'=20(A
s 3= 320 (A) % 041 m Tz )
> h,, =20 (VA) o 06+
£ £ 0.8 .,
1.0 ]
1 I bl T T 1 1
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FIG. 3. Stationary solutions for the inversion of two ions with  FIG. 4. Stationary solutions for the inversion of two ions with a
different resonance frequencies. The detunéy of the ions is ~ detuningé)’==100 symmetrical to the frequency of the electro-
symmetrical to the frequency of the electromagnetic field. Real off-nagnetic field.
diagonal interactionh;,=20, different detunings. Relative units
A=Fiy,. more. Figure &) shows the situation for diagonal coupling.

Although the absolute value of the coupling is of the same

deviation from the case of identical ions. Stable solutions aré;nagnltude as_for th_e former oﬁ-dla_gonal case, the dep(_an-
. . : ... . dence of the inversion on the Rabi frequency looks quite
found only for low Rabi frequencies up to the first critical

point which is located almost at the same Rabi frequency different. It resembles more the behavior of the pair of iden-

%ical ions demonstrating that the diagonal interaction de-
before. The rest of the solutions is unstable. In addition to thE g 9
|

b h find | f bl uti troys the 10B to a smaller degree than the off-diagonal one
two openh_ra;lnc des we Tin (;’(\f? Bipzs OFQnSt% eso utions. Ifes, Nevertheless, the system is not useful for applications
we go to higher detunings =+20[Fig. 3(b)] the open anymore because of its instability for Rabi frequencies just

branches do not change very much. Their critical points staY,ove the upper critical point. Eiquréci finally shows the
almost at the same Rabi frequencies. But the loops of unx PP point. Figuréck y

: o . .~ case of mixed diagonal and off-diagonal coupling. The sys-
stable solutions reduce in size considerably and are easier {9\ qoes not show any tendency to IOB anymore. It has

recognize. Agr?un, the open branches are.stable only _upto thﬁable solutions for the inversion up to Rabi frequencies
first critical point except for some small isolated regions. IfSlightly higher than the first critical point. Then it becomes

() = i
we go further to5™” =+60 [Fig. 3(¢)] the unstable Ioo_ps nstable. Calculations for still higher detunings show that the
disappear and the open branches become stable regions :

higher Rabi frequencies again. So useful IOB cannot b
found anymore at these detunings.

Figure 4 compares the three different couplings at a quite :
high detuning ofs)'=+100. The coupling between the B. Spectral line shape
ions is obviously still strong enough to show coupled dynam- An interesting question is the question of the spectral line
ics. In all three cases the Rabi frequencies of the first criticathape of a coupled ion pair in a coherent radiation field.
points can still be recognized as characteristic points of th&ince the macroscopic scanning of the laser frequency is
inversion, whereas the second critical points are stronglgxpected to be much slower than the relaxation rate of the
shifted or have disappeared at all. For the off-diagonal intermicroscopic system of the ions into equilibrium with the
action [Fig. 4(a)] the inversion is stable over almost the radiation field, we can calculate the spectral lineshape as a
whole range of Rabi frequencies except for a small rangsuccession of steady-state solutions of the inversion as a
around the first critical point. So an I0OB does not exist any-function of the detuning’ between the ions and the radia-
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FIG. 5. Spectral line shape of a pair of coupled identical ions.

§'=E'_E' FIG. 6. Spectral line shapes of a pair of coupled detuned ions.
=E, .

The relative detuning is™ — 82" =100.

tion fleld. Of course_the spectral line s_hape _of such a_str_ongly Figure 5c) finally gives the line shape for mixed diagonal
non_lm_ear _system will depend on the intensity of_the |nC|de_ntand off-diagonal coupling. Obviously the diagonal part
radiation field. So we have the problem of a suitable choicgjominates the line shape resulting in the flat wing on the side
of the Rabi frequency for which we want to do our calcula-of positive detuning. But in contrast to pure diagonal cou-
tions. Looking at the previous results given in Figa Rabi  pling this wing shows no instability. The steep wing on the
frequency of x'=15 seems to be reasonable for the off-other side has again a region of instability, but it is smaller
diagonal and mixed couplings between the ions ghd25  than in both cases before and has a smaller backlash, too.
for the diagonal one. This way the Rabi frequencies are loObviously, the mixed coupling stabilizes the inversion to
cated in the interesting region of strong nonlinearity. First,some degree and makes the line shape more symmetric.
we want to discuss the line shape for a pair of identical ions. All three cases show that in a coherent radiation field,
Figure %a) shows the inversion of the ions as a function of even for identical ions, the ion-ion coupling can cause strong
the detuning for real off-diagonal interaction. Starting fromdeviations from the line shape of the uncoupled ions. The
negative detunings’=E_—E’ the inversion shows a quite lines become asymmetric with partly unstable regions. Fur-
flat increase over hundreds of homogeneous linewidths anihermore, the halfwidth of the lines can be increased drasti-
reaches its maximum at zero detuning. Behind the maximungally and reach the order of the ion-ion coupling energies, in
the inversion drops very steeply through an unstable regioour case several hundred halfwidths of the single ions. The
with even some backlash to negative detunings. After thisionlinearity of the system allows the external field to drag
the inversion becomes stable again and approaches its mirthe “resonance response” of the pair on the flat wing of the
mum value. resonance line over quite a wide frequency region whereas at
Figure §b) shows the spectral line shape for real diagonalthe other side of the line the nonlinearity causes a sharp
coupling between the ions. As before the line shape isutoff at the inversion-independent resonance frequency.
strongly asymmetric but inverted with the flat wing on the As expected the line shape becomes more complicated if
side of positive detunings. The backlash of the steep wing ioth ions have different resonance frequencies. The simplest
even stronger. In contrast to the previous case both wings afase we get is for off-diagonal coupling of the ions. It is
the line have unstable solutions. Only for zero inversionshown in Fig. 6a) for a relative detuning of the ions of 100.
where the inversion-dependent detuning disappé&.  For reasons of better understanding the inversions of both
(23)], we have a small region of stability. The region of ions are given separately. The experimental line shape would
instability on the flat wing side covers a detuning range ofbe the sum of both. As can be seen, the general linewidth is
about 800. This is just the maximum range of the inversionbroader than the ion-ion detuning. This means that the line-
dependent detuning as given by H3). Outside of this width is again influenced by the ion-ion coupling. As for the
region the inversion is stable again. identical pair[Fig. 5a)] the line shape is asymmetric with
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the flat wing on the side of negative detunings. Whereas ion 1.0
(1) has, as expected, a stable maximum inversios ‘4t=0 lon 1 h_'=10 (VA)
ion (2) has neither a stable nor an unstable maximum at on 12
8?'=0, §Y"=100. It is obviously suppressed by the ion-ion 0.5 X' =60 (4)
coupling. The inversion for positive detunings consists of | 3 =-10 (A)
stable and unstable solutions. As a consequence the line
shape becomes different scanning the laser frequency from 0.0
negative to positive detunings or in the reverse way. The .
situation becomes more complicated for diagonal coupling as
demonstrated in Fig.(B). Around its resonance frequency
8Y"=0 ion (1) behaves similar to the case of identical ions
[Fig. 5b)], but its halfwidth is smaller and the resonance
frequency is slightly shifted to positive detunings. 162)
behaves quite differently: it shows two inversion maxima.
This fact nicely demonstrates the meaning of the inversion- lon 2 h,.'=10 (VA)
dependent resonance frequency as given by (Eg. The 12
resonance conditioA®’ =0 can have two extreme solutions 05 X' =60 (A)
for 82" differing by 2/h,,|? for the two limiting cases of the I $@r = +10 (A)
inversion w?=0 and wV=-1. With our choice of ool
parameters this difference is 800 and reproduces nicely the ’
difference between the two maxima found by computer cal-
culations. So the two maxima can be explained by the 05|
inversion-dependent detuning of i¢2) by ion (1). Since the
inversion of ion(2) is almost constant in the “resonance
region” such a double maximum cannot be expected for ion 1.0 O e ST EEEE T B
(1) by the same arguments. This is in accordance with the 0 1 2 3 4 5
computer calculations. t' (units of y12-1)

With our set of parameters the line shape for a mixed
diagonal and off-diagonal interaction looks quite similar to
the case of a pure diagonal one. As before(ibrshows only
one maximum of inversion and iof2) two of them. But in
the region between the two maxima the number of unstabl
solutions increases considerably.

-0.5 4

-1.0

1.0

Inversion

FIG. 7. Coherent transients of a weakly coupled and slightly
detuned pair of two-level ions in a coherent radiation field. Time in
[elative units ofys.

identical conditions at the end of the applied laser field the

) coupled Bloch equation&22) take the following form for

C. Dynamics and photon echo both ions:
Exciting a two-level system with a coherent radiation field

results in a transient behavior of the inversion which is called d_W =yl (wH1)

optical nutation. It is given by a damped oscillation of the dt’ ez '

inversion around its future steady state. The frequency of the

nutation is given by13] u_ 16"+ (2|2 = [hBwlv—u

dt”
Q'=6"%+x"2. (26)
d
In the case of two identical coupled ions the detundig d—;},=[5’ +(2|hyg %= |h1 P )Wlu—v. (27)

between the ions and the radiation field has to be replaced by

its inversion dependent quantit/ [Eq. (12)] and the Rabi ey can be solved analytically. The inversion decays expo-
frequencyy’ by its corresponding quantity’ [Eq. (14)]. So,  hengially with the time constant of the single ions
both of these quantities are not constants of the dynamics

anymore but depend on the current status of excitation. If in w(t')=K exp— yot')— 1. (29
addition the ions are detuned one from another, the harmonic

character of the oscillations gets lost more and more. Figur&he constanK is given by the initial conditions at =0.

7 shows an example for off-diagonal ion-ion coupling and The phase componentsandv show an oscillatory time
symmetric detuning of the ions relative to the radiation field.dependence with a time-dependent frequency due to the ion-
The small asymmetry due to the relative detuning of the ionson coupling. The solutions are

is already sufficient for a well pronounced asymmetry in the

inversion dynamics of both ions. For higher couplings and u(t’)=e“'[uoco&z(t’)—vosina(t’)],
relative detunings of the ions the modulation of the inver-
sions of the ions gets smaller and faster and under certain v(t)=e 'Tugsina(t’) +vocosa(t’)]. (29)

conditions instabilities can occur.
Switching off the laser field leads to a free relaxationThe phase angle(t’) after switching off the laser field is
process of the coupled ions. For a symmetric ion pair withgiven by
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a(t')=5"t" = (2|hzl? = [ At + vz, H(W(t') —w(0))]. 1 —
(30 d /2 -pulse
W
The first term represents the standard single-ion dynamics 05 Ll-a N
with a fixed detuning5'. The second term contains the cor-
rections of the phase angle due to the ion-ion coupling and T -pulse echo signal
the inversion-dependent resonance frequency. Its first linear 0 Lt / NG

part in the square bracket can be interpreted as a constant
correction of the detuning’. The second part is not linear in !
time anymore and describes the dependence of the phase -05 W
angle on the inversion: T

Aa(t')=—(2lhzl?~[hiz?) v2, "(W(t) = w(0)). U L .
@31 0 1 2
t* (units of y;)
With our set of parameters it amounts tAa(t’)
:_SX?LO‘l(W(t,)_W(O).)' Th'S. gives an idea about the phase FIG. 8. Simulated echo signal for uncoupled ionsandu are
corrections due to the inversion dependence of the resonangg, ean values of the inversions and phase components of the

frequency. _ o _ chosen ensemble of ions, respectively. Time in relative units of
A combination of the transient behavior in an applied yit.

electromagnetic field and the following free relaxation after

switching it off is the photon echfl3]. The photon echo is quency. The second pulse of the laser field after the delay
often used to probe the loss of coherence in an inhomogaime 7 was taken twice as long according to the theory of
neous ensemble of Single two-level ions. It is generated by 9hoton echo generation_ The dynamics of the photon echo
sequence of two pulses of coherent radiation with a delagxperiment was calculated for every ion pair separately. The
time 7 between them. The first pulse called? pulse is used  results for the phase componentsesponsible for the light

to bring the ions into a state with inversiam=0. In the  emission and for the inversiom were averaged over all 500
following time of free relaxation the ions dephase one fromjon pairs. The computer calculations were done for a number
another because of the inhomogeneous detuning betwee coupling parameters and delay times between the pulses
them. The second pulse calleti pulse is of double pulse ysing the classical Runge-Kutta method. To check the pro-
area and turns the phase components —u. As a conse-  gram, first the echo signal was calculated setting all interac-
quence the dephased ions rephase in the following time afon matrix elements equal to zero. The result is given in Fig.
free relaxation with the same speed as they dephased befage |t shows the increase of the mean inversiofrom —1 to

and after a second time intervabll ions are in phase again. a small positive value due to the/2 pulse. Ther pulse is

This means that the electric dipoles of the ions applied att’=7=0.5 and can be recognized by the change
. . of the small inversion to a negative value. The mean phase
(p)=Tr(pp)=pu (32)  componentu increases by ther/2 pulse to its maximum

value. After the pulse the ions dephase andhows small

are in phase, too, and emit a coherent radiation burst callegregular fluctuations around the ideal value of zero due to
the photon echo. Of course, the photon echo is producethe finite number of interfering ions taken for the calcula-
only by those ions which did not undergo a phase destroyingions. At the timet’'=27=1 we see the constructive inter-
process. So, the intensity of the photon echo is a measure édrence of the rephased ions with the expected negative value
conservation of coherence of the ions. These arguments hofdr u which represents the photon echo. For longer times the
for ions with identical resonance frequencies in the dephasfluctuations ofu disappear due to the relaxation of the phase
ing and rephasing process. But for coupled pairs of two-levetomponents of all ions to zero.
ions we have to deal with a nonlinear system with renormal- Figure 9a) and 9b) show the simulation of the same
ized resonance and Rabi frequencies which depend on thexperiment, but now with off-diagonal and diagonal ion-ion
time-dependent status of the partner ion. So the questiotoupling of the pairs, respectively. The positions of the ex-
arises if we still can expect to find a photon echo and if it ispected echo signals are given. No echo signal exceeding the
still a measure of conservation of coherence of the ion pairsstatistical fluctuations ofi can be seen. A reduction of the

To answer this question we modeled the photon echo expulse separation down tg=0.2 did not give any other re-
periment by computer calculations. The calculations weresults. Only for7’=0.1 (Fig. 10 we found a small signal for
made with pairs of identical ions. This is the optimum caseu which exceeded the statistical fluctuations to some extend
for expecting a photon echo. The inhomogeneous line broadsut had the wrong sign in the sense of the classical photon
ening was simulated by distributing 500 ion pairs over anecho. The reason for this partial rephasing is not clear to us
energy range of 400 in a statistical way without any weight-yet. Maybe, it is by accident. But in experiment it would
ing to generate a specific inhomogeneous line shape. Thehow up as a weak echo signal.
applied laser field was simulated with a Rabi frequency Looking at Figs. 8—10, we see that the statistical fluctua-
X' =4000 for both pulses. The laser frequency was located itions of the mean phase componenof the uncoupled ions
the center of the ion frequencies. The length of the first pulsand of the coupled ion pairs last over the same time period.
was taken to generate an inversisr=0 at the center fre- They result from interferences of the individual phase com-
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FIG. 9. Simulated photon echo experiment for pairs of identical
ions. (a) Off-diagonal ion-ion interaction(b) Diagonal ion-ion in-

teraction.

ponentsu. This means that the phase memory of the ions is

not reduced or quenched by coupling them to pairs. Thé" ™
missing photon echo of the pairs on the time scale of cohef€nSity of the
ence of the single ions simply means that the coupling be
tween the ions in the pair leads to phase dynamics whic
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cannot be rephased anymore by the usual photon echo pro-
cedure. This can be understood on the basis of the renormal-
ization of the resonance and Rabi frequencies by the partner
ion: The parts of the phase angidEq. (30)] linear in time
compensate during the dephasing and rephasing period of the
photon echo experiment as in the case of uncoupled ions. But
the inversion-dependent parts of the phase angles cannot
compensate because the inversioiis different during both
periods. The resulting uncompensated phase angle can be
calculated by means of E¢31). It is given by the difference

of the phase angles during both periods:

Aa;—Aay=—(2[hy]2=[h1 %) y5 (Wi (7') —Wy(0)
_W2(2’T,)+W2(T,)). (33)

Because of the inhomogeneous line broadening different
pairs are excited to different degrees of inversion by the pho-
ton echo generating pulses. This results in different values of
Aa;—Aw,. Even if the differences in the inversions are small
from pair to pair, the great value of the prefactor, with our
parameters 810 leads to strong relative statistical dephas-
ings of the ion pairs and consequently to quenching of the
photon echo as found by our computer simulations.

So, the photon echo experiment, even if it succeeds for
short delay times, may not give a meaningful measure of the
phase memory or dephasing time of the individual ion pairs.

V. EXPERIMENTAL EVIDENCES

The presented computer calculations were undertaken af-
ter we tried to do coherent-transient experiments ot Pr
pairs in PF*:LaF; without success. Although we could re-
produce the known results for Prsingle ions in Lak and
LaAlO;[16,17], we could not find the corresponding signals
for ion pairs. But negative results do not mean very much.
Usually, they can have more than one explanation.

A better and more convincing experiment is demonstrated
Fig. 11. It shows the fluctuations of the fluorescence in-
1D,— 3H, transition of a Pt" pair in LaR, at

low temperature over a time interval of 600 sec. The fluo-

fescence was excited by a tunable dye ring ldSgrectra

Physics 380A into the resonance levelD, and into the
higher crystal field componerD,. Single-mode operation
and frequency stability of the laser were monitored by a
high-resolution Fabry-Ret interferometer. The experiment
was done with “weakly” coupled Pt pairs with their ab-
sorption lines in the central region of the inhomogeneously
broadened transitio§H ,— 1D, and 3H,— £D,. Tuning on
a pair transition was accomplished by monitoring and opti-
mizing the upconverted Pt fluorescence from the higher
3p, level [14]. Upconversion by energy transfer means a
process in which one ion in a doubly excited pair is trans-
ferred into a higher excited level on expense of the other one.
The intensity of the upconverted fluorescence was quite
weak. So it can be used as an indicator for a pair transition
but with negligible influence on the basic pair dynamics.
Because of this tuning procedure one can expect that a
considerable part of the measuréb, fluorescence origi-
nates from the selected pair. Unfortunately, the crystallo-

FIG. 10. Simulated photon echo experiment for pairs of identi-graphic character of the pair cannot be given by its transition

cal ions at a short pulse delay. Diagonal ion-ion interaction.

frequency having in mind the variety of pair transitidrsf]
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36000 . . ‘ , ‘ Indeed, the fluorescence @b, shows stronger fluctuations

LaF.‘,.:Pr3+ (0,=918 for direct coherent pumping than for indirect
=0.2% pumping(o,=389 already at 0.5 W/m The interpretation

c=0.2% of the fluctuations as coherent pair effects is supported by the

28000 1 T=1.6K following additional facts.

(@) Increasing the laser power density to 2 W/Mmm-

0.5 W/mm?
32000 |

8§ 24000 1 [ EE creases the mean statistical deviations for direct pumping to
§ 0,=2092 whereas the deviations for indirect pumping stay
& 2 2, with 0,=419 almost at the previous value. At this power
o000 2 D, level the fluctuations by direct pumping are so strong that

1 a they can easily be seen by the naked eye. This is in accor-

dance with the expected increasing number of unstable pairs
with increasing intensity.

(b) Increasing the temperature from 1.6 to 4.2 K decreases
2 Wimm?2 the mean statistical deviations for direct pumping to the
value for indirect pumping in accordance with the strong
decrease of the dephasing time of the metastable Vel
[18,19.
Pr3* (c) Detuning the laser within the inhomogeneous line-
width from a position with pair absorption to a position with
single-ion absorption only, i.e., with no upconversion, re-
duces the fluctuations of thkD, fluorescence for direct ex-
citation to the same level as for indirect excitation.

Instabilities of a similar kind were already reported by
Wannemacher and Heber in 1987 for rd@@]. In this paper
the cooperative emission of photons from doubly excited
weakly coupled C¥ pairs has been reported. Taking the
excitation spectra of the cooperative emission in the region
of the R lines with a ring laser, strong fluctuations of the
emission intensity have been detected. Fot"Groncentra-
tions ¢<0.3% only fast fluctuations were detected which
could be explained by the model calculations presented in
Fig. 6. For higher concentrations asymmetric line shapes
were found depending on the direction of scan. In addition a
deep decrease of the absorption in the center of the inhomo-
geneous line was found with persistent character. This de-
crease, of course, cannot be explained by coherent pair in-
stabilities and probably is due to other effects like two-step
fy cooperative ionization of &t ions[21].

12000

36000

16872

32000

a3
28000 Ha

24000

20000

Photon Counts

16000

12000
0

time (sec)

FIG. 11. Fluorescence of the transitigh ,— 3H, of P** pairs
in LaF, under single mode cw excitation into the levgB, (1) and
D, (2) at two different power densities.

found in this relatively complicated crystal.

Already at excitation densities of 0.5 W/rrthe fluctua-
tions of the 1D, fluorescence are remarkably stronger for
direct excitation into the fluorescence leyél) Fig. 11] than
for indirect excitation into the higher crystal-field component
(2). The mean statistical deviations from the average inten
sities areo;=918 ando,=388 photon counts, respectively,
at almost the same intensity. The energy difference betwe
the two crystal field components is 23 ¢t Due to one-
phonon emission the lifetime and dephasing time of the up- V1. DISCUSSION AND SUMMARY
per crystal-field component are of the order of 1 ns or even
less[18,19. Therefore, even by coherent pumping into the The ions of a coupled pair in a coherent radiation field are
upper crystal-field componerfiD, the following spontane- exposed to two phase-sensitive and nonlinear interactions,
ous radiationless transition leads to an incoherent populatiotihe interaction with the pair partner and with the electromag-
of the fluorescent levelD, and the fluctuations of the emit- netic field. The calculations have shown that if these interac-
ted fluorescence represent photon statistics and instrumentabns are of the same order of magnitude, instabilities and
noise. The situation is different for direct coherent pumpingmultistabilities can occur. If in addition the detuning of the
of the level 1D, . At lower temperatures the dephasing time two ions is of the same order of magnitude the tendency to
of this level is dominated by one-phonon scattering prothese effects is generally increased. If the detunings are in-
cesses between the two crystal-field compongtiisl9. At  creased further the pairs of course tend to behave more and
2 K it has a value of the order of several microsecondsnore like isolated ions. The general explanation of these
[16,17 and decreases with rising temperature according teffects is that the two phase-sensitive interactions are com-
the thermal population of resonant phonons of 23 tnSo,  peting one with another and the ions can lock in either to the
at low temperatures coherence effects can be expected fone or to the other interaction. If one of the interactions is
ion pairs pumped directly by coherent radiation into the resodominating we get more or less stable or metastable regimes.
nance levellD,. As was shown in Figs. 3 and 4 ion pairs Changing between the regimes or if none of both interactions
can have unstable solutions for the inversion at higher Rabian dominate leads to unstable situations with deterministic-
frequencies, i.e., with increasing laser power density. Sahaotic changes of the status of the ions. Experimentally this
fluctuations of the inversion can be expected at higher powetan show up, e.g., by strong fluctuations of the fluorescence
densities resulting in additional noise of the fluorescenceintensity under direct coherent excitation.
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TABLE I. Comparison of our model parameters with the parameters of a characteristic ion with the following data: Resonance energy
Eo=20 000 cm* (\g=0.5 um), radiative lifetimey,3=1 ms, and transverse relaxation tinygy=10 us. Radiation fields=0.1 W/mn?
(é=7x10° V/Imm). (t') and(¢') are the chosen relative units of time and energy.

Y22 Y12=10 ¥, t" (") (Rehyp)?=|h;]? Ihy? X p
Abs.  10°s! 10°st 10 us 10 Hz 4x10" Hz 5x10" Hz 3.65 MHz 3.4<103eA
units 53x107cm !  2.1x10%cm ! 2.7x10%*cm?
Rel. 1072 1 1 1 400 500 36.5

units

The free decay of the excited pairs is strongly influencedion matrix elements were taken like in the model calcula-
by the ion-ion interaction, too. The dynamics of the ionstions.
depends on the current status of the partner ion. The simplest An interesting role in the ion-ion interaction plays the
documentation of this fact is the renormalized resonance frenear-field interaction of the coherently driven transition di-
guency of the ions depending on the inversion of the othepoles which also is called the local-field correction to the
one. As a result of this dependence the photon echo becomesternally applied electromagnetic field. This interaction is
guenched. This quenching has nothing to do with a loss o&lways present independently of other interactions. For par-
phase memory. The pairs keep their phase memory on thedlel dipoles it is given by
time scale of the dephasing time of the uncoupled ions but
the standard method of rephasing as used for photon echos of p?
single ions does not work anymore due to renormalization. wtd =

An important question to be answered is if the 0B found
for pairs of identical ions can be used for applications in _ i .
photonics. The calculations give the answer in the way thafi€r€ ¥ denotg% the dielectric constant at the transition fre-
the detuning of the two ions making up the pair should notdUency andd == the angle between thg direction of the par-
exceed their homogeneous linewidth. In real crystals thi€/lel dipoles and the distance vectdt” between them. In
means that the inhomogeneous linewidth should be S‘ma”eﬁIo[ch|ometr|c cr_ystals of higher symmetry the local-field en-
than the homogeneous one. This means very perfect crystdfédies to all neighbors cancel completely or almost com-
to reduce the inhomogeneous linewidth or a reduction of th@€tely for geometrical reasons. This is not the case in mod-
dephasing time to increase the homogeneous linewidth. THe/ately doped crystals. Because of the strong dependence of
last solution is not a very prospective one because shotpe d|pole—d|pol_e mterecthn on d|star!ce,.the interaction W|t_h
dephasing times mean high power densities for driving thdN® nearest neighbor ion is the dominating one and no sig-
IOB [10]. But, maybe, a combination of both ways can givemflcant cancel!atlon by other ions can be expected. Thus the
an acceptable solution. order of magnitude of the near-field interaction can be esti-

The last question to be discussed is the one why the flugh@ted knowing the transition dipole moment from the radia-
rescence instabilities could be observed by us only fofive lifetime and neglecting the directional dependence. Iden-

“weakly” coupled PP pairs with their absorptions near the tifying the nea_r—field interaction with the interaction of our
center of the inhomogeneous line. The answer is simply thd'°del calculations we have

the interaction between the ions, the mutual detuning, and
the Rabi frequency have to be of the same order of magni-
tude. Because of the small dipole moments of the involved
transitions, which are parity forbidden in first approximation,

the resulting Rabi frequencies are only small. Therefore COSetting(Reh,,)?=400 as in our calculations and solving for

herence instabilities can be expected only from weaklye on-jon distance™® we get for our characteristic ions a
coupled pairs in the center of the inhomogeneous line a§uite great value of

found by us experimentally. For higher Rabi frequencies
these instabilities should be observable for stronger coupled
pairs, too.

W(1—3 CO§®(12)). (Al)

2

p
23 (A2)

12 _ o P
W (Renzo) Aaregr(r

rot?~14 A. (A3)

This value is reasonable for weakly coupled pairs as used in
APPENDIX our experiment on Bf:LaF;.
From[10] we know that the diagonal matrix elements of

To relate the model calculations with reality it is useful to L _ . . .
compare the model parameters with characteristic data &pe ion-ion interaction contribute to the inversion-dependent
enormalization of the resonance frequency, (Bgs. (22)

optical centers in solids, e.g., of rare-earth ions. This is doné& . . A
in Table |. The resonance energy of the characteristic io@"d(23) in [10). In our notation the full renormalizatioris
was takerE,=20 000 cm'* and the radiative lifetime of the 9\V€N by

excited statey,; =1 ms. From both data the transition dipole

momentp can be evaluated. With this result the Rabi fre-

guencyy was calculated for a power density of the radiation For identical ions the renormalization of the resonance frequency
field of 0.1 W/mn?. The dephasing ratg,, and the interac- can be done in another way not renormalizing the Rabi frequency.
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w Another way to relate our calculations to experiment is to
(e—e1)W= o [(h11— h22)?—2|h15%]. (A4)  compare the near-field interaction energy of our characteris-
tic ions over a characteristic distance of aboli?=10 A
Hereh,, andh,, mean the static dipole-dipole interaction of With typical homogenous linewidths which we used as rela-
the ions in the ground and in the excited states, respectiveljive units. The orientation independent part of E4l) gives
Following Judd, Ofelt, and Peaco¢R2—24 the transition
dipole moments of the rare-earth ions are induced by the (12
noninversion symmetric parts of the crystal field admixing Wo
wave functions of opposite parity to thé™wave functions. f
The same mechanism induces static dipole moments as well.
So both dipole moments, the off-diagonal and diagonal ones,
are of the same origin. Therefore they can be expected to bEypical homogeneous linewidths of rare-earth ions at low
of the same order of magnitude as well and some mutuaemperatures are of the order of MHz and KHz and extend
reduction of their influence on the inversion-dependenidown to 122 HZ 25]. This proves our choice of the order of
renormalization of the resonance frequer&yg. (A4)] can  magnitude of the interaction parameters for the model calcu-
be expected. So the estimate f¢f? [Eq. (A3)] is rather an lations which introduce an interesting field of nonlinear mo-

=112 MHz. (AB)

upper limit. lecular dynamics.
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