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The process of quadrupole radiation of an atom in the vicinity of a dielectric sphere is considered within the
framework of both quantum-mechanical and classical approaches. It is shown that spontaneous transition
probabilities can be calculated correctly within the framework of the classical approach. The quadrupole
transition probability is shown to be capable of increasing by several orders of magnitude in the neighborhood
of the microsphere, to become comparable with the intensity of dipole transitions, the frequency shifts calcu-
lated in the classical approximation being much greater than in the case of dipole transitions.
@S1050-2947~96!06410-4#

PACS number~s!: 42.50.Fx, 42.50.Vk, 42.50.Hz

I. INTRODUCTION

It is well known that the rates of quadrupole transitions
in the optical region are lower by a factor of
(a0/l)

2}1026–1028 ~wherea0 is the Bohr radius andl is
the radiation wavelength! than those of their dipole counter-
parts and that the dipole transition probability is strongly
influenced by the presence of macroscopic bodies near the
radiating atom~see, for example,@1,2#. The question arises
in this connection: How do material bodies affect quadrupole
or multipole transitions? The effect of a dielectric sphere on
the linewidth of a quadrupole transition was considered in
@3#. This paper, a sequel to@3#, presents the results of inves-
tigations into this question, which show that, given appropri-
ate conditions, the probability of quadrupole or other multi-
pole transitions can rise substantially, and that atomic
transition frequencies suffer material shifts in the neighbor-
hood of a surface.

Consider the amplitude of the decay of an excited atomic
state to an unexcited~metastable! state, accompanied by the
emission of a photon. In that case, the transition matrix ele-
ment has the form

Vf i}E cout* ~r !“c in~r !•A~r ,v!d3r , ~1.1!

whereA is the wave function of the photon emitted, with
allowance made for the presence of material bodies.

As in the case of free space, the wave functions of an
atom vary faster than the wave function of the photon, and
this allows one to expand the wave function of the photon
into a series in powers of coordinates in the vicinity of the
atom.

Where dipole radiation is forbidden, the first term in this
series goes to zero, and the value of the matrix element is
governed by that of the gradient of the photon wave function
in the neighborhood of the atom,

Vf i}
]

]r 0,j
A i~r0 ,v!E cout* ~r !

]

]r i
c in~r !r jd

3r . ~1.2!

A principal difference between the case in hand and that
of free space is that the scale of the gradient of the photon
wave function depends, generally speaking, not only on the
radiation wavelength but also on the characteristic size of the
problem. What is more, in the case of an atom located close
to a material body with a small radius of curvature,a, the
wave-function gradient is determined mainly by the surface
curvature of the body and not by the radiation wavelength in
free space. As a result, the quadrupole radiation probability
increases (l/a)2 times as compared with that in the case of
free space. An even greater increase in probability should be
expected for multipole transitions of higher order. Note the
fact that where the characteristic geometrical size of the
problem is close to the size of the atomic orbit, the radiation
intensity may approach the intensity of dipole transitions.
Specifically, for Rydberg and closely similar atoms, the orbit
size may be as great as 1025 cm, and so one can create
appropriate geometrical conditions for the observation of the
enhancement of quadrupole transitions.

The plan for the rest of the paper is as follows. In Sec. II,
we find, within the framework of the lower-order perturba-
tion theory approximation ~as to charge!, quantum-
mechanical expressions for the probability of spontaneous
quadrupole decay of an atom located next to a dielectric
sphere. In Sec. III, in the classical nonresonance approxima-
tion we treat the radiation of a multipole in the vicinity of a
dielectric sphere, and find expressions for the radiation line-
width and frequency shift. In conclusion, we compare be-
tween results obtained within the frameworks of the classical
and quantum-mechanical approaches and, examine these re-
sults.

II. LINEWIDTH OF A QUADRUPOLE
TRANSITION „QUANTUM-MECHANICAL APPROACH …

For the sake of definiteness consider an electric quadru-
pole transition of an atom located close to a dielectric sphere
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whose radius is small compared to the radiation wavelength
~see Fig. 1 for the geometry of the problem!. Other transi-
tions and problem geometries will be analyzed in a separate
publication.

A. Quantization of electromagnetic field
in the presence of a dielectric microsphere

The quantization procedure is generally known quite well,
but each particular case requires a special approach. In our
case, an ideally conducting sphere of a great but finite radius
L→} ~see Fig. 1! may be treated as the quantization volume.
The expansion of the electromagnetic field and its vector
potential into a series in the complete set of eigenfunctions
of the classical problem~see, for example,@4#! may be rep-
resented in the form

E5(
s

as2as
†

iA2
e~s,r !;B5(

s

as1as
†

A2
b~s,r !,

A52
c

vs
(
s

as1as
†

A2
e~s,r !, ~2.1!

“3e~s,r !52
vs

c
b~s,r !.

Hereas andas
† are the coefficients of photon annihilation and

creation in the appropriate modes with the frequenciesvs .
In the case of an electric quadrupole transition, both TM

and TE waves can be excited, depending on the orientation
of the atom, only the TM waves being excited in the case of
radial arrangement of the atomic quadrupole momentum.
The expressions for the electric fielde~s,r ! of these modes
can easily be obtained in terms of spherical harmonics (Y)
and spherical Bessel functions (j ) and Hankel functions (h)

@5#. For the fields outside the sphere that are of interest to us,
the following expressions hold:

eTE~n,m,n!5@aTE,n
~1! hn

~1!~k2r !1aTE,n
~2! hn

~2!~k2r !#L̂Ynm~q,w!,
~2.2!

eTM~n,m,n!52
1

k2
“3$@aTM,n

~1! hn
~1!~k2r !1aTM,n

~2! hn
~2!

3~k2r !#L̂Ynm~q,w!%.

Here L̂52 i ~r3“! is the angular momentum operator,n is
the orbital quantum number,m is the azimuthal quantum
number,n is the radial quantum number, andk1,25A«1,2k
5A«1,2(vs /c) are the wave vectors within and without the
sphere, respectively.

The coefficientsa are found as usual such that the tan-
gential field components at the sphere boundary, are continu-
ous and the wave functions are normalized within the sphere
of radiusL per photon in a mode:

aTE
~1!

aTE
~2! 5122pn ,

aTM
~1!

aTM
~2! 5122qn ,

qn5
F« d

dz2
@z2 j n~z2!# j n~z1!2

d

dz1
@z1 j n~z1!# j n~z2!G

F« d

dz2
@z2hn

~1!~z2!# j n~z1!2
d

dz1
@z1 j n~z1!#hn

~1!~z2!G ,
~2.3!

pn5
F d

dz2
@z2 j n~z2!# j n~z1!2

d

dz1
@z1 j n~z1!# j n~z2!G

F d

dz2
@z2hn

~1!~z2!# j n~z1!2
d

dz1
@z1 j n~z1!#hn

~1!~z2!G ,

uaTE,n
~1! u25uaTE,n

~2! u25uaTM,n
~1! u25uaTM,n

~2! u25
2pqc

L

k3

n~n11!
.

In expression~2.3! and elsewhere,z1,25k1,2a.
To find the total probability, one must also know the den-

sity of final states. The requirement that the tangential
electric-field components of the TM mode should vanish on
the inside surface of the normalization sphere gives rise to
the following transcendental equation:

d

dr
~rZ !U

r5L

50,

~2.4!

Z5FaTM,n
~1! hn

~1!S vs

c
r D1aTM,n

~2! hn
~2!S vs

c
r D G ,

whose asymptotic solutions are

vs5S n1
n11

2 D pc

L
1••• . ~2.5!

Hence it follows that the density of final states will be de-
scribed by the simple expression

rTM~v!5
L

pqc
. ~2.6!

FIG. 1. Geometry of the quantum-mechanical problem.

54 4409QUADRUPOLE RADIATION OF AN ATOM IN THE . . .



Analyzed in a similar way are those TE photons for which
the density of final states is expressed in exactly the same
way:

rTE~v!5
L

p\c
. ~2.7!

B. Spontaneous quadrupole transition linewidth

According to the golden rule~see, for example,@6#!, the
probability and linewidth of a transition are given by

g5
2p

\
uVf i u2r~v!, ~2.8!

so that the problem is reduced to the finding of the transition
matrix element.

Within the framework of the low-order perturbation
theory as to charge, the interaction energy matrix element
has the form

^outuVintu in&5 K outU ec E d3r ĵ•ÂU inL
52

i\e

A2mvs
E d3r cout* “cin•e~s,r !, ~2.9!

wheree~s,r ! is the electric field of the appropriate mode. In
our case, the dipole transition is forbidden~or is of no inter-
est to us!, so that the quadrupole transition amplitude has the
form

Vf i52
i\e

A2mvs

]

]r 0,j
Ai~r0 ,v!E cout* ~r !

]

]r i
c in~r !r jd

3r ,

~2.10!

wherer0 is the atomic position vector.
Of course, to use the perturbation theory as to charge, one

should consider the fact that in the region near to resonance,
the matrix element may become large enough, the smallness
of the charge notwithstanding. It was demonstrated in@7#
that for microspheres of a not very great size in comparison
with the wavelength, the first-order perturbation theory ap-
proximation for dipole transitions remains applicable even in
the vicinity of resonance. The quadrupole interaction being
weaker than its dipole counterpart, the first-order perturba-
tion theory approximation also proves to be correct for quad-
rupole transitions in the case of small spheres (ka;1). This
question will be considered in more detail in an individual
publication.

To find the gradient of the wave functions in~2.10! in the
neighborhood of the emitting atom, it is convenient to use a
spherical coordinate system and make the covariant differen-
tiation of the vectors@8# in this system. As a result, the
expression for the transition matrix element assumes the
form

Vf i5
Qi jDi j

6A2
. ~2.11!

HereDi j5e^(3xixj2d i j )& f i is the transition quadrupole mo-
ment, andQi j5¹ ie

j is the covariant derivative of the elec-
tric field of the appropriate mode@8#:

¹ ie
j5

1

Hj

]ej

]xi
2

ei

H j
2

]Hi

]xi
1d i

j(
k51

3
ek

Hk

] ln Hj

]xk
, ~2.12!

where Hi5(1,r ,r sinu!i are the Lame coefficients of the
spherical coordinate system and use is made on the right-
hand side of the physical~not covariant! coordinates of the
electric-field vectors.

In deriving expression~2.11!, use has been made of the
following relation for the matrix elements:

K fUxi ]

]xj
U i L 5

mv f i

2q
^ f uxixj u i &, ~2.13!

which holds true for quadrupole transitions involving a
change in the principal or the orbital quantum number, as
well as the condition for the field to be solenoidal,
Qi j5div e~s,r !50. Herev f i5vs is the transition frequency.

Expression~2.11! is valid for any quadrupole orientation.
Let us now consider some particular cases of quadrupole
orientation. In the case of radial orientation of the principal
dipole axis, i.e., where the quadrupole momentum tensor~in
the spherical coordinate system! has the form

Di j5F Drr 0 0

0 2 1
2Drr 0

0 0 2 1
2Drr

G
i j

, ~2.14!

the expression for the matrix element assumes the form

Vf i5
QrrDrr

4A2
, ~2.15!

where the radial component (r ) of the covariant derivative
has the simple form

Qrr5
]er
]r

, ~2.16!

and no summation is extended over the terms with repeated
indices. Note that in the case of radial quadrupole orienta-
tion, there takes place no emission of TE photons, and so one
should useer as only the second expression in~2.2!.

Substituting~2.15!, ~2.16!, and~2.6! into ~2.8!, we obtain
the final expression for the total quadrupole transition prob-
ability for a radially oriented quadrupole in the vicinity of a
dielectric sphere@3#:

gTM
Q 5

Drr
2 k5

8q (
n51

`

n~n11!~2n11!

3U d
dz S j n~z!2qnhn

~1!~z!

z D U2, ~2.17!

wherez5ka.
Relating this expression to the spontaneous decay rate in a

vacuum~see, for example,@9#!,
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gvac
Q 5

Dzz
2 k5

60q
, ~2.18!

we obtain the final expression for the relative spontaneous
quadrupole transition rate for a radially oriented quadrupole
in the neighborhood of a dielectric sphere:

g rad
Q

gvac
Q 5

15

2 (
n51

`

n~n11!~2n11!U d
dz S j n~z!2qnhn

~1!~z!

z D U2,
~2.19!

In the case of tangential orientation of the principal dipole
axis, i.e., where the quadrupole moment tensor~in the spheri-
cal coordinate system! has the form

Di j5F 2 1
2Dqq 0 0

0 Dqq 0

0 0 2 1
2Dqq

G
i j

, ~2.20!

the expression for the matrix element assumes the form

Vf i5
QuuDuu

4A2
, ~2.21!

where the tangential component~u! of the covariant deriva-
tive has the form

Quu5
1

r

]eq

]q
1
er
r
, ~2.22!

and no summation is extended over the terms with repeated
indices. Note that in the case of tangential orientation of the
principal dipole axis, there occurs emission of both TM and
TE photons, and therefore one should take aser andeu both
the first and the second expression in~2.2!.

Substituting~2.21!, ~2.22!, and~2.6! into ~2.8!, we obtain
the final expression for the total quadrupole transition prob-
ability for a tangentially oriented quadrupole in the vicinity
of a dielectric sphere:

g tan
Q 5

Duu
2 k5

32\ (
n51

`

n~n11!~2n11!U d
dz S j n~z!2qnhn

~1!~z!

z D U2

1
Duu
2 k5

64\ (
n51

`

n~n21!~n12!

3U 1z2 d

dz
$z@ j n~z!2qnhn

~1!~z!#%U2

1
Duu
2 k5

64\ (
n51

`

n~n21!~n12!U1z @ j n~z!2pnhn
~1!~z!#U2

~2.23!

wherez5ka.
Relating this expression to the spontaneous decay rate in a

vacuum ~17!, we obtain the final relation for the relative
spontaneous quadrupole transition rate for a tangentially ori-
ented dipole in the presence of a dielectric microsphere:

g tan
Q

gvac
Q 5

15

8 (
n51

`

n~n11!~2n11!U d
dz S j n~z!2qnhn

~1!~z!

z D U2

1
15

16 (
n51

`

~2n11!~n21!~n12!

3U 1z2 d

dz
$z@ j n~z!2qnhn

~1!~z!#%U2

1
15

16 (
n51

`

~2n11!~n21!~n12!

3U1z @ j n~z!2pnhn
~1!~z!#U2. ~2.24!

A quadrupole with its principal axis oriented along thew
axis is analyzed in a similar way. As one would expect, the
result is an expression identical to~2.23!, which is one more
argument in support of the correctness of our calculations.

Thus, in the present section, we have found, within the
framework of the first-order quantum-electrodynamic pertur-
bation theory, the relative changes that the linewidth of a
spontaneous atomic quadrupole radiation suffers in the vicin-
ity of a dielectric sphere, no matter what the orientation of
the transition quadrupole moment.

III. LINEWIDTH AND FREQUENCY SHIFT
OF A QUADRUPOLE TRANSITION

„CLASSICAL APPROACH …

It is a well-established fact that in the case of dipole tran-
sitions there exists a simple correspondence between the
transition linewidths calculated within the framework of the
classical and the quantum-mechanical approaches. That is,
the changes occurring in the classical and quantum-
mechanical linewidths in the presence of a material body,
taken in relation to their counterparts in free space, are de-
scribed by identical expressions. The natural question arises:
Does a similar correspondence exist for quadrupole transi-
tions, too?

To clear up this question, let us consider a system of two
dipoles of opposite orientations with the momentsed1 and
2ed1 , one of which is stationary and the other, displaced for
a distance ofdr (t), which oscillates about the first, the sys-
tem being placed close to a sphere of radiusa with a dielec-
tric constant of« in an infinite medium with a dielectric
constant of«51. The geometry of the classical problem is
shown in Fig. 2. The equation of motion of the movable

FIG. 2. Geometry of the classical problem.
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dipole portion of the quadrupole in the case of weak radia-
tion reaction has the form

md r̈1mg0d ṙ1mv0
2dr50, ~3.1!

g05
2e2d1

2

15c

k4

m
5
cD0

2K% 6

60E0
. ~3.2!

Hereg0 is the total quadrupole transition width in a vacuum,
D0524edr 0d1 is the maximum quadrupole moment of the
system, andE05mv2dr 0

2/2 is the total initial oscillation en-
ergy of the quadrupole.

An oscillating quadrupole located~at r 8! near to a dielec-
tric sphere is acted upon additionally~compared to the case
of free space! by the reflected fieldE~1!~r 8!, so that the equa-
tion of motion assumes the form

md r̈01mg0d ṙ01mv0
2dr052e~d1•“ !E~1!~r 8!,

~3.3!

wheredr0 is the oscillation amplitude of the dipole. Project-
ing this equation onto the oscillation direction, we obtain

mD̈1mg0Ḋ1mv0
2D54e2d1~d1•“ !

dr•E~1!~r 8!

udr u
,

~3.4!

whereD is the quadrupole moment in the oscillation direc-
tion, which is assumed later in the text to be coincident with
the principal axis of the quadrupole.

By solving in accordance with the perturbation theory the
dispersion equation following from~3.3!, one can easily find
the formulas for both the linewidth variation,

g5g02
e

v0mdr 0
2 Im~d1•“ !~dr0•E

~1!! ~3.5!

and the frequency shift

Dv5
e

2v0mdr 0
2 Re~d1•“ !~dr0•E

~1!!. ~3.6!

In the case of resonance interaction between the quadru-
pole and the dielectric sphere, use of the perturbation theory
is restricted, as in the quantum-mechanical case, by the re-
quirement that the linewidth should be much smaller than the
resonance width of the dielectric sphere. Where the sphere is
small, this condition is satisfied for characteristic quadrupole
transitions.

Using Eq.~3.1!, one can write the following expressions
for the relative quantities:

g

g0
512

15

2edr 0
2d1

2k5
Im~d1•“ !~dr0•E! ~3.7!

and

Dv

g0
5

15

4edr 0
2d1

2k5
Re~d1•“ !~dr0•E!. ~3.8!

Thus, to obtain concrete results, one should calculate
~d1•“!~dr0•E! at the location of the oscillating dipole.

To find the variation of the quadrupole radiation param-
eters at any point in space, it is necessary to solve the Max-
well equations for the system of charges under analysis. The
charge density of the stationary dipole may be defined by the
expression

r152e~d1•“ !d~r2r 8!, ~3.9!

and that of the oscillating dipole by the expression

r25e~d1•“ !d@r2r 82dr ~ t !#. ~3.10!

Accordingly, the total charge and current densities may be
defined by the expressions

r tot52e~d1•“ !~dr•“ !d~r2r 8! ~3.11!

and

j5ev~ t !~d1•“ !d~r2r 8!, v~ t !5d ṙ ~ t !. ~3.12!

To solve the Maxwell equations involving the sources de-
fined by expressions~3.10! and~3.11!, let us use the method
proposed in@11#. To this end, we expand the field of the

FIG. 3. Relative linewidth for quadrupole and dipole transitions
in atoms located in close proximity to the surface of a dielectric
microsphere in the case of radial orientation as a function of the
microsphere radiuska: ~a! «56; ~b! «52.5. The crosses indicate
asymptotic relations~4.7! and ~4.9!.
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oscillating quadrupole in terms of spherical harmonics, and
then find by the ordinary procedure the reflected field@or, to
be more exact, the quantity~d1•“!~dr0•E!# of interest to us.

If current distributions~3.10! and ~3.11! are placed in an
infinite dielectric sphere with a dielectric constant of«251,
the expression for the field may be written in the form

Equadr5k2P~1!1“~“•P~1!!, ~3.13!

Bquadr52 ik“3P~1!, ~3.14!

where the Hertzian electric vector of the quadrupole is de-
fined by the expression

P~1!5edr ~d1•“ !
eikur2r8u

ur2r 8u
. ~3.15!

To find the expansion of the quadrupole field in terms of
spherical harmonics, let us first consider the radial magnetic-
field component. It is not very difficult to demonstrate that
there holds true the following important identity:

~rBquadr!52 ike@r•~“3dr0!#~d1•“ !
eikur2r8u

ur2r 8u

52 ike~d1•“8!@dr0•~“83r 8!#
eikur2r8u

ur2r 8u
.

~3.16!

Thereafter, by using the standard expansion@4#

FIG. 4. Linewidth of quadrupole and dipole
transitions for various orientations and various re-
fractive indices of the microsphere as a function
of the distancer /a to the surface of the micro-
sphere @ka50.01, «56 ~diamond!, «52.5
~glass!#.
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eikur2r8u

ur2r 8u
54pki(

n50

`

(
m52n

n

j n~kr !hn
~1!~kr8!

3Ynm* ~q8,w8!Ynm~q,w!, ~3.17!

which is valid for r,r 8, the expression for the radial
magnetic-field component is reduced to the necessary form
of expansion in terms of scalar spherical harmonics:

~r•Bquadr!5 (
n51

`

(
m52n

n

anmj n~kr !Ynm~q,w!, ~3.18!

where

anm5 ie4pk2~d1•“8!~dr0•L̂ 8!hn
~1!~kr8!Ynm* ~q8,w8!

~3.19!

andk1,25k0A«1,2 are the wave vectors in the regions 1 and
2, respectively. Use is also made here of the ordinary expres-
sions for the spherical harmonics and spherical Bessel func-
tions @4#.

Now multiplying the Maxwell equation

“3E5 ikB ~3.20!

by r , we obtain the following equation that can help find the
TE component of the dipole field:

~ L̂•ETE
quadr!5k~Bquadr

•r !. ~3.21!

Solving this equation, we find the TE component of the elec-
tric field (r,r 8) to be

ETE
quadr5k(

n51

`

(
m52n

n
anm

n~n11!
j n~kr !L̂Ynm~q,w!.

~3.22!

The TE component of the magnetic field is found by substi-
tuting the above expression into Maxwell equation~3.20!:

BTE
quadr52 i(

n51

`

(
m52n

n
anm

n~n11!
@“3„j n~kr !L̂Ynm~q,w!…#.

~3.23!

Let us now consider the TM field components. For this
purpose, we first find the radial electric-field component. In
that case, there also holds true the important identity

~r•ETM
quadr!5e$r•@“3~“3dr0!#%~d1•“ !

eikur2r8u

ur2r 8u

5e~d1•“8!$dr0•@“83~r 83“8!#%
eikur2r8u

ur2r 8u
.

~3.24!

Substituting expansion~3.15! into identity ~3.24!, we obtain
the following expression for the radial electric-field compo-
nent in terms of spherical harmonics:

~r•Equadr!5 (
n51

`

(
m52n

n

bnmj n~kr !Ynm~q,w!, ~3.25!

where

bnm524pke~d1•“ !@dr0•~“83L̂ 8!#hn
~1!~kr8!

3Ynm* ~q8,w8!. ~3.26!

With the radial electric-field component known, we find the
TM field components in exactly the same way as their TE
counterparts:

BTM
quadr52k(

n51

`

(
m52n

n
bnm

n~n11!
hn

~1!~kr !L̂Ynm~q,w!,

~3.27!

FIG. 5. Linewidth of quadrupole and dipole
transitions for various orientations in the case of
resonance interaction with a dielectric sphere of a
sufficiently large radius (ka55.5491) compared
to the radiation wavelength as a function of the
distancer /a to the surface of the microsphere.
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ETM
quadr52 i(

n51

`

(
m52n

n
bnm

n~n11!

3@“3„hn
~1!~kr !L̂Ynm~q,w!…#. ~3.28!

Collecting expressions~3.22!, ~3.23!, ~3.27!, and ~3.28!, we
obtain the final expansion of the field of the electric dipole in
an infinite space in terms of spherical harmonics:

Bquadr52k(
n51

`

(
m52n

n
bnm

n~n11!
hn

~1!~kr !L̂Ynm~q,w!

2 i(
n51

`

(
m52n

n
anm

n~n11!

3$“3@hn
~1!~kr !L̂Ynm~q,w!#%, ~3.29!

Equadr52 i(
n51

`

(
m52n

n
bnm

n~n11!

3$“3„hn
~1!~kr !L̂Ynm~q,w!#}

1k(
n51

`

(
m52n

n
anm

n~n11!
hn

~1!~kr !L̂Ynm~q,w!.

~3.30!

The total field is the sum of the quadrupole field in free
space and the reflected field of interest to us, the expansion
of which in terms of spherical harmonics outside the sphere,
may be represented in the following form:

B~1!52k(
n51

`

(
m52n

n anm
~1!

n~n11!
hn

~1!~kr !L̂Ynm~q,w!

2 i(
n51

`

(
m52n

n bnm
~1!

n~n11!
$“3@hn

~1!~kr !L̂Ynm~q,w!#%,

~3.31!

E~1!52 i(
n51

`

(
m52n

n anm
~1!

n~n11!
$“3@hn

~1!~kr !L̂Ynm~q,w!#%

1k(
n51

`

(
m52n

n bnm
~1!

n~n11!
hn

~1!~kr !L̂Ynm~q,w!. ~3.32!

Similar expressions hold inside the sphere, too, if the spheri-
cal Hankel functions of the first kind are replaced by spheri-
cal Bessel functions.

Now, using the continuity equation for the tangential
components of the total field on the surface of the sphere, we
can find the unknown coefficientsa nm

(1) andb nm
(1), the expres-

sions for which assume the form

anm
~1!5

$«1@z2hn
~1!~z2!#8hn

~1!~z1!2«2@z1hn
~1!~z1!#8hn

~1!~z2!%

$«2@z1 j n~z1!#8hn
~1!~z2!2«1@z2hn

~1!~z2!#8 j n~z1!%

3bnm5qnbnm , ~3.33!

bnm
~1!5

$@z2hn
~1!~z2!#8hn

~1!~z1!2@z1hn
~1!~z1!#8hn

~1!~z2!%

$@z1 j n~z1!#8hn
~1!~z2!2@z2hn

~1!~z2!#8 j n~z1!%
anm

5pnanm , ~3.34!

where use is made of the notationz1,25k1,2a, and the coef-
ficients pn and qn coincide with the like coefficients~2.3!.
Thus, the approach suggested has enabled us completely to
define, by means of simple calculations, the field of an elec-
tric dipole located anywhere outside a dielectric sphere. To
find the line parameters in accordance with~3.4! and~3.5!, it
is necessary to calculate the expression

~d1•“ !~dr0•E
~1!!. ~3.35!

Using formulas~3.31! and ~3.32!, one can easily reduce
the above expression to the form

FIG. 6. Frequency shift of quadrupole transitions in the case of
resonance interaction with a dielectric microsphere of a sufficiently
large radius (ka55.5491) compared to the radiation wavelength as
a function of the distancer /a to the surface of the microsphere:~a!
radial orientation;~b! tangential orientation. The dashed lines shows
long-wave asymptotic relations~4.8! and ~4.10!

.
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~d1•“ !~dr0•E
~1!!ur5r852

i

e
4pkH (

n51

`

(
m52n

n

qn
b̃nm* bnm*

n~n11!

1 (
n51

`

(
m52n

n

pn
ãnm* anm*

n~n11!J ,
~3.36!

where

bnm* 5e~d1•¹8!$dr0@¹83„hn
~1!~kr8!L̂ 8Ynm* ~q8,w8…#%,

b̃nm* 5e~d1•¹8!$dr0@¹38„hn
~1!~kr8!L̂ 8Ynm~q8,w8…#%,

~3.37!anm* 5ek~d1•“8!~dr0•L̂ 8!Ynm* ~q8,w8!hn
~1!~kr8!,

ãnm* 5ek~d1•“8!~dr0•L̂ 8!Ynm~q8,w8!hn
~1!~kr8!.

These expressions are easy to calculate for constantd1 and
dr0 by means of the covariant derivative technique@8#.

Substituting expressions~3.36! and ~3.37! into ~3.7! and
~3.8!, we obtain the final expressions for the radiation line-
width and frequency shift of a quadrupole of arbitrary orien-
tation:

g

g0
511

30p

k4e2dr 0
2d1

2 ReH (
n51

`

(
m52n

n

qn
b̃nm* bnm*

n~n11!

1 (
n51

`

(
m52n

n

pn
ãnm* anm*

n~n11!J , ~3.38!

Dv

g0
5

15p

k4e2dr 0
2d1

2 ImH (
n51

`

(
m52n

n

qn
b̃nm* bnm*

n~n11!

1 (
n51

`

(
m52n

n

pn
ãnm* anm*

n~n11!J . ~3.39!

FIG. 7. Linewidth of quadrupole transitions in
the neighborhood of a microsphere with«56
~diamond! as a function of the distancer /a to the
surface of the microsphere and its radiuska: ~a!
radial orientation;~b! tangential orientation.
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Now consider the case where the axis of the dipoled1 and
the oscillation directiondr0 are radially oriented. In that case,
it is only the TM modes that are excited; i.e., it is only the
coefficientsb that are other than zero:

bnm* 5 iedr 0d1n~n11!Ynm*
]

]r S hn~1!~kr !

r D ,
~3.40!

b̃nm* 5 iedr 0d1n~n11!Ynm

]

]r S hn~1!~kr !

r D .
Here and elsewhere we shall omit primes in atom coordinate.

Substituting~3.40! into ~3.38! and ~3.39!, and using the
well-known relation

(
m

YnmYnm* 5
2n11

4p

we obtain expressions for the variation of the radiation line
parameters of a radially oriented quadrupole in the vicinity
of a dielectric sphere (z5kr):

g rad
Q

gvac
Q 512

15

2 (
n51

`

n~n11!~2n11!ReqnF ddz S hn~1!~z!

z D G2,
~3.41!

~v2v0!rad
Q

gvac
Q 52

15

4 (
n51

`

n~n11!~2n11!

3Im qnF ddz S hn~1!~z!

z D G2. ~3.42!

Let us now consider the case where the axis of the dipoled1
and the oscillation directiondr0 are oriented tangentially
~along thew or u axis!. In that case, both the TM and TE
modes are excited i.e., all the coefficients are nonzero:

FIG. 8. Frequency shift of quadrupole transi-
tions in the vicinity of a microsphere with«56
~diamond! as a function of the distancer /a to the
surface of the microsphere and its radiuska: ~a!
radial orientation;~b! tangential orientation.
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anm* 5 iekd1dr 0
hn

~1!~kr !

r

]

]q

1

sin q

]Ynm*

]w
,

ãnm* 5 iekd1dr 0
hn

~1!~kr !

r

]

]q

1

sin q

]Ynm

]w
,

~3.43!

bnm* 5 iedr 0d1H hn~1!~kr !

r 2
n~n11!Ynm*

1
1

r 2
]

]r
„rhn

~1!~kr !…
]2Ynm*

]q2 J ,

b̃nm* 5 iedr 0d1H hn~1!~kr !

r 2
n~n11!Ynm

1
1

r 2
]

]r
„rhn

~1!~kr !…
]2Ynm

]q2 J .
Substituting~3.43! into ~3.38! and ~3.39!, we obtain the

expressions for the variation of the radiation line parameters
of a tangentially oriented quadrupole in the presence of a
dielectric sphere (z5kr):

g tan
Q

gvac
Q 512

15

8 (
n51

`

n~n11!~2n11!ReqnF ddz S hn~1!~z!

z D G2

2
15

16 (
n51

`

~n21!~n12!~2n11!

3ReqnF 1z2 d

dz
„zhn

~1!~z!…G2215

16 (
n51

`

~n21!~n12!

3~2n11!Re pnF1z „hn~1!~z!…G2, ~3.44!

~v2v0! tan
Q

gvac
Q 52

15

16 (
n51

`

n~n11!~2n11!

3ImqnF ddz S hn~1!~z!

z D G2

2
15

32 (
n51

`

~n21!~n12!~2n11!

3ImqnF 1z2 d

dz
„zhn

~1!~z!…G2

2
15

32 (
n51

`

~n21!~n12!~2n11!

3ImpnF1z „hn~1!~z!…G2. ~3.45!

So in this section we have obtained explicit expressions
for the linewidth variation and frequency shift of a classical
quadrupole in the neighborhood of a dielectric sphere.

IV. DISCUSSION OF THE RESULTS

In the preceding sections, expressions have been obtained
for the variation of the line parameters in the classical and
quantum-mechanical approaches. In the present section, we
will demonstrate the complete equivalence of these descrip-
tions as applied to the linewidth, and numerically analyze the
expressions obtained.

To prove the equivalence of the expressions, use will be
made of the easy-to-prove identity

up2 1
2 ~11eic!~p1 iq !u25p22Re@ 1

2 ~11eic!~p1 iq !2#.
~4.1!

In our case, the coefficientsp andq may be represented in
the form

pn5
1
2 ~11eic1!,

~4.2!
qn5

1
2 ~11eic2!,

and so the quantum-mechanical expressions~2.19! and
~2.24! for the relative linewidth may be represented, by
means of~4.1!, in the form

g rad
Q

gvac
Q 5

15

2 (
n51

`

n~n11!~2n11!H d

dz S j n~z!

z D J 2215

2 (
n51

`

n~n11!~2n11!ReFqnH d

dz S hn~1!~z!

z D J 2G , ~4.3!

g tan
Q

gvac
Q 5

15

8 (
n51

`

n~n11!~2n11!H d

dz S j n~z!

z D J 2115

16(n51

`

~2n11!~n21!~n12!F 1z2 d

dz
„z jn~z!…G2

1
15

16 (
n51

`

~2n11!~n21!~n12!F1z „j n~z!…G2215

8 (
n51

`

n~n11!~2n11!ReqnF ddz S hn~1!~z!

z D G2

2
15

16 (
n51

`

~2n11!~n21!~n12!ReqnF 1z2 d

dz
„zhn

~1!~z!…G2215

16 (
n51

`

~2n11!~n21!~n12!RepnF1z „hn~1!~z!…G2.
~4.4!
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Using the identities

2
155 (

n51

`

n~n11!~2n11!H d

dz S j n~z!

z D J 2, ~4.5!

4
55 (

n51

`

~2n11!~n21!~n12!F 1z2 d

dz
„j n~z!…G2

1 (
n51

`

~2n11!~n21!~n12!F1z „j n~z!…G2, ~4.6!

we reduce expressions~4.3! and ~4.4! to expressions~3.41!
and ~3.44!, which proves the equivalence of the quantum-
mechanical and classical approaches in the calculation of the
linewidth of quadrupole radiation. Of course, this equiva-
lence does not relate to frequency shifts, for even in the case
of dipole the quantum-mechanical frequency shift results
contain such terms as are altogether absent in the classical
expressions@10#.

Let us consider the expressions found in greater detail.
Especially interesting seems to be the case where the atom is
located close enough to the surface of a sphere. In the radial

FIG. 9. Linewidth of quadru-
pole transitions in the neighbor-
hood of a microsphere with«52.5
~glass! as a function of the dis-
tancer /a to the surface of the mi-
crosphere and its radiuska: ~a! ra-
dial orientation!; ~b! tangential
orientation.
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case of an atom located close to the surface of a sphere of a
small radius (ka→0), expressions~3.41! and ~3.42! for the
relative linewidth and relative frequency shift assume the
form

g rad
Q

gvac
Q 5

180

~ka!2 F«21

«12G21••• , ~4.7!

~v2v0!rad
Q

gvac
Q 52

45

16

«21

«11

1

~z2z2!
5 , ~4.8!

wherez5rk, z25ak, andk5v/c.

In the case of tangential orientation of the principal axis
of the quadrupole, expressions~3.44! and~3.45! for the rela-
tive linewidth and relative frequency shift assume the form

g tan
Q

gvac
Q 5

45

~ka!2 F«21

«12G21••• , ~4.9!

S v2v0

gvac
Q D rad52

135

128

«21

«11

1

~z2z2!
5 . ~4.10!

FIG. 10. Frequency shift of
quadrupole transitions in the
neighborhood of a microsphere
with «52.5 ~glass! as a function
of the distancer /a to the surface
of the microsphere and its radius
ka: ~a! radial orientation;~b! tan-
gential orientation.

4420 54V. V. KLIMOV AND V. S. LETOKHOV



It is of interest to compare the results obtained with expressions for the linewidth and frequency shift in the case of dipole
transitions, which in our notation have the form@11#

S g

g0
D
dip

512 3
2 ReFcos2c (

n51

`

n~n11!~2n11!qnS hn~1!~z!

z D 21sin2c (
n51

`

~n11/2!H pn„hn~1!~z!…21qnS d„zhn~1!~z!…

zdz D 2J G ,
~4.11!

S v2v0

g0
D
dip

52 3
4 ImFcos2c (

n51

`

n~n11!~2n11!qnS hn~1!~z!

z D 21sin2c (
n51

`

~n1 1
2 !H pn„hn~1!~z!…21qnS d„zhn~1!~z!…

zdz D 2J G ,
~4.12!

FIG. 11. Linewidth of quadru-
pole transitions in close proximity
to a microsphere with«56 ~dia-
mond! as a function of the dis-
tancer /a to the surface of the mi-
crosphere and its radiuska in the
vicinity of a TM resonance (ka
55.5491): ~a! radial orientation;
~b! tangential orientation.
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wherec is the angle between the dipole axis and the radius.
At small distances from the surface of a small sphere, we

have, instead of expressions~4.11! and~4.12!, the following
asymptotic expressions:

g rad
dip

gvac
dip 5F 3«

«12G21••• , ~4.13!

g tan
dip

gvac
dip 5F 3

«12G21••• ~4.14!

and

S v2v0

gvac
dip D rad52

3

16

«21

«11

1

~z2z2!
3 , ~4.15!

S v2v0

gvac
dip D tan52

3

32

«21

«11

1

~z2z2!
3 . ~4.16!

Comparing between~4.7! and~4.9! and~4.13! and~4.14!,
it is not very difficult to establish the fact of substantial ac-
celeration of quadrupole transitions. Moreover, one can see
from these expressions that as the size of the microsphere is
reduced in comparison with the radiation wavelength, the
quadrupole transition rate can increase beyond all bounds. Of
course, one should verify the applicability of the perturbation
theory here.

Figure 3 shows the relative radiation linewidth for quad-
rupole and dipole transitions in atoms located near to the
surface of a sphere as a function of the sphere radiuska in
the case of radial orientation, whence the substantial accel-
eration of the quadrupole transitions as compared to their

FIG. 12. Frequency shift of quadrupole tran-
sitions in close proximity to a microsphere with
«56 ~diamond! as a function of the distancer /a
to the surface of the microsphere and its radius
ka in the vicinity of a TM resonance (ka
55.5491): ~a! radial orientation;~b! tangential
orientation.
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dipole counterparts is clearly evident. The crosses in the fig-
ure indicate asymptotic relations~4.7! and ~4.9!.

Comparison between~4.8! and ~4.10! and ~4.15! and
~4.16! shows a substantial increase in the frequency shift of
the quadrupole transition in comparison with the dipole tran-
sition as one draws closer to the surface of the sphere, the
index of singularity changing from 3 to 5.

As already noted, these facts are due to the quadrupole
sensitivity to the field gradient which is singular in close
proximity to the surface of a small-radius sphere. Figure 4
presents the linewidths of quadrupole and dipole transitions
as a function of the distancer /a to the surface of the micro-
sphere for various orientations and various refractive indices
of the microsphere@ka50.01, «56 ~diamond!, and «52.5
~glass!#. One can see from the figure that a substantial in-
crease in the quadrupole transition rate occurs in the case of
both glass and diamond microsphere.

Shown in Fig. 5 is the linewidth of quadrupole and dipole
transitions for various orientations in the case of resonance
interaction with a dielectric sphere of sufficiently great radius
(ka55.5491) in comparison with the radiation wavelength
as a function of the distancer /a to the surface of the sphere.
It is evident from the figure that even in that case there takes
place an acceleration of the quadrupole transitions. Figure 6
illustrates expressions for the frequency shift in the neigh-
borhood of this resonance, as well as the corresponding as-
ymptotic relations~4.8! and ~4.10!.

Figures 7 and 8 present the linewidth and frequency shift
of quadrupole transitions in the vicinity of a diamond micro-
sphere as a function of the distancer /a to the surface of the
microsphere and its radiuska. Figures 9 and 10 show similar

curves for a glass microsphere. Clearly seen in these figures
are the resonance interaction regions, the greater number of
resonances in the case of tangential orientation of the quad-
rupole axis being due to the emergence of TM modes.

Presented in Figs. 11 and 12 are the linewidth and fre-
quency shift of quadrupole transitions in close proximity to a
diamond microsphere as a function of the distancer /a to its
surface and its radiuska in the neighborhood of a TM reso-
nance (ka55.5491). These curves are of distinct dispersion
character.

Thus in the present work we have considered quadrupole
radiation processes in the neighborhood of a dielectric mi-
crosphere. We have demonstrated by way of explicit calcu-
lations that the classical and quantum-mechanical ap-
proaches yield the same expressions for the quadrupole
transition linewidth. We have also found a classical expres-
sion for the frequency shift of quadrupole transitions. The
analysis of the expressions found has shown that quadrupole
transitions are much more sensitive to changes in the struc-
ture of electromagnetic field associated with the presence of
the dielectric microsphere. The results obtained are easy to
generalize to the case of higher-order multipoles, it being
evident within the framework of the approach suggested that
the sensitivity of the atom to the presence of a microsphere
will be even higher in that case.
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