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Quadrupole radiation of an atom in the vicinity of a dielectric microsphere
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The process of quadrupole radiation of an atom in the vicinity of a dielectric sphere is considered within the
framework of both quantum-mechanical and classical approaches. It is shown that spontaneous transition
probabilities can be calculated correctly within the framework of the classical approach. The quadrupole
transition probability is shown to be capable of increasing by several orders of magnitude in the neighborhood
of the microsphere, to become comparable with the intensity of dipole transitions, the frequency shifts calcu-
lated in the classical approximation being much greater than in the case of dipole transitions.
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PACS numbgs): 42.50.Fx, 42.50.Vk, 42.50.Hz
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It is well known that the rates of quadrupole transitions Vi aro; A,(ro,w)f Youl) ar; YinlO)rydr. (1.2
i~ the optical region are lower by a factor of A principal difference between the case in hand and that
(ap/\)*=107"-10"" (wherea, is the Bohr radius and is o free space is that the scale of the gradient of the photon
the radiation Wa.Velenglhhan those of their d|p0|e counter- wave function dependsy genera“y Speaking' not On|y on the
parts and that the dipole transition probability is stronglyradiation wavelength but also on the characteristic size of the
influenced by the presence of macroscopic bodies near theroblem. What is more, in the case of an atom located close
radiating atom(see, for exampl€,1,2]. The question arises to a material body with a small radius of curvatuee,the
in this connection: How do material bodies affect quadrupolevave-function gradient is determined mainly by the surface
or multipole transitions? The effect of a dielectric sphere oncurvature of the body and not by the radiation wavelength in
the linewidth of a quadrupole transition was considered ifree space. As a result, the quadrupole radiation probability
[3]. This paper, a sequel {8], presents the results of inves- increases X/a)? times as compared with that in the case of
tigations into this question, which show that, given appropri-free space. An even greater increase in probability should be
ate conditions, the probability of quadrupole or other multi-expected for multipole transitions of higher order. Note the
pole transitions can rise substantially, and that atomidact that where the characteristic geometrical size of the
transition frequencies suffer material shifts in the neighborproblem is close to the size of the atomic orbit, the radiation
hood of a surface. intensity may approach the intensity of dipole transitions.

Consider the amplitude of the decay of an excited atomiépecifically, for Rydberg and closely similar atoms, the orbit
state to an unexcitetinetastablgstate, accompanied by the Sizeé may be as great as Tocm, and so one can create
emission of a photon. In that case, the transition matrix eleappropriate geometrical conditions for the observation of the
ment has the form enhancement of quadrupole transitions.

The plan for the rest of the paper is as follows. In Sec. I,
we find, within the framework of the lower-order perturba-
tion theory approximation(as to charge quantum-

Vfi“f PNV in(r) - A(r,)d°r, (1.)  mechanical expressions for the probability of spontaneous
quadrupole decay of an atom located next to a dielectric
sphere. In Sec. lll, in the classical nonresonance approxima-
tion we treat the radiation of a multipole in the vicinity of a
allowance made for the presence of material bodies. di_electric sphere, and fin_d expressionsj for the radiation line-
As in the case of free space, the wave functions of a idth and frequen_cy Sh'.ﬁ' .In conclusion, we compare t_)e—
ween results obtained within the frameworks of the classical

atom vary faster than the wave function of the photon, an . .
this allows one to expand the wave function of the photonand quantum-mechanical approaches and, examine these re-

into a series in powers of coordinates in the vicinity of the SUlS-
atom.

where A is the wave function of the photon emitted, with

Il. LINEWIDTH OF A QUADRUPOLE

Where dipole radiation is forbidden, the first term in this o \\5T10N (QUANTUM-MECHANICAL APPROACH )
series goes to zero, and the value of the matrix element is

governed by that of the gradient of the photon wave function For the sake of definiteness consider an electric quadru-
in the neighborhood of the atom, pole transition of an atom located close to a dielectric sphere
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[5]. For the fields outside the sphere that are of interest to us,
the following expressions hold:

ere(n.m, ) =[af h(V (kor) + i (2 (Kor) 1LY (9, 0),
(2.2

1
en(nm,») = = (= Vx{Latiy i (kar) + aff ohf?

X(er)]LYnm(ﬁv(P)}-

HereL=—i(r xV) is the angular momentum operator,is
the orbital quantum numbem is the azimuthal quantum
number, v is the radial quantum number, amd ,= \e; X
= \/Zz(wslc) are the wave vectors within and without the
/ sphere, respectively.
/ The coefficientsae are found as usual such that the tan-
; / gential field components at the sphere boundary, are continu-
N s ous and the wave functions are normalized within the sphere
. e of radiusA per photon in a mode:

~—_ — (1) %)/I B

FIG. 1. Geometry of the quantum-mechanical problem.

d
d [Z2)n(Z2) 1) n(21) — [211 n(Z1)1in(22)

whose radius is small compared to the radiation wavelength
(see Fig. 1 for the geometry of the probler®ther transi- d () d (1)

tions and problem geometries will be analyzed in a separate | € go. [Zzh (z2)]in(z1) = [len(Zl)]h (z2)
publication. 2.3

n

d . . d . .
A. Quantization of electromagnetic field dz, [Z2)n(Z2)]in(Z1) — daz [Z1)n(Z2) 1] n(2Z2)

in the presence of a dielectric microsphere pn=

d d '
The quantization procedure is generally known quite well, az (20 (2)1jn(21) — daz [Z1)n(21) 105 (2,)
but each particular case requires a special approach. In our
case, an ideally conducting sphere of a great but finite radius 2mhe k3
A—c (see Fig. 1 may be treated as the quantization volume. |a{Z |2=|a{@ |?=|aiy ol?= et o= —.
The expansion of the electromagnetic field and its vector ' ’ A n(n+1)
potential into a series in the complete set of eigenfunction
of the classical problentsee, for exampld4]) may be rep-

resented in the form

Tn expression2.3) and elsewherez; ,=K; »a.
To find the total probability, one must also know the den-
sity of final states. The requirement that the tangential

a—al atal electric-field components of the TM mode should vanish on
E=> — —gs,r);B=> ——Db(s,r) the inside surface of the normalization sphere gives rise to
s 2 V2 the following transcendental equation:
c a +a d z 0
—_ r — ,
A=——> = s, 2.0 ar 9|
Wg s \/— r=
(2.9
PR NG a2
w Z= h ( r h ( ) ,
V><e(s,r)=—?sb(s,r). S c “TMn c
whose asymptotic solutions are
Herea, anda are the coefficients of photon annihilation and
creation in the appropriate modes with the frequenaigs bt n+1 7T_C+ . 2.5
In the case of an electric quadrupole transition, both TM 2 A ’ '

and TE waves can be excited, depending on the orientation

of the atom, only the TM waves being excited in the case oHence it follows that the density of final states will be de-
radial arrangement of the atomic quadrupole momentunscribed by the simple expression

The expressions for the electric fiedgls,r) of these modes

can easily be obtained in terms of spherical harmonits ( (@)= i (2.6)
and spherical Bessel functiong) (and Hankel functionsh) P™ he’ '



4410 V. V. KLIMOV AND V. S. LETOKHOV 54

Analyzed in a similar way are those TE photons for whichHereD;; = e((3x;x; — §;;) )i is the transition quadrupole mo-
the density of final states is expressed in exactly the samment, andQ;;=V;e’ is the covariant derivative of the elec-

way: tric field of the appropriate mode]:
A VJ._1 gel @ aHi+5§3: ek 9 In HI -
pre(@)=——. 2.7 ie “H X H_IZW PRV Y (2.12

where H;=(1r,r sing); are the Lame coefficients of the
spherical coordinate system and use is made on the right-
According to the golden rulésee, for exampld6]), the  hand side of the physicdhot covariant coordinates of the
probability and linewidth of a transition are given by electric-field vectors.
In deriving expressior§2.11), use has been made of the

B. Spontaneous quadrupole transition linewidth

2m following relation for the matrix elements:
y="5 IViilp(e), (28 ’
ad |. Mwjs; .
. N L. fIXi =i :_<f|Xin||>, (2.13
so that the problem is reduced to the finding of the transition IXj 2h

matrix element. . . : .
Within the framework of the low-order perturbation which holds true for quadrupole transitions involving a

theory as to charge, the interaction energy matrix elemerff’@nge in the principal or the orbital quantum number, as

has the form well as the condition for the field to be solenoidal,
Qjj=div e(s,r)=0. Herewy; = ws is the transition frequency.
e . Expression2.1)) is valid for any quadrupole orientation.
<oudVim|in)=<ou4 - J' d3rj-A in> Let us now consider some particular cases of quadrupole
¢ orientation. In the case of radial orientation of the principal
ife s ok dipole axis, i.e., where the quadrupole momentum tefisor
=" e f d°r ouViin-&(s,1), (2.9 the spherical coordinate systgtmas the form
S
D, 0 0
wheree(s,r) is t_he electric_f_ield_of the_ appro_priate m_ode. In Djj= 0 -iD, 0 , (2.14
our case, the dipole transition is forbiddér is of no inter- N
est to ug, so that the quadrupole transition amplitude has the 0 0 —2Dy ij
form
the expression for the matrix element assumes the form
Y ifie J A J’ . J e Q..D
i=———— Ai(rg, r) — in(r)rid°r,
fi \/Emws o, i(ro,®) | ¢oulr) ar; Pin(1) i VA L ili} 2.15

210 fi= a2

where the radial component)( of the covariant derivative

wherer is the atomic position vector. ;
A%as the simple form

Of course, to use the perturbation theory as to charge, o
should consider the fact that in the region near to resonance,
the matrix element may become large enough, the smallness
of the charge notwithstanding. It was demonstrated7h
that for microspheres of a not very great size in comparisor()md no summation is extended over the terms with repeated
with the wavelength, the first-order perturbation theory aPindices. Note that in the case of radial quadrupole orienta-
proximation for dipole transitions remains applicable even intion thére takes place no emission of TE photons, and so one
the vicinity of resonance. The quadrupole interaction bein ho;JId usee, as only the second expression(l2) '
weaker than its dipole counterpart, the first-order perturba- ! )

tion theory approximation also proves to be correct for quad: Substituting(2.19, (2.1, and(2.6) into (2.8), we obtain
rupole transitions in the case of small sphefiea<1). This the final expression for the total quadrupole transition prob-

; ; . . o A ability for a radially oriented quadrupole in the vicinity of a
guestion will be considered in more detail in an 'nd'v'dualdielectric spheré3];

e,
QI’I’ - ar 1

(2.19

publication.
To find the gradient of the wave functions(2.10 in the D2K5 ~
neighborhood of the emitting atom, it is convenient to use a ng:é; > n(n+1)(2n+1)
n=1

spherical coordinate system and make the covariant differen-
tiation of the vectord8] in this system. As a result, the

i _ (1) 2
expression for the transition matrix element assumes the % i (M , (2.17
form dz 74
D wherez=ka.
V= Qi;Djj . 2.1 Relating this expression to the spontaneous decay rate in a

642 vacuum(see, for exampld9)),
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D2Zk5
7\?ac: ng ) (2.18 <€ €
we obtain the final expression for the relative spontaneous d, / / d
guadrupole transition rate for a radially oriented quadrupole Ve 7 1
in the neighborhood of a dielectric sphere: // 3r,(t) y
e Ve
Q 0 . (1) 2 =
15 d (2)—gph;”(2) e
%’:72 n(n+1)(2n+1)‘d—z(—1n 2" - ,
=1
Tvac " (2.19 FIG. 2. Geometry of the classical problem.
In the case of tangential orientation of the principal dipole yQ 157 d (in(2-a.hM(2) 2
axis, i.e., where the quadrupole moment ter{fsothe spheri- S‘”:?E n(n+1)(2n+ 1)d_ (%)
cal coordinate systenthas the form Yvac ©n=1 z z
_1 0 0 15 ¢
2Dy +EE (2n+1)(n—1)(n+2)
n=1
Dij= 0 Do 0 : (2.20
0 0 : 1d i (1) ’
—3Dys i X EEd_Z{Z[Jn(Z)_qnhn (Z)]}

the expression for the matrix element assumes the form 15 =
+T6 > (2n+1)(n—1)(n+2)
n=1

~ QpeDyo (2.21)

V'_ ]
fi 4\/5 y

where the tangential componei) of the covariant deriva-
tive has the form

2

1 i (1)
E[Jn(z)_pnhn (Z)] (2-24)

A quadrupole with its principal axis oriented along the
1dey e axis is analyzed in a similar way. As one would expect, the
Ty + T (2.22 result is an expression identical 2.23, which is one more
argument in support of the correctness of our calculations.
d Thus, in the present section, we have found, within the
ramework of the first-order quantum-electrodynamic pertur-
ation theory, the relative changes that the linewidth of a

and no summation is extended over the terms with repeate

indices. Note that in the case of tangential orientation of th

principal dipole axis, there occurs emission of both TM and , Y i -

TE photons, and therefore one should take,asnde, both spontaneous atomic quadrupole radiation suffers_ in thg vicin-

the first and the second expression(22). ity of a d_lglectnc sphere, no matter what the orientation of
Substituting(2.21), (2.22, and(2.6) into (2.8), we obtain  the transition quadrupole moment.

the final expression for the total quadrupole transition prob-

ability for a tangentially oriented quadrupole in the vicinity lIl. LINEWIDTH AND FREQUENCY SHIFT
of a dielectric sphere: OF A QUADRUPOLE TRANSITION
% . CLASSICAL APPROACH
o D3k d (in(2)-aaP(2))|? | cA ACH) |
Yan~ 305 n§=:l n(n+2n+1)| - | ——— It is a well-established fact that in the case of dipole tran-
sitions there exists a simple correspondence between the
2K transition linewidths calculated within the framework of the
ou E n(n—1)(n+2) classical and the quantum-mechanical approaches. That is,
n=1 the changes occurring in the classical and quantum-

2 mechanical linewidths in the presence of a material body,
taken in relation to their counterparts in free space, are de-
scribed by identical expressions. The natural question arises:

X - i{Z[' (2)—aghP(2)]}
EZdZ Jn anny

Dga 5 = 1 2 Does a similar correspondence exist for quadrupole transi-
+ a7 > n(n—1)(n+2)’E [in(2)—PpahP(2)] tions, t00?
n=1

To clear up this question, let us consider a system of two
(2.23  dipoles of opposite orientations with the momeaty and
—ed;, one of which is stationary and the other, displaced for
wherez=ka. a distance ofr (t), which oscillates about the first, the sys-
Relating this expression to the spontaneous decay rate intam being placed close to a sphere of radiusith a dielec-
vacuum (17), we obtain the final relation for the relative tric constant ofe in an infinite medium with a dielectric
spontaneous quadrupole transition rate for a tangentially orieonstant ofe=1. The geometry of the classical problem is
ented dipole in the presence of a dielectric microsphere: shown in Fig. 2. The equation of motion of the movable
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quadrupole

Sr-ED(r")

lor| 7
(3.4

mD+my,D + mw?D = 4€?d,(d; - V)

whereD is the quadrupole moment in the oscillation direc-
tion, which is assumed later in the text to be coincident with
the principal axis of the quadrupole.

By solving in accordance with the perturbation theory the
dispersion equation following frort8.3), one can easily find
the formulas for both the linewidth variation,

o'l dipole d 1)
. — =Yo— Im(d;-V)(drg-E 3.
At S FF FF F F H Y=7%0 womgrg (l )( 0 ) ( 5)
10oo 005 01 015 02 025 03 035 04 045 05 and the frequency shift
ka
10° :
Aw 5 Re(d;- V) (8ry-EY). (3.6)

(b)

quadrupole

N 2woMmor g

In the case of resonance interaction between the quadru-
pole and the dielectric sphere, use of the perturbation theory
is restricted, as in the quantum-mechanical case, by the re-
quirement that the linewidth should be much smaller than the
resonance width of the dielectric sphere. Where the sphere is
small, this condition is satisfied for characteristic quadrupole
transitions.

Using Eg.(3.1), one can write the following expressions

10 dipole for the relative quantities:
o:::lé::l:ril¢:.|TTT.7f-r‘-r-r-rl-r-r-v-‘f-rﬂ-lﬂ--r*' 15
"o 005 01 015 02 025 03 035 04 045 05 lzl— ——>7 Im(d;-V)(6rp-E) 3.7
FIG. 3. Relative linewidth for quadrupole and dipole transitionsand
in atoms located in close proximity to the surface of a dielectric A
microsphere in the case of radial orientation as a function of the w
s Re(d;- V) (6rg-E). (3.8

microsphere radiuka: (a) £é=6; (b) £=2.5. The crosses indicate y_oz W
asymptotic relation$4.7) and (4.9).

Thus, to obtain concrete results, one should calculate
dipole portion of the quadrupole in the case of weak radia{d;-V)(5r,-E) at the location of the oscillating dipole.
tion reaction has the form To find the variation of the quadrupole radiation param-

eters at any point in space, it is necessary to solve the Max-

m&t + My, or + mw§5r=0, (3.2 well equations for the system of charges under analysis. The
charge density of the stationary dipole may be defined by the
= expression
2e’d? k* cDjK® P

YOTTI5c m 60E, p1=—e(d;-V)a(r—r’),

and that of the oscillating dipole by the expression
pa=e(dy-V)o[r—r'—or(t)]. (3.10

Accordingly, the total charge and current densities may be
defined by the expressions

Here vy, is the total quadrupole transition width in a vacuum,
Dy= —4eéryd; is the maximum quadrupole moment of the
system, andE,=mw?5r 2/2 is the total initial oscillation en-
ergy of the quadrupole.

An oscillating quadrupole locatdatr’) near to a dielec-
tric sphere is acted upon additionallygompared to the case

of free spacgby the reflected fieldE(r’), so that the equa- Pror=—€(dy-V)(Sr-V)o(r—r’) (3.11
tion of motion assumes the form
and
MéF o+ MyodT o+ Mwgdro=—e(dy- V)ED (1), j=ev(t)(dy-V)8(r—r1’), Vv(t)=or(t). (3.12

(3.3
To solve the Maxwell equations involving the sources de-
where & is the oscillation amplitude of the dipole. Project- fined by expression.10 and(3.11), let us use the method
ing this equation onto the oscillation direction, we obtain  proposed in[11]. To this end, we expand the field of the
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10° ¢ - . . . .
radial @
5

10 | e

3 quadrupole

| tangential
10' L g ]

o ka = 0.01

10° ¢ E

3 €e=6

£
= L

10° L )
10't  dipole radial 5
10°} tangential 4
10—1' /.’/’,———’—————.’”—,”_—.—_’ FIG. 4. Linewidth of quadrupole and dipole

1 1.05 1.1 1.15 1.2 1.25 1.3 transitions for various orientations and various re-

rfa fractive indices of the microsphere as a function
10° of the distanca/a to the surface of the micro-
' ' ' ' ' sphere [ka=0.01, =6 (diamond, &=2.5
(b) (glass].

10°F "
1 04 3 _—
4 po tangential

10" F ka = 0.01 3
\;O [ £€=2.5
2
10" E
10 dipole E
E radial
10° b ]
E
: tangential
-1
10 1 1 1 1 i
1 1.05 1.1 1.15 1.2 1.25 1.3

rla

oscillating quadrupole in terms of spherical harmonics, andlo find the expansion of the quadrupole field in terms of

then find by the ordinary procedure the reflected fleld to  spherical harmonics, let us first consider the radial magnetic-

be more exact, the quantitg;-V)(dry-E)] of interest to us. field component. It is not very difficult to demonstrate that
If current distributiong(3.10 and (3.11) are placed in an there holds true the following important identity:

infinite dielectric sphere with a dielectric constantegf=1,

the expression for the field may be written in the form

iklr—r'|
Eauadi 2111 4 v (. 1Y), (3.13 (rB a3y — —jke[r- (VX &rg)](d;- V) =]
BIUad= — kv x 1Y), (3.14 elklr=rl
. . . =—ike(d;-V')[6ro- (V' Xr")] 7——7.
where the Hertzian electric vector of the quadrupole is de- Ir—r’|
fined by the expression (3.16
eik|r7r’|
(= V)
Il eor(d;-V) lr—r'| - (319 Thereafter, by using the standard expangibh
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10 F T T T T Y
i quadrupole ka = 5.549 6=6
10°
FIG. 5. Linewidth of quadrupole and dipole
o transitions for various orientations in the case of
10 resonance interaction with a dielectric sphere of a
sufficiently large radiusKa=5.5491) compared
to the radiation wavelength as a function of the
distancer/a to the surface of the microsphere.
10"k
tangential
100 1 i 1 1 1
1.05 1.1 1.1 1.2 1.25 13
r/a
eik|r—r’| © n
. . d
T =4mki 2 > ja(knhP(kr’) B = lE E s [V X (KDL Y (9, 0))]:
|I’ r n=0 m=-n =1 m=-n n(n+1)
(3.23
XY:m(ﬁ’v‘P’)Ynm(ﬁa(P)v (3.1

Let us now consider the TM field components. For this
urpose, we first find the radial electric-field component. In
at case, there also holds true the important identity

which is valid for r<r’, the expression for the radial
magnetic-field component is reduced to the necessary for
of expansion in terms of scalar spherical harmonics:

o n iklr—r'|
(FBY=3 3 aniy(knYon(9,0), (318 (T ERI=elr [VX(VX 01 (dy V) 1
n=1m=-n
where ekl
=e(dy- V{10 [V/ X ("X V)] 1=
anm=ie4mk®(dy- V') (ro- L) (kI ) YD, ¢0")
(3.19 (3.29

andk, ,=ko\/s1 , are the wave vectors in the regions 1 and Substituting expansiof8.15 into identity (3.24), we obtain
2, respectlvely Use is also made here of the ordinary expredhe following expression for the radial electric-field compo-
sions for the spherical harmonics and spherical Bessel fundent in terms of spherical harmonics:
tions[4].
Now multiplying the Maxwell equation

© n

(r- Equad5 2 E Prmin(KNDYom( D), (3.29
VXE=ikB (3.20 n=1m=-n

by r, we obtain the following equation that can help find thewhere
TE component of the dipole field: X
(. EQuac _ o gavadt 3.21 bom=—4mke(dy- V)[6ro- (V' X L") TGP (kr)
Bre )T - .
XY (Y, 0"). (3.2
Solving this equation, we find the TE component of the elec- n

tric field (r<r’) to be With the radial electric-field component known, we find the

© n a TM field components in exactly the same way as their TE
quadr_ nm__ . 3 counterparts:
=k X gy In(kDLYan(9.0).
(322 n bnm

quadr kz
The TE component of the magnetic field is found by substi- “1m==n N(n+1)
tuting the above expression into Maxwell equatiGr20): (3.27

hO(KPLY (9,0,
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uadr. ; S 4 bnm
D)

A=1 m==n N(N+1)

X{V X (W (KNLY (9, 9) 1}

asymptote

o0 n
500 1 @nm (1) 3
. Tk > D) M (KDL Yon(9,¢).

-1000| 1 (3.30

radial , ka = 5.549 €

(@-0,)7,

n
e

The total field is the sum of the quadrupole field in free
-1500}- . i space and the reflected field of interest to us, the expansion
of which in terms of spherical harmonics outside the sphere,
may be represented in the following form:

2000 . L L L s
1 1.05 1.1 1.15 12 1.25 13

rfa

(1)

o n
a ~
M= _ nm (1)
T BU=—kY 3 i KDL Yon(9,6)

* n (1)
or . Bnm (1) -
12 2o (VX KROLYan( 901
Bl (3.3
£
z -4001 . n (1)
= D= _j nm &h) 1
] ot a=550 ans | EV=—i3 3 i (VXKL an(9,0)]}
* n (1)
aool. | nm (1) .
800 +|<n§=‘,l m;n T+ hD(KOLY a9, 0). (3.32
-1000, o8 v s 2 e s Similar expressions hold inside the sphere, too, if the spheri-
ra cal Hankel functions of the first kind are replaced by spheri-

: L cal Bessel functions.
FIG. 6. Frequency shift of quadrupole transitions in the case of Now, using the continuity equation for the tangential
resonance interaction with a dielectric microsphere of a sufficientlycomponemS of the total field on the surface of the sphere, we

large radius ka=5.5491) compared to the radiation wavelength aS:an find the unknown coefficients(®) and,B(l), the expres-
a function of the distance/a to the surface of the microsphet®  gions for which assume the form nm nm

radial orientation{b) tangential orientation. The dashed lines shows
long-wave asymptotic relationd.8) and(4.10

ez (21 (z) — el 0 (2) ] (22)}
" {eadzajn(z0)] P (22) — 1l 220 (22)] fn(20)}

XBym=dnbnm, (3.33

a

o n
b
Equadr: —ij nm
™ nzl m;n n(n+1)

P o _[Zhi(22)) 0 (z0) ~ (220 (2010 (22)})
XLVXMIOLY o D,90) 328 Pam = G TRz, ~ 20Tz (2] "

= Pn@nm: (3.3

where use is made of the notatiap,=k; ,a, and the coef-

ficients p, and g, coincide with the like coefficient§2.3).

Thus, the approach suggested has enabled us completely to

define, by means of simple calculations, the field of an elec-

e n b tric dipole located anywhere outside a dielectric sphere. To
quadr_ __ nm (1) " find the line parameters in accordance wit¥) and(3.5), it

B "n; m;_n n(n+1) he (KDL Y nm( 9, 0) is necessary to calculate the expression

Collecting expression3.22), (3.23, (3.27), and(3.28, we
obtain the final expansion of the field of the electric dipole in
an infinite space in terms of spherical harmonics:

. - . anm
- X Nt D (dy-V)(8rg-ED). (3.39

" - Using formulas(3.31) and (3.32), one can easily reduce
X{V X[ (KDL Y a3, ¢) 1}, (329 the above expression to the form
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AALAAATALLEELATUFAATLURTATALIARIAR VAN
1.5
3
2N 1 15 2 25
rla - «a
i ® N b* b* Substituting expression@.36) and (3.37) into (3.7) and
(dy-V)(Srg-ED)|,_pi=—=4mk{ >, > %nlm (3.8, we obtain the final expressions for the radiation line-
€ i=1m=—n = N(n+1) width and frequency shift of a quadrupole of arbitrary orien-
o 3* a* tation:
nm~-nm
+ I} =
ng]_ m:z—n pn n(n+1) y 3077 © n b* b*
L1+ ——"__R 2 E q _—nmTnm
(3.36 Yo kie?orid: | S m<tn " n(n+1)
where © 3% a*
~ nm=nm
D= (s V){arol VX (M (ke )L Vi, @)1 T2 2 Pannrn| (3.38
bim=e(d1- V){Sro[ VX" (hP(kr )L Yom( 9, 0]}, _
~ % n * *
afm=ek(dy V') (8rg- L) Yin( 9,0 (k') (337 Ao _ k4e1227r7 23 S g :(nr:ninlng
A%, =ek(dy- V/)(8rg: L) Yom(8, 0" )hD(kr"). Yo o1 [n=tm=-n
o n Tk %
. ar a
These expressions are easy to calculate for condtaahd + E 2 P nmnm { (3.39

& o by means of the covariant derivative techniq8g Aim1m==n ' n(n+1)
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FIG. 8. Frequency shift of quadrupole transi-
rla tions in the vicinity of a microsphere with=6

(diamond as a function of the distangéa to the
tangential, ¢=6 surface of the microsphere and its radkes (a)
radial orientation{b) tangential orientation.
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Now consider the case where the axis of the dighland  we obtain expressions for the variation of the radiation line
the oscillation directiordr ; are radially oriented. In that case, parameters of a radially oriented quadrupole in the vicinity
it is only the TM modes that are excited; i.e., it is only the of a dielectric spherez=kr):
coefficientsb that are other than zero:

Q * (1) 2
Y 15 d (hi”(z)
5 [ hD(kr) %’:1—?2 n(n+1)(2n+1)Req, d—z( “Z ,
b* =iedrodn(n+1)Y*, — | — Yvac =1
nm nm or r (3.41)
(3.40
_ Q @
= . d h(l)(kr) (@ wO)rad__1_5
b;m=|e5rod1n(n+1)YnmE< n . . —YSac =TT n(n+1)(2n+1)
d (hP(2)]?
Here and elsewhere we shall omit primes in atom coordinate. X1im g, e (3.42

Substituting(3.40 into (3.38 and (3.39, and using the
well-known relation . . .
Let us now consider the case where the axis of the digple

and the oscillation directiordr, are oriented tangentially
(along thee or # axig). In that case, both the TM and TE
modes are excited i.e., all the coefficients are nonzero:

., 2n+1
% YananW
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hV(kr) o 1 aY* (0— wo) -
* n v nm 0 tan: v
ay,=iekd,drg ; J9sSn 9 dg —7\?ac 16 2 n(n+1)(2n+1)
cima @ (h%”(Z)) 2
m —_—
L hOKD) 3 1 Yo dz| "z
arm=iekd,drg — = ,
r dv sind de

(3.43

h(M(kr)

b:m:ieﬁrodl{ rz

n(n+1)Yx,

19 2y
+ 2 o (thiP (k) %}”]

- h(M(kr)
b} ,=iedryd; —rz—n(n+1)Ynm

19 Y
_ (1) nm
+ 72 ar (rhyy”(kr)) 592 ]

Substituting(3.43 into (3.38 and (3.39, we obtain the

15 &
-3 ngl (n—1)(n+2)(2n+1)

2

1d 1)
><Imqn ?d_Z (Zhn (Z))

©

15

322 (n—1)(n+2)(2n+1)

1 2

lepn[z (h(M(2)) (3.45

So in this section we have obtained explicit expressions
for the linewidth variation and frequency shift of a classical
quadrupole in the neighborhood of a dielectric sphere.

IV. DISCUSSION OF THE RESULTS

In the preceding sections, expressions have been obtained
for the variation of the line parameters in the classical and
guantum-mechanical approaches. In the present section, we

expressions _for the .variation of the radi_ation line parameterg;iii demonstrate the complete equivalence of these descrip-
of a tangentially oriented quadrupole in the presence of §ons as applied to the linewidth, and numerically analyze the

dielectric sphereZ=Kkr):

Q * (1) 2
Yan , 15 d (hy”(2)
‘y\?ac_l_ ) n§=:1 n(n+1)(2n+1)Req, dz (—z

15 &
16 ngl (n—1)(n+2)(2n+1)

2 15 2
—En; (n—1)(n+2)

1d (1)
X Redy| — dz(Zh” (2)
2

1
X(2n+1)Rep, Z M2, (3.44

Yaa 15

vac n=

expressions obtained.
To prove the equivalence of the expressions, use will be
made of the easy-to-prove identity

Ip—3(1+€)(p+iq)|*=p*—Re 3(1+€")(p+iq)?].
(4.0

In our case, the coefficiengsandq may be represented in
the form

pn:%(1+eii//1),

gn=3(1+€'"2), 4.2
and so the quantum-mechanical expressig@sl9 and
(2.24 for the relative linewidth may be represented, by
means of(4.1), in the form

15 &

n=1 dz z

o . 2 h1 2
5= 21 n(n+1)(2n+1)|diz(1niz))] - Z n(n+1)(2n+1)R%qn{ d ( . (Z)H } (4.3

Q - 1 2 )
Tyta”——ls d (in2)]* 15
yvac_ ngl n(n+1)(2n+1)[d_z( Z )] +_16n:1

15 & 1 5
16 nE:,l (2n+1)(n=1)(n+2) ((2) 5

_1_2 nzl (2n+ 1)(n—1)(n+2)Reqn[El2 dgz zhY(2))

(2n+1)(n—1)(n+2)

h(l)
152 n(n+1)(2n+1)Req{ d ( " (Z)>

2

1d )
2z (zjn(2))

2

dz\ z

2

15 o (N
~T6 nzl (2n+1)(n=1)(n+2)Rep, - (h(2) | .

(4.9
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we reduce expressionig.3) and (4.4) to expression$3.41)
and (3.44), which proves the equivalence of the quantum-
mechanical and classical approaches in the calculation of the
linewidth of quadrupole radiation. Of course, this equiva-
lence does not relate to frequency shifts, for even in the case
of dipole the quantum-mechanical frequency shift results
contain such terms as are altogether absent in the classical
expression$10].

Let us consider the expressions found in greater detalil.
Especially interesting seems to be the case where the atom is
located close enough to the surface of a sphere. In the radial
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FIG. 10. Frequency shift of

the

in

transitions
neighborhood of a microsphere

quadrupole

2.5 (glasg as a function

of the distance/a to the surface

with ¢

tangential,

of the microsphere and its radius
ka: (a) radial orientationjb) tan-

gential orientation.

15

rla

ka

case of an atom located close to the surface of a sphere of a In the case of tangential orientation of the principal axis

small radius ka—0), expression$3.41) and(3.42 for the

expressiof&44) and(3.49 for the rela-

of the quadrupole

relative linewidth and relative frequency shift assume thetive linewidth and relative frequency shift assume the form
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FIG. 11. Linewidth of quadru-
pole transitions in close proximity
rla to a microsphere withe=6 (dia-
ka mond as a function of the dis-
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=5.5491): (a) radial orientation;
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It is of interest to compare the results obtained with expressions for the linewidth and frequency shift in the case of dipole
transitions, which in our notation have the fofti]

i (1) 2 o d h(l) 2
(yl) =1-32 Re{cos?zpz n(n+1)(2n+1)qn( nZZ) +sirfy >, (n+1/2)[p,1(h$11)(z))2+qn %) H
0 dip n=1 n=1
(4.11)
w—wg - (V(z)\? - dzhM(2))\?
( ) = =3 Im| co$y 2, n<n+1>(2n+1)qn( | +siry <n+%>[|on(h<n”(z>>2+qn —) H
Yo/ gip n=1 z n=1 zdz

(4.12
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ka FIG. 12. Frequency shift of quadrupole tran-
rfa sitions in close proximity to a microsphere with

£=6 (diamond as a function of the distanaé¢a

to the surface of the microsphere and its radius

ka in the vicinity of a TM resonance k@

tangential, =5.5491): (a) radial orientation;(b) tangential
orientation.
where is the angle between the dipole axis and the radius. 0—wg) B 3s-1 1
i == 4.1
At small distances from the surface of a small sphere, we i Petl(z-2,)° (4.19

have, instead of expressiof%11) and(4.12), the following

asymptotic expressions: Comparing betweeft.7) and(4.9) and(4.13 and(4.14),
it is not very difficult to establish the fact of substantial ac-

dip 2 . "
Yrad _ 3e 4.13 celeration of quadrupole transitions. Moreover, one can see
;\‘,{';pc e+2 ' ' from these expressions that as the size of the microsphere is
reduced in comparison with the radiation wavelength, the
yf;ﬁ 3 ]2 gquadrupole transition rate can increase beyond all bounds. Of
;%Ec: ar2 (4.14  course, one should verify the applicability of the perturbation

theory here.
Figure 3 shows the relative radiation linewidth for quad-
rupole and dipole transitions in atoms located near to the
o o\ 1ad 3 e-1 1 surface of a sphere as a function of the sphere rd&ﬁum
<_a’|—0> L —— (4.15 the case of radial orientation, whence the substantial accel-
Yvae 16e+1(z-2) eration of the quadrupole transitions as compared to their

and
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dipole counterparts is clearly evident. The crosses in the figeurves for a glass microsphere. Clearly seen in these figures
ure indicate asymptotic relatior{4.7) and (4.9). are the resonance interaction regions, the greater number of
Comparison betweert4.8) and (4.10 and (4.15 and resonances in the case of tangential orientation of the quad-
(4.16 shows a substantial increase in the frequency shift ofupole axis being due to the emergence of TM modes.
the quadrupole transition in comparison with the dipole tran-  presented in Figs. 11 and 12 are the linewidth and fre-
sition as one draws closer to the surface of the sphere, thency shift of quadrupole transitions in close proximity to a
index of singularity changing from 3 to 5. diamond microsphere as a function of the distan@eto its
As already noted, these facts are due to the quadrupolg,rface and its radiusa in the neighborhood of a TM reso-
sensitivity to the field gradient which is singular in close nance ka=5.5491). These curves are of distinct dispersion
proximity to the surface of a small-radius sphere. Figure 4:haracter.
presents the linewidths of quadrupole and dipole transitions Thys in the present work we have considered quadrupole
as a function of the distanaéa to the surface of the micro- radiation processes in the neighborhood of a dielectric mi-
sphere for various orientations and various refractive indicegrosphere. We have demonstrated by way of explicit calcu-
of the microspher¢ka=0.01, e=6 (diamond, ande=2.5 |ations that the classical and quantum-mechanical ap-
(glasg]. One can see from the figure that a substantial inproaches yield the same expressions for the quadrupole
crease in the quadrupole transition rate occurs in the case gfnsition linewidth. We have also found a classical expres-
both glass and diamond microsphere. sion for the frequency shift of quadrupole transitions. The
Shown in Fig. 5 is the linewidth of quadrupole and dipole analysis of the expressions found has shown that quadrupole
transitions for various orientations in the case of resonancgansitions are much more sensitive to changes in the struc-
interaction with a dielectric sphere of sufficiently great radiustyre of electromagnetic field associated with the presence of
(ka=5.5491) in comparison with the radiation wavelengththe dielectric microsphere. The results obtained are easy to
as a function of the distanaéa to the surface of the sphere. generalize to the case of higher-order multipoles, it being
It is evident from the figure that even in that case there takeévident within the framework of the approach Suggested that
place an acceleration of the quadrupole transitions. Figure fhe sensitivity of the atom to the presence of a microsphere
illustrates expressions for the frequency shift in the neighwj| be even higher in that case.
borhood of this resonance, as well as the corresponding as-
ymptotic relationg4.8) and (4.10.
Figures 7 and 8 present the linewidth and frequency shift ACKNOWLEDGMENT
of quadrupole transitions in the vicinity of a diamond micro-
sphere as a function of the distanda to the surface of the This work was supported in part by the DOD USA
microsphere and its radiksa. Figures 9 and 10 show similar through the intermediary of the University of Arizona.
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