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A system of Maxwell-Bloch type equations~MBE’s!, describing stimulated Raman scattering with both
Stokes and anti-Stokes waves taken into account, is investigated. We introduce variablesS3 andS6 , which are
bilinear in the electromagnetic fields, and prove that the corresponding equations possess Lax representation.
This fact is used to obtain additional solutions forS3, S6 and for the MBE’s which include solitons, periodical
waves, and self-similarity solutions. The transient and bright threshold solitons are also analyzed.
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I. INTRODUCTION

The so-called Maxwell-Bloch equations~MBE’s! de-
scribe a wide variety of interactions of matter with light.
These include self-induced transparency, resonance interac-
tions in multilevel media, superfluorescence, amplification of
laser pulses, etc., see the monographs@1–4# and papers
@5–16#. As a rule these are large systems of nonlinear evo-
lution equations, whose form is determined by the physical
setup; most of them can be handled only numerically.

This situation changed with the development of the in-
verse scattering method~ISM!, see @17–19#. This method
was generalized also to handle nonisospectral deformations
of the Lax operators, which allowed one to treat Maxwell-
Bloch-type equations with pumpings, with dampings of spe-
cial types, etc.; see@12,16#, and references therein. In this
respect we should mention paper@5#, which showed, that this
method can be applied to one of the versions of the MBE
describing stimulated Raman scattering~SRS!. As a result
theN-soliton solutions of these equations were obtained@5#.
The behavior of the pump and Stokes pulses in a Raman-
active medium and the coherent effects on the transient
pulses were analyzed in@6,7#, where also the cnoidal wave
solution of these equations was obtained. Today analysis of
the SRS draws the interest of both theoreticians and experi-
mentalists. Most of these papers~see@5,6,10,13–15,20–27#!
considered a MBE with only pump and Stokes waves; in
several others the presence of an anti-Stokes wave was also
taken into account@11,28–31,33#.

Our aim in this paper is to study, using the ISM, a special
version of the MBE which describes the wave propagation in
a Raman-active medium when StokesEs , anti-StokesEa ,
and pumpEp waves are present.

These type of MBE’s in the slowly varying envelope ap-
proximation, and when the diffraction and the ground-state
depletion of the material excitation can be ignored, have the
form @11,28–31,33#

]Ep

]z
522iqEp1baQ*Ea2QEs , ~1.1a!

]Es

]z
522iqEs1Q*Ep , ~1.1b!

]Ea

]z
52 iqEa2baQEp , ~1.1c!

]Q

]t
1g̃Q5Es*Ep1baEp*Ea , ~1.1d!

whereQ is the normalized effective polarization of the me-
dium, z5z/L and t5t2z/v are dimensionless space and
retarded time coordinates, respectively, andv is the wave
group velocity.T2 is the natural damping time of the mate-
rial excitation andg̃51/T2. By ba we denote the coupling
coefficient which determines the number of anti-Stokes pho-
tons relative to number of Stokes photons, and its magnitude
depends on the matrix element that describes the dipole tran-
sition @11,3#. In this paper we considerba51 @11#, but some
results are valid also for baÞ1. In addition
q5(ks1ka22kp)L is the scaled forward phase mismatch
between the wave vectorskp , ks , and ka of the pump,
Stokes, and anti-Stokes waves. We will assumeq50 for the
present analysis.

For ba50, i.e., when the anti-Stokes waveEa is ne-
glected, these equations describe the so-called transient
stimulated Raman scattering equations, which possess Lax
@17# representation wheng̃50 @5#. The SRS soliton solu-
tions, theoretically discovered by Chu and Scott@5#, were
experimentally observed by Dru¨hl et al. in @27#. The SRS
solitons~regarded as transient solitons@13,9# with ap phase
jump at the Stokes frequency! have been extensively studied
@2,4,13–15,20–27#. In later experiments by Duncanet al.
@21#, a careful comparison between theory and experiment
showed good agreement. Shortly after this work@21#, Hilfer
and Menyuk@23# carried out simulations which indicate that
in the highly depleted regime the solutions of transient SRS
equations always tend toward a self-similar solution. This
result@23,24# has been recovered by applying the ISM to the
transient SRS equations; see@13#. An experiment to observe
this solution was proposed in@23#. Kaup’s theory@9# also

PHYSICAL REVIEW A NOVEMBER 1996VOLUME 54, NUMBER 5

541050-2947/96/54~5!/4339~12!/$10.00 4339 © 1996 The American Physical Society



indicates that the dissipation, which appears for finiteT2
plays a crucial role in soliton formation. The similarity solu-
tions and other group invariant solutions of the SRS equa-
tions in the presence of dissipation are studied in@25#.

Recently Claude and Leon@15# developed an alternative
approach1 to the transient SRS equations with inhomoge-
neous broadening, based on an equivalent]̄ problem. They
used it to interpret the experimental data in@27#, and con-
cluded, that the corresponding Zakharov-Shabat system on
the infinite line with the initial conditionQ(z,t)ut5050,
does not contain discrete eigenvalues.

For the general system~1.1!, with an anti-Stokes wave,
phase mismatch,baÞ1 and dissipation, transientp solitons
were investigated by Scalora, Singh, and Bowden@31# using
numerical methods. They predicted the formation of soliton-
like pulses at the anti-Stokes frequency. Another type thresh-
old bright 2p solitons, which have a Lorentzian form, were
theoretically obtained in@33#.

In Sec. II we introduce new variablesS3 andS6, Eq.~2.1!
which are quadratic in terms ofEp , Es, andEa . Then sys-
tem ~2.2! for S3 and S6 , derived from Eq.~1.1! with
ba51 andg̃50, allows a Lax representation similar to the
one used by Chu and Scott@5# for other physical quantities:
the difference for the normalized Stokes-anti-Stokes local in-
tensities and for normalized~complex! local Rabi frequency.
We also introduce ‘‘nonlinear time’’ and renormalized di-
mensionless variables different from the ones used in@9#.
Then we solve the inverse scattering problem~ISP! for sys-
tem ~2.16! with the ‘‘nonlinear time’’ t8 restricted to the
finite interval 0<t8<1; i.e., we derive the corresponding
Gel’fand-Levitan-Marchenko~GLM! equation using a more
direct approach than@9# and obtaining results, compatible
with @9#.

Basically we show that, in terms of the bilinear variables
S3 andS6 the nonlinear evolution equations~NLEE’s! are
formally the same as for the case when there is no anti-
Stokes wave. There is, however, an important difference,
namely the so-called ‘‘nonlinear time’’ has a different defi-
nition, which accounts for the new physical situation. Thus
we are also able to translate the known results@5,9,13,26# for
systems with an anti-Stokes wave present.

In Sec. III we obtain periodic, soliton, and self-similarity
solutions of Stokes–anti-Stokes SRS equations without dis-
sipation for both formulations~1.1! and ~2.2!, and briefly
analyze their relation to the ones already known@6#. In ad-
dition, the transient solitons and the bright solitons of Kaplan
et al. @33# are discussed.

In Sec. IV we propose an extension of the Stokes–anti-
Stokes SRS equations forN Stokes andN anti-Stokes waves,
and conjecture that it is also integrable by means of the ISM.

II. LAX REPRESENTATION AND GLM EQUATION

A. Lax representation

Let us introduce the following variables:

S35
1
2 ~ uEsu22uEau2!, ~2.1a!

S15
i

2
~Es*Ep1Ep*Ea!, ~2.1b!

S15S2* . ~2.1c!

In terms of the new quadratic variables~2.1!, the initial sys-
tem with g̃50,ba51 is rewritten as

]S3
]z

52 iQ*S11 iQS2 , ~2.2a!

]S1

]z
52 iQS3 , ~2.2b!

]Q

]t
522iS1 , ~2.2c!

or, in matrix form,

]q

]t
5

1

A2
@s3 ,S~z,t!#, ~2.3a!

]S

]z
5

1

A2
@q~z,t!,S~z,t!#, ~2.3b!

where

q~z,t!5S 0 Q

2Q* 0 D , ~2.4a!

S~z,t!5S S3 2 iA2S1

iA2S2 2S3
D . ~2.4b!

Equations~2.2! and~2.3! can be written down as the com-
patibility condition

]tU2]zV1@U,V#50 ~2.5!

of the following linear systems:

L~l!F~z,t,l![
]F

]z
2U~z,t,l!F~z,t,l!

5F~z,t,l!C~l!, ~2.6!

M ~l!F~z,t,l![
]F

]t
2V~z,t,l!F~z,t,l!50, ~2.7!

with

U~z,t,l!52
i

l
s31

1

A2
q~z,t!, ~2.8a!

V~z,t,l!5
l

2i
S~z,t!. ~2.8b!

The matrixC(l) will be fixed up below to our conve-
nience; this is possible, becauseC(l) in fact does not appear
in the compatibility condition~2.5!.

1The approach of@15# has a close relationship to the one, based on
the expansions over the ‘‘squared solutions,’’ compare with@38#.
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From the physical point of view@5,27# the initial value
problem associated with the system~1.1! is specified by

Q~z,0!50, ~2.9a!

Ep~0,t!5Ep0~t!, ~2.9b!

Es~0,t!5Es0~t!, ~2.9c!

Ea~0,t!5Ea0~t!. ~2.9d!

Then the problem consists of determining the output
quantitiesEp(L,t), Es(L,t) and Ea(L,t), whereL is the
total length of the beam path in the Raman cell. Analogically
the initial value problem for the system~2.2! and ~2.3! is

Q~z,0!50, ~2.10a!

S3~0,t!5S30~t!, ~2.10b!

S1~0,t!5S10~t!. ~2.10c!

We follow the main idea of@9#, namely, that as a Lax
operator one should consider the operatorM (l) in Eq. ~2.7!,
and solve the inverse scattering problem for it. Then we will
use the operatorL(l) in Eq. ~2.6! to determine thez depen-
dence of the corresponding scattering data. However there
will be substantial differences in the details.

It is well known how to solve the ISP for system~2.7!
considered on the wholet-line 2`<t<` and with bound-
ary conditions of ferromagnetic type, i.e.,
limt→6`S(z,t)5s3; see@19#. We will make use of these
ideas, adopting them to our case. First we have to take into
account that the eigenvalues of ourS(z,t) differ from 61
and are genericallyt dependent. In order to calculate them, it
is enough to know that trS(z,t)50 and

2detS~z,t!5S3
212S1S2

5
1

4
~ uEsu22uEau2!21

1

2
uEp*Ea1EpEs* u2

5K4~t!. ~2.11!

Using the evolution equations~1.1!, we check that

dK4

dz
50. ~2.12!

From Eq.~2.11! we also conclude thatK2(t) is real-valued
function. Then we can introduce a ‘‘nonlinear time’’t8 by

dt85K2~t!dt, ~2.13!

and the following dimensionless variables:

t85E
0

t

K2~t9!dt9/T` , ~2.14a!

T`5E
0

`

K2~t!dt, ~2.14b!

z85zT` ~2.14c!

Ep85
Ep

K~t!
, ~2.14d!

Es85
Es

K~t!
, ~2.14e!

Ea85
Ea

K~t!
, ~2.14f!

Q85
Q

T`
. ~2.14g!

The primed variables introduced above satisfy the same sys-
tem ~1.1! of nonlinear evolution equations provided
g̃85g̃T` /K

2; in what follows below we putg̃50. Note that
the transformation$Ep ,Es ,Ea ,Q%→$Ep8 ,Es8 ,Ea8 ,Q8;K(t)%
is one to one and invertible. In order to obtain the evolution
of $Ep ,Es ,Ea ,Q%, one must first determine the evolution of
$Ep8 ,Es8 ,Ea8 ,Q8% and then use the given functionK(t) to
return to the original variable set.

The nonlinear timet8 is introduced in analogy to the one
in @9,26#; the difference is that nowK2(t) cannot be inter-
preted as the total-energy density:

E2~t!5uEp~z,t!u21uEs~z,t!u21uEa~z,t!u2. ~2.15!

Note that the constancy ofE(t) corresponds to pointwise
conservation of the photon intensity. Since all physical solu-
tions are with finite energies, we conclude that each of the
terms in Eq.~2.15! must be integrable functions oft. In
particular, each of these functions must vanish fort→`. As
a consequence of this fact and Eq.~2.11!, we find that
E2(t) must have the same properties. Therefore for this class
of solutions we haveT`,` and in terms oft8 we obtain the
system

M 8~l!F~z,t8,l![
]F

]t8
2

l

2i
S8~z,t8!F~z,t8,l!50,

~2.16a!

S8~z,t8!5
S~z,t!

K2~t!
, ~2.16b!

whereS8(z,t8) satisfies trS850 and detS8521. As a re-
sult the eigenvalues ofS8(z,t8) are equal to61, and there
exists a nondegenerate matrix-valued functiong(z,t8) such
that

S8~z,t8!5g~z,t8!s3g
21~z,t8!. ~2.17!

From Eq.~1.1! it is also easy to derive the following impor-
tant relation:

1

2

]

]t
uQu21g̃uQu21

]

]z
S350, ~2.18!

from which, for g̃50, we find that* uQu2dz is an integral of
motion if S3(0,t)2S3(L,t)50. This will be fulfilled if Ea
and Es satisfy quasiperiodic boundary conditions, i.e., if
Ea,sut8505eifa,sEa,sut851 with somefa,s .
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In Sec. II B we will use only renormalized quantities
S8(z,t8) and the ‘‘nonlinear time’’t8 and for the simplicity
of the notations will drop all primes.

B. GLM equation

We briefly sketch the derivation of the GLM equation
related to the left endt50 of the interval. Of course we also
have to introduce slight modifications in order to take into
account the fact thatS(t50,z)5S0(z)Þs3. The operator
M (l) on finite interval generically possesses a purely dis-
crete spectrum with an infinite number of simple discrete
eigenvalues, see, e.g.,@34#. As a consequence, the kernel of
the GLM equation contains only a sum over the discrete
spectrum. Skipping the details we write down the results.

Let the fundamental Jost solution of Eq.~2.16!, normal-
ized to the left endt50 of the interval, be fixed up by

lim
t50

F~z,t,l!5 lim
t50

F0~z,t,l!51, ~2.19a!

F0~z,t,l!5g0e
lts3/2ig0

21 , ~2.19b!

lim
t→1

F~t,z,l!5T~z,l!, ~2.20!

gk~z!5g~z,t!ut5k , k50,1. ~2.21!

Then its behavior att.1 determines the scattering matrix
T(z,l) according to Eq.~2.20!. It remains now to evaluate
the ‘‘evolution’’ of T in z. In order to do this we have to
calculate firstC(l) in Eq. ~2.6! by taking the limit of Eq.
~2.19! for t→0 with the resultC(z,l)5U (0)(z,l). Here
and below, byU (k)(z,l), k50,1 we denoteU(z,t,l)ut5k .
Then we take the limit of Eq.~2.19! for t→1, which gives
the following result for the evolution ofT(z,l):

dT

dz
5U ~1!~z,l!T~z,l!2T~z,l!U ~0!~z,l!. ~2.22!

Formally this is a linear evolution equation forT(z,l).
However it is not trivial to solve sinceT(z,l) is a nonlinear
functional of q(z,t). We can determine q(0)(z)
5q(z,t)ut50 from the initial conditions, but in order to com-
puteq(1)(z) we must have the solution of the problem itself.

Let us now describe the solution of the ISP for the
M (l) operator. It will be convenient to use the notations
S(k)(z)5S(z,t5k), k50,1 and let them be diagonalizable
in the form

S~k!~z !5gk~z!s3gk
21~z!, ~2.23a!

gk~z!5g~z,t5k!. ~2.23b!

We introduce the transformation operator which relates
the fundamental Jost solutionF(z,t,l) to its asymptotics
F0(z,t,l) @Eq. ~2.19!#;

F~z,t,l!5F0~z,t,l!1
l

2i E0
t

G2~t,z;z!F0~z,z,l!dz.

~2.24!

We also have to keep in mind that all solutions and the
scattering matrix of the system~2.16! are meromorphic func-
tions ofl.

Then we obtain thatG2(t,y;z) must satisfy the following
GLM-type equation:

G2~t,y;z!1S~0!~z !K~t1y;z!

1E
0

t

G2~t,z;z!K8~z1y;z!dz50, ~2.25!

where the kernel K(t;z) and its derivative
K85dK(t;z)/dt are determined by

K~t;z!5g0~z!S 0 k

2k* 0D g021~z!, ~2.26a!

k~t;z!52 (
l jPS

mj~z!

l j
eil jt/2. ~2.26b!

Here S and l j are the discrete spectrum and the discrete
eigenvalues ofM (l), andmj (z) is related to the norm of the
corresponding Jost solution of Eq.~2.16!; genericallyl j may
also depend onz.

The corresponding potential of Eq.~2.16! is recovered
from the solutionG2(t,y;z) of Eq. ~2.25! through

S~t,z!5B2~t,z!S~0!~z !B2
21~t,z!, ~2.27a!

B2~t,z!511G2~t,t,z!S~0!~z !. ~2.27b!

The complete solution of the problem also requires the cal-
culation of thez dependence of the scattering data, in our
casemj (z) andl j .

We finish this section with a brief discussion on the gauge
transformations and the compatibility of our results to the
ones obtained in@9,13,26#. It is well known that the Lax
representation and the compatibility condition~2.5! are in-
variant with respect to the group of gauge transformations of
the form

L→L̃F̃[
]F̃

]z
2ŨF̃, ~2.28a!

M→M̃ F̃[
]F̃

]t
2ṼF̃, ~2.28b!

where

F̃5G21F, ~2.29!

Ũ5G21UG2G21Gz5Ũ01
1

l
Ũ1 , ~2.30!

Ṽ5G21VG2G21Gt5Ṽ01lṼ1 . ~2.31!

HereG(t,z) is a generic element of the groupSL(2), and it
can be fixed up to our convenience. Let us then fix it up so,
that
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G21VG[
l

2i
G21SG5

l

2i
s3 . ~2.32!

This is always possible due to the facts that trS50 and
detSÞ0.
Such a choice in a similar setup was used in the proof of

the gauge equivalence between the nonlinear Schro¨dinger
~NLS! equation and the Heisenberg ferromagnet equation
@19#. However, in this case both operatorsL and M de-
pended polynomialy onl, and their fundamental solution
F taken forl50 is a well-defined function.

As it is in our case, the operatorL̃ is singular forl→0,
and thus we would be unable to define the common funda-
mental solutionF̃ for l50 rigorously. That is why we pre-
ferred to attack the ISP forM directly, adapting to our pur-
poses the well known results from@19#.

Kaup, in @9#, solved the inverse scattering problem~ISP!
for the operatorM on a finite interval in the following way.
First he applied the gauge transformation and obtainedM̃ to
be the Zakharov-Shabat~ZS! system but on a finite interval.
He wrote GLM equations corresponding toM̃ , and then
made conclusions about the inverse scattering problem for
M . The next step— the evaluation of the evolution of the
corresponding spectral data—he overcame by other means.

Of course, as far as the inverse scattering problem is con-
sidered our results are compatible with the ones of Kaup@9#.
Indeed, the GLM equation forM̃ (l) considered on the
whole t axis is well known to be equivalent to the GLM
equation for the ZS system; see@19#. The proof for the finite
interval case is quite analogous. We use just the explicit form
of theL operator, while Kaup makes use of the equations of
motion. In this way he avoids the problem with abovemen-
tioned singularity of the gauge transformation.

Finally, let us compare ourz dependence ofT(z,l) with
the one derived in@9,26,13#. The interrelation between
T(z,l) and the scattering matrixTK(z,l) used in these pa-
pers is given by

TK~z,l!5e2 ils3g1
21T~z,l!g0 . ~2.33!

From Eq.~2.3! we derive thatgk(z) satisfies

dgk
dz

2
1

A2
q~k!~z !gk~z!5akgk~z!, ~2.34a!

ak[a~t!t5k5 const, k50,1, ~2.34b!

where the constantsak are arbitrary and reflect the arbitrari-
ness in the choice of the gauge. From Eqs.~2.33!, ~2.34! and
~2.22! we find

dTK
dz

5
i

l
@TK~z,l!S~0!~z !2eils3S~1!~z !e2 ils3TK~z,l!#

1a1s3TK~z,l!2a0TK~z,l!s3 . ~2.35!

Obviously for a05a150 this evolution coincides with the
one derived by Kaup. A reduced version of this equation
with S(1)(z)5s3 has been shown to have physical impor-
tance and solved in@9,13,26#.

As we already noted, in order to apply the ISM to the
solution of our problem we will first need to calculate not
only g0(z), which is determined from the initial conditions,
but alsog1(z). The situation is greatly simplified if we im-
pose quasiperiodic boundary conditions on the fields
Ea,s,p(z,t) in such a way, thatS(0)(z)5S(1)(z). Then
we obtainU (0)(z,l)5U (1)(z,l), and the right-hand side of
Eq. ~2.22! becomes proportional to the commutator
@T,U (0)(z,l)#. The importance of this imposition can be
seen from the fact that it immediately provides us with the
hierarchy of conservation laws. The generating function of
this hierarchy is trT(l), which is nowz independent.

We end this section with the one-soliton solution of the
system~2.7!;

S35
1

2
E2~t!S 12

2

cosh2ZD , ~2.36a!

S15
iA2
2
E2~t!

tanhZ

coshZ
eif, ~2.36b!

S15S2* , ~2.36c!

Q5
A2heif

coshZ
, ~2.36d!

Z5hz2
1

hE0
t

E2~t8!dt8, ~2.36e!

where E(t)5A2K(t) is real, the soliton’s eigenvalue is
ih, andf is a constant real phase. This solution satisfies the
differential equations, but unfortunately fails to satisfy the
boundary conditionQ(z,0)50 in Eq. ~2.10a!. As a function
of t Eq. ~2.36! coincides with the one-soliton solution of the
Heisenberg ferromagnet on the wholet axis, provided the
the soliton parameters are adjusted, so that
S(t,z)ut505S0(z) as given by the boundary conditions.

In fact the class of soliton solutions of our system consid-
ered on the wholet axis can also be used as a good approxi-
mation when restricted to a finite-t interval. The substantial
difference between the corresponding GLM equations con-
sists of the fact that the kernelK(t,z) @Eq. ~2.26!# always
contains an infinite sum. In some cases, when the amplitudes
~or equivalently, the imaginary parts ofl j ) of the first sev-
eral solitons are much larger than that of the others, we can
truncate the kernel and consider the remaining finite sum as
a good overall approximation. In addition, since in our model
0,t,1, we can have at most a finite number of such soli-
tons. They move toward the edge of the interval which cor-
responds to the edge of the optical pulses, and after a finite
propagation distanceL they disappear; that is why they are
called the transient solitons@9,13,26#. Our expressions for
the soliton solution for bilinear variables coincides with the
ones obtained in the papers just cited. If we forget for a
moment about the anti-Stokes field and make use of Eq.~2.1!
with Ea50, we will recover the results of Kaup and Menyuk
for the electromagnetic fields.

The presence of the anti-Stokes fieldEa first changes the
definition of the ‘‘nonlinear time.’’ In deriving the soliton
solution, we directly solved the ISP for the system~2.7!.
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Finally, Eq. ~2.36! combined with Eq.~2.1! produces solu-
tions in terms of the fieldsEi , i5p,s,a which are different
from the ones in@9,13,26#.

The above analysis allows us to link our results to the
results of@5,9,13,22,23,26,27#. Indeed, we can see that, in
the presence of the anti-Stokes wave, one can also find three
regimes: an initial regime, when the Stokes and anti-Stokes
waves are small compared to the pump wave; a transient
regime, where we find transient solitons both for theS and
E fields @see formulas~2.36! and ~3.42! and ~3.43! below#,
and a self-similarity regime@see Eq.~3.18! below#.

III. PERIODIC, SOLITON, AND SIMILARITY SOLUTIONS

In this section we generalize the results of@13,24# to de-
scribe the similarity solutions—solitons, periodic, and self-
similar solutions for system~2.2!. We also have not been
able to resolve the fundamental problem, inherent to this
type of NLEE. We have to solve the ISP forM (l) on a finite
interval, and naturally thez dependence of the corresponding
scattering data will depend on the boundary values ofQ at
both ends of this interval. Indeed, the initial conditions allow
us to calculate all necessary quantities such asS3(z,t50),
S6(z,t50) at t50. In order to evaluate them att51, we
have to solve the problem completely.

On the other hand, the initial conditions of such a physical
system must uniquely determine its evolution. One way out
of this problem is to impose certain boundary conditions on
the operatorM (l) — e.g.,~quasi! periodic, which are diffi-
cult to obtain experimentally@32#. They will relate the values
S3(z,t50), S6(z,t50) to S3(z,t51), S6(z,t51).

A. Periodic „cnoidal… and solitary waves

At first we will study the cnoidal wave similarity solu-
tions which include solitons as a special limit. Indeed, from
Eqs. ~2.1! and ~2.2! and using the transformed variable
j5z2t/a, we find the system

dS3
dj

52 iQ*S11 iQS2 , ~3.1a!

dS1

dj
52 iQS3 , ~3.1b!

a
dQ

dj
52iS1 , ~3.1c!

which has the following first integrals:

1
2S3

21S1S25I 1 , ~3.2a!

S1Q*1S2Q5I 2 , ~3.2b!

1

a
S31

1

2
uQu25I 3 . ~3.2c!

Introducing the real variablesA1 , f1 , Q̃, andf by

S15eif1A1 , ~3.3a!

S25e2 if1A1 , ~3.3b!

Q5Q̃eif, ~3.3c!

f̃5f2f1 , ~3.3d!

we rewrite Eqs.~3.1! and ~3.2! as follows:

dS3
dj

522Q̃A1sinf̃, ~3.4a!

dA1

dj
5Q̃S3sinf̃, ~3.4b!

a
dQ̃

dj
52A1sinf̃, ~3.5a!

df̃

dj
5S 2a A1

Q̃
1
Q̃S3
A1

D cosf̃, ~3.5b!

I 15
1
2S3

21A1
2 , ~3.6a!

I 252Q̃A1cosf̃, ~3.6b!

I 35
1
a S31

1
2 Q̃

2. ~3.6c!

Squaring the equation forS3 and using the expression for
I k , k51, 2, 3, we obtain

S dS3dj D 254

a
~S32Z1!~S32Z2!~S32Z3!, ~3.7!

where the constantsZi are related toI k by

Z11Z21Z35aI 3 , ~3.8a!

Z1Z21Z2Z31Z3Z1522I 1 , ~3.8b!

Z1Z2Z35aI 2
2/422aI 1I 3 . ~3.8c!

The solutions forS3 may be written explicitly in terms of
Jacobian sn function. We have the following periodic~cnoi-
dal! waves.

For a.0, Z1,0,Z2,Z3,

S35Z11~Z22Z1! sn
2@p~j2j0!,k!], ~3.9a!

p5S Z32Z1
a D 1/2, ~3.9b!

k25
Z22Z1
Z32Z1

. ~3.9c!

For a,0, Z1,Z2,0,Z3,

S35Z31~Z32Z2! sn
2@p~j2j0!,k!], ~3.10a!

p5S Z32Z1
2a D 1/2, ~3.10b!

k25
Z32Z2
Z32Z1

. ~3.10c!
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Here we point out particularly the subcase, whenI 250.
Then we are able to express the rootsZk of Eq. ~3.7! explic-
itly in terms of I 1 and I 3 with the results

Z152A2I 1, ~3.11a!

Z25aI 3 , ~3.11b!

Z35A2I 1, ~3.11c!

p5S 8I 1a2 D 1/4, ~3.11d!

k25
aI 31A2I 1
2A2I 1

~3.11e!

for the case of Eq.~3.9!, and

Z152A2I 1, ~3.12a!

Z25A2I 1, ~3.12b!

Z35aI 3 , ~3.12c!

p5S I 31 A2I 1
a D 1/2, ~3.12d!

k25
aI 32A2I 1
aI 31A2I 1

~3.12e!

for Eq. ~3.10!. In the next particular cases we putk51 to
find the corresponding solitary waves

For a.0, Z1,0,Z25Z3,

S35Z22
Z22Z1

cosh2FA~Z22Z1!

a
~j2j0!G . ~3.13!

For a,0, Z15Z2,0,Z3,

S35Z31~Z32Z2!tanh
2F S Z32Z2

2a D 1/2~j2j0!G . ~3.14!

Let us concentrate on the most important solutions, from
the physical point of view soliton, i.e., case~iii ! with the
additional constraintZ25Z35aI 35A2I 1. The result of in-
tegration is

Q̃5
2AI 3
coshZ

, ~3.15a!

S35aI 3~ tanh
2Z2 sech2Z!, ~3.15b!

A15A2aI 3
tanhZ

coshZ
, ~3.15c!

f12f5p/2, ~3.15d!

z5A2I 3~j2j0!, ~3.15e!

wherej0 is the arbitrary initial phase. We will return again to
this solution in Sec. III D.

B. Self-similarity solutions

We prefer here to analyze the solutions of Eq.~2.2! with
another self-similarity variablej52A2zt. If we choose

S35cos@b~j!#, ~3.16a!

S15
i

2
A2sin@b~j!#, ~3.16b!

we find that Eq.~2.2! goes into

d2b~j!

dj2
1
1

j

db~j!

dj
1sin@b~j!#50. ~3.17!

Equation~3.17! was first derived in another context for the
transient stimulated Raman scattering by Elgin and O’ Hare
@35#. This equation can be reduced to one of the standard
forms of the Painleve (PIII ) equation@36,25#. When j@1,
we can use the asymptotic formula given by Novokshenov
@36# to obtain

b~j!5
ã

j1/2
cosS j1

ã2

16
lnj1c D , ~3.18!

where

ã252
16

p
ln@cos~b0/2!#, ~3.19a!

c5
2ln2

p
ln@cos~b0/2!#1argGS i ã2

16 D2
p

4
. ~3.19b!

HereG(x) is the gamma function with a complex argument,
arg@G(x)# indicates its phase, andb05b(j50). Similar ex-
pression can be obtained forQ from Eq. ~2.18!. In Figs. 1
and 2 we plot the functionsS3(j) and the real part of the
Rabi frequencyVR(j)5Es*Ep1Ep*Ea .

From Fig. 1 we see the oscillating energy exchange whose
amplitude decreases withj. Such self-similarity solutions in
the case when the anti-Stokes wave is neglected are known
as accordions@24,25#.

C. Discussion

To obtain the bright solitons and to compare our results
with the ones of Kaplanet al. @33# we slightly generalize
Eqs.~1.1! ~see for example@1,3#!. The Raman quantum tran-
sition between the lower~ground! and upper~excited! level,
i.e., two-level atom is described by a 232 Hermitian density
matrix r, and the generalized Bloch equations@1,3#

]Q

]t
52V̂RD, ~3.20a!

]D

]t
5 Re~QV̂R* !. ~3.20b!

The system of equations
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dp

]Ẽp

]z
5baQ* Ẽa2QẼs , ~3.21a!

ds
]Ẽs

]z
5Q* Ẽp , ~3.21b!

da
]Ẽa

]z
52ba*QẼp , ~3.21c!

completed with the corresponding equations forQ;r12 @33#
andD5r112r22 from Eq. ~3.20!, generalizes Eq.~1.1! with
q50 andg̃50. Here the following notations are introduced:

Ẽi5ws,pAnic/2\v iEi , ~3.22a!

ba5
wp,a*

ws,p*
, ~3.22b!

V̂R5
4

pN0
~Ẽs* Ẽp1baẼp* Ẽa!, ~3.22c!

ws,p5
N0p

c
as,pS vsvp

nsnp
D 1/2, ~3.23a!

wp,a5
N0p

c
ap,aS vpva

npna
D 1/2, ~3.23b!

whereas,p and ap,a are Raman polarizability~see for ex-
ample @3#!, ni5n(v i), j5s,p,a is the refractive index at

frequenciesv i . By N0 we have denoted the density of Ra-
man particles. Using arguments analogous to the ones in@11#
we find that one can expect such physical systems to be
described by system~1.1! with ba.1. In addition,V̂R is the
generalized local Rabi frequency@1,3#.

Equations ~3.20! and ~3.21!, rewritten for the self-
similarity variablej5z2t/a, coincide with Eq.~6! from
Kaplan et al. @33#. The direct comparison ofS1 and V̂R
shows that the physical interpretation ofS1 is the normal-
ized local Rabi frequency. From these equations we also ob-
tain that the quantity

D21uQu25I 4~z! ~3.24!

is conserved int, and that the equations

dpFp1dsFs1daFa5I ~t!, ~3.25a!

d i5S 1

vgi
2

1

ṽg
D , i5p,s,a, ~3.25b!

2
]

]z
~daFs2daFs!2pN0

]

]t
D50, ~3.26a!

F i5uẼi u2 ~3.26b!

hold. Using the ansatz@33#

Fp5uapu2FS , ~3.27a!

FIG. 1. The self-similar solutionS3(j)5cosb(j), j52A2zt
with the initial conditionb(0)51.15.

FIG. 2. The real part of the Rabi frequency
VR(j)5 Re(Es*Ep1Ep*Ea)5A2sinb(j), j52A2zt with the ini-
tial conditionb(0)51.15.
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Fs5uasu2FS , ~3.27b!

Fa5uaau2FS , ~3.27c!

uapu25
g3
2

W
, ~3.27d!

uasu25
1

ds
2W

, ~3.27e!

uaau25
ubau2

da
2W

, ~3.27f!

we find the system

dFS

dj
5a2~Q*VR1QVR* !, ~3.28a!

dVR

dj
5a1QFS , ~3.28b!

a
dQ

dj
5

4

pN0
VRD, ~3.28c!

a
dD

dj
52

2

pN0
~Q*VR1QVR* !, ~3.28d!

VR5Ẽs* Ẽp1baEp* Ẽa , ~3.28e!

a15S 1ds2
ubau2

da
D uapu21

1

dp
~ ubau2uaau22uasu2!,

~3.28f!

a25
1

dsuasu22dauaau2
, ~3.28g!

which has the following first integrals:

1

2a2
FS

22
1

a1
uVRu25I 1 , ~3.29a!

VRQ*2VR*Q5I 2 , ~3.29b!

1

aa2
FS1

pN0

2
D5I 3 , ~3.29c!

D21uQu25I 4 . ~3.29d!

Introducing the real variablesṼR , fR , F̃S , Q̃, andf by

VR5eifRṼR , ~3.30a!

Q5Q̃eif, ~3.30b!

f̃5f2fR , ~3.30c!

we rewrite Eq.~3.28! and ~3.29! as follows:

S dFS

dj D 25 4

a3
2 ~FS2Z1!~FS2Z2!~FS2Z3!~FS2Z4!,

~3.31a!

a352
a2~pN0a!2

2a1
, ~3.31b!

where the constantsZi are related toI k by

Z11Z21Z31Z452a2aI 3 , ~3.32a!

Z1Z21Z2Z31Z3Z11Z1Z41Z2Z41Z3Z4

52a2
2~pN0a!2I 4/41a2

2a2I 3
222a2I 1 , ~3.32b!

Z1Z2Z41Z1Z2Z31Z2Z3Z41Z1Z3Z4524a2
2aI 3I 1,

~3.32c!

Z1Z2Z3Z45
8a2a1I 2

2

~pN0a!2
1a2

3~pN0a!2I 4I 122a2
3a2I 3

2I 1 ,

~3.32d!

whereFS has different forms~cnoidal wave, soliton, Lorent-
zian etc.!. The integration procedure is analogous to that
used in Sec. III A.

In the particular case when the anti-Stokes wave is ne-
glected,ba50, andẼa50, and for the real quantitiesẼp ,
Ẽs ,f, andṼR from Eqs.~3.20! and ~3.21! rewritten for the
self-similarity variablej5z2t/a, we have

dp

dẼp
2

dj
52 ṼRsinf, ~3.33a!

ds
dẼs

2

dj
522 ṼRsinf, ~3.33b!

f5
4

pN0a
E

2`

j

VR~j8!dj8, ~3.33c!

Q5sinf, ~3.33d!

D52cosf. ~3.33e!

After integration of Eqs.~3.33! we obtain the cnoidal solu-
tions of @6#; see also@7#. The solutions of Eq.~3.33! are
substantially different from the cnoidal solutions in Sec III A
because they are related to a fourth-order polynomial rather
than to a third order one as in Eq.~3.7!.

Next we will consider the simplest solution~Lorenzian
soliton!. This class of solutions satisfies the boundary condi-
tions~2.9!. Inserting Eq.~3.27! into I50, from Eq.~3.25! we
obtain

g3
252S 1

dsdp
1

ubau2

dadp
D . ~3.34!

Equation~3.26! has the form of a conservation law with
conserved density dsFs2daFa and conserved flux
2pN0D. Then

J52~dsFs2daFa!2pN0D56N0 , ~3.35a!
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D21uQu25I 451, ~3.35b!

FS5F0S~j!. ~3.35c!

Here

F05
6pN0W

~1/ds2ubau2/da!
, ~3.36!

where2 indicates that the molecules~atoms! are initially at
the equilibrium and1 that the population difference is in-
verted. Let us also introduce

D56@122S~j!#, ~3.37a!

Q~j!524g3jS~j!, ~3.37b!

S~j!5~114g3
2j2!21, ~3.37c!

whereS(j) may have Lorentzian form~Lorentzian soliton!
@33#. Finally from the normalization condition
uapu21uasu21uaau251, we have

W5
1

dsds,p
2

ubau2

dadp,a
, ~3.38!

where

ds,p5
1

ds
2

1

dp
, ~3.39a!

dp,a5
1

dp
2

1

da
. ~3.39b!

Recently these bright solitons@Eq. ~3.37!#, in a more general
physical situation, cascade SRS@11,3#, have been used to
predict generation of subfemtosecond coherent pulses in SRS
experiments@33#. From the above analysis it is clear that
bright solitons are obtained in the case of finite group veloc-
ity dispersion parametersd i @Eq. ~3.26!# @11,33# and nonzero
population differenceD.

D. One-soliton solution

Here we will show that the auxiliary linear problem for
the vector NLS equation with some additional reduction is
equivalent to Stokes–anti-Stokes SRS equations without the
last equation forQ. This formal equivalence allows us to
recoverEp , Es , andEa from the potentialQ, already ob-
tained by the ISM of Sec. II with Eq.~2.36!.

Indeed, we introduce

]

]z S c̃1

c̃2

c̃3

D 5S 0 q1 q2

2q1* 0 0

2q2* 0 0
D S c̃1

c̃2

c̃3

D , ~3.40!

and require that

q152Q, ~3.41a!

q25Q* , ~3.41b!

c15Ep , ~3.41c!

c25Es , ~3.41d!

c35Ea , ~3.41e!

without the last equation forQ, which we may obtain from
Sec. I. Using the well-known one-soliton solution of the vec-
tor nonlinear Schro¨dinger equation under reduction~3.41!
and the solution of the linear problem~3.40! with potentials
Q,Q* we obtain in~2.36!, i.e.,

Q5
A2heif

coshZ
, ~3.42a!

Z5hz2
1

hE0
t

E2~t8!dt8, ~3.42b!

whereE(t) is real, the soliton’s eigenvalue isih andf is
constant real phase. The direct integration of Eq.~3.40! with
reduction~3.41! is given by

Ep5A2E~t!
tanhZ

coshZ
eif, ~3.43a!

Es5E~t!tanh2Z, ~3.43b!

Ea5
E~t!

cosh2Z
e2if. ~3.43c!

These solutions are similar to transient SRS solitons obtained
in @13# ~see also@15#! and forE51, andf50 coincide with
the ones in@11#. If we now calculateS3 andS6 using the
above expressions forEp , Es , Ea , we obtain precisely the
soliton solution~2.36! and ~3.15!.

IV. N-COMPONENT GENERALIZATIONS

In this section we show that the extended model with
N-Stokes andN-Stokes components is also integrable in the
sense means of ISM. The considerations are formal from a
physical point of view.

Let us consider the following equations:

]Ep

]z
5(

i51

N

~baQ*Ea
~ i !2QEs

~ i !!, ~4.1a!

]Es
~ i !

]z
5Q*Ep , i51, . . . ,N, ~4.1b!

]Ea
~ i !

]z
52baQEp , ~4.1c!

]Q

]t
1g̃Q5(

i51

N

~Es*
~ i !Ep

~ i !1baEp*
~ i !Ea

~ i !!, ~4.1d!

with ba51. The equations forEk
i can be written down as the

same auxiliary linear problem, which solves the
N-component vector NLS equation
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]

]z
C5U0C, ~4.2!

with the spectral parameterl50. Here

C5S c̃1

c̃2

c̃3

A

c̃2N

c̃2N11

D , ~4.3a!

U05S 0 q1 q2 . . . q2N21 q2N

2q1* 0 0 . . . 0 0

2q2* 0 0 . . . 0 0

A A A � A A

2q2N21* 0 0 . . . 0 0

2q2N* 0 0 . . . 0 0

D ,

~4.3b!

and

q15q35•••5q2N2152Q, ~4.4a!

q25q45•••5q2N5Q* , ~4.4b!

c15Ep , ~4.4c!

c2k5Es
~k! , k51,2, . . . ,N ~4.4d!

c2k115Ea
~k! , k51,2, . . . ,N. ~4.4e!

We again introduce bilinear variables

S35
1

2(i51

N

~ uEs
~ i !u22uEa

~ i !u2!, ~4.5a!

S15S2* 5
i

2(i51

N

~Es*
~ i !Ep

~ i !1Ep*
~ i !Ea

i !, ~4.5b!

and show that ifEa,p,s
( i ) satisfies Eq.~4.1! then S3 and S6

satisfy the same equation~2.2!. Therefore the Lax represen-
tation ~2.5! and Kaup’s method can be used as above for
analysis of system~4.1!. The procedure of solving Eq.~4.1!
is analogous to the considerations of Sec III D. Clear physi-
cal interpretation and solutions of Eq.~4.1! will be given
elsewhere.

V. CONCLUSION

In this paper we have generalized the method in@9,13,26#
for solving the SRS problem withba51 when both Stokes
and anti-Stokes fields are present. For bright solitons, our
results are valid also forbÞ1. Several types of explicit~pe-
riodic, soliton, and self-similarity! solutions are obtained.
The only difference between the mathematical description of
the MBE without an anti-Stokes wave and our case in terms
of the bilinear variablesS3 andS6 consists of the definition
of the ‘‘nonlinear’’ time t. Of course, in terms of the elec-
tromagnetic fieldsEi , i5p,s,a, both the physical interpre-
tation and the form of the solutions are substantially differ-
ent.

For bright and transient solitons our results are in agree-
ment with these of Kaplanet al. @33# and Kaup and Menyuk
@26,9#. In some cases we have constructed not only the bi-
linear variablesS3 andS6 , but also the fieldsEp , Es, and
Ea themselves.

The ISM meets with difficulties when both initial and
boundary conditions~2.9! on the potentials are imposed.
These problems do not arise when one uses quasiperiodic
boundary conditions, which, however, may be difficult to
realize in experiment.

Normally Stokes–anti-Stokes scattering occurs when the
wave number mismatchq is different from zero. Recent nu-
merical studies in this direction show that in this case the
solitons decay@31#. For simplicity we have considered only
the exact resonance conditionq50, which also has an im-
portant physical meaning@11,33,37#.

Looking at the Lax operator~2.16! we recognize the sys-
tem of equations~2.2! as belonging to the Heisenberg ferro-
magnet hierarchy. One can try to apply the expansions over
the ‘‘squared solutions’’ in the spirit of@38#, and then treat
the caseg̃Þ0 as a perturbation.
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Éksp. Teor. Fiz.69, 499 ~1975! @Sov. Phys JETP42, 255
~1975!#; T. M. Makhviladze and M. E. Sarychev, Zh. E´ksp.
Teor. Fiz.71, 896 ~1976! @Sov. Phys JETP44, 471 ~1976!#.

@8# S. V. Manakov, Zh. Eksp. Teor. Fiz.83, 68 ~1982!; A. A.
Zabolotskii, ibid. 93, 84 ~1987!; A. M. Basharov and A. I.
Maimistov, ibid. 87, 1594~1984!.

@9# D. J. Kaup, Physica6D, 143 ~1983!; 19D, 125 ~1986!; H.
Steudel,ibid. 6D, 155 ~1983!.

@10# J. C. Englund and C. M. Bowden, Phys. Rev. Lett.75, 2661
~1986!; Phys. Rev. A42, 2870~1990!.

@11# J. R. Ackerhalt and P. W. Milonni, Phys. Rev. A33, 3185
~1986!.

@12# I. R. Gabitov, V. E. Zakharov, and A. V. Mikhailov, Teor.
Math. Phys.63, 11 ~1985!; Zh. Eksp. Teor. Fiz.86, 1204
~1984! @Sov. Phys. JETP59, 703~1984!#; S. P. Burtsev, A. V.
Mikhailov, and V. E. Zakharov, Teor. Math. Phys.70, 227
~1987!.

@13# C. R. Menyuk, Phys. Rev. Lett.62, 2937~1989!; Phys. Rev. A
47, 2235~1993!.

@14# J. W. Haus and M. Scalora, Phys. Rev. A42, 3149~1990!.
@15# J. Leon, Phys. Rev. A47, 3264 ~1993!; J. Math. Phys.35, 1

~1994!; C. Claude and J. Leon, Phys. Rev. Lett.74, 3479
~1995!; C. Claude, F. Ginovart, and J. Leon, Phys. Rev. A52,
767 ~1995!.

@16# S. P. Burtsev, and I. R. Gabitov, Phys. Rev. A49, 2065
~1994!; S. P. Burtsev, Inverse Problems10, 837 ~1994!.

@17# V. E. Zakharov and A. B. Shabat, Zh. E´ksp. Teor. Phys.61,
118 ~1971! @Sov. Phys. JETP34, 62 ~1972!#; M. J. Ablowitz,
D. J. Kaup, A. C. Newell, and H. Segur, Studies Appl. Math.
53, 249 ~1974!.

@18# R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,
Solitons and Nonlinear Wave Equations~Academic, London,
1984!.

@19# L. D. Faddeev and L. A. Takhtadjan,Hamiltonian Method in
the Theory of Solitons~Springer, Berlin, 1987!.

@20# P. C. MacPherson, R. C. Swanson, and J. L. Carlsten, Phys.
Rev. Lett.61, 66 ~1988!.

@21# M. D. Duncan, R. Mahon, L. L. Tankerley, and J. Reintjes, J.
Opt. Soc. Am. B5, 37 ~1988!.

@22# C. R. Menyuk and G. Hilfer, Opt. Lett.12, 227 ~1989!.
@23# G. Hilfer and C. R. Menyuk, J. Opt. Soc. Am. B7, 739~1990!.
@24# D. Levi, C. R. Menyuk, and P. Winternitz, Phys. Rev. A44,

6057 ~1991!.
@25# D. Levi, C. R. Menyuk, and P. Winternitz, Phys. Rev. A49,

2844 ~1994!; Self-similarity in Stimulated Raman Scattering,
edited by D. Levi, C. R. Menyuk, and P. Winternitz~Les Pub-
lications CRM, Montreal, 1994!.

@26# D. J. Kaup and C. R. Menyuk, Phys. Rev. A42, 1712~1990!.
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