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Inverse scattering transform analysis of Stokesanti-Stokes stimulated Raman scattering
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A system of Maxwell-Bloch type equation®BE's), describing stimulated Raman scattering with both
Stokes and anti-Stokes waves taken into account, is investigated. We introduce v&jabidS.. , which are
bilinear in the electromagnetic fields, and prove that the corresponding equations possess Lax representation.
This fact is used to obtain additional solutions &t S.. and for the MBE’s which include solitons, periodical
waves, and self-similarity solutions. The transient and bright threshold solitons are also analyzed.
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I. INTRODUCTION IEq
&—§=—2inS+Q*Ep, (1.1b
The so-called Maxwell-Bloch equation@MBE’s) de-

scribe a wide variety of interactions of matter with light.

; i _ JE, )
These include self-induced transparency, resonance interac- = —igE,— B.QE,, (1.19
tions in multilevel media, superfluorescence, amplification of 9¢
laser pulses, etc., see the monographs4] and papers o
[5-16]. As a rule these are large systems of nonlinear evo- A - *
lution equations, whose form is determined by the physical T TOQ=EsEpt BaEpEa, (119

setup; most of them can be handled only numerically.

This situation changed with the development of the in-whereQ is the normalized effective polarization of the me-
verse scattering methodSM), see[17-19. This method dium, {=z/L and r=t—z/v are dimensionless space and
was generalized also to handle nonisospectral deformationgtarded time coordinates, respectively, ands the wave
of the Lax operators, which allowed one to treat Maxwell-group velocity.T, is the natural damping time of the mate-
Bloch-type equations with pumpings, with dampings of sperial excitation andg=1/T,. By 3, we denote the coupling
cial types, etc.; se€l2,16, and references therein. In this coefficient which determines the number of anti-Stokes pho-
respect we should mention papét, which showed, that this tons relative to number of Stokes photons, and its magnitude
method can be applied to one of the versions of the MBEdepends on the matrix element that describes the dipole tran-
describing stimulated Raman scatterif®RS. As a result  sition[11,3]. In this paper we consideg,=1 [11], but some
the N-soliton solutions of these equations were obtaifdd  results are valid also for B8,#1. In addition
The behavior of the pump and Stokes pulses in a Ramary= (ks+k,—2k,)L is the scaled forward phase mismatch
active medium and the coherent effects on the transiertietween the wave vectorls,, ks, and k, of the pump,
pulses were analyzed {6,7], where also the cnoidal wave Stokes, and anti-Stokes waves. We will assumed for the
solution of these equations was obtained. Today analysis @fresent analysis.
the SRS draws the interest of both theoreticians and experi- For 8,=0, i.e., when the anti-Stokes wa\&, is ne-
mentalists. Most of these papdeee[5,6,10,13-15,20-3¥  glected, these equations describe the so-called transient
considered a MBE with only pump and Stokes waves; instimulated Raman scattering equations, which possess Lax
several others the presence of an anti-Stokes wave was algp7] representation wheg=0 [5]. The SRS soliton solu-
taken into accouni11,28-31,33 tions, theoretically discovered by Chu and Sdd&t, were

Our aim in this paper is to study, using the ISM, a specialexperimentally observed by Dliet al. in [27]. The SRS
version of the MBE which describes the wave propagation insolitons(regarded as transient solitofts3,9] with a 7 phase
a Raman-active medium when Stokes, anti-StokesE,,  jump at the Stokes frequenchiave been extensively studied
and pumpE, waves are present. [2,4,13-15,20-2]7 In later experiments by Duncaet al.

These type of MBE's in the slowly varying envelope ap-[21], a careful comparison between theory and experiment
proximation, and when the diffraction and the ground-stateshowed good agreement. Shortly after this wik], Hilfer
depletion of the material excitation can be ignored, have thend Menyuk 23] carried out simulations which indicate that
form [11,28-31,33 in the highly depleted regime the solutions of transient SRS
equations always tend toward a self-similar solution. This
result[23,24] has been recovered by applying the ISM to the
transient SRS equations; Sgle3]. An experiment to observe

JE
TP o e
219, +B.Q7Ea— QEs, (1.13 this solution was proposed i23]. Kaup’s theory[9] also
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indicates that the dissipation, which appears for firlite i

plays a crucial role in soliton formation. The similarity solu- S+=3 (ESEp+EZEa), (2.1b
tions and other group invariant solutions of the SRS equa-
tions in the presence of dissipation are studiefi2ip|. S, =S . (2.10

Recently Claude and Ledd5] developed an alternative

approach to the transient SRS equations with inhomoge-|n terms of the new quadratic variabléa1), the initial sys
neous broadening, based on an equivaieptoblem. They tem withg=0,8,=1 is rewritten as
used it to interpret the experimental data[&Y], and con-
cluded, that the corresponding Zakharov-Shabat system on Sz . i
the infinite line with the initial conditionQ(Z,7)|,—=0, or - QTS HIQS., (2.29
does not contain discrete eigenvalues.

For the general systerfi.1), with an anti-Stokes wave, 3S., _
phase mismatch3,# 1 and dissipation, transient solitons Fa =-iQS;, (2.2p
were investigated by Scalora, Singh, and Bowp#] using
numerical methods. They predicted the formation of soliton- Fle)
like pulses at the anti-Stokes frequency. Another type thresh- —=-2iS,, (2.20
old bright 27 solitons, which have a Lorentzian form, were o7
theoretically obtained if33].

In Sec. Il we introduce new variabl& andS., Eq.(2.1)
which are quadratic in terms &, Eg, andE,. Then sys- aq 1
tem (2.2 for S; and S., derived from Eq.(1.1) with —=—[03,5(¢,7)], (2.39
Ba=1 andg=0, allows a Lax representation similar to the It 2
one used by Chu and Sc¢8] for other physical quantities:
the difference for the normalized Stokes-anti-Stokes local in- S 1
tensities and for normalize@omplex local Rabi frequency. B E[Q((:T),S(LT)], (2.3b
We also introduce ‘“nonlinear time” and renormalized di-
mensionless variables different from the ones usef@in  \yhere
Then we solve the inverse scattering probl@8P) for sys-

or, in matrix form,

tem (2.16 with the “nonlinear time” 7’ restricted to the 0 Q

finite interval 0<7'<1; i.e., we derive the corresponding q({, 7= _o* o) (2.49

Gel'fand-Levitan-MarchenkdGLM) equation using a more

direct approach thaf9] and obtaining results, compatible s, i\25

with [9]. S _ B + 2 4b
Basically we show that, in terms of the bilinear variables (&.7) iV2S_ -S; | 24

S; and S.. the nonlinear evolution equatiodlLEE’s) are
formally the same as for the case when there is no anti- Equationg2.2) and(2.3) can be written down as the com-
Stokes wave. There is, however, an important differencepatibility condition
namely the so-called “nonlinear time” has a different defi-
nition, which accounts for the new physical situation. Thus 9;,U—9,V+[U,V]=0 (2.9
we are also able to translate the known req#t9,13,26 for
systems with an anti-Stokes wave present.

In Sec. Il we obtain periodic, soliton, and self-similarity

of the following linear systems:

solutions of Stokes—anti-Stokes SRS equations without dis- LINF(Z,7,N)= f_u(g,r,)\)p(gﬂ-,)\)
sipation for both formulationg1.1) and (2.2), and briefly 24
analyze their relation to the ones already knd®h In ad- —F(Z,7\)C(\) 2.6

dition, the transient solitons and the bright solitons of Kaplan
et al. [33] are discussed. JF
In Sec. IV we propose an extension of the Stokes—anti- M(MNF(L,mN)=—=V({,7,N)F(,7,0)=0, (2.7
Stokes SRS equations fidr Stokes andN anti-Stokes waves, o7
and conjecture that it is also integrable by means of the ISM\'Nith
Il. LAX REPRESENTATION AND GLM EQUATION i 1
U, 7\)=——o3+—=q({,7), 2.8
A. Lax representation (&) e \/Eq“ g (289

Let us introduce the following variables: \
Si=3(EJ*~ [Eol?), (213 VT = 5 e (280
The matrix C(\) will be fixed up below to our conve-

The approach df15] has a close relationship to the one, based onnience; this is possible, becau8é\) in fact does not appear
the expansions over the “squared solutions,” compare \38j. in the compatibility condition2.5).
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From the physical point of viey5,27] the initial value E,
problem associated with the systéfn1) is specified by Ep= K(7)’ (2.149
Q(£,0=0, (2.99 £
r_ S
Ep(0,7)=Epo(7), (2.9b) Bk (2.149
Es(0,7)=Eg(7), (2.90 . Ea
B ke (2.149
EA(0,7)=E (7). (2.909
Then the problem consists of determining the output Q’ :2_ (2.149
quantitiesEy(L,7), E(L,7) and E4(L,7), wherelL is the T
total length of the beam path in the Raman cell. Analogically ) ) ) _
the initial value problem for the systef@.2) and (2.3 is The primed variables introduced above satisfy the same sys-
tem (1.1) of nonlinear evolution equations provided
Q(¢£,00=0, (2.10a  9'=0T../K?; in what follows below we pu§=0. Note that
the transformatiodE, ,Es,E,,Q} —{E,,E¢,E;,Q";K(7)}
S3(0,7) = Sgo( 7), (2.100  is one to one and invertible. In order to obtain the evolution
of {Ep,Es,E4,Q}, one must first determine the evolution of
S (0,7)=S (7). (2.100 {E,.E¢.E;,Q’} and then use the given functidf(r) to

return to the original variable set.

The nonlinear timer’ is introduced in analogy to the one
in [9,26]; the difference is that now?(r) cannot be inter-
preted as the total-energy density:

We follow the main idea of9], namely, that as a Lax
operator one should consider the operdidiz) in Eq. (2.7),
and solve the inverse scattering problem for it. Then we will
use the operatdr(\) in Eq. (2.6) to determine the depen-
dgnce of the C(_)rres_pondlng scattering d_ata. However there 52(7)=|Ep(§,r)|2+|ES(§,7-)|2+|Ea(§,T)|2. (2.15
will be substantial differences in the details.

It is well known how to solve the ISP for syste(@.7)  Note that the constancy () corresponds to pointwise
considered on the wholeline —c<r<c and with bound-  conservation of the photon intensity. Since all physical solu-
ary  conditions  of  ferromagnetic  type, i.e., tions are with finite energies, we conclude that each of the
lim, . ..S(¢,7) = o3; see[19]. We will make use of these terms in Eq.(2.15 must be integrable functions af. In
ideas, adopting them to our case. First we have to take intgarticular, each of these functions must vanish-ferx. As
account that the eigenvalues of d8(Z,7) differ from =1 3 consequence of this fact and E@.11), we find that
and are generically dependent. In order to calculate them, it £2(7) must have the same properties. Therefore for this class
is enough to know that $(¢,7)=0 and of solutions we hav&@ . < and in terms of”’ we obtain the

1
—desS(¢,7)=S2+2S, S System

JF N
M VR M= 25— 58 (LR M) =0,

1 1
= 7 E?—|Ea)?+ S|E Eat EpES?
(2.163
=K*(7). (2.11
s
Using the evolution equationd.1), we check that S'(¢,7)= K20’ (2.16b

4

di: _ (2.12 whereS'({,7") satisfies t8'=0 and de®’'=—1. As a re-
sult the eigenvalues {,7') are equal tox1, and there

dg It the ei lues &' (¢, 7' | tat 1, and th

0 s exists a nondegenerate matrix-valued functgg, ') such
From Eq.(2.11) we also conclude th&€“(7) is real-valued {5t

function. Then we can introduce a “nonlinear time” by
S' (&) =9(¢7)osg ¢ T). (2.17)

From Eqg.(1.1) it is also easy to derive the following impor-
tant relation:

dr'=K?(7)dr, (2.13

and the following dimensionless variables:

= fTKZ(qﬂ)qu’/Tm, (2.143 10 p 0 d
0 5 aT|Q| +9[Q +3§53—0, (2.18
T, = foZ(T)dT, (2.14h  from which, forg=0, we find that/|Q|?d¢ is an integral of
0 motion if S3(0,7) — S3(L,7)=0. This will be fulfilled if E,

and Eg satisfy quasiperiodic boundary conditions, i.e., if
{'={T. (2140  E, |, _o=€'%asE, (|, —; with somed, ;.
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In Sec. Il B we will use only renormalized quantities
S'(¢,7") and the “nonlinear time”7" and for the simplicity
of the notations will drop all primes.

B. GLM equation

We briefly sketch the derivation of the GLM equation
related to the left end=0 of the interval. Of course we also

have to introduce slight modifications in order to take into

account the fact thaS(7=0,{)=Sy({) # o3. The operator
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We also have to keep in mind that all solutions and the
scattering matrix of the syste(®.16) are meromorphic func-
tions of \.

Then we obtain thalf _(,y;{) must satisfy the following
GLM-type equation:

L _(1,y;0)+SOOK(T+Y;0)

M(N\) on finite interval generically possesses a purely dis-

crete spectrum with an infinite number of simple discreteyhere

eigenvalues, see, e.§34]. As a consequence, the kernel of

the GLM equation contains only a sum over the discrete

spectrum. Skipping the details we write down the results.
Let the fundamental Jost solution of EQ.16), normal-
ized to the left end-=0 of the interval, be fixed up by

imF(,7\)=lmFqo(,7N) =1, (2.193
7=0 =0
Fo(Z,m\)=gee" 737 gy 1, (2.199
ImF(7,Z,N)=T(L,N), (2.20
T—1
gk(g):g(gaTNT:kr k=0,1. (22])

Then its behavior at=1 determines the scattering matrix
T(¢,\) according to Eq(2.20. It remains now to evaluate
the “evolution” of T in . In order to do this we have to
calculate firstC(\) in Eq. (2.6) by taking the limit of Eq.
(2.19 for 7—0 with the resultC(Z,\)=U©(£,\). Here
and below, byu®(z,1), k=0,1 we denotdJ(Z,7,\)|,—-
Then we take the limit of Eq(2.19 for 7— 1, which gives
the following result for the evolution of ({,\):

T
a7 =V ENTEN =TEMUOEN).
Formally this is a linear evolution equation far(Z,\).
However it is not trivial to solve sinc&({,\) is a nonlinear
functional of q(Z,7). We can determine q(®(¢)
=q(¢,7)|,=0 from the initial conditions, but in order to com-
puteq®(£) we must have the solution of the problem itself.

Let us now describe the solution of the ISP for the
M(A) operator. It will be convenient to use the notations
sSW()=9S(¢,7=k), k=0,1 and let them be diagonalizable
in the form

(2.22

SY() =g ) o309k (0, (2.233

(=9, 7=k). (2.23h

We introduce the transformation operator which relates

the fundamental Jost solutioR(Z,7,\) to its asymptotics
Fo(¢,7\) [Eq.(2.19];

F(g,r,)\):Fo(g“,r,)\)+;ffl“_(r,z;g“)Fo(z,g,)\)dz.
IJo
(2.24)

+fTF,(T,z;g)K’(z+y;§)dz=0, (2.29
0

the kernel K(7;¢) and its derivative

K'=dK(7;{)/dr are determined by

0 Kk}
K(mO=0(0| _ s ]9 (0, (2268
k(r;0)=— 2, M) ginjoz (2.26b
Njies A

Here S and \; are the discrete spectrum and the discrete
eigenvalues oM (), andm;({) is related to the norm of the
corresponding Jost solution of E@.16); genericallyx; may
also depend odg.

The corresponding potential of E¢2.16 is recovered
from the solutionl” _(7,y;¢) of Eq. (2.25 through

S(1,0))=B_(7,0)S9()B-X(7,0),  (2.278

B_(7,0)=1+T_(7,7,0)S?). (2.27h
The complete solution of the problem also requires the cal-
culation of the{ dependence of the scattering data, in our
casem;({) andA;.

We finish this section with a brief discussion on the gauge
transformations and the compatibility of our results to the
ones obtained if9,13,264. It is well known that the Lax
representation and the compatibility conditi¢h5) are in-
variant with respect to the group of gauge transformations of
the form

L E’E—aF UF 2.28
— - ag H ( . a
e OF
M—MF=——VF, (2.28h
T
where
F=GF, (2.29
1 -1 -1 1 1~
U=G""UG-G 'G,=Uo+ U, (2.30
V=G WG-G1G,=Vy+\V;. (2.31)

HereG(,{) is a generic element of the gro@d(2), and it
can be fixed up to our convenience. Let us then fix it up so,
that
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Y )N As we already noted, in order to apply the ISM to the
GflVGEEGflsGZ 5773 (232 solution of our problem we will first need to calculate not
only go(¢), which is determined from the initial conditions,
This is always possible due to the facts thaB=t0 and  but @lsog,(¢). The situation is greatly simplified if we im-
deS£0. pose quasiperiodic boundary conditions on the fields
Such a choice in a similar setup was used in the proof oFa.sp(¢.7) n such a way, thatsS'?(£)=S(¢). Then
the gauge equivalence between the nonlinear ‘gohger ~We obtainU™(£,\)=U""({,\), and the right-hand side of
(NLS) equation and the Heisenberg ferromagnet equatioffd- (2.22 becomes proportional to the commutator
[19]. However, in this case both operatdrsand M de- [ T,U(¢,\)]. The importance of this imposition can be
pended polynomialy on, and their fundamental solution S€en from the fact that it immediately provides us with the
F taken forn=0 is a well-defined function. hierarchy of conservation laws. The generating function of
As it is in our case, the operatéris singular forn —0,  this hierarchy is fF()), which is now{ independent.
and thus we would be unable to define the common funda- W€ end this section with the one-soliton solution of the

mental solutionF for A =0 rigorously. That is why we pre- system(2.7);
ferred to attack the ISP favl directly, adapting to our pur- 1 2
poses the well known results frofa9]. S3=—52(7)( 1- —H) (2.363
Kaup, in[9], solved the inverse scattering probléiSP) 2 cositZ
for the operatoM on a finite interval in the following way. i\2
First he applied the gauge transformation and obtaMet S, _lve 2(7)
be the Zakharov-ShabéZS) system but on a finite interval. 2 costy
He wrote GLM equations corresponding M, and then "
made conclusions about the inverse scattering problem for S.=82, (2.369
M. The next step— the evaluation of the evolution of the »
corresponding spectral data—he overcame by other means. = _\/fne (2.360
Of course, as far as the inverse scattering problem is con- costz ’ '
sidered our results are compatible with the ones of K&lp
Indeed, the GLM equation foM(\) considered on the _ 1,
whole 7 axis is well known to be equivalent to the GLM Z=nt= —fog (r')d7’, (2.369
equation for the ZS system; sgE9]. The proof for the finite
interval case is quite analogous. We use just the explicit fornwhere £(7)= \2K(7) is real, the soliton’s eigenvalue is
of the L operator, while Kaup makes use of the equations oi », and ¢ is a constant real phase. This solution satisfies the
motion. In this way he avoids the problem with abovemen-differential equations, but unfortunately fails to satisfy the
tioned singularity of the gauge transformation. boundary conditiorQ(£,0)=0 in Eqg.(2.103. As a function
Finally, let us compare ouf dependence of (£,\) with of 7 Eq. (2.36 coincides with the one-soliton solution of the
the one derived in[9,26,13. The interrelation between Heisenberg ferromagnet on the whateaxis, provided the
T(Z,\) and the scattering matriX(4,\) used in these pa- the soliton parameters are adjusted, so that

tanlz

e'?, (2.36h

pers is given by S(7,8)|.—0=S0(¢) as given by the boundary conditions.
_ In fact the class of soliton solutions of our system consid-
Te(£N)=e 739 M T(£,\)go. (233 ered on the whole axis can also be used as a good approxi-
_ o mation when restricted to a finiteinterval. The substantial
From Eq.(2.3) we derive thag,({) satisfies difference between the corresponding GLM equations con-

sists of the fact that the kern&(r,¢) [Eq. (2.26)] always

dg contains an infinite sum. In some cases, when the amplitudes

X gk =
d¢ \/Eq (Do) =agu 2, (2.343 (or equivalently, the imaginary parts af) of the first sev-
eral solitons are much larger than that of the others, we can
a=a(r),_,= const, k=0,1 (2.34b truncate the kernel and consider the remaining finite sum as

a good overall approximation. In addition, since in our model

where the constants, are arbitrary and reflect the arbitrari- 0<7<1, we can have at most a finite number of such soli-

ness in the choice of the gauge. From E@s33, (2.34 and  tons. They move toward the edge of the interval which cor-
(2.22 we find responds to the edge of the optical pulses, and after a finite

propagation distanck they disappear; that is why they are

dTe i © N e called the transient soliton®,13,2§. Our expressions for
az K ITk(EM) ST — eSS 7 (e o Tk (M )] the soliton solution for bilinear variables coincides with the
ones obtained in the papers just cited. If we forget for a
+a;03Tk({N)—agTk({N)os. (2.35  moment about the anti-Stokes field and make use of Ed).

with E;=0, we will recover the results of Kaup and Menyuk
Obviously forapz=a;=0 this evolution coincides with the for the electromagnetic fields.
one derived by Kaup. A reduced version of this equation The presence of the anti-Stokes fi#lg first changes the
with SP(¢)=03 has been shown to have physical impor- definition of the “nonlinear time.” In deriving the soliton
tance and solved if9,13,26. solution, we directly solved the ISP for the systéth?).
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Finally, Eq. (2.36 combined with Eq.(2.1) produces solu- Q=Q€'?, (3.30
tions in terms of the fieldg;, i =p,s,a which are different
from the ones i19,13,26. b=d—b, (3.30

The above analysis allows us to link our results to the
results of[5,9,13,22,23,26,27 Indeed, we can see that, in we rewrite Eqs(3.1) and(3.2) as follows:
the presence of the anti-Stokes wave, one can also find three
regimes: an initial regime, when the Stokes and anti-Stokes ds;

waves are small compared to the pump wave; a transient d_g__zQA+S'n¢' (343
regime, where we find transient solitons both for ®i@and
E fields [see formulag2.36) and (3.42 and (3.43 below], dA, ~  ~
and a self-similarity regimgsee Eq(3.18 below]. d_ngSGS'”‘ﬁv (3.4b
I1l. PERIODIC, SOLITON, AND SIMILARITY SOLUTIONS db o~

_ _ _ a—7=2A,sing, (3.59

In this section we generalize the results[58,24] to de- dé

scribe the similarity solutions—solitons, periodic, and self- - -
similar solutions for systent2.2). We also have not been d¢ [2A, QS5 ~
able to resolve the fundamental problem, inherent to this dé EEJ“ A, cosp, (3.5b
type of NLEE. We have to solve the ISP figk(\) on a finite
interval, and naturally thé dependence of the corresponding l,= §S§+Ai ’ (3.69
scattering data will depend on the boundary value) cdt
both ends of this interval. Indeed, the initial conditions allow — 20 =~
us to calculate all necessary quantities suclsdgg,=0), '2=2QA. cosp, (3.6
S.({,7=0) at 7=0. In order to evaluate them at=1, we li=18,+ %52 (3.60

have to solve the problem completely.

On the other hand, the initial conditions of such a physical
system must uniquely determine its evolution. One way ou
of this problem is to impose certain boundary conditions on *’
the operatoM (\) — e.g.,(quas) periodic, which are diffi- ds;\2 4
cult to obtain experimentally32]. They will relate the values (d_g) =;(S3— Z)(S3—2Z5)(S3—2Z3), (3.7
83(517-:0)1 Si(giT:O) to S3(§,T: 1)! St(é’iT:]-)'

where the constantg; are related td, by

ISquaring the equation fdB; and using the expression for
k=1, 2, 3, we obtain

A. Periodic (cnoidal) and solitary waves

At first we will study the cnoidal wave similarity solu- 21+ 2ot Zg=als, (389
tions which include solitons as a special limit. Indeed, from _
Egs. (2.1) and (2.2 and using the transformed variable 212y 2oLyt 2521 = =214, (3.8
é={— 7/, we find the system 2,2,75= a|§/4—2aI1I3. (3.80
d . . o
d_S3 =—iQ*S, +iQS_, (3.13 The solutions foiS; may be written explicitly in terms of
§ Jacobian sn function. We have the following perio@inoi-
ds dal) waves.
d_g:_iQSs’ (3.1b For a>0, 2,<0<Z,<Z3,
g S3=Z1+(Z,—Zy) SP[p(£—£0) K], (3.9a
ad—(§=2i8+, 3.19 247,12
|0=( - ) , (3.9
which has the following first integrals:
Z,—Z
3S5+S,8 =1y, (3.29 K=t (3.99
3741
* —
S QT +S-Q=lz, (3-2b For a<0, Z,<Z,<0<Zs,
1 1 - _ _
2334_ §|Q|2:|3' (3.29 S3=Z3+(Z3—Z,) sr[p(é—&o),K)], (3.103
- Zy-2,|'?
Introducing the real variablea. , ¢, Q, and¢ by P=l—"—3 : (3.10b
S.=e'%+A_, (3.39 y A

, k2= .
S_=e %A, (3.3h Z3—1Z,

(3.109
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Here we point out particularly the subcase, wher0.
Then we are able to express the roggsof Eq. (3.7) explic-
itly in terms of 1, and|; with the results

Z=—+2l4, (3.113
22: af|3, (311b
Z3: \/2'1, (311()

8'1 1/4
p=(?> , (3.119
3+ 2l
e=23" VA (3.118
24214
for the case of Eq(3.9), and

Z=—+2l4, (3.123
Z,=+2l4, (3.12h
23:a|3, (312(}

/2| 1/2
p=(ls+ —= 1) , (3.12d
l3—+2I
=28V (3.120
a|3+ \/2'1

for Eq. (3.10. In the next particular cases we pkit1 to
find the corresponding solitary waves
For a'>0, Zl<0<22=Z3,

Z=2y

(Z,—2,)
cosl? —(&— &)
o
For <0, Z,=2Z,<0<Z,,
Zo—7 1/2
Sy=Z5+(Zs— Z,)tanif| | = 2) (6—&)|. (3.14

4345

whereé, is the arbitrary initial phase. We will return again to
this solution in Sec. Il D.

B. Self-similarity solutions

We prefer here to analyze the solutions of E2) with
another self-similarity variablé=2+2¢r. If we choose

Sz=cod B(¢)], (3.163
SH =i§\58irfﬁ(§)], (3.16b

we find that Eq.(2.2) goes into
dzfg(f) + % d'ﬁ(;) +sin B(&)]=0. 3.19

Equation(3.17) was first derived in another context for the
transient stimulated Raman scattering by Elgin and O’ Hare
[35]. This equation can be reduced to one of the standard
forms of the PainleveR),) equation[36,25. When &>1,

we can use the asymptotic formula given by Novokshenov
[36] to obtain

3 « S( @’
B(é)—g—mco &+ 1giné+y), (3.1
where
~ 16
a =—?In[co$,80/2)], (3.19a
2In2 i
¢=Tln[cos{,80/2)]+argl“ 1_6 —Z. (3.19n

HereI'(x) is the gamma function with a complex argument,
ard I'(x)] indicates its phase, amgh= B(£=0). Similar ex-
pression can be obtained f@ from Eq. (2.18. In Figs. 1
and 2 we plot the function§;(¢) and the real part of the
Rabi frequency)g(£) =ESE,+EJE,.

From Fig. 1 we see the oscillating energy exchange whose
amplitude decreases with Such self-similarity solutions in
the case when the anti-Stokes wave is neglected are known
as accordion$24,25.

Let us concentrate on the most important solutions, from

the physical point of view soliton, i.e., cagigi) with the
additional constrainZ,=2Z;= alz=2l;. The result of in-
tegration is

~ 2\l
Q= sz’ (3.153
S;= al;(tantfZ— sechz), (3.15h
A+=\/§a|3%, (3.150
b —p=ml2, (3.150
z=\213(&~ &), (3.158

C. Discussion

To obtain the bright solitons and to compare our results
with the ones of Kaplaret al. [33] we slightly generalize
Egs.(1.1) (see for exampl€l,3]). The Raman quantum tran-
sition between the lowefground and upperexcited level,
i.e., two-level atom is described by &2 Hermitian density
matrix p, and the generalized Bloch equatidis3]

aQ -

E:—QRA, (3203,
A .
—-= ReQQy). (3.20b

The system of equations
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'
J
80

FIG. 1. The self-similar solutiorS;(£)=cos3(é), é=2\2(r

with the initial conditiong(0)=1.15.

E *

p 5( _IBaQ E QEsv
JEy .~
sa—g—Q Ep,
IE,

5& ag BaQEpl

(3.213

(3.21b

(3.219

completed with the corresponding equations@ar p4, [33]
andA=pq1— py, from Eq.(3.20, generalizes Eq.1.1) with

q=0 andg=0. Here the following notations are introduced:

Ei:WS,p\ niCIZﬁwiEi s

*
_Wpa
ﬁa_ * 7
W5,
~ 4 ~, E* =
=——(EXE,+
R™ 7TNO( ﬁa a
Ng (wswp)llz
WS S 1
P ¢ NsNp,
No W, 12
Wy =« y
e ¢ “PA npn,

where as , and a, , are Raman polarizabilitysee for ex-
=s,p,a is the refractive index at

ample[3]), ni=n(w;), |

(3.223

(3.22h

(3.229

(3.233

(3.23b

AAAAAAAAAA

=

FIG. 2. The real part of the

Y vy e

Rabi  frequency

Or(€)= ReELE,+EFE,) = \2sin3(9), £=2\2(7 with the ini-

tial condition 8(0)=1.15.

frequenciesw; . By Ny we have denoted the density of Ra-
man particles. Using arguments analogous to the onjgslin
we find that one can expect such physical systems to be

described by systerfi.1) with 8,=1. In addition,Q)g is the

generalized local Rabi frequengy,3].
Equations (3.20 and (3.21),

rewritten for the self-

similarity variable {={— 7/a, coincide with Eq.(6) from
Kaplan et al. [33]. The direct comparison 08, and Qg
shows that the physical interpretation $f is the normal-
ized local Rabi frequency. From these equations we also ob-

tain that the quantity
AZ+[QI2=14(¢)
is conserved inr, and that the equations

8y ® p+ 8Dt 8, o=1(7),

|1 1

Ui
9i Vg

24
®;=|E?
hold. Using the ansatZ33]

®p:|ap|2q)2 )

——,_—), i=p,s,a,

0 0
27 (8,05 8,0¢)— mNo--A=0,

(3.29

(3.253

(3.25h

(3.263

(3.26b

(3.273
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b =|al’dy, (3.27b dds\?2 4
T T | T2 Py ZO( @3 Zo) (s~ Z) (05— Zy),
3
|ag?®y, (3.279 (3.313
2 2
Y3 az(mNoa)
2_"'° - - -
|| =W’ (3.270 aj Py (3.31h
1 where the constanig; are related td, by
aq°= , 3.27
a4 SW (3279 Zi+Zpt Za+ Z4=2azal s, (3.323
2 2125+ 2523+ 2321+ Z1Z4+ 25724+ Z3Z
| a|2:|§{;l/|\/’ (3.271) 142 243 3+1 144 244 344
a =— a5(mNa)?l 44+ a5a?5—2asl 1, (3.32h
we find the system 207,24+ 212,75+ ZyZoZy+ Z1Z5Z,4= — balal 5l 4,
dod 3.32
d; — a,(Q* Qr+QOY), (3.283 N (3-329
ara;ly
Z12,23Z4= (NG )2 +a3(mNga)?l 4, —2a3a?131
Qg (3.320
d_§ = aqu)E ’ (328b .
where®s has different formgcnoidal wave, soliton, Lorent-
dQ 4 zian etc). The integration procedure is analogous to that
CHE N QRA, (3.280  used in Sec. Il A.
0 In the particular case when the anti-Stokes wave is ne-
dA 2 glected,3,=0, andE =0, and for the real quant|t|el§
a—7=———(Q*Qr+QQOR), (3280  E,,#, andQg from Egs.(3.20 and(3.21) rewritten for the
self-similarity variable¢=¢— 7/ a, we have
Qr=EfEp+ B,ESE,, (3.288 B2
s S0z dz —ZQRS|n¢ (3.333
=[5 Bl 518 o), _
s EZ
(3.281 S 4F = —2 Qgsing, (3.33h
! (3.280 4 3
2= ST 12_<s 14 (27 ) ! !
* odagl*— dafal” ¢= mfmwf )dg’, (3.339
which has the following first integrals: )
Q=sing, (3.339
1, 1 )
. . After integration of Egqs(3.33 we obtain the cnoidal solu-
QrQ* —QRQ=1; (3.29B  tions of [6]; see also[7]. The solutions of Eq(3.33 are
substantially different from the cnoidal solutions in Sec Ill A
1 P WNOA—I 3.29 because they are related to a fourth-order polynomial rather
aa, st 2 =713 (3299 than to a third order one as in E@.7.
Next we will consider the simplest solutioforenzian
A2+|Q|2=1,. (3.299  soliton. This class of solutions satisfies the boundary condi-

Introducing the real variableéR, bR, 52, 6 and ¢ by

Qr=e€'%rR0, (3.303
Q=0Q¢'?, (3.30B
b=¢— dr, (3.309

we rewrite Eq.(3.28 and(3.29 as follows:

tions(2.9). Inserting Eq(3.27) into | =0, from Eq.(3.25 we
obtain

2
|Bal ) (3.34

2_ _
€ ( 3.3, 820,
Equation(3.26) has the form of a conservation law with

conserved density 6;@—6,$, and conserved flux
—mNpA. Then

J=2(8D—5,D,)—mNoA=*N,,  (3.353
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A%+|Q|?=1,=1, (3.35h Y1=Ep, (3.419

Oy =DpS(§). (3.350 ¥2=Es, (3.410

Here W3=E (3.419
= NW (336 without the last equation fo®, which we may obtain from

®o= (1165~ |Bal?18,)° Sec. I. Using the well-known one-soliton solution of the vec-

tor nonlinear Schidinger equation under reductioi3.41)
and the solution of the linear proble(8.40 with potentials
Q,Q* we obtain in(2.36), i.e.,

where — indicates that the moleculéatoms are initially at
the equilibrium and+ that the population difference is in-
verted. Let us also introduce

27ne'?
A==*[1-25(&)], (3.373 —%, (3.423
Q(&§)=—4y38S(¢), (3.370 1 s
Z=nl- —f E(r"dr', (3.42h
S(&)=(1+4y569) 71, (3.379 nJo

where S(£) may have Lorentzian forniLorentzian solitop ~ Where&(7) is real, the soliton’s eigenvalue is; and ¢ is

[33]. Finally from the normalization condition constantreal phase. The direct integration of G0 with
|ap|2+|as|2+|aa|2:1’ we have reduction(3.41) is given by
1B £, = 28(r) o o (3.433
T 330sy  Oadpa’ (3.39 P cosiz©
where E.=&(7)tantfzZ, (3.43h
1 1 &(7) o2
- ¢
=55, (3.393 E.= coskz (3.430
1 1 These solutions are similar to transient SRS solitons obtained
Spa=5 5 (3.39D  in[13] (see alsd15]) and foré=1, and$=0 coincide with
9] a

the ones in11]. If we now calculateS; and S.. using the

Recently these bright solitoi&q. (3.37)], in a more general above expressions fdf,, Es, E,, we obtain precisely the
physical situation, cascade SRS$L,3], have been used to soliton solution(2.36) and(3 15.

predict generation of subfemtosecond coherent pulses in SRS
experiments 33]. From the above analysis it is clear that
bright solitons are obtained in the case of finite group veloc-

IV. N-COMPONENT GENERALIZATIONS

In this section we show that the extended model with

ity dispersion parametei [Eq. (3.26][11,33 and nonzero
population difference\.

D. One-soliton solution

Here we will show that the auxiliary linear problem for
the vector NLS equation with some additional reduction is
equivalent to Stokes—anti-Stokes SRS equations without the
last equation forQ. This formal equivalence allows us to

recoverkE,, Eg, andE, from the potentialQ, already ob-
tained by the ISM of Sec. Il with Eq2.36).
Indeed, we introduce

"Zl 0 a1 a Jl
J| ~ . -
EY: Y |=| -1 0 O a2, (340
3 gz 0 0 V3
and require that
0h=-Q, (3.413
q2=Q*, (3.41b

N-Stokes andN-Stokes components is also integrable in

the

sense means of ISM. The considerations are formal from a

physical point of view.
Let us consider the following equations:

o'?E . *=() (1)
(3’_{22 (BaQ"E4'—QESY), (4.13
JEY
TZ:Q*Ep' i=1,... N, (4.1
JEY
5. = BaQEy. (4.1
Q N
(9_ E (E*(l E(l)_l_IB E*(')E(')) (4.19

with B,= 1. The equations foE} can be written down as the

same auxiliary linear problem, which solves

N-component vector NLS equation

the
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J V. CONCLUSION
&—gilf: UgWr, 4.2
In this paper we have generalized the methofbii 3,24
with the spectral parametar=0. Here for solving the SRS problem witj3,=1 when both Stokes
~ and anti-Stokes fields are present. For bright solitons, our
21 results are valid also fgB8# 1. Several types of explicipe-
Zz riodic, soliton, and self-similarity solutions are obtained.

The only difference between the mathematical description of
the MBE without an anti-Stokes wave and our case in terms
of the bilinear variable$; andS.. consists of the definition
~ of the “nonlinear” time 7. Of course, in terms of the elec-
~¢2N tromagnetic fieldsE;, i=p,s,a, both the physical interpre-
Yon+1 tation and the form of the solutions are substantially differ-
ent.
0 i 92 ... Oon-1 Oon For bright and transient solitons our results are in agree-
K O 0 ... 0 0 ment with these of Kaplaat al.[33] and Kaup and Menyuk
N [26,9]. In some cases we have constructed not only the bi-
Up= 9% o 0 .. 0 0 linear variablesS; andS.., but also the field€,, Es, and
: D : : E, themselves.
The ISM meets with difficulties when both initial and
boundary conditiong2.9 on the potentials are imposed.
These problems do not arise when one uses quasiperiodic
(4.30 boundary conditions, which, however, may be difficult to
and realize in experiment.
Normally Stokes—anti-Stokes scattering occurs when the
01=03=:--=0Qon_1=—Q, (4.49 wave number mismatct is different from zero. Recent nu-
merical studies in this direction show that in this case the
U2=04="--=Qon=Q", (44D solitons decay31]. For simplicity we have considered only
the exact resonance conditigr=0, which also has an im-
Y1=Ep. (4.49 portant physical meanind.1,33,31.
(K B Looking at the Lax operatoi2.16) we recognize the sys-
Vo= E(S ', k=12,...N (4.4d tem of equation$2.2) as belonging to the Heisenberg ferro-
D _ magnet hierarchy. One can try to apply the expansions over
Vae1=Ba®y k=12, N. (449 e “squared solutions” in the spirit df38], and then treat

We again introduce bilinear variables the casgy#0 as a perturbation.

N

"’f"‘ , (4.33

e
Oon-1

*
—d2n

o

M2_ 12
;1 (|ES | |Ea 1), (4.59 ACKNOWLEDGMENTS
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