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The leading radiation forces acting on an atom or ion subject to linearly polarized Laguerre-Gaussian~LG!
light are studied. Particular emphasis is laid on the orbital angular momentum effects associated with LG light.
The optical Bloch equations appropriate for the adiabatic approximation are derived and used to evaluate the
forces and associated torque governing the atomic motion. The steady-state dynamics of the atom are explored
for atoms subject to a single beam and multiple independent counterpropagating beams. The main features
responsible for the dynamics of the atom, together with the dipole potentials characteristic of Laguerre-
Gaussian light, are identified and discussed. The theory is illustrated by the numerical integration of the
equation of motion for Mg1 ions in various beam configurations. This yields information on trajectories,
velocity evolution, and vibrational frequencies at potential minima. Interesting effects involving a reciprocal
interplay between motions in orthogonal directions are demonstrated. Such features are purely dependent on
the orbital angular momentum property of the light. Their possible use in controlling atomic motion is inves-
tigated.@S1050-2947~96!07210-1#

PACS number~s!: 32.80.Pj, 42.50.Vk

I. INTRODUCTION

The radiation forces associated with the near-resonant in-
teraction of laser light with atoms and ions have been the
subject of intensive theoretical and experimental study@1–4#
since the basic mechanisms were first recognized@5#. The
simplest features can be described with reference to a two-
level atom subject to an electromagnetic wave. Near reso-
nance, such an atom experiences two distinct forces: a dissi-
pative force that arises from the absorption of the light by the
atom followed by its spontaneous emission and a dipole
force that arises from the nonuniformity of the field distribu-
tion. These basic forces underpin many of the applications
involving the manipulation of atoms by lasers in a variety of
beam configurations. The dissipative force has been ex-
ploited in cooling the atomic motion@6# and the dipole force
used for trapping@7#.

Much of the previous theoretical work in this context has
assumed plane-wave modes. However, the demonstration
that Laguerre-Gaussian~LG! laser beams possess well-
defined orbital angular momentuml\ @8,9# that originates in
the azimuthal phase dependence of the field distribution has
aroused new interest in the basic physics. The orbital angular
momentum of LG beams is quite distinct from the spin an-
gular momentum associated with circularly polarized light
and can occur in linearly polarized LG modes. A circularly
polarized LG beam possesses spin angular momentum as
well as orbital angular momentum and can exhibit features
involving spin-orbit coupling@10#. In our recent work@11#
we presented a theory for the motion of a two-level atom in
a Laguerre-Gaussian beam with spontaneous emission and
saturation effects taken into account heuristically. The results
found were in the form of an azimuthal shift in the atomic
resonance and a torque about the beam axis.

The purpose of this paper is twofold: first, to present a
more rigorous theory for the forces due to LG light and their
effects on a two-level atom and, second, we extend our in-
vestigations on the orbital angular momentum effects beyond

the one beam case in order to explore more fully the effects
of the orbital angular momentum on atomic motion. The
theory is developed in terms of the optical Bloch equations
~OBEs! @1,12,13# that allow theab initio inclusion of relax-
ation effects and naturally incorporate saturation phenomena.
The solution of the OBEs in the adiabatic, or constant veloc-
ity, approximation lends insight into the time evolution of
angular momentum effects for an atom in a LG beam. In the
long-time limit, these solutions lead directly to the steady-
state results for the dissipative and dipole forces due to a LG
beam.

In Sec. II we set up the density-matrix formalism appro-
priate for a two-level atom interacting with Laguerre-
Gaussian light. In the adiabatic approximation this leads to
the optical Bloch equations that formally enable the calcula-
tion of the average mechanical force~defined as the rate of
change of the atomic momentum!. We argue that as the con-
cept of force is a classical one, the rate of change of momen-
tum can only be interpreted as a force for elapsed times
greater than the spontaneous decay timeG21, where time is
measured from the instant the light beam is switched on@1#.
With this restriction, we solve the OBEs to determine the
evolution of the average ‘‘force’’ components from the in-
stant the LG beam is switched on. It is possible to examine
the time evolution in a number of limits, but we discuss
primarily the steady state. Further insight into the nature of
the forces is gained by the numerical solution of the optical
Bloch equations for a typical set of parameters. In Sec. III we
give an analysis of the steady-state dissipative and dipole
forces for various beam configurations and identify the fea-
tures directly attributable to the angular momentum of the
LG beams. The motion of a Mg1 ion in counterpropagating
LG fields is described in Sec. IV after solving the equation of
motion numerically. The results demonstrate the effects of a
characteristic torque and of reciprocating forces between
axial and azimuthal motions. Section V contains conclusions
and further comment.
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II. FORMALISM

We wish to examine the evolution of the average force
acting on a two-level atom or ion, henceforth referred to as
the atom, due to its interaction with light. The light is in the
form of a coherent beam with a complex amplitudea and
has a LG distribution@8#. An appropriate Hamiltonian is
given by

H5HA1HF1H int , ~1!

whereHA andHF are the unperturbed Hamiltonians for the
atom and field, respectively, and are

HA5
P2

2M
1\v0p

†p, ~2!

HF5\va†a. ~3!

HereP is the center-of-mass momentum operator andp and
p† are the atomic lowering and raising operators;M is the
mass of the atom andv0 is the atomic transition frequency.
In Eq. ~3! a anda† are the annihilation and creation opera-
tors andv is the frequency of the field.

The interaction HamiltonianH int in Eq. ~1! describes the
coupling of the atom to the electromagnetic field and is given
in the electric dipole approximation by

H int52d•E~R!, ~4!

whered is the atomic dipole moment operator andE~R! is
the electric field evaluated at the positionR of the atom. The
atomic dipole moment operator may be written as

d5D12~p1p†!, ~5!

whereD12 is the dipole matrix element of the atomic transi-
tion. The electric-field vector associated with a Laguerre-
Gaussian mode propagating along thez axis is given by

E~R!5 i @aêEklp~R!eiUklp~R!2H.c.#, ~6!

whereê is a polarization vector in thex-y plane. The electric
field of a LG beam has a small vector component along thez
axis @11,14#, which we have ignored. It can easily be shown
that the ignored term is of the the orderl/w0 relative to the
principal component alongê @11#. In Eq. ~6! Eklp~R! and
Uklp~R! are, respectively, the mode amplitude and phase of
the electric field, which may be written as@11,14#

Eklp~R!5Ek00
Clp

~11z2/zR
2 !1/2

S &r

w~z! D
u l u

Lp
u l uS 2r 2

w2~z! De2r2/w2~z!,

~7!

Uklp~R!5
kr2z

2~z21zR
2 !

1 lf1~2p1 l11!tan21~z/zR!1kz.

~8!

HereClp5Ap!/( u l u1p)! is a normalization constant;w(z)
is given byw2(z)52(z21zR

2)/kzR , wherezR is the Ray-
leigh range. The integersl andp are indices characterizing
the LG mode. It has been shown@8# that l\ represents the
orbital angular momentum of each quantum in the mode.
Finally, in Eq.~7! Ek00 corresponds to the plane-wave ampli-

tude for an axial wave vectork. The plane-wave amplitude
and phase emerge directly from Eqs.~7! and ~8! by setting
l50, p50, andzR→`.

We now transform to an interaction picture with respect
to the unperturbed field Hamiltonian\va†a. The field anni-
hilation and creation operators then acquire the time depen-
dences

a~ t !5eiva
†atae2 iva†at5ae2 ivt, ~9!

a†~ t !5eiva
†ata†e2 iva†at5a†eivt. ~10!

In the classical limit in which the field forms a coherent
beam, we may replace the field operators byc numbers

a~ t !→ae2 ivt, ~11!

a†~ t !→a* eivt. ~12!

The coupling between the atom and field may then be written
as

H int52d•E~R!52 i\@p̃†a f ~R!2H.c.#, ~13!

where in writing Eq.~13! we have made use of the rotating-
wave approximation and have defined

p̃5peivt, ~14!

f ~R!5~D12• ê!E~R!eiU~R!/\ . ~15!

For convenience, we have not explicitly shown the LG labels
klp associated withEklp~R! andUklp(R) by virtue of Eqs.
~7! and~8!. In the rest of this section we continue to use this
simple notation but resort to the full notation subsequently.

To derive the optical Bloch equations for the atomic
density-matrix elements we make the assumption that the
position and momentum operatorsR andP may be replaced
by their expectation valuesR0 and P0, respectively. This
approximation allows the gross motion of the atom to be
treated classically, while maintaining a quantum treatment
for the internal dynamics of the atom. The validity of the
semiclassical approximation requires that the spatial extent
of the atomic wave packet be much smaller than the wave-
length of the radiation field and that the uncertainty in the
Doppler shift be much smaller than the upper-state linewidth
of the atom. This is the case for most atoms@1# if the recoil
energy of the atom is much smaller than the upper-state line-
width.

Within the semiclassical approximation, the atomic den-
sity matrix can be written as

r5d~R2R0!d~P2P0!r~ t !, ~16!

where the internal dynamics of the atom are now contained
in r(t). The evolution ofr(t) is given by the well-known
relation

dr

dt
52

i

\
@H,r#1Rr, ~17!

whereRr accounts for the relaxation dynamics of the atomic
system. By substitution ofH and use of the coupling given in
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Eq. ~13!, we obtain the following optical Bloch equations for
the atomic density-matrix elements:

dr22
dt

522Gr222a f ~R0!r̃122a* f * ~R0!r̃21, ~18!

dr̃21

dt
52~G2 iD0!r̃211a f ~R0!~r222r11!, ~19!

whereD05v2v0 is the detuning of the field frequency from
atomic resonance andr̃215^p̃&.

The average radiation force acting on the atom is defined
as the average rate of change of the atomic momentum. We
may write

^F&52^“H int&. ~20!

Substitution of Eq.~13! into Eq. ~20! and use of Eq.~15!
allows the force to be written aŝF&5^Fdiss&1^Fdipole&. Here
^Fdiss& is the dissipative force given by

^Fdiss&52\“U~R0!$r̃12~ t !a f ~R0!1 r̃21~ t !a* f * ~R0!%
~21!

and ^Fdipole& is the dipole force given by

^Fdipole&5 i\
“V~R0!

V~R0!
$r̃12~ t !a f ~R0!2 r̃21~ t !a* f * ~R0!%,

~22!

where we have introduced a position-dependent Rabi fre-
quency asV~R0!5ua~D12•ê!E~R0!u/\.

In the adiabatic approximation@15#, the atomic velocity
V5P0/M is assumed to be constant during the time taken for
the dipole moment to relax to its steady-state value. The
positionR0 of the atom at timet is then given by

R05r01Vt, ~23!

wherer0 is the ~initial! position of the atom when the beam
was switched on. Thus we can write

f ~R0!5 f ~r01Vt ! ~24!

. f ~r0!e
i“U~r0!•Vt, ~25!

where we have assumed that the change in the field ampli-
tude is negligible during the time taken for the dipole mo-
ment to relax to its steady-state value.

Within the adiabatic approximation, the optical Bloch
equations take the form

dr22
dt

522Gr222a f ~r0!r̂122a* f * ~r0!r22, ~26!

dr̂21
dt

52@G2 iD~r0 ,V!#r̂211a f ~r0!~r222r11!, ~27!

where the total detuningD~r0,V!5D02¹U~r0!•V and r̂21
5 r̃21e

2 i tV•“U(r0). The forces can now be written as

^Fdiss&52\“U~r0!$r̂12~ t !a f ~r0!1 r̂21a* f * ~r0!%,
~28!

^Fdipole&5 i\
“V~r0!

V~r0!
$r̂12~ t !a f ~r0!2 r̂21~ t !a* f * ~r0!%.

~29!

For given initial conditions the solution of the optical Bloch
equations~26! and ~27! leads formally to the determination
of the forces by direct substitution in Eqs.~28! and ~29!.

A. Steady state

The steady state occurs when all time derivatives in the
optical Bloch equations are set equal to zero and corresponds
to the long-time limit. It is not difficult to show that the
steady-state solutions to the optical Bloch equations~26! and
~27! yield the following expressions for the steady-state
forces:

^F&5^Fdiss&1^Fdipole&, ~30!

where

^Fdiss~R,V!&52\GV2~R!S “U~R!

D2~R,V!12V2~R!1G2D ,
~31!

^Fdipole~R,V!&522\V~R!“V~R!

3S D~R,V!

D2~R,V!12V2~R!1G2D , ~32!

where we have redefined the notation such thatR now stands
for the position of the atom~instead ofr0!. The above results
are the same as those presented in our previous work where
perturbation techniques for time-dependent Heisenberg op-
erators have been used@11#. The dependence on the decay
constant and on saturation are in agreement with our earlier
heuristic approach.

B. Transients

Torrey @16# gave detailed solutions of the original optical
Bloch equations. He also recognized that there were three
special cases of interest that have relatively simple solutions.
These were for strong collisions when the natural lifetime of
the state may be replaced by the collision shortened lifetime,
exact resonance and for intense external fields. His approach
was applied by Allen and Eberly@17# to the optical Bloch
equations. Consequently, in a similar way, the evolution of
the forces from the instant the light beam is switched on can
also be examined for a number of special cases. In fact,
radiation effects have been examined in detail for atoms ex-
cited by plane-wave light@18#; the cases considered were~i!
an atom with all relaxation constants equal to zero,~ii ! a
weak beam,~iii ! exact resonance, and~iv! steady state
achieved by an intense field. This treatment may be readily
generalized for Laguerre-Gaussian light.

We shall settle simply for the steady-state case already
considered in Sec. II A because the general time dependence
of the density-matrix elements can be determined more
readily for arbitrary parameter values by the numerical solu-
tion of the optical Bloch equations~26! and ~27!. This en-
ables the evolution of the corresponding forces to be dis-
played. We display the results for a Laguerre-Gaussian mode
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with l51 and p50 such thatV~r0!5G; D52G and v~0!
535l, wherel5280 nm is the atomic transition wavelength.
The results shown in Figs. 1~a! and 1~b! depict the evolutions
of the dissipative and dipole forces@given by Eqs.~28! and
~29!, respectively#. These figures show clearly that the dipole
moment, and hence force components, relax to their steady-
state values within a time of the order ofG21.

III. STEADY-STATE DYNAMICS

A. Single LG beam

From the results of the preceding section it is clear that,
for elapsed times greater than the inverse relaxation param-
eters, the total force on a two-level atom has a steady-state
value, exhibits position dependence, and is naturally divis-
ible into two terms. Restoring the explicit reference to a spe-
cific Laguerre-Gaussian mode, the steady-state force on a
moving atom due to a single Laguerre-Gaussian beam propa-
gating along the positivez axis is written

^F&klp5^Fdiss&klp1^Fdipole&klp , ~33!

where

^Fdiss~R,V!&klp

52\GVklp
2 ~R!S “Uklp~R!

Dklp
2 ~R,V!12Vklp

2 ~R!1G2D ~34!

and

^Fdipole~R,V!&klp

522\Vklp~R!“VklpS Dklp~R,V!

Dklp
2 ~R,V!12Vklp

2 ~R!1G2D ,
~35!

whereR(t) now denotes the current position vector of the
atom andV5Ṙ. The effective detuningDklp~R,V! is now
both position and velocity dependent

Dklp~R,V!5D02V•“Uklp~R,V!. ~36!

The dissipative force, proportional to the phase gradient,
is given by Eq.~34!. This force can be visualized as arising
locally from the absorption followed by spontaneous emis-
sion of light by the atom. The dipole force, which is propor-
tional to the gradient of the field intensity, subsumed in the
position-dependent Rabi frequency, is given by Eq.~35!.
Both forces play important roles in the cooling and trapping
of the atom. The dissipative component is responsible for the
existence of a frictional force in a configuration involving
two counterpropagating waves, while the dipole force con-
fines the atom to the high-intensity regions of the field when
the detuning is below resonance@7#.

B. Low-velocity limit

In order to elucidate the nature of the interaction between
the LG beam and the atom we consider the low-velocity
limit of the dissipative and dipole forces. However, in the
computational evaluation of the full extent of the interaction
to study the dynamics of the atom described later in this
paper, this approximation will not be made. The assumption
involved in the low-velocity limit is that the Doppler shift
induced by the motion of the atom is smaller than the atomic
width V•“U!G. In this case we may expand the denomina-
tors of Eqs.~34! and~35! retaining terms up to those linear in
the velocity. We can thus write each force as the sum of a
static ~velocity-independent! and dynamic ~velocity-
dependent! components. The static components are given by

^Fdiss
0 ~R!&klp5

2\GVklp
2 ~R!

D0
212Vklp

2 ~R!1G2 F $hklp~R!1k%ẑ1
l

r
f̂

1jk~R! r̂ G , ~37!

^Freact
0 ~R!&klp52

2\D0Vklp~R!“Vklp~R!

D0
212Vklp

2 ~R!1G2 ~38!

and the dynamic components by

FIG. 1. Variation with time~in units ofG21! of ~a! the average
dissipative force and~b! the average dipole force in units of the
corresponding steady-state values for a stationary atom in a single
LG beam.@The time variation of the corresponding torque would be
the same as in~a!, but in units of the steady-state torque.# See the
text for the values assumed for the parameters.
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^Fdiss
V ~R,V!&5

4\GD0Vklp
2 ~R!

@D0
212Vklp

2 ~R!1G2#2
F $hklp~R!1k%ẑ

1
l

r
f̂1jk~R! r̂ GF $hklp~R!1k%Vz1

l

r
Vf

1jk~R!Vr G , ~39!

^Fdipole
V ~R,V!&5

2\Vklp~R!“V~R!

@D0
212Vklp

2 ~R!1G2#

3S 12
2D0

2

@D0
212Vklp

2 ~R!1G2#
D

3F $hklp~R!1k%Vz1
l

r
Vf1jk~R!Vr G .

~40!

In the equations aboveVz , Vf , andVr are, respectively, the
axial, azimuthal, and radial components of the velocity and
the functionshklp~R! andjk~R! are defined by

h6klp56
kr2

2~z21zR
2 ! F12

2z2

z21zR
2 G6~2p6 l11!

zR
z21zR

2 ,

~41!

j6k~R!56
krz

z21zR
2 . ~42!

We make the additional assumption that the atom moves
in a region of the beam for whichz!zR and we can then
ignore thez dependence inVklp~R! and sethklp~R!50 and
jk~R!50. We may also write to a good approximation

“Vklp~R!'H F u l u
r

2
2r

w0
2GVklp~R!

2
2A2p
w0

Vku l u11 p21~R!J r̂ . ~43!

In the low-velocity limit with z!zR , the static dissipative
and dipole forces become

^Fdiss
0 ~R!&klp'

2\GVklp
2 ~R!

D0
212Vklp

2 ~R!1G2 Fkẑ1 l

r
f̂ G , ~44!

^Fdipole
0 ~R!&klp'2

2\D0Vklp~R!

D0
212Vklp

2 ~R!1G2 S F u l u
r

2
2r

w0
2GVklp~R!

2
2A2p
w0

Vku l u11 p21~R! D r̂ , ~45!

while the dynamic dissipative and dipole forces become

^Fdiss
V ~R,V!&'

4\GD0Vklp
2 ~R!

@D0
212Vklp

2 ~R!1G2#2
F H k2Vz1

kl

r
VfJ ẑ

1
kl

r
Vzf̂ G , ~46!

^Fdipole
V ~R,V!&'

2\Vklp~R!

@D0
212Vklp

2 ~R!1G2#2

3S 12
2D0

2

@D0
212Vklp

2 ~R!1G2#
D

3FkVz1 l

r
VfG S F u l u

r
2
2r

w0
2GVklp~R!

2
2A2p
w0

Vku l u11 p21~R! D r̂ . ~47!

Equations~44! and ~46! show that the dissipative force
has static components in both the axial and azimuthal direc-
tions; the latter is equivalent to a torque about the beam axis.
These forces combine with dynamic components in the axial
and azimuthal directions. Note that within this approxima-
tion, Eq. ~46! shows that there is a reciprocal relationship
between the axial and azimuthal motions. An atom moving
initially in the z direction will induce a force in the azimuthal
direction and vice versa. It may be seen from Eqs.~45! and
~47! that the dipole force consists of static and dynamic com-
ponents, both of which are in the radial direction.

The static component of the dipole force, given by Eq.
~38!, attracts the atom to the high-intensity regions of the
field when the detuning is below resonance. This force can
be derived from a potential@7#

^U~R!&klp5
\D0

2
lnF11

2Vklp
2 ~R!

D0
21G2 G ~48!

such that ^F klp
0 &52“^U~R!&klp . This potential exhibits

minima in the high-intensity regions of the beam for an atom
tuned below resonance whereD0,0. For D0.0, we have
trapping in the low-intensity~dark! regions of the field. As
an illustration, we consider the LG mode for whichl51,
p50. The potential is

^U&k105
\D0

2
lnF11

2Vk10
2 ~R!

D0
21G2 G . ~49!

At the beam waistz50, the minimum occurs atr5r 0 where

r 05w0 /&. ~50!

For a beam propagating along thez axis it is easy to verify
that the locus of the potential minimum in thexy plane is a
circle given by

x21y25r 0
2 . ~51!

Expanding the potential in powers of (r2r 0) we have the
parabolic approximation

^U&k10'U01
1
2Lk10~r2r 0!

2, ~52!
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whereU0 is the potential depth given by

U05
1

2
\D0 lnF11

2Vk10
2 ~r 0!

D0
21G2 G ~53!

andLk10 is an effective elastic constant given by

Lk105
4\uD0u

D0
212e21Vk00

2 1G2 S e21Vk00
2

w0
2 D . ~54!

The atom is considered trapped if its kinetic energy is less
thanU0 and will exhibit quasiharmonic vibrational motion
aboutr5r 0 . The characteristic angular frequency is equal to
ALk10/M , whereM is the atomic mass.

C. Counterpropagating LG beams

1. One-dimensional case

We have seen above that an atom immersed in a
Laguerre-Gaussian beam will experience a dissipative force
that is predominantly in the direction of propagation and a
dipole force in the radial direction. If a second beam is added
propagating in the opposite direction, we have a configura-
tion that can be referred to as the one-dimensional~1D!
counterpropagating beam configuration. In this paper the
beams are assumed to be independent of each other in that
their phases are not locked. The case in which the beams are
phase locked to form a standing wave will be considered
elsewhere. For independent counterpropagating LG beams
we can write the mean force on the atom as a sum of forces
due to individual beams

^Fdiss&kl1p1 ,2kl2p2
52\GVklp

2 ~R!

3F “Ukl1p1
~R!

Dkl1p1
2 ~R,V!12Vkl1p1

2 ~R!1G2

1
“U2kl2p2

~R!

D2kl2p2
2 ~R,V!12V2kl2p2

2 ~R!1G2G ,
~55!

^Fdipole&kl1p1 ,2kl2p2
522\Vklp~R!“Vklp

3F Dkl1p1
~R,V!

Dkl1p1
2 ~R,V!12Vkl1p1

2 ~R!1G2

1
D2kl2p2

~R,V!

D2kl2p2
2 ~R,V!12V2kl2p2

2 ~R!1G2G ,
~56!

where we have assumed thatp15p25p and either
( l 152 l 25 l ) or (l 15 l 25 l ).

In the low-velocity regime, for an atom close to the beam
waist, we may make use of Eqs.~44!–~47!. The total static
dissipative and dipole forces are then given by

^Fdiss
0 ~R!&kl1p12kl2p2

'
2\GVklp

2 ~R!

D0
212Vklp

2 ~R!1G2 F l 1r 1
l 2
r G f̂,

~57!

^Fdipole
0 ~R!&kl1p12kl2p2

'2
4\D0Vklp~R!

D0
212Vklp

2 ~R!1G2

3S F u l u
r

2
2r

w0
2GVklp~R!

2
2A2p
w0

Vku l u11 p21~R! D r̂
~58!

and the total dynamic dissipative and dipole forces are

^Fdiss
V ~R,V!&kl1p12kl2p2

'
4\GD0Vklp

2 ~R!

@D0
212Vklp

2 ~R!1G2#2

3F H 2k2Vz1
k

r
~ l 12 l 2!VfJ

3 ẑ1
k

r
~ l 12 l 2!Vzf̂ G , ~59!

^Fdipole
V ~R,V!&kl1p12kl2p2

'
2\Vklp~R!

@D0
212Vklp

2 ~R!1G2#

3S 12
2D0

2

@D0
212Vklp

2 ~R!1G2#
D

3S F u l u
r

2
2r

w0
2GVklp~R!

2
2A2p
w0

Vku l u11 p21~R! D
3~ l 11 l 2!

Vf

r
r̂ . ~60!

From Eq.~58! we see that the velocity-independent dipole
force is simply double that of a single-beam case. The dissi-
pative force, however, depends on the relative signs ofl 1 and
l 2. For l 15 l 25 l we have

^Fdipole
0 ~R!&klp2klp'

4\GVklp
2 ~R!

D0
212Vklp

2 ~R!1G2 S lr D f̂, ~61!

^Fdiss
V ~R,V!&klp2klp'

8\GD0Vklp
2 ~R!

@D0
212Vklp

2 ~R!1G2#2
k2Vzẑ.

~62!

Thus, forl 15 l 25 l we have a torque about the beam axis and
an axial cooling or heating force, depending on the sign of
D0.

For the casel 152 l 25 l , we have

^Fdiss
0 ~R!&klp2k2 lp50, ~63!
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^Fdiss
V ~R,V!&klp2k2 lp'

8\GD0Vklp
2 ~R!

@D0
212Vklp

2 ~R!1G2#2

3H Fk2Vz1
kl

r
VfG ẑ1 kl

r
Vzf̂J .

~64!

The static force in this case is zero, while the velocity-
dependent force contains extra terms that arise from the or-
bital angular momentum of the counterpropagating
Laguerre-Gaussian beams. As with the one-beam case, we
again see force components arising from the reciprocating
interchange between the axial and azimuthal motions.

2. Two-dimensional, three-dimensional,
and three coplanar beams

The 2D case arises when a second pair of counterpropa-
gating LG beams is arranged orthogonal to the first pair. The
total force can again be written as a sum of forces from each
of the beams. However, in addition to the reciprocal action
between the azimuthal and axial motions in each pair of
beams, there is also the fact that the azimuthal atomic motion
associated with one beam is part of the axial motion in the
other. In other words, there is an additional level of reciproc-
ity between the components of the motion arising from the
presence of two pairs of counterpropagating beams.

There are also two overlapping dipole potential distribu-
tions arising from the orthogonal beams. It is easy to see for
beam pairs for whichl 152 l 251 andp15p250 and where
the axes are such that one pair is along thez axis and the
second along thex axis, the potential minima are four times
as deep as that of a single beam. The minima are situated at
the space points defined by the two equations

x21y25w0
2/2, ~65!

y21z25w0
2/2. ~66!

These equations apply the additional constraintx56z. At-
oms subject to such 2D counterpropagating beams will con-
gregate at points lying on the curve defined by two intersect-
ing circles, one on the planex1z50 and the other on the
planex2z50.

When a third set of beams is arranged orthogonal to the
other two orthogonal pairs we have 3D counterpropagating
LG beams. The common potential minima in this case occur
at eight distinct points defined by

x56w0 /&, y56w0 /&, z56w0 /& ~67!

FIG. 2. ~a! Radial distribution of the dipole force due to 1D
counterpropagating Laguerre-Gaussian beams atz50. Here
l 152 l 251, p15p250, and the parameters areD052G,
Vk0051.648G, andv0535l. ~b! Radial potential distribution corre-
sponding to~a!.

FIG. 3. ~a! Trajectory of a Mg1 ion in 1D counterpropagating
LG beams forl 152 l 251 and p15p250. All distances are in
units of the wavelength of the lightl. The initial position is
R058lx̂ and the initial velocity components areVz55.0 ms21 and
Vr505Vf . ~b! Projection in thexy plane of the ion trajectory
shown in~a!. In this and subsequent figures, the initial position is
indicated by a full circle. See the text for the values assumed for the
other parameters.
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and are six times as deep as the potential due to one beam.
However, in this case the detailed polarization gradients are
such as to make further study of this configuration nontrivial.

Finally, we consider the case of three coplanar beams@19#
in the x-y plane in a symmetric configuration in which the
angle between adjacent beams is 2p/3. This leads to three
overlapping circles that meet at two distinct points at

x50, y50, z56w0 /& ~68!

and the potential well is three times as deep as for a single
beam.

IV. Mg 1 IN MULTIPLE BEAMS

The emphasis throughout this paper is on the physics in-
troduced by the orbital angular momentum aspects of the
interaction of atoms with Laguerre-Gaussian light. In the
theoretical analysis presented in the preceding section we
were able to infer that an atom in a configuration of such
beams is subject to axial forces and various forms of static
and dynamic rotational forces and that axial and rotational
motions influence each other in a rather intricate way. Fur-
thermore, a system of multiple Laguerre-Gaussian beams
presents an atom with well-defined potential landscapes that
depend on the angular momentum quantum numbers and
beam configuration. For example, in the 1D case with a
given set of parameters, a given atom should have well-
defined quasiharmonic vibrational states associated with the
potential profiles.

To illustrate these features we consider the case of Mg1

in Laguerre-Gaussian light. The Mg1 mass isM54.0310226

kg; the transition wavelength isl5280.1 nm and its half-
width is G52.73108 s21. To illustrate the theory typical
beam parameters are exemplified by the choicesD052G,
Vk0051.648G, andw0535l. The equation of motion of a
Mg1 ion in multiple LG beams is written as

M
]2R~ t !

]t2
5(

i
$^Fdiss~R,V!&ki l i pi1^Fdipole~R,V!&ki l i pi%

1QV3B, ~69!

FIG. 4. Variations of the velocity components for the case in
Fig. 3. ~a! Evolution ofVz indicating axial cooling. The inset to this
figure shows small oscillations ofVz due to reciprocating effects.
~b! Evolution of Vf and ~c! evolution of Vr . Both ~b! and ~c!
indicate the rapid onset of oscillatory motions of the same period.

FIG. 5. ~a! Evolution of the velocity components of a Mg1 ion
subject to Laguerre-Gaussian 1D counterpropagating beams with
l 15 l 251, p15p250, anduBu51 T. Initially the ion possesses both
azimuthal and axial velocity componentsVz55.0 ms21 and
Vf528.9 ms21. ~b! Trajectory of the Mg1 in ~a!. All distances are
in units of the wavelength of the lightl.
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whereQ is the ionic charge and we have included the last
term on the right-hand side to allow for the possibility of an
applied external magnetic field. The summation indicates the
vector addition over force contributions arising from indi-
vidual beams. The forces from each beam are taken in their
unapproximated forms given by Eqs.~34! and ~35!.

We begin by considering 1D counterpropagating beams in
the absence of the magnetic field. Figure 2~a! displays the
dipole force as given by Eq.~56! as a function of radial
distancer at y50 andz50. The beam quantum numbers are
such thatl 152 l 251 andp15p250 and the parameters are
D052G, Vk0051.648G, andw0535l. Figure 2~b! displays
the corresponding radial potential distribution. The maxi-
mum intensity is located at points wherer5w0/&524.75l.
As expected, we see that forD0,0 the dipole potential ex-
hibits a minimum at points where the intensity is maximum.
The vibrational states in the parabolic approximation have an
elastic constant that is twice that for the one-beam case as
given by Eq.~54!. The vibrational frequency corresponding
to the above parameters is

n'
1

2p S 8\uD0ue21Vk00
2

Mw0
2@D0

212e21Vk00
2 1G2#

D 1/2. ~70!

For the parameter values specified above this yields
n'2.03104G.

Figure 3~a! displays the trajectory of the ion as a function
of time and Fig. 3~b! depicts its projection onto thexy plane.
The initial position is atR058lx̂ and the initial velocity
components areVz55.0 ms21, Vf505Vr . It is clear from
the figure that the atom, subject to an axial friction force, has
been slowed axially. Once the atom is moving sufficiently
slowly, it starts a vibrational motion about the radial coordi-
nate r5w0/&, accompanied by a slow rotational motion.
The latter, according to Eq.~46!, is attributed to the azi-
muthal component of the dissipative force induced by the
axial motion.

Figure 4 displays the evolution of the velocity compo-
nents. The axial velocity is seen to decay almost to zero.
However, closer inspection, as shown by the inset to Fig.
4~a!, reveals that the axial motion exhibits periodic oscilla-
tions that are attributable to a reciprocating force arising
from the periodic azimuthal motion, depicted in Fig. 4~b!.
The period associated with these figures is indeed about
2.03104G as in the estimate based on Eq.~70!. An important
feature displayed by the results depicted in Figs. 3 and 4 is
that changing the sign of the angular momentum quantum
numberl from 11 to 21, which is readily achievable@8,9#,
causes the change in the rotational motion from clockwise to
the opposite~counterclockwise! sense.

Figure 5 is concerned with the casel 15 l 2511 and
p15p250 in the presence of a magnetic fielduBu51 T di-
rected along the positivez axis. From Eqs.~61! and~62! we

FIG. 6. ~a! Radial distribution of the dipole force due to 1D
counterpropagating Laguerre-Gaussian beams atz50. Here
l 152 l 251, p15p251, and the parameters areD052G,
Vk0051.648G, andv0535l. ~b! Radial potential distribution corre-
sponding to~a!.

FIG. 7. ~a! Trajectories of a Mg1 ion in 1D counterpropagating
LG beams forl 152 l 251 andp15p251 for two different initial
positions: one is atR0510lx̂ and the second is atR0540lx̂. All
distances are in units of the wavelength of the lightl. The initial
velocity components in both cases areVz55.0 ms21 and
Vr505Vf . ~b! Projections in thexy plane of the ion trajectories
shown in ~a!. See the text for the assumed values of the other
parameters.
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deduce that, besides the ion cyclotron motion due the mag-
netic field, the main effects are in the form of an axial fric-
tion force provided thatD0,0 and a static torque about the
beam axis that acts upon the ion azimuthally. Figure 5~a!
displays the evolution of velocity components for the case
D052G. The initial ion position isR~0!528lŷ and the ini-
tial velocity components areVr50, Vf528.9 ms21, and
Vz55.0 ms21. We see that the torque due to the LG beams
generates a braking effect on the cyclotron motion, while the
axial motion is gradually cooled by the axial friction force.
All these features can be inferred from the trajectory shown
in Fig. 5~b!. If the sign of l in both beams were to be
changed, butB kept in the same direction, we would have
heating of the azimuthal motion, while the axial motion
would still be cooled. Clearly the former case amounts to a
decrease in angular motion due to the LG beam, while the
latter is equivalent to the enhancement of the angular motion.
These phenomena are attributable only to the angular mo-
mentum properties of the LG beams@20#.

Figure 6 is concerned with counterpropagating beams
with the next-higher-order LG modesl 152 l 251 and
p15p251 and no external magnetic field. Other parameter
values areVk0051.648 andD052G. Figures 3~a! and 3~b!
display the radial distribution of the dipole force and corre-
sponding potential, respectively. We now have two potential
wells with minima at r50.468w0[16.38l and
r51.5w0[52.86l. The ion is destined to oscillate about one
of these points, depending on the initial conditions. This can
be seen in Fig. 7 for an atom withVx505Vy andVz55.0
ms21. The inner curve depicts the trajectory when the atom
begins atR0510lx̂ and the outer curve when it begins
R0540lŷ.

Figure 8~a! shows the trajectory in a 2D counterpropagat-
ing beam case withl 152 l 251 andp15p250 and Fig. 8~b!
shows the corresponding projection in thexy plane. The ini-
tial position is atR0510lx̂ and the initial velocity compo-
nents are~0.02,0.02,0.05! ms21. Figure 9 shows the evolu-
tion of the velocity components. From Figs. 8 and 9 it can be
seen that the atom is subject to friction forces from all direc-
tions, which result in it coming to rest at a point within the
potential profile. We have shown earlier that the locus of the
dipole potential minimum for the 2D case with~1,0! beams
is in the form of two intersecting circles, satisfying Eqs.~65!
and~66!. This is shown in Fig. 10 for the casew0535l. The
trajectory end point for the case depicted in Figs. 8 and 9 lies
on the curve shown in Fig. 10. Thus this theory assigns pre-
determined end points for a given ion under given initial
conditions. That this is clearly the case can be seen from
Table I, where the coordinates of the trajectory end point
recorded for various starting points satisfy Eqs.~65! and~66!
for the two intersecting circles shown in Fig. 10.

V. COMMENTS AND CONCLUSIONS

In this paper we have explored the nature of the radiation
forces and their influence on atomic motion for a specific
type of laser light, namely, Laguerre-Gaussian laser light in
the form of a single beam and for multiple beams in various
configurations. We have emphasized from the outset that the
orbital angular momentum effects characterizing these
modes give rise to different physical phenomena when such

light is made to interact with atoms at near resonance. We
have shown that a variety of forces come into play when the
LG light is arranged in well-defined multiple beams particu-
larly linear, orthogonal 2D, and symmetric coplanar three-
beam configurations. We have, for simplicity, considered
only coaxial multiple LG beams of the same kind whose
beam waists coincide and have assumed that all counter-
propagating pairs have the same magnitude of orbital angular
momentum quantum numbersl andp. Notwithstanding the
simplification inherent in these symmetric configurations, the
physics has been intricate, but has given rise to effects asso-
ciated with the orbital angular momentum of LG beams.

The results show that LG light generates a potential aris-
ing from the dipole force, while the dissipative force pro-
vides a mechanism to cool the atom axially and that there is
a torque that can be utilized to cool or heat the azimuthal
motion. Furthermore, there are reciprocating forces involv-
ing an interplay between motions in orthogonal directions
that can generate oscillatory and precessional motions.

The model we have adopted involves linearly polarized
light. We have also assumed that the beams are independent
and possess no fixed phase relationship, thus excluding in-
terference or multiphoton processes@1#, for example, absorp-
tion from one beam followed by emission into the other
beam. The atom responds therefore to the sum of the indi-
vidual forces acting upon it. This is distinct from the case in
which the two counterpropagating beams form a standing

FIG. 8. ~a! Trajectory of a Mg1 ion in 2D counterpropagating
LG beams involving two orthogonal pairs: one pair has thez axis as
a common axis withl 152 l 251 andp15p250 and the second
pair has they axis as a common axis andl 352 l 451 and
p35p450. All distances are in units of the wavelength of the light
l. The initial position of the Mg1 ion is atR0520lx̂ and the initial
velocity components are~0.02, 0.02, 0.05! ms21. ~b! Projection in
the xy plane of the trajectory in~a!.
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wave and the possible Doppleron effects@1# that can arise
under such circumstances. Work on the case of a standing
LG wave is planned to be reported elsewhere.

In summary, this paper has dealt with the basic features
that can arise when an atom interacts with multiple Laguerre-
Gaussian beams possessing orbital angular momentum. The
main effects of LG light on atomic behavior are elucidated
for the 1D counterpropagating beams where we find reci-
procity between axial and azimuthal motions and the exist-
ence of a static torque and a characteristic dipole potential. In
the case of 2D counterpropagating beams the potential pro-
file indicates that cooled atoms are forced to congregate into
well-defined loci depending on the size of the light beams.
Initial cooling need not be effected by the same LG beams;
the primary aim of the LG beams at the late cooling stages
could be the installation of the dipole potential; artificially
generated dark field beams have been experimentally ex-
ploited @21#. We have illustrated the results by considering
the case of beams of order of tens of wavelengths diameter.
This results in atoms sitting on loci separated by distances of
tens of wavelengths. However, the generation of results for
diameters of order of millimeters is straightforward and
would lead to atomic loci separated by distances in the mms
scale. We have also briefly considered the loci for the 3D
case and for the three coplanar converging LG beams. For
these cases no solutions of the dynamical equation were pre-
sented and we have only pointed out the characteristic po-
tential profiles and the points at which cooled atoms would
congregate.

The effects of orbital angular momentum have been dis-
cussed here in connection with Laguerre-Gaussian modes. It

FIG. 9. Evolution of the velocity components corresponding to
case with initial position atR0510lx̂ ~a! Vz(t), ~b! Vf(t), and~c!
Vr(t). Note that all components of velocity go to zero after a suf-
ficiently long time.

FIG. 10. Locus of spatial points where the dipole potential pro-
file due to a system of two orthogonal pairs of counterpropagating
LG beams possesses the lowest minimum. All distances are in units
of the wavelength of the lightl.

TABLE I. Coordinatesxf ,yf ,zf of the trajectory end points against initial coordinatesx0 ,y0 ,z0 . All distances are in units of the
wavelength of the lightl. The last three columns demonstrate that the ion end points always lie on the two intersecting circles shown in Fig.
10.

x0 y0 z0 xf yf zf Axf21yf
2 Ayf21zf

2 w0/&

20 0 0 15.96 18.92 15.96 24.75 24.75 24.75
20 20 0 2.84 24.61 2.84 24.75 24.75 24.75

220 20 10 214.27 20.22 14.27 24.75 24.75 24.75
220 20 210 213.81 20.54 213.81 24.75 24.75 24.75
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appears likely, however, that the dynamically induced stabi-
lization of the atomic motion, the so-called supermolasses
configuration, which arises from a small displacement of the
molasses fields@22#, can be related to the azimuthal forces
arising from orbital angular momentum, as probably can the
macroscopic vortex force due to the offset beams in the spin-
polarized spontaneous force-atom trap of Walkeret al. @23#.
As we have shown, the orbital angular momentum of the
Laguerre-Gaussian modes is explicit and their influence on

atomic motion is more straightforward to interpret.
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