PHYSICAL REVIEW A VOLUME 54, NUMBER 5 NOVEMBER 1996
Atom dynamics in multiple Laguerre-Gaussian beams
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The leading radiation forces acting on an atom or ion subject to linearly polarized Laguerre-GéuGgian
light are studied. Particular emphasis is laid on the orbital angular momentum effects associated with LG light.
The optical Bloch equations appropriate for the adiabatic approximation are derived and used to evaluate the
forces and associated torque governing the atomic motion. The steady-state dynamics of the atom are explored
for atoms subject to a single beam and multiple independent counterpropagating beams. The main features
responsible for the dynamics of the atom, together with the dipole potentials characteristic of Laguerre-
Gaussian light, are identified and discussed. The theory is illustrated by the numerical integration of the
equation of motion for Mg ions in various beam configurations. This yields information on trajectories,
velocity evolution, and vibrational frequencies at potential minima. Interesting effects involving a reciprocal
interplay between motions in orthogonal directions are demonstrated. Such features are purely dependent on
the orbital angular momentum property of the light. Their possible use in controlling atomic motion is inves-
tigated.[S1050-294{®6)07210-]

PACS numbg(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION the one beam case in order to explore more fully the effects
of the orbital angular momentum on atomic motion. The
The radiation forces associated with the near-resonant irtheory is developed in terms of the optical Bloch equations
teraction of laser light with atoms and ions have been th€ OBES9 [1,12,13 that allow theab initio inclusion of relax-
subject of intensive theoretical and experimental s{udy4] ation effects and naturally incorporate saturation phenomena.
since the basic mechanisms were first recognizZdd The  The solution of the OBEs in the adiabatic, or constant veloc-
simplest features can be described with reference to a twaty, approximation lends insight into the time evolution of
level atom subject to an electromagnetic wave. Near rescangular momentum effects for an atom in a LG beam. In the
nance, such an atom experiences two distinct forces: a disgbng-time limit, these solutions lead directly to the steady-

pative force that arises from the absorption of the light by thestate results for the dissipative and dipole forces due to a LG
atom followed by its spontaneous emission and a dipolgyegm.

force that arises from the nonuniformity of the field distribu- |4 sec. 11 we set up the density-matrix formalism appro-
tion. These basic forces underpin many of the applicationgyiate for a two-level atom interacting with Laguerre-
involving the manipulation of atoms by lasers in a variety of 55 ssjan light. In the adiabatic approximation this leads to

bee_lm (_:onfigu_rations. The_ dissi_pative force has been She optical Bloch equations that formally enable the calcula-
ploited in coohlng the atomic motiof6] and the dipole force tion of the average mechanical for¢defined as the rate of
used for trappmd?]._ . S change of the atomic momentyinWe argue that as the con-
Much of the previous theoretical work in this context hasCept of force Is a classical one, the rate of change of momen-
lane- . H th trati ) ’ .
assumed plane-wave modes. However, the demons rat'%m can only be interpreted as a force for elapsed times

that Laguerre-GaussiafLG) laser beams possess well- han th q find wh S
defined orbital angular momentuirh [8,9] that originates in ~ 9"€ater than the spontaneous decay time, where time Is

the azimuthal phase dependence of the field distribution hg&€asured from the instant the light beam is switchegign
aroused new interest in the basic physics. The orbital anguld/ith this restriction, we solve the OBEs to determine the
momentum of LG beams is quite distinct from the spin an-€volution of the average “force” components from the in-
gular momentum associated with circularly polarized lightstant the LG beam is switched on. It is possible to examine
and can occur in linearly polarized LG modes. A circularly the time evolution in a number of limits, but we discuss
polarized LG beam possesses spin angular momentum peimarily the steady state. Further insight into the nature of
well as orbital angular momentum and can exhibit featureghe forces is gained by the numerical solution of the optical
involving spin-orbit coupling 10]. In our recent worl{11] Bloch equations for a typical set of parameters. In Sec. lll we
we presented a theory for the motion of a two-level atom ingive an analysis of the steady-state dissipative and dipole
a Laguerre-Gaussian beam with spontaneous emission afmrces for various beam configurations and identify the fea-
saturation effects taken into account heuristically. The resulttures directly attributable to the angular momentum of the
found were in the form of an azimuthal shift in the atomic LG beams. The motion of a Mgion in counterpropagating
resonance and a torque about the beam axis. LG fields is described in Sec. IV after solving the equation of

The purpose of this paper is twofold: first, to present amotion numerically. The results demonstrate the effects of a
more rigorous theory for the forces due to LG light and theircharacteristic torque and of reciprocating forces between
effects on a two-level atom and, second, we extend our inaxial and azimuthal motions. Section V contains conclusions
vestigations on the orbital angular momentum effects beyondnd further comment.
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Il. FORMALISM tude for an axial wave vectde. The plane-wave amplitude
We wish to examine the evolution of the average forcelafg %hia(s)e : nrg(;rgie;lrectly from Eqg) and (8) by setting
. _ - —VyU, — VU, R .

acting on a two-level atom or ion, henceforth referred to as We now transform to an interaction picture with respect

;grematgfmé ((j:gﬁet(r)elrgf gg:ﬁcxﬁﬂ ngthltéJz{:nll?i?JA;w dthe to the unperturbed field Hamiltonidnoa'a. The field anni-
L P PIUEANd — iation and creation operators then acquire the time depen-

has a LG distribution8]. An appropriate Hamiltonian is dences

given by

T i
at:ae lot

. 1- _.w
H=Ha+Hg+Hiny, (1) a(t)=e'“* *ae™'? : 9)
whereH, andH are the unperturbed Hamiltonians for the al(t)=elwaatgte-ivaat_ gtgiot, (10)
atom and field, respectively, and are
In the classical limit in which the field forms a coherent

P2 -
HA:erhonrTTr’ @ beam, we may replace the field operatorscoyumbers
a(t)—ae ' (1)
_ t
He=Awa'a. (3) aT(t)—>a* glot (12

HereP is the center-of-mass momentum operator arahd ) . ]
' are the atomic lowering and raising operatdvs;is the ~ The coupling between the atom and field may then be written
mass of the atom and, is the atomic transition frequency. a@s

In Eq. (3) a anda' are the annihilation and creation opera-
tors andw is the frequency of the field.

The interaction Hamiltoniai;,; in Eq. (1) describes the

coupling of the atom to the electromagnetic field and is give
in the electric dipole approximation by

Hiw=—d-E(R)=—i#[7 af(R)—H.c], (13

where in writing Eq.(13) we have made use of the rotating-
wave approximation and have defined

Hin= —d-E(R), @ a=me, a4

— ol iO(R
whered is the atomic dipole moment operator aB(R) is f(R)=(Dy1y €)E(R)EC /. (19

the electric field evaluated at the positiBrof the atom. The

U ; For convenience, we have not explicitly shown the LG labels
atomic dipole moment operator may be written as

klp associated witt€y,(R) and 6,,(R) by virtue of Egs.
d=Dy(m+7"), 5y (7) and(8). In the rest of this section we continue to use this
simple notation but resort to the full notation subsequently.
whereD,, is the dipole matrix element of the atomic transi- To derive the optical Bloch equations for the atomic
tion. The electric-field vector associated with a Laguerre-density-matrix elements we make the assumption that the

Gaussian mode propagating along thaxis is given by position and momentum operatdRsandP may be replaced
o o (R by their expectation valueR, and Py, respectively. This
E(R)=i[ae&p(R)e P —H.c], (6)  approximation allows the gross motion of the atom to be

treated classically, while maintaining a quantum treatment
for the internal dynamics of the atom. The validity of the
semiclassical approximation requires that the spatial extent
of the atomic wave packet be much smaller than the wave-
length of the radiation field and that the uncertainty in the
oppler shift be much smaller than the upper-state linewidth
f the atom. This is the case for most atofi$if the recoil
energy of the atom is much smaller than the upper-state line-

wheree is a polarization vector in the-y plane. The electric
field of a LG beam has a small vector component alongthe
axis[11,14), which we have ignored. It can easily be shown
that the ignored term is of the the ordefw, relative to the
principal component along [11]. In Eq. (6) Ekp(R) and
Oyp(R) are, respectively, the mode amplitude and phase o
the electric field, which may be written §%1,14

Ean(R)=E& Cio var )I “'( 2r’ ) —r2wA(z) Wi(vvhi;[hin the semiclassical approximation, the atomic den
ki 0] 21/ 2 ) ) -
P (1+2Z%1zg)"? \w(z)] ~P\w(2) @ sity matrix can be written as
27 p=06(R—Ro)8(P—Pg)p(t), (16)
— —1
Oup(R) = 2(2%+ Z?R +lg+(2p+I+Dtan (2/zg) +kz. where the internal dynamics of the atom are now contained
(8) in p(t). The evolution ofp(t) is given by the well-known
relation

Here C,,= Jp!/(|l|+p)! is @ normalization constanty(z) _

is given byw?(z)=2(z>+z3)/kzg, wherezg is the Ray- dp 1 H o4 1

leigh range. The integeldsand p are indices characterizing dt & [H.p] P 17)

the LG mode. It has been shov8] thatl% represents the
orbital angular momentum of each quantum in the modewhereRRp accounts for the relaxation dynamics of the atomic
Finally, in Eq.(7) &g corresponds to the plane-wave ampli- system. By substitution dfi and use of the coupling given in
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Eq. (13), we obtain the following optical Bloch equations for VQ(rg) . R
the atomic density-matrix elements: (Faipole) =172 0y {p1At) af(ro) = pa(t)a* £*(ro)}.
(29)
B2 o (R a* I (RojFms, (18 N y . .
dt 22 0712 o721 For given initial conditions the solution of the optical Bloch

equations(26) and (27) leads formally to the determination
dpa - of the forces by direct substitution in Eq®8) and(29).
T:_(F_Mo)Pzﬁ' af(Ro)(p2o—p11), (19
A. Steady state
whereA,=w—wy is the detuning of the field frequency from
atomic resonance angh,= ().
The average radiation force acting on the atom is define
as the average rate of change of the atomic momentum.

The steady state occurs when all time derivatives in the
ptical Bloch equations are set equal to zero and corresponds
0 the long-time limit. It is not difficult to show that the
&eady—state solutions to the optical Bloch equati@®s and

may write (27) vyield the following expressions for the steady-state
(Fy=—(VHi. (20  forces:
Substitution of Eq.(13) into Eg. (20) and use of Eq(15) (F)=(Fuis9 + {Faipole) (30)
allows the force to be written a&)=(Fis9+{Fgipoe- Here where
(F4ise is the dissipative force given by
(Faisd =~ VO (Ro)PrAt) af (Ro) + Dot a* £ (Ry)} (Fyed RV)) = 24T OX(R) VOR)
dis 0 12 0 21! 0(21) disd 'Y, = Az(R,V)+292(R)+F2 )
(31
and(Fgjp0e is the dipole force given by
(Faipoid R,V)) = = 20Q(R)VQ(R)
(Fq &—iﬁw{~ (D) af(Ro) —pay(t) a* f*(Ro)} A(R,V)
dipole/ = Q(Ry) p1Alt)x o)~ Pt 01 x| ) , o], 32
(22) AS(RV)+20%R)+T
where we have introduced a position_dependent Rabi freWhel'e we have redefined the notation such Bhabw stands
quency as)(Ro)=|a(D,- €)E(Ry)|/. for the position of the atorfinstead ofr ;). The above results

In the adiabatic approximatiofL5], the atomic velocity —are the same as those presented in our previous work where
V=Py/M is assumed to be constant during the time taken foperturbation techniques for time-dependent Heisenberg op-

the dipole moment to relax to its steady-state value. Therators have been us¢dll]. The dependence on the decay
position Ro of the atom at timd is then given by constant and on saturation are in agreement with our earlier

heuristic approach.
R0=r0+Vt, (23)

. - . B. Transients
wherer is the (initial) position of the atom when the beam

was switched on. Thus we can write Torrey[16] gave detailed solutions of the original optical
Bloch equations. He also recognized that there were three
f(Rg)=T(ro+Vt) (29 special cases of interest that have relatively simple solutions.
These were for strong collisions when the natural lifetime of
=f(rg)e' VooVt (250  the state may be replaced by the collision shortened lifetime,

exact resonance and for intense external fields. His approach
where we have assumed that the change in the field amplivas applied by Allen and Eberly17] to the optical Bloch
tude is negligible during the time taken for the dipole mo-equations. Consequently, in a similar way, the evolution of

ment to relax to its steady-state value. the forces from the instant the light beam is switched on can
Within the adiabatic approximation, the optical Bloch also be examined for a number of special cases. In fact,
equations take the form radiation effects have been examined in detail for atoms ex-
cited by plane-wave lightl8]; the cases considered weig
dpyo an atom with all relaxation constants equal to zdiD, a

ez _ _ _ ~ o kfk
dt 2L p2= af(ro)prz—a® ™ (ro)pz2,  (26) weak beam,(iii) exact resonance, anflv) steady state

achieved by an intense field. This treatment may be readily
dpy ) . generalized for Laguerre-Gaussian light.
gt = iAo, V) part af(ro)(paz—p1a), (27) We shall settle simply for the steady-state case already
considered in Sec. Il A because the general time dependence

where the total detuning\(ry,V)=A,—VO(ry)-V and p,, Of the density-matrix elements can be determined more

=P,e V'VOU0) The forces can now be written as readily for arbitrary parameter values by the numerical solu-
tion of the optical Bloch equation®6) and (27). This en-
(Fgis9 = —HVO(ro){prat) af (rg)+ poya* f*(ro)}, ables the evolution of the corresponding forces to be dis-

(28) played. We display the results for a Laguerre-Gaussian mode
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1.5 (Faisd R.\V))kip
J— a
g ) =247 02 (R)( VOun(®) (34)
S0k KPP AR(RV) 20 o (R) +T°2
~
= and
&
5 05
5 (Faipold R:V))kip
Apip(R,V)
0.0 ' ' ' 1 = —2hQ(R)IVO ( : :
0 2 4 6 8 10 RV by AZp(RV) +205,(R) +172
I't (35
1.5 (b) where R(t) now denotes the current position vector of the
— atom andV=R. The effective detuning\,,(R,V) is now
g Lo both position and velocity dependent
s 1.0 -
=
; Ak|p(R,V):AO_V'Vek|p(R,V). (36)
305 f o . ,
& The dissipative force, proportional to the phase gradient,
g is given by Eq.(34). This force can be visualized as arising
| | [ . locally from the absorption followed by spontaneous emis-
0.0 0 2 4 6 8 10 sion of light by the atom. The dipole force, which is propor-

tional to the gradient of the field intensity, subsumed in the
I't position-dependent Rabi frequency, is given by EBH).
Both forces play important roles in the cooling and trapping
FIG. 1. Variation with time(in units of I'"%) of (a) the average  of the atom. The dissipative component is responsible for the
dissipative force andb) the average dipole force in units of the existence of a frictional force in a configuration involving
corresponding steady-state values for a stationary atom in a singi§vo counterpropagating waves, while the dipole force con-

LG beam[The time variation of the corresponding torque would be fines the atom to the high-intensity regions of the field when
the same as ifi), but in units of the steady-state torqli8ee the  the detuning is below resonangdl.
text for the values assumed for the parameters.

B. Low-velocity limit
with 1=1 and p=0 such thatQ(ry)=TI; A=—T and w(0) owrvelocly imi

=35\, whereh=280 nm is the atomic transition wavelength.  In order to elucidate the nature of the interaction between
The results shown in Figs(d and 1b) depict the evolutions the LG beam and the atom we consider the low-velocity
of the dissipative and dipole forcégiven by Eqs.(28) and limit of the dissipative and dipole forces. However, in the
(29), respectively. These figures show clearly that the dipole computational evaluation of the full extent of the interaction

moment, and hence force components, relax to their stead 0 study _the dyna_mics_ of the atom described later in this
state vaI'ues within a time of the order ’Bfl aper, this approximation will not be made. The assumption

involved in the low-velocity limit is that the Doppler shift
induced by the motion of the atom is smaller than the atomic

IIl. STEADY-STATE DYNAMICS width V-VO<T'. In this case we may expand the denomina-
. tors of Eqs(34) and(35) retaining terms up to those linear in
A. Single LG beam the velocity. We can thus write each force as the sum of a

static (velocity-independent and dynamic (velocity-

From the results of the preceding section it is clear thatdepender)tcomponents. The static components are given by
for elapsed times greater than the inverse relaxation param-

eters, the total force on a two-level atom has a steady-state 26T Q2 (R)

ibits posit | is- (Faisd R)p= ;
value, exhibits position dependence, and is naturally divis- \"dis kip ASJFZQ% (R)+T2
ible into two terms. Restoring the explicit reference to a spe- P
cific Laguerre-Gaussian mode, the steady-state force on a R)F 3
moving atom due to a single Laguerre-Gaussian beam propa- +E&(Rr |, (37)
gating along the positive axis is written

SN I
{ﬂklp(R)+k}Z+F ¢

21 Ao Qkp(R)IVQyp(R)

(F)xip={Fais9xip+ (Faipolekip » (33 (F?eac(R»mp:— Ag+29§,p(R)+I‘2

(39

where and the dynamic components by



54 ATOM DYNAMICS IN MULTIPLE LAGUERRE-GAUSSIAN BEAMS

4ﬁrAOQ§|p(R) A
[Ag+ Z‘QEIp(R) + FZ]Z [{nklp( R) + k}Z

(Faisd R,V)) =

|
{7ap(R) + K}V, + Vs

- i
o ERIT
+§k<R)vr}, (39

27Qyp(R)VQ(R)
[AG+205,(R)+T?]

< F)j/ipole( R,V))=

2A3

X —_
[A5+205,(R)+T?]

1

X

I
{map(R) + K}V + = Vi + fk(R)Vr}-

(40

4263

41T AoQF,(R)

v _ Kl .
<FdiSS(R1V)>~ [A(2)+ ZQEIp(R)—’_FZ]Z [[ k2V2+ T V¢] z

kI«
+ T quﬁ}, (46)

20 8p(R)
[AG+205,(R)+T?%]?

<F>j/ipole( R,V)>%

2A3
X1 1= 2 7
[A0+29klp(R)+F ]

|
2\2p

—W—OQk|||+1p—1(R))f-

I [l| 2r
—| Quip(R)

>< —_—
roowg

(47)

Equations(44) and (46) show that the dissipative force
has static components in both the axial and azimuthal direc-

In the equations abov¥,, V,,, andV, are, respectively, the tions; the latter is equivalent to a torque about the beam axis.
axial, azimuthal, and radial components of the velocity and! hese forces combine with dynamic components in the axial

the functionsz,,(R) and &(R) are defined by

L Y PP
nik'p__2(22+z§) 72+75 =(2p= )22+ZR’
(41
R)==* rz 42
Eai( )__22+z§' (42)

and azimuthal directions. Note that within this approxima-
tion, Eq. (46) shows that there is a reciprocal relationship
between the axial and azimuthal motions. An atom moving
initially in the z direction will induce a force in the azimuthal
direction and vice versa. It may be seen from Eg$) and
(47) that the dipole force consists of static and dynamic com-
ponents, both of which are in the radial direction.

The static component of the dipole force, given by Eq.
(39), attracts the atom to the high-intensity regions of the
field when the detuning is below resonance. This force can
be derived from a potentigl]

We make the additional assumption that the atom moves

in a region of the beam for whichk<zgz and we can then
ignore thez dependence if),;,(R) and setzp,,(R)=0 and
&(R)=0. We may also write to a good approximation

[l| 2r

VQk|p(R)~HT—W—20

2\2p

_W—OQkI|+1p—1(R)]F- (43

Qyip(R)

In the low-velocity limit with z<zg, the static dissipative
and dipole forces become

26T Q2 (R)
0 - kip
<FdI34R)>k|p Ag+29ﬁ|p(R)+F2

K2+ :— és}, (44)

(P Ry~ — okt R) {m—z—r}ﬂ (R)

dipole kip AS+ZQ§|p(R)+F2 r WS klp
2\2p .
—W—09k|+1p—1(R))r, (45

while the dynamic dissipative and dipole forces become

208,(R)

fiAg
(UR)wp=—7—In| 1+ AIiTT (48)

such that (F@,)=—V(U(R)),. This potential exhibits
minima in the high-intensity regions of the beam for an atom
tuned below resonance whentg<0. For A;>0, we have
trapping in the low-intensitydark) regions of the field. As
an illustration, we consider the LG mode for whitk1,
p=0. The potential is

20514R)
AG+I?

A

<U>k10:T Inj 1+ (49)

At the beam waisg=0, the minimum occurs at=r, where

For a beam propagating along theaxis it is easy to verify
that the locus of the potential minimum in tlg plane is a
circle given by

xX2+y?=rZ. (51)
Expanding the potential in powers of {r,) we have the
parabolic approximation

(U)kao~Uo+ 3 Akao(r —10)?, (52
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whereUy is the potential depth given by 24T Q2 2p(R) 1]~
5 <Fd|ss(R >k|1p1 kl,p, ™~ A2+ZQk|p(R)+F2 {T T} )
Vo= i In| 14 2niadT0) (53 ol
072 770 AS+T?
0 4hAoQyp(R)
: ; ; . <Fdipole(R)>kllp1*k|2p2% T A2 2 2
and Ayqq is an effective elastic constant given by AG+2Q04,(R)+T
_ [l] 2r
A 4h|A| e 0%y (54 X([T‘ w2 Quip(R)
KOTAZ12e 102, +T2| w2 | 0
2\2p
The atom is considered trapped if its kinetic energy is less W Qpj1p-1(R) |F

than U, and will exhibit quasiharmonic vibrational motion
aboutr =r,. The characteristic angular frequency is equal to
VA10/M, whereM is the atomic mass.

(58)
and the total dynamic dissipative and dipole forces are

C. Counterpropagating LG beams 4ﬁFAOQk|p( )
: . (Feisd RVt py ko, ™~ 72
1. One-dimensional case [AO+ ZQk,p(R)+F ]

We have seen above that an atom immersed in a
Laguerre-Gaussian beam will experience a dissipative force
that is predominantly in the direction of propagation and a

2k2V+EI—I \Y;
2 r(l 2Vy

dipole force in the radial direction. If a second beam is added ~ -
propagating in the opposite direction, we have a configura- Xzt - (1h=12)Vz¢|, (89
tion that can be referred to as the one-dimensidid)
counterpropagating beam configuration. In this paper the 240, (R)
beams are assumed to be independent of each other in thqudlpole(R'V))kl 01 —Klp > Zk'p 5
their phases are not locked. The case in which the beams are TR [AG+2Q4,(R)+ 1]
phase locked to form a standing wave will be considered oA2
elsewhere. For independent counterpropagating LG beams X|1- — 5 0 >
we can write the mean force on the atom as a sum of forces [A5+2Qjp(R)+T7]
due to individual beams 0 or
X ( {T_ w2 Qyip(R)
(Faisdkt;p, ,—kip,= 2AT QG5(R) 0
242p
% Vekllpl(R) _W—Qk\lHlp 1(R))
Afp,(RV)+205 , (R)+T72 y
¢ A
VO _yip,(R) X(li+lg) = (60)

+ )
A% o (RV)+20%, o (R)+T?

From Eq.(58) we see that the velocity-independent dipole

(55  force is simply double that of a single-beam case. The dissi-

pative force, however, depends on the relative sigrig ahd

(Faipole)ki;p, ,~kl,p, = ~ 27 Qkip(R)V l2. Forly=I>=1 we have
2
Ak|1p1(R V) 0 4ﬁFQk|p(R) I) ~
Faipotd R)Ykip—kip™~ -l ¢, (61
| A2 (RV) 207, (R)+T2 Fapad R0 oo™ X757, (R) 12 | 7
A k,p,(RV) v 8AI'A Q7 H(R) A
FY (R V) kio— kin™ k2V,Z.
Taz, o (RV)T20%, (R)+T2|’ (Fasd R-V)ap-wip [A23+202 (R)+T72 " '* -

(56)

Thus, forl;=1,=1 we have a torque about the beam axis and
where we have assumed thai,=p,=p and either an axial cooling or heating force, depending on the sign of

(I;=—1,=1) or (I,=1,=1). A,.
In the low-velocity regime, for an atom close to the beam For the casé;=—I,=I, we have
waist, we may make use of Eqg&l4)—(47). The total static
dissipative and dipole forces are then given by (Faisd R)kip-k-1p=0, (63)
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10 . ;
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k=,
-5 i L L
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/A (b)
25 -
(b)
:< 0L
. —0.3+F+ >
<
& —25
= —-0.6
750 1 I L
-50  -25 0 25 50
-0.9 . ' ' x/A
0 25 50 75 100
r/\ FIG. 3. (a) Trajectory of a Mg ion in 1D counterpropagating
LG beams forl;=—1,=1 and p;=p,=0. All distances are in

. o . units of the wavelength of the light. The initial position is

FIG. 2. (a) Radial distribution of the dipole force due to 1D Ro=8\X and the initial velocity components a%=5.0 ms * and
counterpropagating Laguerre-Gaussian beams zat). Here V,=0=V,,. (b) Projection in thexy plane of the ion trajectory
l;=—1I=1, p;=p,=0, and th_e parameters _ara_():—l“, shown in(a). In this and subsequent figures, the initial position is
Qyo=1.648", andwo=35\. (b) Radial potential distribution corre- jqicated by a full circle. See the text for the values assumed for the
sponding to(@). other parameters.

2
<Fy (RV) Dkt = 8T Ao Qip(R) There are also two overlapping dipole potential distribu-
dise T T UKPTIP T AR 208 (R)+T2)2 tions arising from the orthogonal beams. It is easy to see for
beam pairs for whicth;=—1,=1 andp,;=p,=0 and where
<! K2V, + ﬂ V. |5+ ﬂ v (;S] the axes are such that one pair is along zhaxis and the
zhp T4 r? second along thg axis, the potential minima are four times

(64) as deep as that of a single beam. The minima are situated at
the space points defined by the two equations
The static force in this case is zero, while the velocity-
dependent force contains extra terms that arise from the or- T
bital angular momentum of the counterpropagating X“+y =wp/2, (65)
Laguerre-Gaussian beams. As with the one-beam case, we
again see force components arising from the reciprocating
interchange between the axial and azimuthal motions. y2+22=w/2. (66)

2. Two-dimensional, three-dimensional, These equations apply the additional constraiat+z. At-
and three coplanar beams oms subject to such 2D counterpropagating beams will con-

The 2D case arises when a second pair of counterprop@regate at points lying on the curve defined by two intersect-
gating LG beams is arranged orthogonal to the first pair. Théng circles, one on the plane+z=0 and the other on the
total force can again be written as a sum of forces from eacplanex—z=0.
of the beams. However, in addition to the reciprocal action When a third set of beams is arranged orthogonal to the
between the azimuthal and axial motions in each pair obther two orthogonal pairs we have 3D counterpropagating
beams, there is also the fact that the azimuthal atomic motiobhG beams. The common potential minima in this case occur
associated with one beam is part of the axial motion in thet eight distinct points defined by
other. In other words, there is an additional level of reciproc-
ity between the components of the motion arising from the

presence of two pairs of counterpropagating beams. X=*Wo/v2, y==*xwglv2, z=xwy/lv2 (67)
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FIG. 5. (a) Evolution of the velocity components of a Mgon
subject to Laguerre-Gaussian 1D counterpropagating beams with
l,=1,=1,p;=p,=0, and|B|=1 T. Initially the ion possesses both
azimuthal and axial velocity component¢,=5.0 ms?! and
V,=—8.9 ms L. (b) Trajectory of the Mg in (a). All distances are
in units of the wavelength of the light.

IV. Mg * IN MULTIPLE BEAMS

The emphasis throughout this paper is on the physics in-
troduced by the orbital angular momentum aspects of the
interaction of atoms with Laguerre-Gaussian light. In the
theoretical analysis presented in the preceding section we
were able to infer that an atom in a configuration of such
beams is subject to axial forces and various forms of static
and dynamic rotational forces and that axial and rotational
motions influence each other in a rather intricate way. Fur-
thermore, a system of multiple Laguerre-Gaussian beams

FIG. 4. Variations of the velocity components for the case inpresents an atom with well-defined potential landscapes that
Fig. 3.(a) Evolution ofV, indicating axial cooling. The inset to this depend on the angular momentum quantum numbers and

figure shows small oscillations &f, due to reciprocating effects.
(b) Evolution of V, and (c) evolution of V,. Both (b) and (c)

beam configuration. For example, in the 1D case with a
given set of parameters, a given atom should have well-

indicate the rapid onset of oscillatory motions of the same period.defined quasiharmonic vibrational states associated with the

potential profiles.

and are six times as deep as the potential due to one beam. To illustrate these features we consider the case of Mg
However, in this case the detailed polarization gradients argh Laguerre-Gaussian light. The Mgnass isM =4.0x10 26
such as to make further study of this configuration nontrivial kg; the transition wavelength is=280.1 nm and its half-
Finally, we consider the case of three coplanar befd®k  width is I'=2.7x10° s™1. To illustrate the theory typical
in the x-y plane in a symmetric configuration in which the beam parameters are exemplified by the choitgs —T,
angle between adjacent beams is/2 This leads to three ,,,=1.648", and wy=35\. The equation of motion of a
overlapping circles that meet at two distinct points at

x=0, y=0,

z2=*+wy/v2

(68)

Mg™ ion in multiple LG beams is written as

9?R(t)
M 72—=2| {(Fdiss(R,V)>kilipi+<FdiP0|E(R'V)>ki'ipi}

and the potential well is three times as deep as for a single

beam.

+QVXB, (69
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FIG. 6. (a) Radial distribution of the dipole force due to 1D
counterpropagating Laguerre-Gaussian beams zat). Here
l;==1,=1, p;=p,=1, and the parameters aré,=-T,
O400=1.649", andwy=35\. (b) Radial potential distribution corre-
sponding to(a).
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FIG. 7. (a) Trajectories of a Mg ion in 1D counterpropagating
LG beams fol;=—1,=1 andp,;=p,=1 for two different initial
positions: one is aRy=10AX and the second is &,=40\%. All
distances are in units of the wavelength of the lightThe initial
velocity components in both cases aM,=5.0 ms! and
V,=0=V,. (b) Projections in thexy plane of the ion trajectories
shown in (a). See the text for the assumed values of the other
parameters.

whereQ is the ionic charge and we have included the last

term on the right-hand side to allow for the possibility of an
applied external magnetic field. The summation indicates th
vector addition over force contributions arising from indi-
vidual beams. The forces from each beam are taken in the

unapproximated forms given by Eq84) and (35).

We begin by considering 1D counterpropagating beams i

the absence of the magnetic field. Figur@) Xisplays the
dipole force as given by Eq56) as a function of radial

distancer aty=0 andz=0. The beam quantum numbers are

such that ;= —1,=1 andp;=p,=0 and the parameters are
Ag=—T, O,4,=1.648", andwy=35\. Figure Zb) displays

the corresponding radial potential distribution. The maxi-

mum intensity is located at points whare wy/v2=24.75\.
As expected, we see that fa,<O the dipole potential ex-

hibits a minimum at points where the intensity is maximum. . : . -
P Y g%(:ns that are attributable to a reciprocating force arising

The vibrational states in the parabolic approximation have
elastic constant that is twice that for the one-beam case
given by Eq.(54). The vibrational frequency corresponding
to the above parameters is

1 8%|Aqle™ oo 12

YT 27 \Mw[AZ+2e 102+ 2]

(70

For the parameter values specified above this yieldp,=p,=0 in the presence of a magnetic figil

p~2.0X10°T.

al

Figure 3a) displays the trajectory of the ion as a function

f time and Fig. 8) depicts its projection onto they plane.

he initial position is atR,=8\X and the initial velocity
omponents ar¥,=5.0 ms 2, V,=0=V,. Itis clear from
the figure that the atom, subject to an axial friction force, has
jpeen slowed axially. Once the atom is moving sufficiently
slowly, it starts a vibrational motion about the radial coordi-
nater =w,/v2, accompanied by a slow rotational motion.
The latter, according to Eq46), is attributed to the azi-
muthal component of the dissipative force induced by the
axial motion.

Figure 4 displays the evolution of the velocity compo-
nents. The axial velocity is seen to decay almost to zero.
However, closer inspection, as shown by the inset to Fig.
4(a), reveals that the axial motion exhibits periodic oscilla-

om the periodic azimuthal motion, depicted in Figby

e period associated with these figures is indeed about
2.0x10°T as in the estimate based on E@0). An important
feature displayed by the results depicted in Figs. 3 and 4 is
that changing the sign of the angular momentum quantum
numberl from +1 to —1, which is readily achievablgs,9],
causes the change in the rotational motion from clockwise to
the oppositgcounterclockwisgsense.

Figure 5 is concerned with the case=1,=+1 and
=1T di-
rected along the positive axis. From Eqs(61) and(62) we
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deduce that, besides the ion cyclotron motion due the mag- =
netic field, the main effects are in the form of an axial fric-
tion force provided that\,<<O and a static torque about the
beam axis that acts upon the ion azimuthally. Figu(@ 5
displays the evolution of velocity components for the case
Ao=—T. The initial ion position isR(0)=—8\y and the ini-
tial velocity components ar&/,=0, V,=—-8.9 ms?!, and = §§
V,=5.0 ms . We see that the torque due to the LG beams - = s
generates a braking effect on the cyclotron motion, while the T -
axial motion is gradually cooled by the axial friction force.

All these features can be inferred from the trajectory shown

in Fig. 5b). If the sign of |l in both beams were to be 50
changed, buB kept in the same direction, we would have (b)
heating of the azimuthal motion, while the axial motion
would still be cooled. Clearly the former case amounts to a
decrease in angular motion due to the LG beam, while the
latter is equivalent to the enhancement of the angular motion.
These phenomena are attributable only to the angular mo-
mentum properties of the LG bearf20].

Figure 6 is concerned with counterpropagating beams _o5 |
with the next-higher-order LG modeg,=—1,=1 and
p;=p,=1 and no external magnetic field. Other parameter
values are(),,=1.648 andA,=—T". Figures 8a) and 3b) 50 : : ‘
display the radial distribution of the dipole force and corre- o0 -RS 0 &0 50
sponding potential, respectively. We now have two potential
wells  with minima at r=0.468v,=16.38 and
r=1.5v,=52.86\. The ion is destined to oscillate about one  FIG. 8. (a) Trajectory of a Mg ion in 2D counterpropagating
of these points, depending on the initial conditions. This cari.G beams involving two orthogonal pairs: one pair haszlais as
be seen in Fig. 7 for an atom wit,=0=V, andV,=5.0 & common axis with,;=—1,=1 andp;=p,=0 and the second
ms L. The inner curve depicts the trajectory when the atonPair has they axis as a common axis anty=—I,=1 and

begins atR,=10AX and the outer curve when it begins ps=p4=0. All distances are in units of the Wavglength of the light
Ro=40\y. \. The initial position of the Mg ion is atRy=20\X and the initial

Figure §a) shows the trajectory in a 2D counterpropagat-velo‘:ity components a_lré).OZ, _0.02, 0.06ms 2. (b) Projection in
ing beam case with,= —1,=1 andp,=p,=0 and Fig. §o)  hexy plane of the trajectory ita).

shows the corresponding projection in tkg plane. The ini-

)

A
o
T

v/

light is made to interact with atoms at near resonance. We

tial position is atR,=10\X and the initial velocity compo- . .
P have shown that a variety of forces come into play when the
lll 1 -
nents arg(0.02,0.02,0.0bms . Figure 9 shows the evolu LG light is arranged in well-defined multiple beams particu-

tion of the velocity components. From Figs. 8 and 9 it can b . :
seen that the atom is subject to friction forces from all direcﬁarly linear, orthogonal 2D, and symmetric coplanar three

tions, which result in it coming to rest at a point within the beam configurations. We have, for simplicity, considered

otential profile. We have shown earlier that the locus of th only coaxial multiple LG beams of the same kind whose
P profiie. Vve . E}oeam waists coincide and have assumed that all counter-
dipole potential minimum for the 2D case witth,0) beams

- . . . A ropagating pairs have the same magnitude of orbital angular

is in the form of two intersecting circles, satisfying E P . .

and(66). This is shown in Fi 190 for the ca ZS%A (Tﬁf?()a momentum quantum numbeksand p. Notwithstanding the

tra'ector. end point for the Cga'se devicted insg s 8 énd 9 Iiesimplification inherent in these symmetric configurations, the
Jth y f] in Fia. 10. Th P this th gs.ca hysics has been intricate, but has given rise to effects asso-

ggterfn%uer:j/eei dovggi:\rt]s ;gr a .giveuns iorl1$un?jc(;rryg?i\slzlr?r;ﬁitri)gléiated with the orbital angular momentum of LG beams.

conditions. That this is clearly the case can be seen from The results show that LG light generates a potential aris-

Table I, where the coordinates of the trajectory end poin{ng from the dipole force, while the dissipative force pro-

: X ; ; vides a mechanism to cool the atom axially and that there is
recorded fof various starting points sat!sfy .E@g) and(66) a torque that can be utilized to cool or heat the azimuthal
for the two intersecting circles shown in Fig. 10.

motion. Furthermore, there are reciprocating forces involv-
ing an interplay between motions in orthogonal directions
V. COMMENTS AND CONCLUSIONS that can generate oscillatory and _precessio_nal motions._
The model we have adopted involves linearly polarized

In this paper we have explored the nature of the radiationight. We have also assumed that the beams are independent
forces and their influence on atomic motion for a specificand possess no fixed phase relationship, thus excluding in-
type of laser light, namely, Laguerre-Gaussian laser light irterference or multiphoton procesgés, for example, absorp-
the form of a single beam and for multiple beams in varioustion from one beam followed by emission into the other
configurations. We have emphasized from the outset that theeam. The atom responds therefore to the sum of the indi-
orbital angular momentum effects characterizing theseidual forces acting upon it. This is distinct from the case in
modes give rise to different physical phenomena when suctvhich the two counterpropagating beams form a standing
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FIG. 10. Locus of spatial points where the dipole potential pro-
file due to a system of two orthogonal pairs of counterpropagating
LG beams possesses the lowest minimum. All distances are in units
of the wavelength of the light.

wave and the possible Doppleron effefig that can arise
under such circumstances. Work on the case of a standing
LG wave is planned to be reported elsewhere.

In summary, this paper has dealt with the basic features
that can arise when an atom interacts with multiple Laguerre-
Gaussian beams possessing orbital angular momentum. The
main effects of LG light on atomic behavior are elucidated
for the 1D counterpropagating beams where we find reci-
procity between axial and azimuthal motions and the exist-
ence of a static torque and a characteristic dipole potential. In
the case of 2D counterpropagating beams the potential pro-
file indicates that cooled atoms are forced to congregate into
well-defined loci depending on the size of the light beams.
Initial cooling need not be effected by the same LG beams;
the primary aim of the LG beams at the late cooling stages
could be the installation of the dipole potential; artificially
generated dark field beams have been experimentally ex-
ploited [21]. We have illustrated the results by considering
the case of beams of order of tens of wavelengths diameter.
This results in atoms sitting on loci separated by distances of
tens of wavelengths. However, the generation of results for
diameters of order of millimeters is straightforward and
would lead to atomic loci separated by distances in the mms
scale. We have also briefly considered the loci for the 3D
case and for the three coplanar converging LG beams. For
these cases no solutions of the dynamical equation were pre-
sented and we have only pointed out the characteristic po-

FIG. 9. Evolution of the velocity components corresponding totential profiles and the points at which cooled atoms would
case with initial position aRy=10AX (a) V,(t), (b) V,(t), and(c)

V,(t). Note that all components of velocity go to zero after a suf-

ficiently long time.

congregate.
The effects of orbital angular momentum have been dis-
cussed here in connection with Laguerre-Gaussian modes. It

TABLE |. Coordinatesx;,Ys,z; of the trajectory end points against initial coordinaigsyg,zy. All distances are in units of the
wavelength of the lighk. The last three columns demonstrate that the ion end points always lie on the two intersecting circles shown in Fig.

10.
Xg Yo P4 Xt Vi Z VXt Ys VYitzi Wo/v2
20 0 0 15.96 18.92 15.96 24.75 24.75 24.75
20 20 0 2.84 24.61 2.84 24.75 24.75 24.75
—-20 20 10 —14.27 20.22 14.27 24.75 24.75 24.75
—-20 20 -10 —-13.81 20.54 —-13.81 24.75 24.75 24.75
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appears likely, however, that the dynamically induced stabiatomic motion is more straightforward to interpret.
lization of the atomic motion, the so-called supermolasses
configuration, which arises from a small displacement of the
molasses field§22], can be related to the azimuthal forces
arising from orbital angular momentum, as probably can the The authors are grateful to Dr. E. Riis and Dr. R. C.
macroscopic vortex force due to the offset beams in the spinfFhompson for useful discussions. This work was carried out
polarized spontaneous force-atom trap of Wakkeal.[23]. under EPSRC Grant No. GR/J64009, which also provided
As we have shown, the orbital angular momentum of thesupport for W.K.L. and V.E.L. L.A. was working at JILA,
Laguerre-Gaussian modes is explicit and their influence otniversity of Colorado during the preparation of the paper.
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