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Theory of high-order sum and difference frequency mixing in a strong bichromatic laser field
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We generalize the recently formulated theory of high-order harmonic generation by low-frequency laser
fields to the case of high-order sum and difference frequency mixing in a two-color field of noncommensurate
frequencies in the optical-infrared regime. Our theoretical description includes both the single-atom response
and propagation. We observe a different behavior of the sum and difference frequency mixing processes, in the
single-atom response as well as in the propagation results. The results of our calculations including propagation
compare very well with recent experimental observati¢84.050-294®06)04109-]

PACS numbeps): 42.50.Hz, 32.80.Rm, 42.65.Ky

[. INTRODUCTION difference frequency mixing the signs of the phase shifts
induced by dispersion and by focusing are opposite, whereas
The interaction between a strong two-color laser field andhey are equal for sum frequency mixing or harmonic gen-
free atoms has been a subject of increasing interest duringration.
the past few years. Mixing processes and harmonic genera- In a recent Lettef10] we presented an experimental study
tion in a two-color field have been extensively studied theo-of high-order sum and difference frequency mixing in the
retically [1-6] as well as experimentally7—10]. There are 7—70 eV range, in xenon, argon, and neon. This was done by
several interesting aspects of two-color mixifigthe access mixing the light from a femtosecond titanium-sapphire laser
to new frequencies, not obtainable by harmonic generatiorand that from an optical parametic generator. We obtained
(i) the tunability, if one of the fields is tunab|®,10]; (i)  tunable radiation through mixing processes involving ab-
the enhancement of the conversion efficiency for harmonisorption or emission of one or two photons from the weak
generation5-7,9, by up to several orders of magnitude if tunable source, up to an energy of 70 eV, thus extending the
the second field is as intense as the first one; @ndthe  previous work of Eichmann and co-workel8]. We also
possibility of controlling the harmonic-generation processfound that the relative strengths of the sum and difference
with the second colof3]. Control could be obtained both in frequency processes change, the sum frequency processes
the single-atom response, via control of the electronic trajecbeing stronger at low photon energies in xenon and the dif-
tories, and in a macroscopic sense, due to control of phaderence frequency processes dominating at high photon en-
matching. Previous studies of two-color mixing can be di-ergies in neon, being almost comparable to harmonic genera-
vided into two main categories: those involving a fundamention. One of the main motivations of the present work was to
tal field and one of its harmonidsecond or thiri[1,3-7,9, develop a theoretical approach allowing us to interpret such
which can be as intense as the fundamental, and with, iaxperiments and, more generally, to provide a guide to fur-
some cases, a related, controlled, phase; and those involvitiger experimental two-color studies.
an intense fixed-frequency field and a weaker tunable field The understanding of physics involved in the generation
with a different frequency1,8,10. of high-order harmonic§16—18 has recently made consid-
Most of the theoretical calculations have been performedrable progress, owing to the elaboration of the so-called
by numerically integrating the Schiimger equation for a two-step mode[19,20. In this model, the electron is first
single atom in an intense two-color field, either for a hydro-released from the nucleus by tunneling ionization and then
gen aton{5] or for a model potential atorf¥]. Telnovet al.  propagates in the electric field. If it returns to the vicinity of
[6] used a Floquet approach to study hydrogen. Ivagtaad.  the nucleus, it may recombine and thereby release a photon
[3] used two fields with very similar frequencies to explorewith energy corresponding to the kinetic energy of the elec-
various control aspects of intense-field interactions. Longron plus the ionization potential. The return kinetic energy
et al. [1] studied different two-color mixing scenari¢aith ~ varies depending on the trajectory the electron follows in the
parallel or perpendicular polarizations, commensurate or ineontinuum. The maximum energy the electron can acquire in
commensurate frequencjessing a semianalytical approach the field is 3.2), (U, being the ponderomotive potential of
valid for a zero-range atomic potent{dll], which is closely the laser fielgl which gives rise to the cutoff law for the
related to our$12]. All these calculations, however, consider energy of the highest harmoni®,=1,+3.2U, [17].
only the single-atom response. Phase matching for sum arf@uantum-mechanical approachd®1,22,13 gave firm
difference frequency mixing processes has been discusseguounds to this interpretation and indeed expressed the time-
many years agdsee, for example],13]) and was revisited dependent dipole momeritvhose Fourier transform gives
recently for high-order processgb4,15. High-order differ-  the harmonic componentas a sum of contributions from
ence frequency mixing is predicted to be more efficient tharthe different trajectories of the electron in the continuum.
sum frequency mixing and harmonic generation, since foFurthermore, we showeg@3] that there are mainly two tra-
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jectories contributing to the generation of a particular har£(t)=E,(t) + E,(t) = E;CoS;t) + E,coS@,t + ¢), where
monic in the plateau, both of them with return times within hoth fields are linearly polarized in the direction, hence
the first period of the laser fieltthe return time is the time also the total field. The two frequencies are noncommensu-
spent by the electron in the continuunThe quantum inter-  rate, both in the optical regime, anglis the relative phase
ference between the two trajectories gives rise to oscillationpetween the two fields. We consider the case where the field
in the_ strength, as weI_I as in the phase, of the ha_rm_onlc, as@,(t) is much stronger than the fiel,(t), with a typical
function of the laser intensity23]. For a harmonic in the jntensity ratio of E%E2=1C°. In the following, we often

cutoff region, there is only one dominant trajectory and thergefer to E,(t) as the “first,” the “fundamental,” or the
are no interference effects. Trajectories with return times‘strong” field and to E,(t) as the “second” or “weak”

longer than one period exist, but do not contribute signifi-fig|g. We closely follow the approach described in detail in

cantly to the generation process even in the plaf@8l.  [12] and summarize only the first few steps. We make the
Another important effect is the rapid variation of the phasefollowing basic assumptions.

of the dipole moment for e.ach harmonic component, with_the (i) The ground state of the atom is the only bound state

fundamental intensity. This was found to be extremely im-yhat is considered.

portant to understanding propagation effects and the coher- (i) Depletion of the ground state is neglected.

ence properties of the emitted radiati@,25. (i) As soon as the electron is in the continuum, it is
In this paper we present a study of the interaction betweefeated as a particle moving freely in the electromagnetic

free atoms and a two-color field, consisting of a strong infrasig|q j.e., we neglect the influence of the atomic potential.

red laser field and a much weakiay three orders of mag- gy solving the time-dependent Séllinger equation with

nitude optical field of variable frequency. We present ihese simplifications, we obtain the following expression for

single-atom data as well as calculations including propagage time-dependent dipole moment of an atom in a field of
tion. For the single-atom response, we generalize th%trbitrary temporal shape:

guantum-mechanical two-step approgt8] to the case of a
two-color field. We include the second field as a perturbation ‘

to the atom and the first field and go to second order in the X(t):if dt'f d3pd§[5—,&(t)]exq—iS(f),t,t’)]
sense that we allow the second field to contribute one or two 0

photons to the generation process. This approximation is jus- , - s

tified because the second field is indeed much weaker than XE(t")d,[p—A(t")]+c.c., @)
the first one and further motivated by the wish to do a full

calculation including propagation. A detailed knowledge ofwhere&(ﬁ,t) is the field-free atomic dipole momefwhich
the amplitude and phase of the atomic polarization as a funaepends on the choice of the atomic wave funoti@ft) =
tion of th_e intensities of the dr_lvmg fields is necessary forEl(t)+E2(t), with a total vector potentiaﬁ(t)=[—(E1/
propagation calculations. Treating nonperturbatively two la'wl)sin(wlt)—(Ezlwz)sin(wthr¢>),0,0], and

ser fields of different colors would require manipulating pro-
hibitively large arrays representing the nonlinear polarization
in the medium. We generalize our approach to propagation
of harmonic fields to the case of two-color frequency mixing.
The propagation equations are solved within the paraxial and
slowly varying envelope approximations using the dipole

> @

S A(+7)\72
S(ﬁ,t,t'):f;dt" [p—A(t")] +|p).

moments—dependent on the laser intensity of the intensw/e have defined a canonical momentpmas p=v +A(t),

field—expanded to second order in the weak field. vyhereJ characterizes a continuum state of kinetic energy
We observe a difference between sum and difference fres. In expressionl) we have neglected the contribution of
quency mixing. This difference is present already in thethe continuum-continuum part of the mean atomic dipole
single-atom response and is enhanced due to phase matchimgement, which is negligible in the limit of weak depletion of
It comes from the fact that the addition of even a weak secthe ground state.
ond field influences the generation processes. The two previ- Equation(1) has a straightforward physical interpretation:
ously mentioned electronic trajectories are modified by thehe termE(t’)d,[p—A(t’)] is the probability amplitude for
presence of the second field and different interference effectgn electronic transition at tinté from the ground state to the

result in different phase response of the two processes.  cqninuum state with canonical momentgmThe electronic
The paper is organized as follows. We describe the singleg,4ve function is then propagated from tirtleuntil time t,

atom response in Sec. Il and the propagation calculations i S >,
Sec. lll. Section IV contains numerical results, both single—{he"aby acquiring a phase factor equal to [exi(p.tt)],

atom data and calculations including propagation. We als§’here S(p,t,t’) is the quasiclassical action. The last term
compare successfully our numerical results to experimental; [p—A(t)] describes the recombination from the con-

data[10]. Finally, in Sec. V we discuss our results and drawtinyum state ofcanonical momentump to the ground state

some conclusions. at timet.
The dipole moment is thus determined as a fourfold inte-
Il SINGLE-ATOM RESPONSE gral. The integration ovqif can be performed using a saddle-

point method since only the stationary points of the classical
We consider an atom in the one-electron approximationaction will contribute significantly to the integral. The saddle
submitted to an intense two-color electromagnetic fieldpoint of the action is found to be
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E, T
pstzm[cos{wlt)—cos{wlt’)] X 2U1K1(7')+2U1|31(T)COS{Zwl(t—5”
1
E T
+;22:'[C0$w2t+ (b)—COSth,"F(b)]- 3 +2U2K2(7')+2U282(7')C0{2w2(t—E +2¢
2
. . . . . . T
Isnssernon ofpg in S yields the stationary point of the action +4 /—Uluz: D+(r)cos{w+ t— 5 +¢
t
2U, ~D_(ncosw_|t—= —¢|i|+cc (6)
Sst:[|p+U1+U2]7'_E[l_coiwﬂ')] - - 2 e
1
2U, U, I € is a positive regularization constant. The expressions for
- m[l—COE{wZT)]— w_Cl( T)cos{Zwl(t— 5” the (real) functionsK;(7),B;(7), andD ..(7) can be found in
2 1

Appendix B. For a different choice of atomic dipole mo-
ments, these functions would be differéahd might not be
real, but the expression in Ed6) for the dipole moment
X(t) would be the same. Note the characteristic

T

Y2 20, t— = | +2
o, C2(1C0g 20a| L= 5]+ 26

T [/ (e+i7/2)]%? factor describing diffusion of the electronic
+4JU UoCo(m)Cog w. | t=5 |+ ¢ wave packet, which effectively cuts off harmonic generation
after a few cycles of the field.
T The dipole moment can be evaluated directly from @&g.
_4VU1UZC—(T)C05{‘"—<t_ 5] ¢ (4 py inserting the expression fd and using the fact that

exdivcos@)] can be expanded as a series of Bessel func-

where we have introduced new variables, the return timdions: exmivcos(g)]:Ean(v)i“e‘i”". Since there are four fre-

T:t_t,, w+=w1+ Wy, and W_=wW1— Wy Ul and U2 are quency terms in EQ(4)1 nameIY! W1,02,0 4, and (_’!)* ’

the ponderomotive potentials of the two fieldg=EZ2/4w3  X(t) becomes a fourfold expansion of Bessel functions and

and U,=E%4w3, respectively. Expressions for thgea) IS Fourier transform yields the frequency spectrum. This ap-

functionsC,(7),Cy(7),C. (), andC_(r) can be found in proach is very close to that of Refl] and is indeed very

Appendix B. appealing since it yield&lmos) exact numerical solutions,
To proceed from this point, one has to specify the fielg-independently of the relative strengths of the two fields.

free atomic dipole moments. For hydrogenlike atoms andiowever, it is not well adapted to a propagation calculation
transitions froms states, the dipole moment can be approxi—because it requires a rather time-consuming fourfold infinite

mated by[12,26 sum of Bessel functions for a two-dimensional grid of inten-
sities (4,l,) of the two fields. Instead, we choose a pertur-

o 2712,5/4 5 bative approach, in which we utilize the fact th# is small
d(p)=i (5) compared toU;. In the expression for the phase factor

7 (p*+a)” exp(—iSy), only the first term in cdQw,(t—72)] is written

. as a sum of Bessel functions
wherea=2l,. Many of the relevant properties of the har-

monic spectra and their relative intensities, however, can be U, r

reproduced using the much simpler dipole momefy) «p exp[ i w_Cl(T)CO{Zwl(t_ E)H

[corresponding to the “broad Gaussian modé€GBR) de- !

scribed in[12]]. In particular, the GBR model gives the cor- U, N i2nest

rect dependences of a given harmonic strength and phase of :; JIn w_lcl(T) (i)"eM17e v )
the laser intensity and the ionization potential and the correct

relative phases between different harmonics. It has the trerpq remaining terms, i.e.,

mendous advantage of leading to particularly simple analyti-

cal expressions. The GBR model has two drawbacks, how- U, T
ever: it overestimates the contribution of the lower-order eXp[i—Cz(T)COS{sz(t—E
harmonics and it gives uncorrect relative strengths of the @2

harmonics in the plateau, leading to a plateau increasingnd

slightly with the harmonic numbdr.2].

+2¢ ®

Insertingd(p) =ip into Eq. (1) and performing the inte- . T
gration overp gives the following expression for the time- exp —i14VU Uz Co(7)C03 | =5+ ¢
dependent dipole moment:
. a2 —C(r)CO{w(t—%)—(b ]), 9
x(t)=|J0 dr e+i7’/2) exp(—iSg){E co8 w4 (t—17)]

are expanded to the second ordeEl i.e., to the first order
+E,co8 wy(t—7) + ¢]} in U,. (We typically usel ,= 10** W/cm? and\ ,=500 nm,
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which giveU,/w, of the order of 10°, much smaller than where-(r,t) denotes thdinear responseat the considered

U,;/w;=1.) This approximation corresponds to allowing the frequency amjﬁiNL('?’t) the nonlinear responseThe linear

weak field to contribute by one or two photons in emission or, sponse term is usually incorporated on the left-hand side of
absorption to the frequency conversion processes. We ins

these expansions into Ef§) and obtain a new expression for e propagation equation, by introducing the refractive index
the dipole moment. We then calculate analytically the Fou—ni at frequencyw; . Owing to the relatively low conversion

. . efficiency for the high-order wave mixing processes, the

rier components ok(t) by long, but elementary, algebraic ) SNL - T

manipulations. nonlinear respons@;- is the polarization induced by the
In order to improve our atomic model, we normalize thefundamental field only. We introduce the envelope functions

Fourier components of photon energyoy multiplying them  E; and ISiNL
by the factor

N 1. .
27,52 ()= EEi(r,t)e'<kiz“°i‘)+c.c.,

ol - 1 - I
This allows us to introduce, in an approximate way, the en- A= quq ngqz(r't)el(qlklz freat vzl el
ergy dependence of the hydrogenic dipole momgsde Eq. v
(5)], thus obtaining a more correct plateau behavior for har- +c.c., (14
monic generation. Unfortunately, this normalization overes-
timates even more than before the strengths of the lowewith z denoting the coordinate on the propagation axis,
order harmonic$27]. The results presented below are valid ki=n;w;/c, and the wave vectors at the generated and fun-
only for sufficiently high-order harmonics, of energy larger damental {(=1,2) frequencies. Note that we have here ex-

thanl,. The expressions for the strengths of the Fouriemplicitly summed over the different processes to express the

components of Eq6) are given in Appendix A. nonlinear polarization. We now make the paraxial and
slowly varying envelope approximations. The wave enve-
IIl. PROPAGATION lopes are assumed to propagate close tozttaxis and to

vary slowly in the propagation directioicompared to the
The second step of the theoretical description consists oavelength and in time(compared to the period of the pro-
solving the propagation equations in the paraxial and slowlcess. After a few manipulations described in textbodkse,
varying envelope approximations, using the dipole momentg.g.,[30]) and, in particular, making the change of variables
discussed above as source terms. The method for solving thie., ;" andt—t—z/c, the propagation equations become
propagation equations has been discussed previf2&)29.

Here we generalize it to the case of two-color frequency JE(F 1)
. 2 = -> . ] ]
mixing. VLEi(r,t)+2|ki&—
We start from the general wave equation describing the z
propagation of an electromagnetic fi@df,t) in an isotro- wiz ML ik
pic, globally neutral, nonmagnetic, dielectric medium, char- ——— Payg,(rthe” Hae?, (15)

. . s €0C" 1,0,
acterized by an electronic polarizati@t{r,t):
- o = whereA kq1q2= ki —q1k;— ok, denotes the phase mismatch,
V2E(r 1) - iz J E(rz,t) _ 12 ? P(;,t). (11) which, in principle, depends on the process considered. In
' c ot €oC ot the calculations presented below, we neglect any dispersion
type of effect from free atoms or electror%i is the Laplac-
As in Refs.[28,29, it is natural to decomposé(?,t) and ian operating on the transverse coordinatesy(. Equation
P(r,t) as a sum of different frequency components (15 is completely general and describes generation and
propagation of any field obtained by mixing of two colors.
. .o .. .o (The generalization to more than two colors is immediate
grin=2 &rp, Prn=> Brp, (12 In the problem analyzed in the present paper, the two
' ! frequencies are assumed to be incommensurate and the sec-
ond field is treated nonperturbatively up to second order.
Both fields are linearly polarized in thedirection, so that all
equations above are actually scalar equations. There are five
types of processes, namelZK+1,0) (harmonic genera-
tion), (2K,* 1) (absorption or emission of one photon from
the second field and(2K +1,= 2) (absorption or emission of
e(WO photons from the second figldUsing the notations of
0,&ppendix A, we rewrite the dipole moments as

where the index refers to a given frequenay; . In the case
of incommensurate frequencies, the wawan be character-
ized by two integersl; ,q,, denoting the net total number of
photons absorbed or emitted from each laser figll that
w;=(qiw1+gow,). In the case of commensurate frequencies
several processes can lead to the same frequency compon
For the sake of generality, we make no assumptions about
the frequencies of the two colors.

Pi(r,t) can be expressed as Xak+1= Yox1(10) + Yo (1)ES,

75|(r_)1t):73:_(F1t)+73|NL(F1t)1 (13) X(ZK)il:Y(ZK)il(Il)E21
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(16) 11=2.2x10" W/ecm? and|,=10" W/cm?, at wavelengths
of A;=790 nm and\,=500 nm, unless otherwise stated.
where theY coefficients are calculated for a field of ampli- These parameters have been chosen to match the parameters
tudeE; (assumed to be réaE, can be considered agi@a)  in our experimenf10].
parameter. The integration of the propagation equations re- The sum(difference frequency process involving the ab-
quires the knowledge of the dipoles emitted by each indisorption of X photons from the intense field and the absorp-
vidual atom in the nonlinear medium, experiencing the fieldgion (emission of one photon from the weaker field will be
El(F,t),EZ(F,t), with phases<pl(F,t),<p2(F,t). The ampli- referred to as Z+_1 (2K—1) or, in gene_ral, as-1 (—1)
tude and phase of the two fundamental fields are usuallprocesses. Likewise, processes involving 21 photons
obtained by solving the propagation equation for each offom the strong field and absorptigemission of two pho-
them. In the present work, however, we neglect any perturlons from the weaker field will be referred to as
bation of the fundamental fields as they go through the me(2K+1)+2 [(2K+1)—2] or, in general;+2 (—2).
dium, assuming the two fields to be Gaussian, but with dif-
ferent confocal parameters and pulse durations and not A. Single-atom spectra

necessarily focused at the same positir(r) (i=1,2) is In Fig. 1 we plot the strengths of the harmonics of the

tEen slim_ply e?]ual to;he phase of ?_ Glglusdsian beami Note ity jamental field and investigate the effect of adding a weak
the relative phase) between two fields does not play any gecong field. The abscissa scale is the photon energy of the
role since the two frequencies are incommensurate. This 'aenerated radiation, in units afy, i.e., in this case simply

also seen in Eqs_(Al)—(AS), in which .¢ COmes In as a ihe process order. This convention, to express the photon
constant phas_e d|fference_a_nd has no influence on the yiel ergy in units of the frequency of the fundamental field,
of the harmonics or the mixing processes. will be used in the following. The curves in solid and dotted
The nonlinear polarization in each poimt{) can be writ-  |ines show the results with and without the second field. For
ten as our choice of parameters, the influence of the second field is
. . slightly destructive(the solid line is below the dotted line
Pk 1Mt =2Mr, D[ Yo 1(11) but this is not always true. For another choice of wavelength
1 2K+ 1o of the second field, the situation might be the opposite.
+Yoka(la)la]e ' In Fig. 2 we compare the strengths of the different pro-
cesses. Figure(d) shows the harmonics and thel pro-

2
Xiok+1)+2= Y2k +1)+2(11)E3,

P - 1(F D) =2MTr, DY o)« 1(11) 1,6/ 2Ke1=1 92, cesses, while Fig.(B) presents the harmonics and the?
processes. Several conclusions can be drawn from the figure.
PIZ\"K_+1,12(F!t):ZMth)Y(2K+1):2(| 1)1,/ (BKFDe=2idy First, the mixing processes exhibit the same plateau and cut-

(17) off behavior as the harmonic-generation processes, as well as
the same strong scattering of the data, due to quantum inter-

where the intensities and phases are local variables arfdrences between different trajectories of the electron in the
M t) is the atomic density. The numerical calculations arecontinuum([12], as mentioned in the Introduction. Second,
then performed in two steps. First, the coefficieitsare  the strengths of the-1 processes are typically a factor of
calculated for a large grid of intensitiéabout 1000 values 10-50 lower than the harmonic strengths and th2 pro-
are necessary to describe properly the intensity distributio§esses are again a few orders of magnitude weaker than the
in the nonlinear mediubn The value of the nonlinear p0|ar_ +1 processes. These results are within 10% of the results
ization (17) in each f.t) point is obtained by interpolating obtained in a nonperturbative calculation using the same

the Y(1,) components and multiplying by the appropriate
intensity and phase factors. Then, the propagation equation
(15) is solved using a Crank-Nicholson algorithm. The inte-
gration is repeated several times spanning the laser pulse

duration. Note that in the perturbative approach the knowl- 10°F \ 1
edge of only four function¥ is necessary so that arrays of

£ 1w'r o 1
dimension 4 1000 are enough to describe the polarization. 5 02 L ’\\/\/ ot _
This is in contrast to a full nonperturbative treatment, in E R ¢ /"* AN e,
which a propagation calculation would require the knowl- 2 e - . \"'\& 1
edge of a very large number ¥fs (and the dimension of the «E 10 A

= 105} \&_

arrays describing the polarization would be at least
1000x 1000). s Y

IV. NUMERICAL RESULTS 10 0 3 40 0

Photon energy
We first present single-atom results, obtained by numeri-
cal integration of Eqs(A1)—(A3). All the calculations are FIG. 1. Strength of harmonics of the strong field when a second
performed for a neonlike atom, with an ionization potentialweak field is present ¢) or absent(+). The intensities are
of 21.56 eV. We typically integrate over=4x27 (four  1,=2.2x10" Wicm? at A\;=790 nm andl,=10" W/cm? at
cycles, with 1000 points per cycle. We use intensities of \,=500 nm. The abscissa scale is photon energy, in units,of



Photon energy

FIG. 2. In(a) we show harmonics¢ ) and processes involving
absorption(+) or emission @) of one photon from the weak field
and in(b) harmonics € ) and processes involving absorption)
or emission @) of two photons from the second field. The condi-
tions are as in Fig. 1.
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T a2l o / v 4 several reasons. Not only is this a “spectral” way of pre-

E 10 ¢ DD _ : X .

£ 10l . NP i senting the data and indeed the most convenient for compari-

= 0tk ¢ \ / N son with experimental results, but it is also the most correct

‘z s R A 3 AN in view of the two-step model. Perturbation theory would

o = L B e e - . .

E 10_6 . +,'+\+/-'+' A S \‘X compare the R+1 and the X—1 processes, which differ
Y b o w0 in energy by ,. As seen from Fig. 2, this is not an appro-
107 N priate comparison. Thus we stress that also for the mixing

-8 1 M) 1 1 1 1 1 L e - H H
0 5 0 25 30 35 a0 45 50 processes it is thenergyof the returning electron that is

important.

In Fig. 3 we investigate the effect of increasing the inten-
sity of the first field tol,=3.1x10* W/cm? (this is the
intensity used later in most of the calculations including
propagation For clarity, we show only the harmonics and
the =1 processes. The figure shows the extension of the
plateau for all of the processes to a cutoff energy of approxi-
matively 550, instead of 4. We again clearly observe a
change in the relative strengths of the sum and difference

atomic mode[31]. An increase of the weak field intensity by frequency mixing processes depending on the photon energy.

a faﬁtor %f lO,r:.e.,f_ addif_ngfda s_etlzgnd fi_e!d a factor of 10?Note also that thet1 processes are subject to much larger
weaker than the first field, yields mixing processes Ofinieference effects than thel processes.
strength comparable to the harmonic strengths. This is an

important consideration since the mixing output could be
tunable, in contrast to the harmonics. In this case, however,
the perturbative approach is not as good, yielding values In Fig. 4 we show the dependence of the dipole phase on
about a factor of 2 higher than the nonperturbative calculathe intensityl ;. The solid line corresponds to the 23rd har-
tion. The overall shape of the spectrum and the relativanonic, the dashed line to the 224 process, and the dot-
strengths are nevertheless reproduced. dashed line to the 241 procesgall of these processes lead

In the cutoff region, there corresponds to each harmonito approximately the same photon energhhe phase behav-
of energy (X+1)w; a “pair’ of —1 and+1 frequencies iors of the+1 and—1 processes are quite different. For low
having similar strengths, approximately a factor of 10 lowerintensities, when the generated spectral component is still in
than the harmonic strength. These are the difference frehe cutoff region, the mixing and harmonic processes exhibit
guency mixing process with energyK2-2)w;— w, justto  the same behavior, the phase decreases linearly with the in-
the left of the (X +1)th harmonic and the sum frequency tensity (with a slope of—3.2U,) [23]. However, for an in-
mixing process (K)w;+w, just to the right of the tensity large enough for the harmonic to reach the plateau,
(2K +1)th harmonic. Note also the relative strengths of thewhich for these mixing processes is approximately
+1 processes, the-1 in general dominating over thel  0.75x< 10 W/cm?, the phase of the 221 process decreases
apart from oscillations due to interference. In the cutoff re-more rapidly than the one of the 24.. Furthermore, the
gion, the +1 takes over again, becoming comparable insuperimposed oscillations due to interferences are more vio-
strength to the harmonics. This effect is even more prodent for the 22-1 process than for the 241. At higher
nounced in Fig. &) for the +2 and—2 processes. intensities, in the plateau region, the phase of both the

The choice to plot the yield of the processes versus pho22+1 and the 241 mixing processes decreases as
ton energy, and not versus process order, has been made fel6U,,. The different phase dependences of sum and differ-

B. Phase behavior
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ence between the two trajectories is responsible for the os-
cillations superimposed on the phase decrease. In the case of
a two-color field, things become more complicated. To inter-
pret the phase behavior, we performed a saddle-point analy-
sis such as the one described #8]. We found that due to
the possibilities of exchanging photons with the second field,
there are several processes corresponding to the same elec-
tronic trajectory, leading to the same final photon energy. A
sum frequency process involving oag photon corresponds
to absorption of one photon from the weak field. This nec-
essarily happens in the vicinity of the nucleus, but can hap-
pen either at the time of tunneling or at the time of recom-
bination. Since these two possibilities correspond to the same
Intensity (10" W/em?) initial and final states and to the same trajectories, they in-
terfere. Our analysis shows that for the present choice of
FIG. 4. Phase, in radians, of the 23rd harmd(siglid line) and  parameters and in this intensity range the usually dominant
the 220, + w, (dashed and the 24, — w, (dot-dashed linepro-  trajectory with return timer, close to one period is sup-
cesses as a function of the intendityof the strong field, in units of pressed in sum frequency generation by destructive quantum
10 wiem?. interference. On the contrary, this is not the case in differ-
ence frequency generation. This leads to an increased rela-

tive importance of trajectories with return times close to two

ence frequency mixing processes are found for all procesg; more periods and thus to a faster phase decrease efthe
orders, but the intensity range where the phase behavio ocesg32].

differ changes with the order of the process. Figure 5 show
the phase variations for the 4 and the 42 1 processes.
The steep phase decrease of thet40is here found at
higher intensities, above>410** W/cm?. It is worth men-
tioning that the+ 2 processes exhibit the same behavior a
the +1 processes and that the2 processes behave simi-
larly to the —1 processes.

The phase response of a harmonic dipole moment is us
ally interpreted in connection with the dominant trajectories
responsible for the process. [23] it was argued that the
phase of the dipole is proportional to the return tinde: C. Results including propagation

*Up7. The slope of the phase decrease with intensity is thus | the following, we present calculations including propa-
interpreted as the return time of the dominant trajectory. Fobation in a gas of neon atoms. Theeak intensities of the
a harmonic in the plateau, there are mainly two trajectoriesﬁe|ds arel,=3.1x 10 W/cm? and | ,= 10 W/cm?. The

as pre_viously m_enti_oned, both Within. the first cycle of theintensity of the strong field was chosen to obtain the same
laser field, contributing to the generation process. One has ateau and cutoff energy as in the single-atom case, i.e

return time close to half a period, the other has a return time,. :
. . : slightly higher than before, to account for the reduced cutoff
close to one period. It is the latter that dominates the phasI%W obtained when propagation is includdal] (E
response, giving the slope ef6U,. The quantum interfer- ) _max
P gving P P g ~l,+2Up). We let the two beams be Gaussian, with con-

focal parameters df; =b,=5 mm and with the focus at the
0 . . : : same positiorzg=0 in the center of a Lorentzian gas jet with
a full width at half maximum of 1.0 mm. The pulse lengths
are assumed to be 150 fs. The propagation equationdlBq.
are integrated on a 106M00-point grid inr Xz space and
in most of the calculations only for one point in time,
40 - \ . namely, at the peak intensity. Time integration over the du-
ration of the pulse further smoothes out oscillating structures,
but does not change the overall form of the spectra. loniza-
tion due to the fundamental field is omitted in all the calcu-
lations, which is not unreasonable at the intensity considered.
80 i In Fig. 6@ we show the spectra for the1 and the—1
- s . . processes. The expected effect of the different intensity de-
0 1 2 3 4 > pendences of the phase is indeed observed. The difference
Intensity (10'* W/cm?) between the two processes increases in the high-energy end
of the plateau. In Fig. ®) we show the harmonics and the
FIG. 5. Phase of the 48+ w, (solid line) and the 42, w, +2 processes under the same conditions. In Fig. 7 we show
(dashed ling processes as a function bf. a calculation including integration over 51 points in time. As

0=

20

40 F

-60 |

-80 +

Dipole phase (radians)

-100 -

-120
-0

This behavior of the dipole phase plays a very important
role when propagation is included, since a large phase varia-
tion with intensity deteriorates phase matching. From the
above discussion of Figs. 4 and 5, we thus expect propaga-
Yion to reduce the strength of sum frequency mixing pro-
cesses, compared to difference frequency mixing, in the
L51_igh-energy end of the plateau.

.60 | 4

Dipole phase (radians)




THEORY OF HIGH-ORDER SUM AND DIFFERENCE . ..

10-8 T T T T T T T T T
109 L @ |
o .
2 ool .ﬁ\\ .+ Lo 1
g e s i \;"\“/‘L +o %
. . + S L ey *. o .0
= 1 +- +\\ . LA R e
E 107 i N ¥ e 7
el i H
Rt ¢ ]
) w
£ -
101 o
. 10-14 1 1 1 1 1 1 1 1 "‘»\*‘
5 10 15 20 25 30 35 40 45
Photon energy
10-8 T T T T T T T T
< 4 (b)
9| i
10 \M_o\ \ / N
P
2 -10 A : \°/ ooy
2 107 F Ny _
= 0,
5 AN
CRR . N
\; t e-e « - ! o %
2 LA o N * -0 ) \
g 10712 . * \ ot S e P
E o ! * ¢ + * L \
— + ) AR
107 ! ¥ ey 5
\+/I N \:\
o 1 ! ! 1 1 1 LN
5 10 15 20 25 30 35 40 45 50
Photon energy

FIG. 6. Spectra, including propagation, fts) the harmonics
(¢), (@ the+1 (+) and—1 (®) processes, anb) the +2 (+)
and —2 (@) processes. The intensities dre=3.1x 10" W/cm?
andl,=10" Wicm?,

4243
T T T

10710 >\ 4
£ T - \.\\
3 g BT e .
8 T
g | N\ A :\ \:\\
2 otk / SN i
B ¥ T
5 e,
E X.\

e
10-12 1 1 I \\3\

25 30 35

Photon energy

FIG. 8. Effect of changing the relative positions of the two foci,
when the confocal parameter of the second field is large
(b,=10b,). Solid lines correspond to a focus at 5 mm before the
gas jet(+, +1 processes® —1 processgsand dashed lines to a
focus 5 mm after the gas jet.

mm in order to mimic the experimental conditions [d00]

(see Sec. IV D The result is presented in Fig. 8. The solid
lines show the strengths of thel processes when the sec-
ond focus is before the center of the gas jet and the dotted
lines result from a calculation in which the second focus is
after the center of the gas jet. All other parameters are as in
Fig. 6. We see that the effect is an enhancement of the one
process compared to the other, th& being enhanced when
the focus is before the center of the gas jet and-tliebeing
enhanced when the focus is after the center of the gas jet. It
is worth noting that just lettindp,= 10b, and not translating

the second focus enhances both thé and the—1 pro-
cesses by 20% in the high-energy end of the plateau and in
the cutoff, compared to Fig. 6. The results presented in Fig.
8 indicate that the relative strength of the processes depends

mentioned above, this does not change the spectrum dramatin the macroscopic parameters and in a nontrivial manner.

cally.

Moving the focus of the second field by the same distance,

To investigate the effect of changing the macroscopic paen either side of the center of the jet leads to the same rela-
rameters, we translate the focus of the second beam by teve intensity of the two fields. The effect is, however, clearly
value as large as the confocal parameter of the first beamsymmetric, reflecting the complex interplay between the
Z9,= * b, relative to the center of the gas jet. We choose sgeometrical phase and the atomic ph§28]. The overall
large confocal parameter of the second bdsm 10b; =50
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FIG. 7. Identical to Fig. @), with time integration over a 150-
fs-FWHM Gaussian laser pulse.

influence of macroscopic parameters on the relative strengths
of the =1,+2 processes remains nevertheless wéake
vertical scale in Fig. 8 has been deliberately reduced in order
to emphasize the effegtWe also investigated the role of the
geometrical phase by artificially swapping the geometrical
phase factors for sum and difference frequency processes
[see Eq.(17)]. The results obtained were very close, much
closer than, for example, the difference exhibited by the re-
sults corresponding to the two different focus locations in
Fig. 8. This shows that the relative shapes of the spectra

are governed essentially by the single-atom response and in
particular the intensity dependence of the atomic phase,
which itself reflects the dominant trajectories in the single-
atom response.

D. Comparison with experimental data

In Figs. 9—11 we compare our numerical simulations to
the experimental results ¢10], showing the numerical data
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FIG. 9. (a) Calculation including propagation performed in xe- FIG. 10. (a) Calculation in argon, at, = 1.6x 104 W/cm? and

; i _ 4 2 _ 101 2
non, at intensities of,=0.87x 10** Wiem® and ;= 16** W | ,=10™" W/cm?. The confocal parameter of the second field is 50

The confocal parameter of the second field is 50 mm. We showmm In (b) we show the corresponding experimental result. The
harmonics ¢ ), +1 processes+), —1 processes@®), and +2 : P g exp ’

processesX). In (b) we show the experimental result. The abscissanOtatlonS are as in Fig. 9.
shows the photon energy, in eV.

Figure 10 shows results for argoh,E15.76 eV at in-
tensities ofl ;=1.7x 10" W/cm? and |,=1x 10" W/cm?.
in (a) and the experiments itb). In all of the three calcula- The experimental data in Fig. @) show that in argon, the
tions shown in the figures, we have set the confocal param? 1 and the—1 processes have approximately the same
eter of the second field to be,=10b,=50 mm. Further- strengths, with—1 processes taking over thel processes
more, we use different intensities of the intense field for the?t @Pproximately 25 eV. In the numerical dafdg. 10@)]

different rare gases, chosen in order to obtain approximateljy® 2/S0 see a takeover ai25 eV, but the differences be-
the same cutoff as in the experiment. The intensity of th ween the strengths of the processes are more pronounced

weak field is kept fixed, as in the experiment. In Fig. 9 Wethan in the experiment. However, we stlll_con5|der the agree-

) . o . ment to be rather good. Note also that in the cutoff region,
show harmonic generation and mixing processes in X€NOthe strength of the mixing processes approaches that of the
(1,=12.13 eV, at intensities of ;= 0.87x 1044 W/cm? and 9 gp bp

. harmonic strength, as was also observed in the experiment.
— 1 2 ’
1,=1x 10" W/cm?. The observed dominance of thel In Fig. 11 we show the results obtained in neon and the

processes over the 1 processes is already present in theyyminance of the— 1 processes over the 1 processes is
single-atom response. This can be interpreted with a dressingeay in both the numerical and the experimental results. In
picture: Since the photon energy is 2.5 eV, compared to agye calculation (see Sec. IV € we used intensities of
ionization potential of 12 eV, dressing with plus one photon|, =3.1x 10" W/cm? and 1,=1x 10! W/cm2. The agree-
means an effectivé, of 9.5 eV, compared to an effective ment obtained between numerical and experimental results is
I, of 14.5 eV for difference frequency mixing. Thus sum excellent.

frequency generation should be favored since it eases the Figures 10 and 11 show that the yield in the plateau in
tunneling process. As the phase responses ofttfleand  argon is stronger by three orders of magnitude than the cor-
—1 processes are similar, phase matching does not changgsponding for neon, in both the simulations and in the ex-
this effect. As Fig. #) shows, the agreement with the ex- periment. The plateau harmonics in xenon are again a factor
perimental results concerning the relative ratios of the proof 100 stronger than in argon, in the calculation, which is
cesses is satisfying. more than that observed in the experiment.
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FIG. 11. (a) Calculation in neon,

result. Notations are as in Fig. 9.

V. DISCUSSION

at

75

intensities  of
I,=3.1x 10" W/cm? and I ,= 10" W/cm?. The confocal param-
eter of the second field is 50 mm. (h) we show the experimental
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and the 24-1 processes and observed that for a certain range
of intensity (roughly between 1 and210** W/cm?), the
phase decrease is much steeper for the P2han for the
24—1 process, which behaves more or less like a harmonic.
We interpreted this difference as a consequence of quantum
interferences between different trajectories for the electron in
the continuum. Usually, there are two trajectories, with re-
turn times within the first laser period, that contribute signifi-
cantly to the generation of a harmonic. The presence of the
second field introduces a number of trajectories leading to
the same final energy and these interfere constructively or
destructively. For the present choice of parameters, this in-
terference is destructive for the usually dominant trajectory
with a return time close to one period for thel process and

not for the—1 process. This allows trajectories with longer
return times to contribute more to the generation of the
processes, which leads to a faster decrease of the phase with
the intensity.

When phase matching and propagation are included, this
phase behavior enhances the difference between the sum and
difference mixing processes. The fast decrease of the dipole
phase is observed for thel processes, at intensities corre-
sponding to the high-energy end of the plateau. Thus phase
matching suppresses thé1 processes compared to the
—1 processes in this range of the plateau. We compared our
numerical results to some experimental results and obtained
good agreement, in particular in xenon and neon, for the
relative strengths of the output signals.

In conclusion, we believe that studies of mixing processes
will help to understand, and hence to obtain, control of har-
monic generation and its characteristics. We have general-
ized here the analysis of the harmonic-generation process in
terms of quasiclassical trajectories, quantum interferences,
and phase-matching effects. This has led to a better under-
standing of the results, but will also be useful in the search
for more efficient generation of harmonics and mixing pro-
cesses.

Finally, our studies could be easily generalized to differ-

We presented calculations of the response of free atoms nt regimes of parameters, such as different polarizations of
an intense bichromatic electromagnetic field. We calculateghe o fields, commensurate frequencies, and more than two
both the response of one-single atom, and the macroscopig|ors. Particularly interesting is the mixing of the funda-
response of a collection of atoms to a space- and timementa| field with a high-order harmonic beam. This problem
dependent laser pulse. We used a perturbative approximatigfys already been studied in the context of coherent control of
for the second field. This was motivated by the small relativegjhqye-threshold ionizatiof83]. In our case it could be har-
intensity of the second field.e., a factor of 1000 weaker monjc generation stimulated by one or several harmonics
than the fundamental fieldand by the wish to perform a [34]. More excitingly, our theory could be used to study

propagation calculation.

stimulation of high-order harmonic generation by several

In the single-atom data, we showed that mixing signalsyarmonics, forming an attosecond pulse tr36].
can be obtained with strengths a factor of 10-50 lower than

the harmonic strengths. Adding a field this weak does not
significantly alter the strengths of the harmonics of the fun-

damental field. The mixing signals exhibit the same plateau
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APPENDIX A: FOURIER COMPONENTS OF ATOMIC allowed processes including one and two photons from the
DIPOLE MOMENT weaker field, the atom will radiate at frequencies correspond-
ing to (2K+1)w, (the odd harmonics of the strong laser
In this appendix we give the explicit expresssions for thefield), (2K)w;* w,, and (K+1)w;*2w,. First the har-
fourier components of the dipole moment. Since we havenonics of the strong field are

X 2iw U7” ZY“S/Zde T N ek 2 B,C,C_¢ UlC
= - T wqT _ W7 i
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1

In this expression, we have omitted all argumentse.g., we have writterC . (7) as C, . Expressions for the functions
Bi(7),Ci(7),Di(7),Ki(7), andF(7) can be found in Appendix B.
For the processes involving absorption or emission of one photon, the Fourier compongntithatbe label (XK)=1
since they include R photons from the strong field and absorption or emission of one photon from the wedk field
2iw; 27a5?
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Finally, the dipole moments for the processes involving absorption or emission of two photons from the weak field are

2|w1 27 5/2
72 \/_Uf

K@+ 1227 (2K 1)y = 20,10

3/2
e*iF(T)i KeinlreiiZq’)eiisz

exin2
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APPENDIX B: ADDITIONAL DEFINITIONS

In this appendix we present the explicit expressions for the functi@gs), B;(7), D;(7), and F(7) that enter the
expressiong4) and (6). First, the functions of- used in Eq.4) for the stationary point of the action are, fior 1,2,

i 4 . w;T
Ci(7)=sin ;1) ——sir?| —|, (B1)
;T 2
c _ 1  [w«T 1 0T w_T B>
t(T)——w—tsm > |~ wrw,T co§ ——|—co§ ——| |- (B2)
Then the functions of determined by the choice of the field-free atomic dipole moments aré=ftr2
4 (w7 2
Ki(7)= —=sirf| ——| — —sin(w; 7) +cog w;7), (B3)
Wi°T 2 ;T
4 W;iT 2
Bi(7)=— —z—zsmz( +w—Tsm(wiT)—1, (B4)
[
b _ 0T 4 w7 wyT\ 2|1 017 WoT 1 (w7 WoT B5
+(1)=—co 5 Wsm 5 sinl —— 5 +; w—zco - sin| - +w—1$|n - co - | (B5)
Finally, the functionF(7) in Egs.(A1)—(A3) is
2U, 2U,
F(T)=(|p+Ul+U2)T—E[l—COS(wlT)]—E[l—COS{sz)]. (B6)

1 2
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