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We generalize the recently formulated theory of high-order harmonic generation by low-frequency laser
fields to the case of high-order sum and difference frequency mixing in a two-color field of noncommensurate
frequencies in the optical-infrared regime. Our theoretical description includes both the single-atom response
and propagation. We observe a different behavior of the sum and difference frequency mixing processes, in the
single-atom response as well as in the propagation results. The results of our calculations including propagation
compare very well with recent experimental observations.@S1050-2947~96!04109-1#

PACS number~s!: 42.50.Hz, 32.80.Rm, 42.65.Ky

I. INTRODUCTION

The interaction between a strong two-color laser field and
free atoms has been a subject of increasing interest during
the past few years. Mixing processes and harmonic genera-
tion in a two-color field have been extensively studied theo-
retically @1–6# as well as experimentally@7–10#. There are
several interesting aspects of two-color mixing:~i! the access
to new frequencies, not obtainable by harmonic generation;
~ii ! the tunability, if one of the fields is tunable@8,10#; ~iii !
the enhancement of the conversion efficiency for harmonic
generation@5–7,9#, by up to several orders of magnitude if
the second field is as intense as the first one; and~iv! the
possibility of controlling the harmonic-generation process
with the second color@3#. Control could be obtained both in
the single-atom response, via control of the electronic trajec-
tories, and in a macroscopic sense, due to control of phase
matching. Previous studies of two-color mixing can be di-
vided into two main categories: those involving a fundamen-
tal field and one of its harmonics~second or third! @1,3–7,9#,
which can be as intense as the fundamental, and with, in
some cases, a related, controlled, phase; and those involving
an intense fixed-frequency field and a weaker tunable field
with a different frequency@1,8,10#.

Most of the theoretical calculations have been performed
by numerically integrating the Schro¨dinger equation for a
single atom in an intense two-color field, either for a hydro-
gen atom@5# or for a model potential atom@4#. Telnovet al.
@6# used a Floquet approach to study hydrogen. Ivanovet al.
@3# used two fields with very similar frequencies to explore
various control aspects of intense-field interactions. Long
et al. @1# studied different two-color mixing scenarios~with
parallel or perpendicular polarizations, commensurate or in-
commensurate frequencies! using a semianalytical approach
valid for a zero-range atomic potential@11#, which is closely
related to ours@12#. All these calculations, however, consider
only the single-atom response. Phase matching for sum and
difference frequency mixing processes has been discussed
many years ago~see, for example,@13#! and was revisited
recently for high-order processes@14,15#. High-order differ-
ence frequency mixing is predicted to be more efficient than
sum frequency mixing and harmonic generation, since for

difference frequency mixing the signs of the phase shifts
induced by dispersion and by focusing are opposite, whereas
they are equal for sum frequency mixing or harmonic gen-
eration.

In a recent Letter@10# we presented an experimental study
of high-order sum and difference frequency mixing in the
7–70 eV range, in xenon, argon, and neon. This was done by
mixing the light from a femtosecond titanium-sapphire laser
and that from an optical parametic generator. We obtained
tunable radiation through mixing processes involving ab-
sorption or emission of one or two photons from the weak
tunable source, up to an energy of 70 eV, thus extending the
previous work of Eichmann and co-workers@8#. We also
found that the relative strengths of the sum and difference
frequency processes change, the sum frequency processes
being stronger at low photon energies in xenon and the dif-
ference frequency processes dominating at high photon en-
ergies in neon, being almost comparable to harmonic genera-
tion. One of the main motivations of the present work was to
develop a theoretical approach allowing us to interpret such
experiments and, more generally, to provide a guide to fur-
ther experimental two-color studies.

The understanding of physics involved in the generation
of high-order harmonics@16–18# has recently made consid-
erable progress, owing to the elaboration of the so-called
two-step model@19,20#. In this model, the electron is first
released from the nucleus by tunneling ionization and then
propagates in the electric field. If it returns to the vicinity of
the nucleus, it may recombine and thereby release a photon
with energy corresponding to the kinetic energy of the elec-
tron plus the ionization potential. The return kinetic energy
varies depending on the trajectory the electron follows in the
continuum. The maximum energy the electron can acquire in
the field is 3.2Up (Up being the ponderomotive potential of
the laser field!, which gives rise to the cutoff law for the
energy of the highest harmonic:Emax5I p13.2Up @17#.
Quantum-mechanical approaches@21,22,12# gave firm
grounds to this interpretation and indeed expressed the time-
dependent dipole moment~whose Fourier transform gives
the harmonic components! as a sum of contributions from
the different trajectories of the electron in the continuum.
Furthermore, we showed@23# that there are mainly two tra-
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jectories contributing to the generation of a particular har-
monic in the plateau, both of them with return times within
the first period of the laser field~the return time is the time
spent by the electron in the continuum!. The quantum inter-
ference between the two trajectories gives rise to oscillations
in the strength, as well as in the phase, of the harmonic, as a
function of the laser intensity@23#. For a harmonic in the
cutoff region, there is only one dominant trajectory and there
are no interference effects. Trajectories with return times
longer than one period exist, but do not contribute signifi-
cantly to the generation process even in the plateau@23#.
Another important effect is the rapid variation of the phase
of the dipole moment for each harmonic component, with the
fundamental intensity. This was found to be extremely im-
portant to understanding propagation effects and the coher-
ence properties of the emitted radiation@24,25#.

In this paper we present a study of the interaction between
free atoms and a two-color field, consisting of a strong infra-
red laser field and a much weaker~by three orders of mag-
nitude! optical field of variable frequency. We present
single-atom data as well as calculations including propaga-
tion. For the single-atom response, we generalize the
quantum-mechanical two-step approach@12# to the case of a
two-color field. We include the second field as a perturbation
to the atom and the first field and go to second order in the
sense that we allow the second field to contribute one or two
photons to the generation process. This approximation is jus-
tified because the second field is indeed much weaker than
the first one and further motivated by the wish to do a full
calculation including propagation. A detailed knowledge of
the amplitude and phase of the atomic polarization as a func-
tion of the intensities of the driving fields is necessary for
propagation calculations. Treating nonperturbatively two la-
ser fields of different colors would require manipulating pro-
hibitively large arrays representing the nonlinear polarization
in the medium. We generalize our approach to propagation
of harmonic fields to the case of two-color frequency mixing.
The propagation equations are solved within the paraxial and
slowly varying envelope approximations using the dipole
moments—dependent on the laser intensity of the intense
field—expanded to second order in the weak field.

We observe a difference between sum and difference fre-
quency mixing. This difference is present already in the
single-atom response and is enhanced due to phase matching.
It comes from the fact that the addition of even a weak sec-
ond field influences the generation processes. The two previ-
ously mentioned electronic trajectories are modified by the
presence of the second field and different interference effects
result in different phase response of the two processes.

The paper is organized as follows. We describe the single-
atom response in Sec. II and the propagation calculations in
Sec. III. Section IV contains numerical results, both single-
atom data and calculations including propagation. We also
compare successfully our numerical results to experimental
data@10#. Finally, in Sec. V we discuss our results and draw
some conclusions.

II. SINGLE-ATOM RESPONSE

We consider an atom in the one-electron approximation,
submitted to an intense two-color electromagnetic field

E(t)5E1(t)1E2(t)5E1cos(v1t)1E2cos(v2t1f), where
both fields are linearly polarized in thex direction, hence
also the total field. The two frequencies are noncommensu-
rate, both in the optical regime, andf is the relative phase
between the two fields. We consider the case where the field
E1(t) is much stronger than the fieldE2(t), with a typical
intensity ratio ofE1

2/E2
25103. In the following, we often

refer to E1(t) as the ‘‘first,’’ the ‘‘fundamental,’’ or the
‘‘strong’’ field and to E2(t) as the ‘‘second’’ or ‘‘weak’’
field. We closely follow the approach described in detail in
@12# and summarize only the first few steps. We make the
following basic assumptions.

~i! The ground state of the atom is the only bound state
that is considered.

~ii ! Depletion of the ground state is neglected.
~iii ! As soon as the electron is in the continuum, it is

treated as a particle moving freely in the electromagnetic
field, i.e., we neglect the influence of the atomic potential.

By solving the time-dependent Schro¨dinger equation with
these simplifications, we obtain the following expression for
the time-dependent dipole moment of an atom in a field of
arbitrary temporal shape:

x~ t !5 i E
0

t

dt8E d3pdx* @pW 2AW ~ t !#exp@2 iS~pW ,t,t8!#

3E~ t8!dx@pW 2AW ~ t8!#1c.c., ~1!

wheredW (pW ,t) is the field-free atomic dipole moment~which
depends on the choice of the atomic wave function!, E(t) 5

E1(t)1E2(t), with a total vector potentialAW (t)5[2(E1 /
v1)sin(v1t)2(E2 /v2)sin(v2t1f ),0,0], and

S~pW ,t,t8!5E
t8

t

dt9S @pW 2AW ~ t9!#2

2
1I pD . ~2!

We have defined a canonical momentumpW as pW 5vW 1AW (t),
where vW characterizes a continuum state of kinetic energy

vW . In expression~1! we have neglected the contribution of
the continuum-continuum part of the mean atomic dipole
moment, which is negligible in the limit of weak depletion of
the ground state.

Equation~1! has a straightforward physical interpretation:
the termE(t8)dx@pW 2AW (t8)# is the probability amplitude for
an electronic transition at timet8 from the ground state to the
continuum state with canonical momentumpW . The electronic
wave function is then propagated from timet8 until time t,
thereby acquiring a phase factor equal to exp@2iS(pW,t,t8)#,
whereS(pW ,t,t8) is the quasiclassical action. The last term
dx* @pW 2A(t)# describes the recombination from the con-

tinuum state of~canonical! momentumpW to the ground state
at time t.

The dipole moment is thus determined as a fourfold inte-
gral. The integration overpW can be performed using a saddle-
point method since only the stationary points of the classical
action will contribute significantly to the integral. The saddle
point of the action is found to be
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pst5
E1

v1
2t

@cos~v1t !2cos~v1t8!#

1
E2

v2
2t

@cos~v2t1f!2cos~v2t81f!#. ~3!

Insertion ofpst in S yields the stationary point of the action
Sst,

Sst5@ I p1U11U2#t2
2U1

v1
2t

@12cos~v1t!#

2
2U2

v2
2t

@12cos~v2t!#2
U1

v1
C1~t!cosF2v1S t2 t

2D G
2
U2

v2
C2~t!cosF2v2S t2 t

2D12fG
14AU1U2C1~t!cosFv1S t2t

2D1fG
24AU1U2C2~t!cosFv2S t2 t

2D2fG , ~4!

where we have introduced new variables, the return time
t5t2t8, v15v11v2, andv25v12v2. U1 andU2 are
the ponderomotive potentials of the two fieldsU15E1

2/4v1
2

and U25E2
2/4v2

2, respectively. Expressions for the~real!
functionsC1(t),C2(t),C1(t), andC2(t) can be found in
Appendix B.

To proceed from this point, one has to specify the field-
free atomic dipole moments. For hydrogenlike atoms and
transitions froms states, the dipole moment can be approxi-
mated by@12,26#

dW ~pW !5 i
27/2a5/4

p

pW

~p21a!3
, ~5!

wherea52I p . Many of the relevant properties of the har-
monic spectra and their relative intensities, however, can be
reproduced using the much simpler dipole momentdW (pW )}pW
@corresponding to the ‘‘broad Gaussian model’’~GBR! de-
scribed in@12##. In particular, the GBR model gives the cor-
rect dependences of a given harmonic strength and phase of
the laser intensity and the ionization potential and the correct
relative phases between different harmonics. It has the tre-
mendous advantage of leading to particularly simple analyti-
cal expressions. The GBR model has two drawbacks, how-
ever: it overestimates the contribution of the lower-order
harmonics and it gives uncorrect relative strengths of the
harmonics in the plateau, leading to a plateau increasing
slightly with the harmonic number@12#.

InsertingdW (pW )5 ipW into Eq. ~1! and performing the inte-
gration overpW gives the following expression for the time-
dependent dipole moment:

x~ t !5 i E
0

`

dtS p

e1 i t/2D
3/2

exp~2 iSst!$E1cos@v1~ t2t!#

1E2cos@v2~ t2t!1f#%

3S 2U1K1~t!12U1B1~t!cosF2v1S t2 t

2D G
12U2K2~t!12U2B2~t!cosF2v2S t2t

2D12f G
14AU1U2HD1~t!cosFv1S t2 t

2D1fG
2D2~t!cosFv2S t2 t

2D2f G J D1c.c. ~6!

e is a positive regularization constant. The expressions for
the ~real! functionsKi(t),Bi(t), andD6(t) can be found in
Appendix B. For a different choice of atomic dipole mo-
ments, these functions would be different~and might not be
real!, but the expression in Eq.~6! for the dipole moment
x(t) would be the same. Note the characteristic
@p/(e1 i t/2)#3/2 factor describing diffusion of the electronic
wave packet, which effectively cuts off harmonic generation
after a few cycles of the field.

The dipole moment can be evaluated directly from Eq.~6!
by inserting the expression forSst and using the fact that
exp@in cos(u)# can be expanded as a series of Bessel func-
tions: exp@incos(u)#5(nJn(n)i

ne2inu. Since there are four fre-
quency terms in Eq.~4!, namely, v1 ,v2 ,v1 , and v2 ,
x(t) becomes a fourfold expansion of Bessel functions and
its Fourier transform yields the frequency spectrum. This ap-
proach is very close to that of Ref.@1# and is indeed very
appealing since it yields~almost! exact numerical solutions,
independently of the relative strengths of the two fields.
However, it is not well adapted to a propagation calculation
because it requires a rather time-consuming fourfold infinite
sum of Bessel functions for a two-dimensional grid of inten-
sities (I 1 ,I 2) of the two fields. Instead, we choose a pertur-
bative approach, in which we utilize the fact thatU2 is small
compared toU1. In the expression for the phase factor
exp(2iSst), only the first term in cos@2v1(t2t/2)# is written
as a sum of Bessel functions

expH i U1

v1
C1~t!cosF2v1S t2 t

2D G J
5(

n
JnSU1

v1
C1~t! D ~ i !neinv1te2 i2nv1t. ~7!

The remaining terms, i.e.,

expH i U2

v2
C2~t!cosF2v2S t2 t

2D12fG J ~8!

and

expS 2 i4AU1U2hHC1~t!cosFv1S t2 t

2D1fG
2C2~t!cosFv2S t2 t

2D2f G J D , ~9!

are expanded to the second order inE2, i.e., to the first order
in U2. ~We typically useI 25 1011 W/cm2 andl25500 nm,
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which giveU2 /v2 of the order of 1023, much smaller than
U1 /v1.1.! This approximation corresponds to allowing the
weak field to contribute by one or two photons in emission or
absorption to the frequency conversion processes. We insert
these expansions into Eq.~6! and obtain a new expression for
the dipole moment. We then calculate analytically the Fou-
rier components ofx(t) by long, but elementary, algebraic
manipulations.

In order to improve our atomic model, we normalize the
Fourier components of photon energyE by multiplying them
by the factor

27a5/2

p2

1

~2E!3
. ~10!

This allows us to introduce, in an approximate way, the en-
ergy dependence of the hydrogenic dipole moments@see Eq.
~5!#, thus obtaining a more correct plateau behavior for har-
monic generation. Unfortunately, this normalization overes-
timates even more than before the strengths of the lower-
order harmonics@27#. The results presented below are valid
only for sufficiently high-order harmonics, of energy larger
than I p . The expressions for the strengths of the Fourier
components of Eq.~6! are given in Appendix A.

III. PROPAGATION

The second step of the theoretical description consists of
solving the propagation equations in the paraxial and slowly
varying envelope approximations, using the dipole moments
discussed above as source terms. The method for solving the
propagation equations has been discussed previously@28,29#.
Here we generalize it to the case of two-color frequency
mixing.

We start from the general wave equation describing the
propagation of an electromagnetic fieldEW(rW,t) in an isotro-
pic, globally neutral, nonmagnetic, dielectric medium, char-
acterized by an electronic polarizationPW (rW,t):

¹2EW~rW,t !2
1

c2
]2EW~rW,t !

]t2
5

1

e0c
2

]2PW ~rW,t !

]t2
. ~11!

As in Refs. @28,29#, it is natural to decomposeEW(rW,t) and
PW (rW,t) as a sum of different frequency components

EW~rW,t !5(
i
EW i~rW,t !, PW ~rW,t !5(

i
PW i~rW,t !, ~12!

where the indexi refers to a given frequencyv i . In the case
of incommensurate frequencies, the wavei can be character-
ized by two integersq1 ,q2, denoting the net total number of
photons absorbed or emitted from each laser field~so that
v i5q1v11q2v2). In the case of commensurate frequencies,
several processes can lead to the same frequency component.
For the sake of generality, we make no assumptions about on
the frequencies of the two colors.
PW i(rW,t) can be expressed as

PW i~rW,t !5PW iL~rW,t !1PW iNL~rW,t !, ~13!

wherePW iL(rW,t) denotes thelinear responseat the considered
frequency andPW iNL(rW,t) the nonlinear response. The linear
response term is usually incorporated on the left-hand side of
the propagation equation, by introducing the refractive index
ni at frequencyv i . Owing to the relatively low conversion
efficiency for the high-order wave mixing processes, the
nonlinear responsePW iNL is the polarization induced by the
fundamental field only. We introduce the envelope functions
EW i andPW i

NL

EW i~rW,t !5
1

2
EW i~rW,t !e

i ~kiz2v i t !1c.c.,

PW iNL~rW,t !5
1

2 (
q1 ,q2

PW q1q2
NL ~rW,t !ei ~q1k1z2q1v1t1q2k2z2q2v2t !

1c.c., ~14!

with z denoting the coordinate on the propagation axis,
ki5niv i /c, and the wave vectors at the generated and fun-
damental (i51,2) frequencies. Note that we have here ex-
plicitly summed over the different processes to express the
nonlinear polarization. We now make the paraxial and
slowly varying envelope approximations. The wave enve-
lopes are assumed to propagate close to thez axis and to
vary slowly in the propagation direction~compared to the
wavelength! and in time~compared to the period of the pro-
cess!. After a few manipulations described in textbooks~see,
e.g.,@30#! and, in particular, making the change of variables
rW→rW and t→t2z/c, the propagation equations become

¹'
2EW i~rW,t !12ik i

]EW i~rW,t !

]z

52
v i
2

e0c
2 (
q1 ,q2

PW q1q2
NL ~rW,t !e2 iDkq1q2

z, ~15!

whereDkq1q25ki2q1k12q2k2 denotes the phase mismatch,
which, in principle, depends on the process considered. In
the calculations presented below, we neglect any dispersion
type of effect from free atoms or electrons.¹'

2 is the Laplac-
ian operating on the transverse coordinates (x, y). Equation
~15! is completely general and describes generation and
propagation of any field obtained by mixing of two colors.
~The generalization to more than two colors is immediate!.

In the problem analyzed in the present paper, the two
frequencies are assumed to be incommensurate and the sec-
ond field is treated nonperturbatively up to second order.
Both fields are linearly polarized in thex direction, so that all
equations above are actually scalar equations. There are five
types of processes, namely,~2K11,0! ~harmonic genera-
tion!, ~2K,61! ~absorption or emission of one photon from
the second field!, and~2K11,62! ~absorption or emission of
two photons from the second field!. Using the notations of
Appendix A, we rewrite the dipole moments as

X2K115Y2K11
0 ~ I 1!1Y2K11

1 ~ I 1!E2
2 ,

X~2K !615Y~2K !61~ I 1!E2 ,
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X~2K11!625Y~2K11!62~ I 1!E2
2 , ~16!

where theY coefficients are calculated for a field of ampli-
tudeE1 ~assumed to be real!. E2 can be considered as a~real!
parameter. The integration of the propagation equations re-
quires the knowledge of the dipoles emitted by each indi-
vidual atom in the nonlinear medium, experiencing the fields
E1(rW,t),E2(rW,t), with phasesw1(rW,t),w2(rW,t). The ampli-
tude and phase of the two fundamental fields are usually
obtained by solving the propagation equation for each of
them. In the present work, however, we neglect any pertur-
bation of the fundamental fields as they go through the me-
dium, assuming the two fields to be Gaussian, but with dif-
ferent confocal parameters and pulse durations and not
necessarily focused at the same position.w i(rW) ( i51,2) is
then simply equal to the phase of a Gaussian beam. Note that
the relative phasef between two fields does not play any
role since the two frequencies are incommensurate. This is
also seen in Eqs.~A1!–~A3!, in which f comes in as a
constant phase difference and has no influence on the yields
of the harmonics or the mixing processes.

The nonlinear polarization in each point (rW,t) can be writ-
ten as

P2K11,0
NL ~rW,t !52N~rW,t !@Y2K11

0 ~ I 1!

1Y2K11
1 ~ I 1!I 2#e

i ~2K11!w1,

P2K,61
NL ~rW,t !52N~rW,t !Y~2K !61~ I 1!AI 2ei2Kw16 iw2,

P2K11,62
NL ~rW,t !52N~rW,t !Y~2K11!62~ I 1!I 2e

i ~2K11!w162if2,
~17!

where the intensities and phases are local variables and
N(rW,t) is the atomic density. The numerical calculations are
then performed in two steps. First, the coefficientsY are
calculated for a large grid of intensities~about 1000 values
are necessary to describe properly the intensity distribution
in the nonlinear medium!. The value of the nonlinear polar-
ization ~17! in each (rW,t) point is obtained by interpolating
the Y(I 1) components and multiplying by the appropriate
intensity and phase factors. Then, the propagation equation
~15! is solved using a Crank-Nicholson algorithm. The inte-
gration is repeated several times spanning the laser pulse
duration. Note that in the perturbative approach the knowl-
edge of only four functionsY is necessary so that arrays of
dimension 431000 are enough to describe the polarization.
This is in contrast to a full nonperturbative treatment, in
which a propagation calculation would require the knowl-
edge of a very large number ofY’s ~and the dimension of the
arrays describing the polarization would be at least
100031000).

IV. NUMERICAL RESULTS

We first present single-atom results, obtained by numeri-
cal integration of Eqs.~A1!–~A3!. All the calculations are
performed for a neonlike atom, with an ionization potential
of 21.56 eV. We typically integrate overt5432p ~four
cycles!, with 1000 points per cycle. We use intensities of

I 152.231014 W/cm2 and I 251011 W/cm2, at wavelengths
of l15790 nm andl25500 nm, unless otherwise stated.
These parameters have been chosen to match the parameters
in our experiment@10#.

The sum~difference! frequency process involving the ab-
sorption of 2K photons from the intense field and the absorp-
tion ~emission! of one photon from the weaker field will be
referred to as 2K11 (2K21) or, in general, as11 (21)
processes. Likewise, processes involving 2K11 photons
from the strong field and absorption~emission! of two pho-
tons from the weaker field will be referred to as
(2K11)12 @(2K11)22# or, in general,12 (22).

A. Single-atom spectra

In Fig. 1 we plot the strengths of the harmonics of the
fundamental field and investigate the effect of adding a weak
second field. The abscissa scale is the photon energy of the
generated radiation, in units ofv1, i.e., in this case simply
the process order. This convention, to express the photon
energy in units of the frequency of the fundamental field,
will be used in the following. The curves in solid and dotted
lines show the results with and without the second field. For
our choice of parameters, the influence of the second field is
slightly destructive~the solid line is below the dotted line!,
but this is not always true. For another choice of wavelength
of the second field, the situation might be the opposite.

In Fig. 2 we compare the strengths of the different pro-
cesses. Figure 2~a! shows the harmonics and the61 pro-
cesses, while Fig. 2~b! presents the harmonics and the62
processes. Several conclusions can be drawn from the figure.
First, the mixing processes exhibit the same plateau and cut-
off behavior as the harmonic-generation processes, as well as
the same strong scattering of the data, due to quantum inter-
ferences between different trajectories of the electron in the
continuum@12#, as mentioned in the Introduction. Second,
the strengths of the61 processes are typically a factor of
10–50 lower than the harmonic strengths and the62 pro-
cesses are again a few orders of magnitude weaker than the
61 processes. These results are within 10% of the results
obtained in a nonperturbative calculation using the same

FIG. 1. Strength of harmonics of the strong field when a second
weak field is present (L) or absent~1!. The intensities are
I 152.231014 W/cm2 at l15790 nm and I 251011 W/cm2 at
l25500 nm. The abscissa scale is photon energy, in units ofv1.
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atomic model@31#. An increase of the weak field intensity by
a factor of 10, i.e., adding a second field a factor of 100
weaker than the first field, yields mixing processes of
strength comparable to the harmonic strengths. This is an
important consideration since the mixing output could be
tunable, in contrast to the harmonics. In this case, however,
the perturbative approach is not as good, yielding values
about a factor of 2 higher than the nonperturbative calcula-
tion. The overall shape of the spectrum and the relative
strengths are nevertheless reproduced.

In the cutoff region, there corresponds to each harmonic
of energy (2K11)v1 a ‘‘pair’’ of 21 and11 frequencies
having similar strengths, approximately a factor of 10 lower
than the harmonic strength. These are the difference fre-
quency mixing process with energy (2K12)v12v2 just to
the left of the (2K11)th harmonic and the sum frequency
mixing process (2K)v11v2 just to the right of the
(2K11)th harmonic. Note also the relative strengths of the
61 processes, the21 in general dominating over the11
apart from oscillations due to interference. In the cutoff re-
gion, the 11 takes over again, becoming comparable in
strength to the harmonics. This effect is even more pro-
nounced in Fig. 2~b! for the12 and22 processes.

The choice to plot the yield of the processes versus pho-
ton energy, and not versus process order, has been made for

several reasons. Not only is this a ‘‘spectral’’ way of pre-
senting the data and indeed the most convenient for compari-
son with experimental results, but it is also the most correct
in view of the two-step model. Perturbation theory would
compare the 2K11 and the 2K21 processes, which differ
in energy by 2v2. As seen from Fig. 2, this is not an appro-
priate comparison. Thus we stress that also for the mixing
processes it is theenergyof the returning electron that is
important.

In Fig. 3 we investigate the effect of increasing the inten-
sity of the first field toI 153.131014 W/cm2 ~this is the
intensity used later in most of the calculations including
propagation!. For clarity, we show only the harmonics and
the 61 processes. The figure shows the extension of the
plateau for all of the processes to a cutoff energy of approxi-
matively 55v1 instead of 45v1. We again clearly observe a
change in the relative strengths of the sum and difference
frequency mixing processes depending on the photon energy.
Note also that the11 processes are subject to much larger
interference effects than the21 processes.

B. Phase behavior

In Fig. 4 we show the dependence of the dipole phase on
the intensityI 1. The solid line corresponds to the 23rd har-
monic, the dashed line to the 2211 process, and the dot-
dashed line to the 2421 process~all of these processes lead
to approximately the same photon energy!. The phase behav-
iors of the11 and21 processes are quite different. For low
intensities, when the generated spectral component is still in
the cutoff region, the mixing and harmonic processes exhibit
the same behavior, the phase decreases linearly with the in-
tensity ~with a slope of23.2U1) @23#. However, for an in-
tensity large enough for the harmonic to reach the plateau,
which for these mixing processes is approximately
0.7531014W/cm2, the phase of the 2211 process decreases
more rapidly than the one of the 2421. Furthermore, the
superimposed oscillations due to interferences are more vio-
lent for the 2211 process than for the 2421. At higher
intensities, in the plateau region, the phase of both the
2211 and the 2421 mixing processes decreases as
26Up . The different phase dependences of sum and differ-

FIG. 2. In ~a! we show harmonics (L) and processes involving
absorption~1! or emission (d) of one photon from the weak field
and in ~b! harmonics (L) and processes involving absorption~1!
or emission (d) of two photons from the second field. The condi-
tions are as in Fig. 1.

FIG. 3. Strengths of harmonics (L) and the11 ~1! and21
(d) processes for intensitiesI 152.231014 W/cm2 and I 251011

W/cm2.
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ence frequency mixing processes are found for all process
orders, but the intensity range where the phase behaviors
differ changes with the order of the process. Figure 5 shows
the phase variations for the 4011 and the 4221 processes.
The steep phase decrease of the 4011 is here found at
higher intensities, above 431014 W/cm2. It is worth men-
tioning that the12 processes exhibit the same behavior as
the 11 processes and that the22 processes behave simi-
larly to the21 processes.

The phase response of a harmonic dipole moment is usu-
ally interpreted in connection with the dominant trajectories
responsible for the process. In@23# it was argued that the
phase of the dipole is proportional to the return time:F
}Upt. The slope of the phase decrease with intensity is thus
interpreted as the return time of the dominant trajectory. For
a harmonic in the plateau, there are mainly two trajectories,
as previously mentioned, both within the first cycle of the
laser field, contributing to the generation process. One has a
return time close to half a period, the other has a return time
close to one period. It is the latter that dominates the phase
response, giving the slope of26Up . The quantum interfer-

ence between the two trajectories is responsible for the os-
cillations superimposed on the phase decrease. In the case of
a two-color field, things become more complicated. To inter-
pret the phase behavior, we performed a saddle-point analy-
sis such as the one described in@23#. We found that due to
the possibilities of exchanging photons with the second field,
there are several processes corresponding to the same elec-
tronic trajectory, leading to the same final photon energy. A
sum frequency process involving onev2 photon corresponds
to absorption of one photon from the weak field. This nec-
essarily happens in the vicinity of the nucleus, but can hap-
pen either at the time of tunneling or at the time of recom-
bination. Since these two possibilities correspond to the same
initial and final states and to the same trajectories, they in-
terfere. Our analysis shows that for the present choice of
parameters and in this intensity range the usually dominant
trajectory with return timet2 close to one period is sup-
pressed in sum frequency generation by destructive quantum
interference. On the contrary, this is not the case in differ-
ence frequency generation. This leads to an increased rela-
tive importance of trajectories with return times close to two
or more periods and thus to a faster phase decrease of the11
process@32#.

This behavior of the dipole phase plays a very important
role when propagation is included, since a large phase varia-
tion with intensity deteriorates phase matching. From the
above discussion of Figs. 4 and 5, we thus expect propaga-
tion to reduce the strength of sum frequency mixing pro-
cesses, compared to difference frequency mixing, in the
high-energy end of the plateau.

C. Results including propagation

In the following, we present calculations including propa-
gation in a gas of neon atoms. The~peak! intensities of the
fields areI 153.131014 W/cm2 and I 251011 W/cm2. The
intensity of the strong field was chosen to obtain the same
plateau and cutoff energy as in the single-atom case, i.e.,
slightly higher than before, to account for the reduced cutoff
law obtained when propagation is included@21# (Emax

'I p12Up). We let the two beams be Gaussian, with con-
focal parameters ofb15b255 mm and with the focus at the
same positionz050 in the center of a Lorentzian gas jet with
a full width at half maximum of 1.0 mm. The pulse lengths
are assumed to be 150 fs. The propagation equations Eq.~15!
are integrated on a 10003300-point grid inr3z space and
in most of the calculations only for one point in time,
namely, at the peak intensity. Time integration over the du-
ration of the pulse further smoothes out oscillating structures,
but does not change the overall form of the spectra. Ioniza-
tion due to the fundamental field is omitted in all the calcu-
lations, which is not unreasonable at the intensity considered.

In Fig. 6~a! we show the spectra for the11 and the21
processes. The expected effect of the different intensity de-
pendences of the phase is indeed observed. The difference
between the two processes increases in the high-energy end
of the plateau. In Fig. 6~b! we show the harmonics and the
62 processes under the same conditions. In Fig. 7 we show
a calculation including integration over 51 points in time. As

FIG. 4. Phase, in radians, of the 23rd harmonic~solid line! and
the 22v11v2 ~dashed! and the 24v12v2 ~dot-dashed line! pro-
cesses as a function of the intensityI 1 of the strong field, in units of
1014 W/cm2.

FIG. 5. Phase of the 40v11v2 ~solid line! and the 42v12v2

~dashed line! processes as a function ofI 1.
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mentioned above, this does not change the spectrum dramati-
cally.

To investigate the effect of changing the macroscopic pa-
rameters, we translate the focus of the second beam by a
value as large as the confocal parameter of the first beam
z0256b1 relative to the center of the gas jet. We choose a
large confocal parameter of the second beamb2510b1550

mm in order to mimic the experimental conditions of@10#
~see Sec. IV D!. The result is presented in Fig. 8. The solid
lines show the strengths of the61 processes when the sec-
ond focus is before the center of the gas jet and the dotted
lines result from a calculation in which the second focus is
after the center of the gas jet. All other parameters are as in
Fig. 6. We see that the effect is an enhancement of the one
process compared to the other, the11 being enhanced when
the focus is before the center of the gas jet and the21 being
enhanced when the focus is after the center of the gas jet. It
is worth noting that just lettingb2510b1 and not translating
the second focus enhances both the11 and the21 pro-
cesses by 20% in the high-energy end of the plateau and in
the cutoff, compared to Fig. 6. The results presented in Fig.
8 indicate that the relative strength of the processes depends
on the macroscopic parameters and in a nontrivial manner.
Moving the focus of the second field by the same distance,
on either side of the center of the jet leads to the same rela-
tive intensity of the two fields. The effect is, however, clearly
asymmetric, reflecting the complex interplay between the
geometrical phase and the atomic phase@23#. The overall
influence of macroscopic parameters on the relative strengths
of the 61,62 processes remains nevertheless weak.~The
vertical scale in Fig. 8 has been deliberately reduced in order
to emphasize the effect.! We also investigated the role of the
geometrical phase by artificially swapping the geometrical
phase factors for sum and difference frequency processes
@see Eq.~17!#. The results obtained were very close, much
closer than, for example, the difference exhibited by the re-
sults corresponding to the two different focus locations in
Fig. 8. This shows that the relative shapes of the61 spectra
are governed essentially by the single-atom response and in
particular the intensity dependence of the atomic phase,
which itself reflects the dominant trajectories in the single-
atom response.

D. Comparison with experimental data

In Figs. 9–11 we compare our numerical simulations to
the experimental results of@10#, showing the numerical data

FIG. 6. Spectra, including propagation, for~b! the harmonics
(L), ~a! the11 ~1! and21 (d) processes, and~b! the12 ~1!
and22 (d) processes. The intensities areI 153.131014 W/cm2

and I 251011 W/cm2.

FIG. 7. Identical to Fig. 6~a!, with time integration over a 150-
fs-FWHM Gaussian laser pulse.

FIG. 8. Effect of changing the relative positions of the two foci,
when the confocal parameter of the second field is large
(b2510b1). Solid lines correspond to a focus at 5 mm before the
gas jet~1, 11 processes;d 21 processes! and dashed lines to a
focus 5 mm after the gas jet.
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in ~a! and the experiments in~b!. In all of the three calcula-
tions shown in the figures, we have set the confocal param-
eter of the second field to beb2510b1550 mm. Further-
more, we use different intensities of the intense field for the
different rare gases, chosen in order to obtain approximately
the same cutoff as in the experiment. The intensity of the
weak field is kept fixed, as in the experiment. In Fig. 9 we
show harmonic generation and mixing processes in xenon
(I p512.13 eV!, at intensities ofI 150.8731014 W/cm2 and
I 25131011 W/cm2. The observed dominance of the11
processes over the21 processes is already present in the
single-atom response. This can be interpreted with a dressing
picture: Since the photon energy is 2.5 eV, compared to an
ionization potential of 12 eV, dressing with plus one photon
means an effectiveI p of 9.5 eV, compared to an effective
I p of 14.5 eV for difference frequency mixing. Thus sum
frequency generation should be favored since it eases the
tunneling process. As the phase responses of the11 and
21 processes are similar, phase matching does not change
this effect. As Fig. 9~b! shows, the agreement with the ex-
perimental results concerning the relative ratios of the pro-
cesses is satisfying.

Figure 10 shows results for argon (I p515.76 eV! at in-
tensities ofI 151.731014 W/cm2 and I 25131011 W/cm2.
The experimental data in Fig. 10~b! show that in argon, the
11 and the21 processes have approximately the same
strengths, with21 processes taking over the11 processes
at approximately 25 eV. In the numerical data@Fig. 10~a!#
we also see a takeover at.25 eV, but the differences be-
tween the strengths of the processes are more pronounced
than in the experiment. However, we still consider the agree-
ment to be rather good. Note also that in the cutoff region,
the strength of the mixing processes approaches that of the
harmonic strength, as was also observed in the experiment.

In Fig. 11 we show the results obtained in neon and the
dominance of the21 processes over the11 processes is
clear in both the numerical and the experimental results. In
the calculation ~see Sec. IV C! we used intensities of
I 153.131014 W/cm2 and I 25131011 W/cm2. The agree-
ment obtained between numerical and experimental results is
excellent.

Figures 10 and 11 show that the yield in the plateau in
argon is stronger by three orders of magnitude than the cor-
responding for neon, in both the simulations and in the ex-
periment. The plateau harmonics in xenon are again a factor
of 100 stronger than in argon, in the calculation, which is
more than that observed in the experiment.

FIG. 9. ~a! Calculation including propagation performed in xe-
non, at intensities ofI 150.8731014 W/cm2 and I 251011 W/cm2.
The confocal parameter of the second field is 50 mm. We show
harmonics (L), 11 processes~1!, 21 processes (d), and12
processes (3). In ~b! we show the experimental result. The abscissa
shows the photon energy, in eV.

FIG. 10. ~a! Calculation in argon, atI 151.631014 W/cm2 and
I 251011 W/cm2. The confocal parameter of the second field is 50
mm. In ~b! we show the corresponding experimental result. The
notations are as in Fig. 9.
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V. DISCUSSION

We presented calculations of the response of free atoms to
an intense bichromatic electromagnetic field. We calculated
both the response of one-single atom, and the macroscopic
response of a collection of atoms to a space- and time-
dependent laser pulse. We used a perturbative approximation
for the second field. This was motivated by the small relative
intensity of the second field~i.e., a factor of 1000 weaker
than the fundamental field! and by the wish to perform a
propagation calculation.

In the single-atom data, we showed that mixing signals
can be obtained with strengths a factor of 10–50 lower than
the harmonic strengths. Adding a field this weak does not
significantly alter the strengths of the harmonics of the fun-
damental field. The mixing signals exhibit the same plateau
and cutoff behavior as the harmonics. The sum and differ-
ence frequency mixing processes exhibit different behaviors.
In the spectra, this can be seen as a dominance of11 pro-
cesses at low photon energies~in xenon! and of 21 pro-
cesses at higher energies~in neon!. Furthermore, the scatter-
ing of the11 data with order is more important than that of
the 21 data. Moreover, the intensity dependence of the
phase is significantly different for the two processes. As an
example, we compared the phase dependences of the 2211

and the 2421 processes and observed that for a certain range
of intensity ~roughly between 1 and 231014 W/cm2), the
phase decrease is much steeper for the 2211 than for the
2421 process, which behaves more or less like a harmonic.
We interpreted this difference as a consequence of quantum
interferences between different trajectories for the electron in
the continuum. Usually, there are two trajectories, with re-
turn times within the first laser period, that contribute signifi-
cantly to the generation of a harmonic. The presence of the
second field introduces a number of trajectories leading to
the same final energy and these interfere constructively or
destructively. For the present choice of parameters, this in-
terference is destructive for the usually dominant trajectory
with a return time close to one period for the11 process and
not for the21 process. This allows trajectories with longer
return times to contribute more to the generation of the11
processes, which leads to a faster decrease of the phase with
the intensity.

When phase matching and propagation are included, this
phase behavior enhances the difference between the sum and
difference mixing processes. The fast decrease of the dipole
phase is observed for the11 processes, at intensities corre-
sponding to the high-energy end of the plateau. Thus phase
matching suppresses the11 processes compared to the
21 processes in this range of the plateau. We compared our
numerical results to some experimental results and obtained
good agreement, in particular in xenon and neon, for the
relative strengths of the output signals.

In conclusion, we believe that studies of mixing processes
will help to understand, and hence to obtain, control of har-
monic generation and its characteristics. We have general-
ized here the analysis of the harmonic-generation process in
terms of quasiclassical trajectories, quantum interferences,
and phase-matching effects. This has led to a better under-
standing of the results, but will also be useful in the search
for more efficient generation of harmonics and mixing pro-
cesses.

Finally, our studies could be easily generalized to differ-
ent regimes of parameters, such as different polarizations of
the two fields, commensurate frequencies, and more than two
colors. Particularly interesting is the mixing of the funda-
mental field with a high-order harmonic beam. This problem
has already been studied in the context of coherent control of
above-threshold ionization@33#. In our case it could be har-
monic generation stimulated by one or several harmonics
@34#. More excitingly, our theory could be used to study
stimulation of high-order harmonic generation by several
harmonics, forming an attosecond pulse train@35#.
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FIG. 11. ~a! Calculation in neon, at intensities of
I 153.131014 W/cm2 and I 251011 W/cm2. The confocal param-
eter of the second field is 50 mm. In~b! we show the experimental
result. Notations are as in Fig. 9.
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APPENDIX A: FOURIER COMPONENTS OF ATOMIC
DIPOLE MOMENT

In this appendix we give the explicit expresssions for the
fourier components of the dipole moment. Since we have

allowed processes including one and two photons from the
weaker field, the atom will radiate at frequencies correspond-
ing to (2K11)v1 ~the odd harmonics of the strong laser
field!, (2K)v16v2, and (2K11)v162v2. First the har-
monics of the strong field are
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In this expression, we have omitted all argumentst, e.g., we have writtenC1(t) asC1 . Expressions for the functions
Bi(t),Ci(t),Di(t),Ki(t), andF(t) can be found in Appendix B.

For the processes involving absorption or emission of one photon, the Fourier components are@with the label (2K)61
since they include 2K photons from the strong field and absorption or emission of one photon from the weak field#
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Finally, the dipole moments for the processes involving absorption or emission of two photons from the weak field are
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APPENDIX B: ADDITIONAL DEFINITIONS

In this appendix we present the explicit expressions for the functionsCi(t), Bi(t), Di(t), and F(t) that enter the
expressions~4! and ~6!. First, the functions oft used in Eq.~4! for the stationary point of the action are, fori51,2,
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Then the functions oft determined by the choice of the field-free atomic dipole moments are, fori51,2
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Finally, the functionF(t) in Eqs.~A1!–~A3! is
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