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Through a suitable expansion of the Gross-Pitaevskii equation near the classical turning point, we obtain an
explicit solution for the order parameter at the boundary of a trapped Bose gas interacting with repulsive
forces. The kinetic energy of the system, in terms of the classical radiusR and of the harmonic oscillator length
a
HO
, follows the lawEkin /N}R22@ ln(R/a

HO
)1 const#, approaching, for largeR, the results obtained by solving

numerically the Gross-Pitaevskii equation. The occurrence of a Josephson-type current in the presence of a
double trap potential is finally discussed.@S1050-2947~96!09411-5#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj

The recent experimental realization of Bose-Einstein con-
densation in atomic gases confined in magnetic traps@1–3# is
stimulating new interest in the study of inhomogeneous Bose
condensed systems where the order parameter exhibits an
important spatial dependence on a macroscopic scale@4#.

The purpose of the present work is to investigate the be-
havior of the wave function of the condensate near the clas-
sical turning point, that is, at the boundary of the trapped gas.
This region is particularly important for the determination of
the kinetic energy associated with the atoms of the conden-
sate@5,6#. It is also crucial for the description of Josephson-
type effects taking place in the presence of a barrier in the
confining potential.

The order parameterc(r ) associated with the ground state
of a dilute Bose gas obeys the Gross-Pitaevskii equation:

F2
\2

2m
¹21Vext~r !1

4p\2a

m
uc~r !u2Gc~r !5mc~r !, ~1!

whereVext is the external confining potential,m is the chemi-
cal potential anda is thes-wave scattering length. The con-
densate wave functionc(r ) is normalized to the numberN
of atoms and is related to the atomic density through
r(r )5uc(r )u2. The solution of Eq.~1! has been recently
found by direct numerical integration@6–9#. In the following
we will consider systems interacting with repulsive forces
(a.0). When the scattering length~or the number of atoms
in the trap! is sufficiently large, the solution of Eq.~1!, in the
region wherem.Vext(r ), takes the simplified Thomas-Fermi
form

c~r !5F m

4p\2a
@m2Vext~r !#G1/2. ~2!

Equation ~2! is obtained by neglecting the kinetic energy
term ¹2c(r ) in the Schro¨dinger-like equation~1! and pro-
vides an accurate description of the exact solution in the
interior of the atomic cloud where the gradients of the wave
function are small, as shown in Fig. 1. Several physical
quantities, such as the potential energy and the chemical po-
tential, can be safely calculated starting from Eq.~2! @5,6#.

For other quantities the Thomas-Fermi approximation is in-
stead inadequate. This is the case, for instance, of the kinetic
energy associated with the condensate

Ekin5E dr
\2

2m
u¹c~r !u2, ~3!

for which the Thomas-Fermi approximation yields a loga-
rithmic divergency arising at the boundary@5#. In this region,
whereVext(r );m, the kinetic energy term in Eq.~1! can no
longer be ignored and the Thomas-Fermi approximation~2!
fails. In the following we will explore the correct behavior of
the order parameter in the boundary region atT50, starting
from the Gross-Pitaevskii equation~1!. With respect to simi-
lar procedures used in the study of the single-particle Schro¨-
dinger equation in the presence of an external field@11#, the
present method includes explicitly the interatomic forces
which are responsible for crucial nonlinear effects in the
equations of motion.

Let us consider for simplicity a spherical trap@10#. The
Gross-Pitaevskii equation~1! takes the form
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~4!

Let R be the boundary of the system, determined by the
equationm5Vext(R). Near this point, whereur2Ru!R, one
can carry out the expansion

Vext~r !2m5~r2R!F1o~r2R!, ~5!

where F is the modulus of the attractive external force
F52“Vext evaluated atr5R. Moreover, for values ofR
much larger than the thickness of the boundary@see Eq.~8!
below# the second term in Eq.~4! is negligible. Indeed one
can easily check that the effect of the first derivative is much
smaller than the one of the second derivative in determining
the shape of the profile close toR, whenR is sufficiently
large. So, one can approximate the Gross-Pitaevskii equation
~4!, in this limit, with the new equation
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Let us introduce the dimensionless variable

j5
~r2R!

d
, ~7!

where

d5S 2m\2 F D 21/3

~8!

is a typical thickness of the boundary giving, as we will see
later, the distance from the classical radiusR where the
Thomas-Fermi approximation starts failing. Then we intro-
duce the adimensional functionf defined by

c~r !5
1

d~8pa!1/2
f~j!. ~9!

In terms off the Gross-Pitaevskii equation~6! takes the
universal form

f92~j1f2!f50. ~10!

Notice that the nonlinear termf3 arises from the internal
potential energy in Eq.~1!. Whenj→1` this term can be
neglected and Eq.~10! takes the simpler formf92jf50
which is the equation defining the Airy function. The asymp-
totic behavior then has the form

f~j→`!.
A

2j1/4
expS 2

2

3
j3/2D , ~11!

where the constantA must be determined by numerical inte-
gration of Eq.~10!. In the opposite limitj→2` one can
neglect the second derivativef9 and the asymptotic behavior
is given by

f~j→2`!.A2j. ~12!

The full behavior of the functionf is shown in Fig. 2. The
value of the constantA is found to be 0.397.

The solution of Eq.~10! provides, via Eqs.~7!–~9!, the
proper structure of the wave function of the condensate near
the classical turning pointR. It is worth noting that Eq.~10!
does not depend on the form of the external potential nor on
the size of the interatomic force. These physical parameters
enter the transformations~7! and~9! which fix, together with
the solution of Eq.~10!, the actual behavior of the wave
functionc.

Equations~2! and~9! determine the behavior of the wave
function in two distinct regions of space: the former in the
interior of the cloud, the latter in the boundary region. For
sufficiently largeN these two regions are sufficiently ex-
tended to match each other. An example is shown in Fig. 1
for N5105.

A third interesting region is the one at large distances
beyond the boundaryR where the system is very dilute and
one can ignore the interaction term in Eq.~1!. In this region
the wave function can be written in the following way@11#:

c~r !5
1

r S \R2

16pd3aD 1/2 A

$2m@Vext~r !2m#%1/4

3expS 2A2m

\2 E
R

r

@Vext~r 8!2m#1/2dr8D . ~13!

The effects of the interatomic interactions enter here only
through the value of the chemical potential. It is worth no-
ticing that the caseVext[0 would correspond to the asymp-
totic behavior of the order parameter for saturating systems
in the absence of confining forces as happens, for example,
outside the free surface of superfluid helium@12#. The coef-
ficient of proportionality in Eq.~13! has been fixed in order
to obtain the proper matching with the solution of Eqs.~9!
and ~10! taking place in the region ofr whereR@r2R@d
@see Eq.~11!#.

Let us apply the formalism discussed above to the sim-
plest case of an isotropic harmonic trap:

Vext~r !5
1

2
mv

HO

2 r 2. ~14!

For r,R, the Thomas-Fermi wave function~2! takes the
form

cTF~r !5F R22r 2

8pa
HO

4 aG1/2, ~15!

where we have used the expressionm5(1/2)mv
HO

2 R2 for the
chemical potential and introduced the harmonic oscillator
lengtha

HO
5(\/mv

HO
)1/2. The radiusR is fixed by imposing

the normalization of the wave function~15! to the total num-
ber of particles:

FIG. 1. Condensate wave function for 105 atoms of87Rb ~scat-
tering lengtha55.2931027 cm! in a spherical harmonic trap of
length a

HO
51.2231024 cm. Solid line: numerical solution of the

Gross-Pitaevskii equation~1!. Dot-dashed line: Thomas-Fermi ap-
proximation ~2! ~indistinguishable from the solid line in the inner
part!. Dashed line: surface profile obtained from the universal equa-
tion ~10!.
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N5
R5

15aa
HO

4 ~16!

and increases very slowly withN.
Near the boundary the wave function is instead given by

Eq. ~9! where the thicknessd, from Eq. ~8!, is

d5S aHO4
2R

D 1/3. ~17!

A similar result for the boundary thickness has been recently
found by Baym and Pethick~see note 14 in Ref.@5#!. Note
that the ratiod/R tends to zero asN increases. Taking large
and negative values ofj as in Eq.~12! means moving from
the boundary to the interior of the cloud until (R2r )@d. In
this region the asymptotic behavior~12! holds and one ob-
tains

c~r !→FR~R2r !

4paa
HO

4 G1/2. ~18!

This exactly coincides withcTF given in Eq.~15! provided
(R2r )!R. In conclusion the wave function in the boundary
region properly matches the Thomas-Fermi wave function
~15! for values ofr satisfying the conditions

d!~R2r !!R. ~19!

For distances from the boundary less thand the Thomas-
Fermi approximation~15! fails; vice versa, for distances
comparable to the radiusR, Eq.~9! becomes inadequate. The
matching of the two approximations at the surface is clearly
visible in Fig. 1 for 105 atoms of 87Rb. It is worth noticing
that, near the boundary wherec vanishes smoothly, the
shape of the order parameter obtained with the universal
equation~10! ~dashed line! follows closely the exact solution
of the Gross-Pitaevskii equation~solid line!. For larger val-

ues ofN the two curves becomes practically indistinguish-
able, thereby confirming the validity of the approximations
used to derive Eq.~10!.

Let us apply the above results to the calculation of the
kinetic energy of the system. The integral~3! can be natu-
rally divided into two parts:

Ekin5
4p\2

2m S E
0

R2e

uc8~r !u2r 2dr1E
R2e

1`

uc8~r !u2r 2dr D ,
~20!

where the distancee.0 from the boundaryR is chosen in
such a way that the conditions~19!, with (R2r )5e, are
satisfied. This permits us to evaluate the first term using the
Thomas-Fermi approximation~15! and the second one using
the solution~9! of the universal equation~10!. Clearly the
sum of the two terms should not depend on the explicit value
of e.

The first integral of Eq.~20! is easily evaluated and be-
comes

E
0

R2e

uc8~r !u2r 2dr5
R3

16pa
HO

4 a F ln2Re 2
8

3G , ~21!

where we have neglected corrections vanishing ase/R.
The relevant range of integration for the second integral is

the boundary region where the universal equation~10! holds.
In fact the contribution coming from the region far beyond
the surface, where the correct behavior of the wave function
is given by Eq.~13!, gives rise to higher order corrections.
To the leading order one then finds

E
R2e

1`

uc8~r !u2r 2dr5
R3

4pa
HO

4 aE2e/d

1`

~f8!2dj, ~22!

wheref85df/dj. If the ratioe/d5(R2r )/d is sufficiently
large @see condition~19!# the integral on the right-hand side
is easily calculated and takes the value

E
2e/d

1`

~f8!2dj5
1

4
ln
2e

d
1C ~23!

with

C52E
2`

1`

log~A11j21j!
d

dj
@~f8!2A11j2#dj50.176.

~24!

In Eq. ~24! we have ignored corrections vanishing asd/e.
Collecting the above results and using the explicit expression
~17! for the boundary thicknessd in terms of the oscillator
lengtha

HO
, one finally finds the following result for the ki-

netic energy per particle:

Ekin

N
5
5

2

\2

mR2 F lnS R

a
HO

D 1C8G5
5

2

\2

mR2
lnS R

1.3a
HO

D ,
~25!

where C85(7/4)ln22213C. Note that we have used the
Thomas-Fermi expression~16! for N. Corrections toN com-
ing from the modified structure of the surface affect the ki-

FIG. 2. Solution of the universal equation~10!. The two asymp-
totic limits ~12! ~dot-dashed line! and ~11! ~dashed line! are also
shown.
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netic energy only to higher orders. Equation~25! provides
the correct asymptotic behavior of the kinetic energy in the
limit of large N whereR@a

HO
. This is confirmed by the

comparison with the exact value of the kinetic energy ob-
tained by solving numerically the Gross-Pitaevskii equation
~1!, as shown in Fig. 3.

We conclude this paper by discussing an interesting ap-
plication of the formalism to a Josephson-type effect. The
physical idea is to consider a confining potential with two
wells separated by a barrier. When the chemical potential in
the two traps is different, an oscillating flux of atoms is gen-
erated. Let us consider the simplest one-dimensional prob-
lem ~extension to 3D will be the object of a future work! and
let the external fieldVext consist of two symmetric traps, trap
1 and trap 2, as shown schematically in Fig. 4. A difference
between the chemical potentialsm1 andm2 of the atoms in
the two traps can be achieved, for example, by filling them
with a different number of atoms. In order to obtain a first
analytic result for the flux of atoms generated by the differ-
ence in the chemical potentials we will assume that the bar-

rier between the two wells is high enough. In this case the
overlap between the wave functions relative to the two traps
occurs only in the classically forbidden region where inter-
action effects can be ignored and one can safely use approxi-
mation ~13! for the wave function. Furthermore we will ig-
nore the variation ofm1 and m2 generated by the
corresponding flux of particles. In 1D the factor 1/r in the
wave function~13! is absent and it is convenient to take the
origin of axes at the symmetry point of the external potential
~see Fig. 4!.

The Gross-Pitaevskii equation has two natural solutions in
this case. The first one with chemical potentialm1 is local-
ized in the trap 1. Its behavior in the classically forbidden
regionx.2L1 is given by

c1~x!5S \X1
2

16pd1
3aD 1/2 A

$2m@Vext~x!2m1#%
1/4

3expS 2A2m

\2 E
2L1

x

@Vext~x8!2m1#
1/2dx8D , ~26!

whereX1 is the distance between the center of trap 1 and the
classical turning point,d1 is its boundary thickness@see Eq.
~8!#, and L1 is the distance between the classical turning
point and the symmetry point of the external potential~see
Fig. 4!.

The second solution with chemical potentialm2 is instead
localized in the trap 2 and its behavior in the regionx,L2 is
given by

c2~x!5S \X2
2

16pd2
3aD 1/2 A

$2m@Vext~x!2m2#%
1/4

3expS 2A2m

\2 E
x

L2
@Vext~x8!2m2#

1/2dx8D . ~27!

It is immediate to verify that the linear combination

c~x,t !5c1~x!expS 2 i
m1t

\ D1c2~x!expS 2 i
m2t

\ D ~28!

is solution of the time dependent Schro¨dinger equation. In
fact the wave functionsc1 andc2 significantly overlap only
in the classically forbidden region where nonlinear effects
due to the interatomic potential are negligible. The current
density

I5
i\

2m S c~x,t !
]

]x
c* ~x,t !2c* ~x,t !

]

]x
c~x,t ! D ~29!

associated with the wave function~28! can be easily calcu-
lated and takes the typical Josephson form

I5I 0sin
~m12m2!t

\
~30!

FIG. 3. Kinetic energy per particle, in units of\vHO , for
87Rb in a spherical harmonic trap as a function of the number of
condensed atoms. Solid line: from the solution of the Gross-
Pitaevskii equation~1!. Dashed line: approximation~25!.

FIG. 4. Geometry of the double trap for the Josephson effect
~see text!.

4216 54F. DALFOVO, L. PITAEVSKII, AND S. STRINGARI



with I 05(\/m)(c1c282c2c18). Using the explicit results
~26! and ~27! for the wave functionsc1 andc2 and taking
m1;m25m andL1;L25L in the evaluation ofI 0, we find
that the currentI 0 is uniform in the interval (2L,1L). Its
explicit value is given by the useful result

I 05
\A2X2

16pmd3a
expS 2A2m

\2 E
2L

1L

@Vext~x8!2m#1/2dx8D .
~31!

As a consequence of the Josephson current the number of
atoms in the two traps will oscillate in time according to the
law @13#

d

dt
N152

d

dt
N252I 0sin

~m12m2!t

\
, ~32!

thereby providing the anticipated result for the flux of par-
ticles through the barrier separating the two traps.

We have considered here the Josephson effect only in the
simplest one-dimensional case. We note that quasi-one-
dimensional devices are already under experimental investi-
gation@14#, using strongly anisotropic magnetic traps to ob-
tain a cigar-shaped order parameter and optical methods to
create a potential barrier. Extension of our formalism to 3D
will be the object of future work.

In conclusion we have obtained an explicit solution of the
Gross-Pitaevskii equation near the classical turning point
where the Thomas-Fermi approximation turns out to be com-
pletely inadequate. Using this solution we have been able to
derive an analytic expression for the kinetic energy of the
system holding for large values ofN. We have finally dis-
cussed possible Josephson-type oscillations of atoms through
the barrier separating two traps.

We thank S. Vitale for useful discussions. L.P. acknowl-
edges the hospitality of the Dipartimento di Fisica at the
University of Trento.
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