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Order parameter at the boundary of a trapped Bose gas
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Through a suitable expansion of the Gross-Pitaevskii equation near the classical turning point, we obtain an
explicit solution for the order parameter at the boundary of a trapped Bose gas interacting with repulsive
forces. The kinetic energy of the system, in terms of the classical rRdiuml of the harmonic oscillator length
a,. follows the IawEkin/NocR’z[In(R/aHo) + consi, approaching, for largR, the results obtained by solving
numerically the Gross-Pitaevskii equation. The occurrence of a Josephson-type current in the presence of a
double trap potential is finally discussd&1050-29476)09411-5

PACS numbe(s): 03.75.Fi, 05.30.Jp, 32.80.Pj

The recent experimental realization of Bose-Einstein confor other quantities the Thomas-Fermi approximation is in-
densation in atomic gases confined in magnetic ttap8|is  stead inadequate. This is the case, for instance, of the kinetic
stimulating new interest in the study of inhomogeneous Bosenergy associated with the condensate
condensed systems where the order parameter exhibits an
important spatial dependence on a macroscopic $ddle h? 2

The purpose of the present work is to investigate the be- Ekin:J dr ﬁw'p(r” ' )
havior of the wave function of the condensate near the clas-
sical turning point, that is, at the boundary of the trapped gagor which the Thomas-Fermi approximation yields a loga-
This region is particularly important for the determination of rithmic divergency arising at the boundd#j. In this region,
the kinetic energy associated with the atoms of the conderwhereV,(r)~ u, the kinetic energy term in Eq1) can no
sate[5,6]. It is also crucial for the description of Josephson-longer be ignored and the Thomas-Fermi approximat®n
type effects taking place in the presence of a barrier in théails. In the following we will explore the correct behavior of
confining potential. the order parameter in the boundary regiof a0, starting

The order parametef(r) associated with the ground state from the Gross-Pitaevskii equati¢h). With respect to simi-
of a dilute Bose gas obeys the Gross-Pitaevskii equation: lar procedures used in the study of the single-particle Schro

) dinger equation in the presence of an external figd, the
wh a|1//(r)|2 W)= w(r), (1) present method includes explicitly the interatomic forces

m - ' which are responsible for crucial nonlinear effects in the
equations of motion.
whereVe, is the external confining potential, is the chemi- Let us consider for simplicity a spherical tr§p0]. The
cal potential and is thes-wave scattering length. The con- Gross-Pitaevskii equatiofl) takes the form
densate wave functiog(r) is normalized to the numbe\

h? 4
- %V +Vext(r)+

of atoms and is related to the atomic density through 42 d? r? d 4mh*a
p(r)=|¢(r)|2. The solution of Eq.(1) has been recently ~ 5m gr2¥ my ar ¥ [Ved ") —ulyt ———y°=0.
found by direct numerical integratid®—9]. In the following (4)

we will consider systems interacting with repulsive forces
(a>0). When the scattering lengtor the number of atoms Let R be the boundary of the system, determined by the
in the trap is sufficiently large, the solution of E@l), inthe  equationu=V.,{R). Near this point, wherér —R|<R, one
region whereu>V,,(r), takes the simplified Thomas-Fermi can carry out the expansion
form
i Vel 1) =~ 1= (r =R)F+0(r - R), ®)
m
Y(r)= 4Wﬁ2a[“_ve>ﬁ(r)] ' 2) where F is the modulus of the attractive external force
F=—-VV,, evaluated ar =R. Moreover, for values oR

Equation (2) is obtained by neglecting the kinetic energy much larger than the thickness of the boundase Eq.(8)
term V2y(r) in the Schidinger-like equation(1) and pro-  below] the second term in Eq4) is negligible. Indeed one
vides an accurate description of the exact solution in thean easily check that the effect of the first derivative is much
interior of the atomic cloud where the gradients of the wavesmaller than the one of the second derivative in determining
function are small, as shown in Fig. 1. Several physicathe shape of the profile close ®, whenR is sufficiently
guantities, such as the potential energy and the chemical ptarge. So, one can approximate the Gross-Pitaevskii equation
tential, can be safely calculated starting from E). [5,6]. (4), in this limit, with the new equation
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2d2

4mh?a 0.06 1 , , , , ,
- ﬁ W(ﬂ"r(r—R)F(ﬂ'i‘

——¢*=0. (6)

Let us introduce the dimensionless variable

(r-R) 0.04 —
. —

where

om |13 0.02 —

a=(23¥) ®

h _
is a typical thickness of the boundary giving, as we will see
later, the distance from the classical radiRswhere the 0 8
Thomas-Fermi approximation starts failing. Then we intro- ¢/ o

duce the adimensional functiaf defined by

FIG. 1. Condensate wave function for®1&toms of®’Rb (scat-
tering lengtha=5.29x10"7 cm) in a spherical harmonic trap of
length a  =1.22x 10" 4 cm. Solid line: numerical solution of the
Gross-Pitaevskii equatiofl). Dot-dashed line: Thomas-Fermi ap-
proximation(2) (indistinguishable from the solid line in the inner

1
I#(T)ZWMQ- ©)

In terms of ¢ the Gross-Pitaevskii equatioi®) takes the

universal form par). Dashed line: surface profile obtained from the universal equa-
" tion (10)
¢"—(£+¢?) ¢=0. (10)
Notice that the nonlinear ternp® arises from the internal 1 nR?\? A
potential energy in Eq(1). When¢— +2¢ this term can be 0=7\|T6nd%a {2m[Vex(r) — u]}"*
neglected and Eq.10) takes the simpler formp” —£¢=0
which is the equation defining the Airy function. The asymp- 2m (r ) Yoo
totic behavior then has the form xexp — ?JR[Vext(r )—p]Tdr | (13
A 2 a2 : o .
¢(§—>m)z@mex —387) (1) The effects of the interatomic interactions enter here only

through the value of the chemical potential. It is worth no-

where the constar must be determined by numerical inte- ficing that the cas&/e,=0 would correspond to the asymp-
gration of Eq.(10). In the opposite limité— —o one can totic behavior of the order parameter for saturating systems

neglect the second derivativ and the asymptotic behavior N the absence of confining forces as happens, for example,
is given by qu_t5|de the free _surfa_ce _of superfluid heluﬂm]_. The_ coef-
ficient of proportionality in Eq(13) has been fixed in order
P(E——0)=\-¢. (12)  to obtain the proper matching with the solution of E¢®.
and(10) taking place in the region af whereR>r—R>d
The full behavior of the functior is shown in Fig. 2. The [see Eq(11)].
value of the constam is found to be 0.397. Let us apply the formalism discussed above to the sim-
The solution of Eq(10) provides, via Eqs(7)—(9), the  plest case of an isotropic harmonic trap:
proper structure of the wave function of the condensate near
the classical turning poirRR. It is worth noting that Eq(10) 1
does not depend on the form of the external potential nor on Vexdr)= Emwiorz. (14)
the size of the interatomic force. These physical parameters
enter the transformationg) and(9) which fix, together with ) .
the solution of Eq.(10), the actual behavior of the wave FOF IR, the Thomas-Fermi wave functiof?) takes the
function . form
Equations2) and(9) determine the behavior of the wave
function in two distinct regions of space: the former in the
interior of the cloud, the latter in the boundary region. For Yre(r) =
sufficiently largeN these two regions are sufficiently ex-

tended t tch h other. A le is sh in Fig. 1 .
fi? Ne: 185mac cach ofher. An example IS shown in Hg where we have used the express,u;)ilﬂr(1/2)mwﬁOR2 for the

A third interesting region is the one at large distanceschemical potential and introduced the harmonic oscillator

beyond the boundark where the system is very dilute and lengtha, = (%i/mw_ )2 The radiusR is fixed by imposing
one can ignore the interaction term in Edy). In this region  the normalization of the wave functid5) to the total num-
the wave function can be written in the following wgi/A]: ber of particles:

R?—r

8wa* a
HO

271/2

: (15
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2 T | T | | T T ues ofN the two curves becomes practically indistinguish-
able, thereby confirming the validity of the approximations
used to derive Eq(10).

\ Let us apply the above results to the calculation of the
- N kinetic energy of the system. The integ(8) can be natu-
rally divided into two parts:

Q. 2
o1 r 1 gy | [ e [ o)
0

2m
\ (20

- AN\ - where the distance>0 from the boundanR is chosen in
LN such a way that the conditiond9), with (R—r)=¢, are

' satisfied. This permits us to evaluate the first term using the
Thomas-Fermi approximatiofi5) and the second one using

1
0_4 _12 0 2 4 the solution(9) of the universal equatiofl0). Clearly the
£ sum of the two terms should not depend on the explicit value
of e.
The first integral of Eq(20) is easily evaluated and be-

FIG. 2. Solution of the universal equati¢b0). The two asymp-

totic limits (12) (dot-dashed lineand (11) (dashed ling are also comes

shown. R—e - R3 2R 8
s fo [’ (r)]%r dr_lera:Oa In 3] (21)
N=-——7" (16) _ L
15aa’ where we have neglected corrections vanishing/&s
The relevant range of integration for the second integral is
and increases very slowly witN. the boundary region where the universal equati®) holds.
Near the boundary the wave function is instead given byin fact the contribution coming from the region far beyond
Eq. (9) where the thicknesd, from Eq.(8), is the surface, where the correct behavior of the wave function
is given by Eq.(13), gives rise to higher order corrections.
a* \ 13 To the leading order one then finds
o[ 3

fxlzﬂ’(r)IZrzdr— f (¢3¢, (22
R—e€

A similar result for the boundary thickness has been recently am a o?

found by Baym and Pethicksee note 14 in RefS]). Note oo 4 g/dg. i the ratioe/d=(R—r)/d is sufficiently

gﬁ[ tnhee ;?it\llc;dizIg;d%tgszﬁlr%a%gﬂ?::ﬁg;g\z':g flfgg]e large[see conditior(19)] the integral on the right-hand side
9 9 9 is easily calculated and takes the value

the boundary to the interior of the cloud untiR¢r)>d. In

this region the asymptotic behavi@t2) holds and one ob- +oo 2¢
tains f (¢p")2de= —In +C (23)
R(R—r)]%2 .
N with
MO~ D (18)

+ o d
- _ [ 2 Il N2 AL 214 e
This exactly coincides withy¢ given in Eq.(15) provided €= f_w log(V1+£™+¢) df[(¢ )WL+ £7]de=0.176.

(R—r)<R. In conclusion the wave function in the boundary (24)
region properly matches the Thomas-Fermi wave function

(15) for values ofr satisfying the conditions In Eq. (24) we have ignored corrections vanishing a@l.
Collecting the above results and using the explicit expression

d<(R-r)<R. (19 (17) for the boundary thicknesd in terms of the oscillator
length a, one finally finds the following result for the ki-

For distances from the boundary less thdhrihe Thomas- netic energy per particle:
Fermi approximation(15) fails; vice versa, for distances ) )
comparable to the radit®, Eq. (9) becomes inadequate. The ~ Bin _5 A7 | [ R _S# (R
matching of the two approximations at the surface is clearly N 2mR : S 2mR : 1.3 /)’
visible in Fig. 1 for 18 atoms of®’Rb. It is worth noticing "o " (25)
that, near the boundary whenr¢ vanishes smoothly, the

shape of the order parameter obtained with the universavhere C’'=(7/4)In2—2+3C. Note that we have used the
equation(10) (dashed lingfollows closely the exact solution Thomas-Fermi expressidi6) for N. Corrections tdN com-

of the Gross-Pitaevskii equatidsolid line). For larger val-  ing from the modified structure of the surface affect the ki-

+C’
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0.3 | 1 rier between the two wells is high enough. In this case the
overlap between the wave functions relative to the two traps
occurs only in the classically forbidden region where inter-
action effects can be ignored and one can safely use approxi-
mation (13) for the wave function. Furthermore we will ig-
nore the wvariation ofu; and w, generated by the
corresponding flux of particles. In 1D the factor ih the
wave function(13) is absent and it is convenient to take the
origin of axes at the symmetry point of the external potential
(see Fig. 4.

The Gross-Pitaevskii equation has two natural solutions in
this case. The first one with chemical potentigl is local-
ized in the trap 1. Its behavior in the classically forbidden
regionx>—L, is given by

o
[\

kinetic energy

o

0 | |
10* 10° 108 107
N

AxZ |2 A
P (x)= )

16md3a)  {2m[Veu(X)— uq ]}
FIG. 3. Kinetic energy per particle, in units dfw,g, for T 12m[Vex(X) = pa]}
87Rb in a spherical harmonic trap as a function of the number of 2m (x
condensed atoms. Solid line: from the solution of the Gross- Xexpg — FJ ] [Ve(X')— p1]Y%dX |,  (26)
k1

Pitaevskii equatioril). Dashed line: approximatiof5).

netic energy only to higher orders. Equati®b) provides whereX; is the distance between the center of trap 1 and the
the correct asymptotic behavior of the kinetic energy in theclassical turning pointd, is its boundary thicknessee Eq.
limit of large N where R>a_ . This is confirmed by the (8)], andL, is the distance between the classical turning
comparison with the exact value of the kinetic energy ob-P0int and the symmetry point of the external potentise

tained by solving numerically the Gross-Pitaevskii equationF'g- 4. ) . . o
(1), as shown in Fig. 3. The second solution with chemical potentig] is instead

We conclude this paper by discussing an interesting aqucaIized in the trap 2 and its behavior in the regieal , is
plication of the formalism to a Josephson-type effect. Thediven by
physical idea is to consider a confining potential with two

wells separated by a barrier. When the chemical potential in ﬁxg 12 A
the two traps is different, an oscillating flux of atoms is gen-¢,(x) =
p g g 1702( ) 167Td§a {Zm[vex((X) _ MZ]}UA

erated. Let us consider the simplest one-dimensional prob-
lem (extension to 3D will be the object of a future worknd om (Ls

let the external field/,, consist of two symmetric traps, trap X ex;{ - /_Zf [Vext(X')—Mz]”de’) @
1 and trap 2, as shown schematically in Fig. 4. A difference A= Jx

between the chemical potentigls and u, of the atoms in

the two traps can be achieved, for example, by filling them |t js immediate to verify that the linear combination
with a different number of atoms. In order to obtain a first

analytic result for the flux of atoms generated by the differ-

ence in the chemical potentials we will assume that the barz];(x,t)z z/xl(x)ex;{ i %ﬂ) 4 wz(x)ex;{ —i MTZt) (28)

Voxt is solution of the time dependent ScHiager equation. In

fact the wave functiong,; and ., significantly overlap only

in the classically forbidden region where nonlinear effects
due to the interatomic potential are negligible. The current
density

ik I N
o = = S| OGO 2 (D= 0 () x| (29)

associated with the wave functig@8) can be easily calcu-

. lated and takes the typical Josephson form
X4 L L2 Xz x

FIG. 4. Geometry of the double trap for the Josephson effect | =1.si (1~ p2)t (30)
(see text 0 ”—h
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with 1o=(A/m) (15— oiy). Using the explicit results We have considered here the Josephson effect only in the
(26) and (27) for the wave functions, and ¢, and taking simplest one-dimensional case. We note that quasi-one-
1~ wo=pm andL;~L,=L in the evaluation of ;, we find  dimensional devices are already under experimental investi-
that the current, is uniform in the interval ¢L,+L). Its  gation[14], using strongly anisotropic magnetic traps to ob-

explicit value is given by the useful result tain a cigar-shaped order parameter and optical methods to
create a potential barrier. Extension of our formalism to 3D
hAZX? [2m [+L ) Yo will be the object of future work.
lo= 167mdPa A ~ FJ_L [VedX') = u]75dX" . In conclusion we have obtained an explicit solution of the

(31) Gross-Pitaevskii equation near the classical turning point

where the Thomas-Fermi approximation turns out to be com-

As a consequence of the Josephson current the number pletely inadequate. Using this solution we have been able to
atoms in the two traps will oscillate in time according to thederive an analytic expression for the kinetic energy of the

law [13] system holding for large values ®f. We have finally dis-
cussed possible Josephson-type oscillations of atoms through
%le B %sz i (M1;L,U«2)t, (39 the barrier separating two traps.

We thank S. Vitale for useful discussions. L.P. acknowl-
thereby providing the anticipated result for the flux of par-edges the hospitality of the Dipartimento di Fisica at the
ticles through the barrier separating the two traps. University of Trento.
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