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We present an analysis of Bose-Einstein condensation for a system of noninteracting spin-0 particles in a
harmonic-oscillator confining potential trap. We discuss why a confined system of particles differs both quali-
tatively and quantitatively from an identical system which is not confined. One crucial difference is that a
confined system is not characterized by a critical temperature in the same way as an unconfined system such
as the free boson gas. We present the results of both a numerical and analytic analysis of the problem of
Bose-Einstein condensation in a general anisotropic harmonic-oscillator confining potential.
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I. INTRODUCTION

One of the most interesting properties of a system of
bosons is that under certain conditions it is possible to have
a phase transition at a critical value of the temperature in
which all of the bosons can condense into the ground state. It
is now well over 70 years since the phenomenon referred to
as Bose-Einstein condensation~BEC! was first predicted for
the ideal nonrelativistic Bose gas@1,2#. Nowadays it is well
known to happen if the spatial dimensionD>3. ~See@3# for
the caseD53 and@4# for generalD.!

Until recently the best experimental evidence that BEC
could occur in a real physical system was liquid helium, as
suggested originally by London@5#. However although the
behavior of liquid helium at low temperatures can be quali-
tatively described by the free boson gas model, the detailed
behavior deviates substantially from this simple model.
Physically this is, of course, because the effects of interac-
tions which are neglected in the free boson gas model are
important in liquid helium. More recently it was suggested
@6,7# that BEC could occur for excitons in certain types of
nonmetallic crystals~such as CuCl, for example!. There is
now good evidence for this in a number of experiments@8#.

An important development in the last year has been the
experimental attempts to observe BEC in very cold gases of
rubidium@9#, lithium @10#, and sodium@11#. This experimen-
tal work has stimulated theoretical studies to try to under-
stand the underlying physics of the situation@12–14#. The
systems are very dilute and as a first approximation would be
expected to be well described by a boson gas model with no
interactions among the atoms. The atoms are confined in
complicated magnetic traps which can be modeled by
harmonic-oscillator potentials. There have been several stud-
ies of BEC in harmonic-oscillator confining potentials@15–

19#. The purpose of our paper is to examine the condensation
of bosons in a harmonic-oscillator potential in a detailed way
which does not use the density of states approach of Refs.
@16–19#. Unlike the situation for a boson gas with no exter-
nal confining potential in free space@20#, there does not exist
a critical temperature which signals a phase transition. How-
ever, we will show that there is a temperature at which the
specific heat has a maximum which can be identified as the
temperature at which BEC occurs.~A short report of our
results was given in Ref.@21#.!

The fact that a gas of bosons~neglecting interactions! in a
harmonic-oscillator potential does not have a phase transition
at some critical temperature is already apparent from the
early work of@15#. ~This will also be shown below in a very
simple way.! A similar situation occurs for a system of
charged bosons in a homogeneous magnetic field; in three
spatial dimensions BEC does not occur in the same way as
for the case where there is no magnetic field@22#. The same
is true for bosons confined by spatial boundaries@23#. ~See
also Ref.@24#.! A general criterion to decide whether or not
BEC occurs has been given recently by us@25#, and it is easy
to show that the criterion is not met for a system of bosons
confined by a harmonic-oscillator potential.

Since the experiments of Refs.@9–11# are claiming to
observe BEC, a natural question which arises concerns the
exact nature of the phenomenon. If BEC as found normally
for the free boson gas is impossible for a system of bosons in
a confining potential, then in what sense does BEC occur? A
natural criterion which has been used in systems of finite size
has been to look at the maximum of the specific heat@26#.
We will apply this criterion to the case of bosons confined by
a harmonic-oscillator potential. Given the details of the
harmonic-oscillator potential trap, it is possible to calculate a
characteristic temperature which can be compared with the
values found in the experiments.

The paper is organized as follows. In Sec. II we consider
a gas of bosons in an isotropic harmonic-oscillator potential.
Although the potentials present in the experiment are aniso-
tropic, we start with this model because it is much easier
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technically and as we will see afterwards, the anisotropy has
not much influence on the critical temperature where the spe-
cific heat has its maximum. Thermodynamical quantities are
given in terms of sums resulting from the grand partition
function of the system. In Sec. III we present the technique
of how to obtain approximate analytic results for all sums
involved. These techniques are used in Sec. IV to derive
simple expressions for the thermodynamical quantities which
allow for a determination of the critical temperature and the
ground-state occupation number. Combining our analytical
techniques with numerical calculations, we present the de-
tailed behavior of the specific heat and other quantities of
interest. In Sec. V we generalize our model to the example of
an anisotropic oscillator. Once more the detailed behavior of
several quantities relevant for the recent experiments is
given. Appendixes A–D contain several technical details on
how to obtain the approximate results for all quantities of
interest. Finally, the conclusions summarize all important re-
sults, gives a brief comparison between our method and that
of Refs. @17,18#, and presents a short discussion of further
work.

II. THE ISOTROPIC HARMONIC-OSCILLATOR
POTENTIAL

For mathematical simplicity let us start with the case of an
isotropic harmonic-oscillator potential. We will assume that
the system can be described by a grand canonical ensemble.
The grand potential is defined by

q52(
N

ln@12z exp~2bEN!#, ~2.1!

whereb5(kT)21, EN are the energy levels, andz5ebm is
the fugacity in terms of the chemical potentialm. It proves
convenient to expand the logarithm in~2.1! to obtain

q5 (
n51

`
zn

n (
N

exp~2nbEN!. ~2.2!

For an isotropic harmonic oscillator characterized by an an-
gular frequency v the energy levels are given by
En1n2n3

5\v(n11n21n313/2), n1 ,n2 ,n3PN0. If we set

n11n21n35k, wherekPN0, then the energy levels may be
ordered in the wayEk5(k13/2)\v with multiplicity
(k11)(k12)/2. The sum overN in ~2.2! may be performed
to obtain

q5 (
n51

`
enb~m23/2\v!

n~12e2nx!3
, ~2.3!

where we have defined the dimensionless variable
x5\v/(kT). The number of particles is given by
N5b21(]q/]m)T,v , which becomes

N5 (
n51

`
enb~m23/2\v!

~12e2nx!3
, ~2.4!

when ~2.3! is used.
In order that the number of particles remains positive, it is

necessary form<(3/2)\v. ~More generally, we require

m<E0 whereE0 is the lowest-energy level.! Normally the
critical temperature for BEC is the temperature at which
m5E0, which for the isotropic harmonic oscillator reads
m5(3/2)\v. It is now easy to see that BEC cannot occur in
the same way for bosons confined in the harmonic-oscillator
potential as it does for bosons in free space. In the case of the
free boson gas in free space with no confining potential, as
the temperature is lowered the chemical potentialm in-
creases from negative values towards the value 0.~This is in
agreement with the general resultm5E0 quoted above since
the lowest-energy level is zero for the free boson gas.! The
value of the temperature at whichm50 defines a critical
temperatureTc determined in terms of the particle density.
At temperatures lower thanTc , m remains frozen at the
value m50, and the number of particles found in excited
states is bounded. If the total number of particles exceeds
this bound then the only possibility is for the excess particles
to be found in the ground state, giving rise to BEC. This
standard scenario is described in@20# in some detail. The
phase transition which occurs is related to the breaking of the
U~1! gauge symmetry associated with the change of phase of
the Schro¨dinger field. We have discussed this in a recent
review @27#.

The origin of the different behavior between the confined
and the free Bose gas might be seen more clearly by consid-
ering the number of particles in the ground state with energy
(3/2)\v. In addition to the dimensionless quantityx we in-
troducem5\v(3/22e), the limit e→0 corresponding to the
limit of the chemical potential reaching its critical value. In
terms ofx ande, the number of particles in the ground state
is

Nground5
1

eex21
. ~2.5!

For e→0 we haveNground→`, this being essentially the
reason that no BEC in the usual sense thate reaches 0 at
some finite temperature might occur. For givenx and particle
numberN it is clear from ~2.5! that e.(1/x)ln@(N11)/N#
and thate can reach 0 only in the zero temperature limit or
in the limit N→`. However, as is also clear from~2.5!, for
fixed particle numberN, oncee is small enough, it is essen-
tially only the ground state which is occupied. Lowering the
temperature, which is the same as increasingx, this will
happen unavoidably as can be seen from~2.4!. The tempera-
ture at which the ground state starts to increase considerably
its occupation number is the most dramatic moment in the
system. The extreme behavior is similar but not equal to a
phase transition. Although quantities are changing rapidly,
everything behaves smoothly; no discontinuities appear. The
argument presented here may be performed in a much more
general context using the setting described in@25#. Further
discussion of this important point is postponed until we have
presented our analytical analysis of the thermodynamical
quantities.

Let us continue with the internal energyU of the system
which is given in terms of the grand potentialq by

U5H 2
]

]b
1

m

b

]

]m J q. ~2.6!
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In terms of the dimensionless quantitiesx ande, U reads

U

\v
52

]q

]x
2

~3/22e!

x

]q

]e
. ~2.7!

Using the series forq given in ~3! results in

U

\v
5
3

2
N13u1 , ~2.8!

where

u15 (
n51

`

e2nex2nx~12e2nx!24. ~2.9!

In terms ofU, the specific heat reads

C5S ]U

]T D
N,v held fixed

. ~2.10!

SinceN is held fixed when computingC, only u1 contributes
to the specific heat, and we find

C/k523x2S ]u1
]x D

N,v held fixed

. ~2.11!

Once more due to fixedN, alternatively one might use

ũ15 (
n51

`
e2enx

~12e2nx!4
, ~2.12!

which differs fromu1 only by a multiple ofN. Continuing
with ~2.11! one first finds

S ]u1
]x D

N,v held fixed

52S2F11
]

]x
~ex!N,vG24S3 ,

~2.13!

with

S25 (
n51

`

ne2nex2nx~12e2nx!24, ~2.14!

and

S35 (
n51

`

ne2nex22nx~12e2nx!25. ~2.15!

Differentiating Eq. ~2.4! with respect to x for fixed
N,v,@](ex)/]x# is determined. We find

S ]~ex!

]x D
N,v held fixed

523
S2
S1
, ~2.16!

where in addition toS2 andS3 we introduced

S15 (
n51

`

ne2nex~12e2nx!23. ~2.17!

So putting the results of Eqs.~2.11!, ~2.13!, and ~2.16! to-
gether, we arrive at

C/k53x2H 4S31S223
S2
2

S1
J . ~2.18!

Before we proceed with the numerical analysis of some of
the above thermodynamical quantities, we turn now to the
analytical treatment of these quantities for some range of
parametersx and e. Let us look at the relevant range of
parameters in the sodium experiment.~Qualitatively it will
be the same for the other experiments.! There@11# we have
v/(2p)5416 Hz if we use the geometric mean of the fre-
quencies. The relevant temperature range is around 2mK. It
is therefore seen, that the behavior of the thermodynamical
quantities for smallx is desired. A plausible approach is to
argue that forx!1, it is justified to replace sums which have
arisen in the expansions above with integrals. Care must be
exercised with this to take a proper account of the density of
states.~We will return to this in Sec. VI.! This is tantamount
to regarding the energy levels as continuous rather than dis-
crete. However, we have shown recently that the behavior of
thermodynamical systems with a discrete energy spectrum is
completely different from one with a continuous energy
spectrum. In the first case, no real BEC can occur whereas in
the second case it does@25#. ~By real BEC, we mean that
there is a phase transition such as that which occurs in the
free boson gas.! If the correct behavior for smallx is desired,
one approach which is definitely safe is to deal with the exact
sums. The sums do not converge very rapidly for smallx,
nor do they display in any transparent way the behavior at
small x. However, it is possible to convert the sums into
contour integrals, and by deforming the contours of integra-
tion in an appropriate way obtain at least asymptotic expan-
sions for some appropriate range of the parameters. The de-
tails of this procedure will be described in the following
section.

III. ANALYTICAL TREATMENT
OF HARMONIC-OSCILLATOR SUMS

Let us now describe in some detail the analytical treat-
ment of the sums appearing in the thermodynamical quanti-
ties. As one can see, all sums involved are of the form

f ~ l ,k,m!5 (
n51

` e2nex2mnx

nl~12e2nx!k
, ~3.1!

with different integral values forl ,k,m. Let us consider the
range ofx!1, which is actually fulfilled in the recent ex-
periments described below, and in additione!1 correspond-
ing to the range where a phase transition occurs in three-
dimensional free space and, as we will see, corresponding to
the range very close to the maximum of the specific heat.

Probably the best technique for the analysis of~3.1! in the
mentioned range of parameters is the use of the Mellin-
Barnes integral representation. We are going to apply it in its
simplest form, making use of

e2v5
1

2p i Ec2 i`

c1 i`

daG~a!v2a, ~3.2!
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valid for Rev.0 andcPR, c.0. Equation~3.2! is easily
proven by closing the contour to the left obtaining immedi-
ately the power series expansion of exp(2v). In order to
apply Eq.~3.2! write ~3.1! in the form

f ~ l ,k,m!5 (
n51

`

n2 l (
i1 , . . . ,i k50

`

e2nx[ e1m1 i11•••1 i k]

5 (
n51

`

n2 l (
i1 , . . . ,i k50

`
1

2p i Ec2 i`

c1 i`

daG~a!n2ax2a

3@e1m1 i 11•••1 i k#
2a. ~3.3!

Now we would like to interchange the summation and inte-
gration in order to arrive at an expression in terms of known
z functions, in detail the Riemannz function zR(s),

zR~s!5 (
n51

`

n2s, ~3.4!

and a Barnesz function @28#,

zB~s,a,k!5 (
i1 , . . . ,i k50

`

@ i 11•••1 i k1a#2s. ~3.5!

The basic properties of the Barnesz function are summa-
rized in Appendix A. In order to allow for the interchange of
summations and integration one has to ensure the absolute
convergence of the resulting sums@29,30#. This is certainly
true for Rec.max(k,12 l ) and one arrives at

f ~ l ,k,m!5
1

2p i Ec2 i`

c1 i`

daG~a!x2azR~a1 l !zB~a,m1e,k!.

~3.6!

This is a very suitable starting point for the analysis of cer-
tain properties of the sumsf ( l ,k,m). Closing the contour to
the right corresponds to the large-x expansion; closing it to
the left to the small-x expansion. To the right of the contour
the integrand in~3.6! has no poles, which means that the
large-x behavior contains no inverse power inx. One might
show, however, that the contribution from the contour itself
is not vanishing at infinity leading to exponentially damped
contributions forx→`, the well-known behavior of partition
sums at low temperature.

As mentioned, this is not the range of interest for recent
experiments and we concentrate on the small-x behavior thus
closing the contour to the left. Closing to the left there ap-
pear to be three different sources of poles,~i! poles of
zB(a,m1e,k) for a51, . . . ,k; ~see Appendix A!; ~ii ! pole
of zR(a1 l ) for a512 l ; ~iii ! poles ofG(a) for a52p,
pPN0. Depending on the value ofl there might be a double
pole ata512 l . In detail for l50,21, . . . ,12k, there is a
double pole from~i! and ~ii !; for l51, . . . ,̀ there is a
double pole from~ii ! and~iii !. Collecting all poles is an easy
exercise for all values ofl . We will restrict ourselves to the
relevant values of l for our problem, these being
l51,0,21.

For l51 we find

f ~1,k,m!5 (
n51

k

G~n!x2nzR~11n!ReszB~n,e1m,k!

1zB8~0,m1e,k!2~ lnx!zB~0,e1m,k!1O~x!,

~3.7!

ReszB being the residue of the Barnesz function, andzB8 its
derivative with respect tos. @See Eq.~3.5!.# The residues and
values of the Barnesz function are derived in Appendix A.
The leading important residues are

ReszB~k,a,k!5
1

~k21!!
,

ReszB~k21,a,k!5
k22a

2~k22!!
, ~3.8!

ReszB~k22,a,k!5
6a226ak1~k/2!~3k21!

12~k23!!
.

Also the derivative of ReszB(s,a,k) with respect tos at
s50 might be determined in terms of derivatives of the Hur-
witz z function, but the contributions are of subleading order
and will not be used here and thus are not presented.

For l50,21, the formula analogous to~3.7! reads

f ~ l ,k,m!5 (
n51

nÞ12 l

k

G~n!x2nzR~ l1n!ReszB~n,m1e,k!

1xl21G~12 l !$PPzB~12 l ,m1e,k!

1@g2 lnx1c~12 l !#ReszB~12 l ,m1e,k!%

1zR~ l !zB~0,m1e,k!1O~x!, ~3.9!

PPzB denoting the finite part ofzB , c(x)5(d/dx)lnG(x) and
c(1)52g.

The presented asymptotics together with~A7! allow one
to obtain the smallx ande behavior of the theory. In the next
section we list the asymptotic expansions of the various ther-
modynamical quantities. The needed sums are given in Ap-
pendix B for the convenience of the reader.

By changing slightly the procedure described previously,
it is also possible to obtain an expansion forx!1 not re-
stricted toe!1. To find this representation write instead of
Eq. ~3.3!

f ~ l ,k,m!5 (
n51

`
e2nxe

nl
(

i1 , . . . ,i k50

`
1

2p i

3E
c2 i`

c1 i`

daG~a!n2ax2a@m1 i 11•••1 i k#
2a,

~3.10!

which is found by using Eq. ~3.2! only for
exp(2nx@m1i11•••1ik#) and excluding the part exp(2nxe)
from the procedure. For the case thatm50, one has to treat
separately the zero modei 15••• i k50. Closing the contour
once more to the left to obtain thex!1 behavior, an expan-
sion in terms of the polylogarithm
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Lin~x!5(
l51

`
xl

l n
~3.11!

is found. The basic properties of the polylogarithm may be
found in @31,32#. For reasons of clarity the corresponding
results are summarized in Appendix D, however only for the
anisotropic harmonic oscillator presented in Sec. V. The iso-
tropic case is easily extracted from Appendix D. Because our
intention is to try to present simple analytical expressions we
will not use the expansion in polylogarithms, since by neces-
sity this would involve numerical evaluation.

IV. TEMPERATURE DEPENDENCE
OF THE THERMODYNAMICAL QUANTITIES

Having described in detail the application of Mellin-
Barnes integral techniques for the approximate calculation of
harmonic-oscillator sums, we are now prepared to present
the results for all thermodynamical quantities of interest.
First of all for the grand potential we haveq5 f (1,3,0) and
using Eq.~3.7! results in

q5
zR~4!

x3
1

~ 3
2 2e!zR~3!

x2
1

zR~2!

x
1O~ lnx, lne!.

~4.1!

For the number of particles we haveN5 f (0,3,0) and find

N5
zR~3!

x3
1

~ 3
2 2e!zR~2!

x2
1

1

ex
1OS lnxx D . ~4.2!

It is also possible to present Eq.~4.2! in a slightly different
way. As we have explained in some detail in Sec. II, a quan-
tity of special interest is the number of particles in the
ground state, given by~2.5!. SplittingN5Nground1Nexcited
and using the same techniques as described in Sec. III, but
now with i 15•••5 i k50 excluded from the summation in
Eq. ~3.3! ~this summation index actually corresponds exactly
to the ground state!, the following asymptotic expansion is
found,

N5Nground1
zR~3!

x3
1

~ 3
2 2e!zR~2!

x2
1OS lnxx D . ~4.3!

Equation~4.2! is very useful to determinee as a function of
N and x. This then leads with the help of Eq.~4.3! to the
ground-state occupation number as a function ofx ~for fixed
N).

Using u15 f (0,4,1) and, furthermore, Eq.~2.8!, the as-
ymptotic expansion of the internal energy reads

U

\v
5
3zR~4!

x4
1

zR~3!

x3 S 9223e D1
13zR~2!

4x2
1

3

2xe

1OS e

x2
,
1

xD . ~4.4!

The asymptotics foru1 together with the asymptotics of
S1 ,S2 ,S3 needed for the analysis of the specific heat are
listed in Appendix B. After some calculation we find using
~2.18! the following result:

C

k
5
12zR~4!

x3
1
9zR~3!

x2
1
2zR~2!

x
2
12ezR~3!

x2

2
18e2zR~2!zR~3!

x3
2
9e2zR~3!2

x4
1
9e4zR~2!zR~3!2

x6

1OS lnx, exD . ~4.5!

This concludes the list of the asymptotic behavior forx!1,
e!1, of the most important thermodynamic quantities con-
sidered here.

The corresponding expansions in terms of the polyloga-
rithm ~see the end of Sec. III! are also easily obtained and
given in Appendix D. Once more the results for the isotropic
harmonic oscillator follow immediately from those for the
anisotropic oscillator.

The above results together with a numerical treatment of
the thermodynamical quantities using their explicit represen-
tations in form of the sums given in Sec. II allows a very
detailed prescription over the whole temperature range of
relevance for the recent experiments. As an illustration we
will first choose parameters pertinent to the rubidium experi-
ment @9#. We chooseN52000 here. The aim is to compute
the chemical potential which is given bye. @Recall that
m5\v(3/22e).# This may be done by solving~2.4! for e as
a function ofx. @Recall thatx5\v/(kT) is the inverse tem-
perature in appropriate dimensionless units.# The numerical
result of this calculation is shown as the solid curve in Fig. 1.
As can be seen from this figure,e undergoes a very rapid
decrease from values of the order of unity to values of the
order of 1022 over a very small range ofx. After this sharp
decrease,e goes asymptotically to zero asx increases~or as
T decreases!. This contrasts with a real phase transition such
as occurs in the free Bose gas wheree would reach the value
e50 at some nonzero temperature which could be identified
with the critical temperature. From~2.5! it can be seen that
this sudden drop ine is associated with a sudden rise in the
ground-state occupation number, and is therefore associated
with the onset of BEC.

Although the chemical potential has a sudden change, the
change happens in a completely smooth way; thus the iden-
tification of a specific critical temperature is problematic in
this case. One approach, which has been used in finite-
volume systems where similar behavior occurs@26#, is to
calculate the maximum of the specific heat and identify the
temperature at which the maximum occurs with the critical
temperature. In Fig. 2 we illustrate with a solid curve the
result of a calculation of the specific heat using the exact
harmonic-oscillator sums. It is seen to have quite a sharp but
smooth maximum at a valuexm.0.0921. If we use
v/(2p)560 Hz, as for the strong trap referred to in Ref.
@12#, then the specific heat maximum occurs at the tempera-
tureT.3.12731028 K.

We now turn from a numerical evaluation to the use of
our approximate analytical results detailed above. Because
our approximation assumed thatx ande were both small we
would not expect the results to apply forx<xm.0.0921
since Fig. 1 shows thate is already becoming quite large. If
we definef to be the fraction of particles in the ground state,
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FIG. 1. This showse as a function ofx5\v/(kT). The solid curve shows the result found from a numerical evaluation of the exact
harmonic-oscillator sums for the isotropic case forN52000. The diamonds show the result of using our analytic approximation.

FIG. 2. The specific heat computed numerically for the isotropic harmonic oscillator is shown as the solid curve. The diamonds show the
result using our approximation. The units for the specific heat are in factors of the Boltzmann constantk. The particle number is
N52000. The maximum occurs forx.0.0921. Our approximation breaks down forx below the point where the specific heat maximum
occurs.
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Nground5 fN, ~4.6!

then from~2.5! we have

ex5 lnS 11
1

fND . ~4.7!

Using ~4.3! this yields

~12 f !N.zR~3!x231~ 3
22e!zR~2!x22. ~4.8!

e may be eliminated from~4.8! by using~4.7!. This results in
a cubic equation which determinesx for a given f andN.
Oncex has been founde is determined by~4.7!. We have
shown the result of this approximate evaluation ofe as the
diamonds in Fig. 1. As expected, oncex decreases below
xm.0.0921, the agreement between our approximation and
the exact result breaks down. However, over the region
where the specific heat maximum occurs, our approximation
for e is quite good. Asx increases~so that the temperature
becomes less than the critical temperature!, the agreement
between our approximate value fore and the true value be-
comes better and better. Increasing values ofx correspond to
an increasing fraction of particles in the ground state. Figure
1 shows that the agreement between our approximate value
for e and the true value remains remarkably good even up to
values ofe.0.5. Given that we assumede!1 in our deri-
vations, this is an unexpected result.

Since our approximate result fore is good in the region
where the specific heat maximum occurs, we can have some
faith in our other approximate results forx>xm.0.0921. In
Fig. 2 the diamonds illustrate the result of using our approxi-
mate result~4.5! for the specific heat. Again the agreement
between the approximation and the exact result is seen to be
good up to the maximum. For values ofx,xm , the approxi-
mation breaks down for the reason already mentioned. We
have shown a more detailed comparison between our ap-
proximation for the specific heat and the true value in Fig. 3.
The diamonds illustrate the ratio of our result to the exact
value. Forx'xm our approximate result is within a few per-
cent of the true value , and forx.xm the agreement becomes
better than 1%.

We can also compare our results to the bulk results ob-
tained by directly converting the harmonic-oscillator sums
into integrals as in Refs.@16,19#. ~We will use the terminol-
ogy bulk rather than thermodynamic limit as in Ref.@24#.!
For the specific heat this amounts to just keeping the first
term on the right-hand side of~4.5!

Cbulk /k512zR~4!x23. ~4.9!

For the particle number the bulk result consists of dropping
the term inx22 in ~4.3! along with all subdominant terms,
taking

Nbulk5Nground1zR~3!x23. ~4.10!

A way of improving the bulk approximation was given in
Refs. @17,18#, and we will return to the relationship of this
improvement to our approach in Sec. VI.

The bulk transition temperature is obtained by equating
Nground to zero. This gives

xbulk5FzR~3!

N G1/3, ~4.11!

where xbulk5\v/(kTbulk). Equation ~4.9! holds for
x>xbulk . We have plotted the ratio ofCbulk to the exact
specific heat as the crosses shown in Fig. 3. Although the
agreement between the bulk value and the exact value is
quite good near the specific heat maximum, it is off by about
25% whenx reaches the value 0.4. In contrast our approxi-
mation is off by less than 1%. Another feature of using the
bulk approximation is that the specific heat is found to be
discontinuous at the bulk temperature, in contrast to the
smooth behavior found in Fig. 2.

A final comparison we will make is for the ground-state
occupation number. In Fig. 4 the diamonds represent the
result of using our approximation for the particle number and
the crosses the result of using the bulk value. Both results are
shown as a ratio with the exact value found from a numerical
evaluation of the harmonic-oscillator sum. Close to the spe-
cific heat maximum our results are off by about 10% and the
bulk results are off by around 300%. Asx increases, our
result converges very rapidly towards the true value, whereas
the convergence of the bulk results is slower. For largex
both approximations become indistinguishable.

It is possible to obtain an approximate analytic expression
for the BEC temperature and compare it to the bulk tempera-
ture. Suppose thatx is close to the bulk value given in~4.11!
and write

x5xbulk~11h!, ~4.12!

for some smallh. If we assumee!3/2, then from~4.8! we
find

h.
1

~12 f ! F13 f1 zR~2!

2@zR~3!#2/3
N21/3G . ~4.13!

This result assumes thatxbulk is small, but makes no assump-
tion about the size off . Typically we find that for particle
numbersN;1032106, at the point where the specific heat
maximum occursf is a few percent. We can therefore say
(12 f )21.1, which leads to

T2Tbulk
T

.2F13 f1 zR~2!

2@zR~3!#2/3
N21/3G . ~4.14!

If we put f50 this gives the result in Refs.@17,18#. For
N52000 it is easily seen that using the bulk value for the
temperature is only about 10% higher than using the value
determined by the maximum of the specific heat. Both tem-
peratures approach one another as the particle number in-
creases. Thus as an estimate of the critical temperature, the
use of the bulk value is quite a good approximation. How-
ever, as our results above show, care must be exercised in
using the bulk values for the particle number or specific heat.

To finish our discussion of the isotropic harmonic oscil-
lator we wish to mention briefly some results for other
choices of particle number. We would expect that asN in-
creases not only will the bulk approximation become better,
but so will ours. We have done the calculations just de-
scribed forN523104, 23105, and 53105. Because the
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FIG. 3. The diamonds show the ratio of our approximation for the specific heat to the exact result. The crosses denote the ratio of the bulk
specific heat to the exact value.N52000 is taken. Both results become increasingly inaccurate below the specific heat maximum.

FIG. 4. The ratio of the approximate to the exact ground-state particle number is shown. The diamonds illustrate the result of using our
approximation and the crosses denote the results found using the bulk approximation.
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resulting figures are similar to those already presented in the
caseN52000 there is little point in showing them here. The
expectation of improved agreement between the approxima-
tions and the exact result is borne out. The specific heat
maximum occurs at xm.0.0408 for N523104, at
xm.0.0185 for N523105, and at xm.0.0136 for
N553105. These values correspond very closely to those
obtained using the approximate formula~4.14!.

V. THE ANISOTROPIC HARMONIC-OSCILLATOR
POTENTIAL

After having described in detail the isotropic harmonic-
oscillator potential let us explain the new technical problems
one encounters when treating the anisotropic case. The cal-
culation parallels very much the one for the isotropic har-
monic oscillator and we can be brief. The energy eigenvalues
are given by

En1n2n3
5\(

i51

3

v i S ni1 1

2D , niPN0 . ~5.1!

As we will see in the following, it is useful to introduce the
dimensionless quantities:

xi5\bv i ; V5
1

3 (
i51

3

v i ; a5\bV.

We then have

bEn1n2n3
5(

i51

3

nixi1
3

2
a.

In analogy to the harmonic oscillator we use, furthermore,

m5\V~ 3
22e!

to find

bEn1n2n3
2bm5(

i51

3

xini1ae. ~5.2!

In terms of the dimensionless variables the grand potential
reads

q5 (
n51

`
e2nea

nP i51
3 ~12e2xin!

. ~5.3!

For the particle number we have

N5 (
n51

`
e2nea

P i51
3 ~12e2xin!

. ~5.4!

With Eqs.~5.3! and~5.4! one easily gets the internal energy,

U

\V
5
3

2
N1(

i51

3

ui , ~5.5!

where we defined

ui5
xi
a (

n51

`
e2nea2nxi

P j51
3 ~12e2xjn!

1

~12e2nxi !
. ~5.6!

Continuing for the specific heat as done for the analysis of
the isotropic harmonic oscillator, we arrive at

C

k
5(

i51

3

xiS2,iFxi2(
j51

3

xj
S2,j
S1

G1(
i51

3

xi
2S3,i i

1(
i51

3

(
l51

3

xixlS3,i l , ~5.7!

with

S15 (
n51

`
ne2nea

P i51
3 ~12e2xin!

,

S2,i5 (
n51

`
ne2nea2nxi

P j51
3 ~12e2xjn!

1

~12e2nxi !
,

and

S3,i l5 (
n51

`
ne2nea2n~xi1xl !

P j51
3 ~12e2xjn!

1

~12e2nxi !

1

~12e2xln!
.

The asymptotic expansions of all above quantities may be
obtained using the same techniques as for the harmonic os-
cillator described in Sec. III. The only difference is that one
has to deal with the slightly more general function

zB~s,auxW !5 (
mW 50

`

~a1mW •xW !2s. ~5.8!

The asymptotic expansions for the thermodynamical quanti-
ties involves the residues of the functionzB(s,aurW), the basic
properties of which are summarized in Appendix A. Using
once more the Mellin-Barnes integral representation in com-
plete analogy to Sec. III, we arrived at the asymptotics for
ui , S1 , S2,i , andS3,i l . These are all summarized in Appendix
C. We list here only the asymptotics of the physical quanti-
ties,

q5
zR~4!

x1x2x3
1

zR~3!a

x1x2x3
S 322e D

1
zR~2!a2

x1x2x3
S x1x21x1x31x2x3

12a2 1
3

4D1•••, ~5.9!

N5
zR~3!

x1x2x3
1

zR~2!a

x1x2x3
S 322e D1

1

ea
1•••, ~5.10!

U

\V
5

3zR~4!

x1x2x3a
1
3zR~3!

x1x2x3
S 322e D1

6zR~2!a

x1x2x3
S 12

1
1

72

x1x21x1x31x2x3
a2 D1••• ~5.11!
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C

k
5
12zR~4!

x1x2x3
1
9zR~3!a

x1x2x3
2
9a2e2zR~3!2

~x1x2x3!
2 1

9

4

zR~2!a2

x1x2x3

2
1

12

zR~2!xW2

x1x2x3
2
12eazR~3!

x1x2x3
2
18a2e2zR~2!zR~3!

~x1x2x3!
2

1
9a4e4zR~2!zR~3!2

~x1x2x3!
3 1•••. ~5.12!

The above asymptotic expansions are found to be a good
approximation close to, but lower in temperature, the maxi-
mum of the specific heat. Once more we are able to present
a numerical as well as an analytical calculation of the rel-
evant quantities.

Suppose that we definef to be the fraction of particles in
the ground state as we did in Sec. IV.Nground is given by

Nground5~eae21!21.

From ~5.10!, noting that the term in 1/(ea) arises from the
ground state, we find the number of particles in excited states
is given by

Nex5
zR~3!V3

v1v2v3

1

a3 1
zR~2!V2

3 S 1

v1v2
1

1

v1v3
1

1

v2v3
D

3S 322e D 1

a2 . ~5.13!

We will illustrate the results for the case ofN52000 as for
the isotropic harmonic oscillator using the frequencies for

the rubidium experiment.~The results shown are indepen-
dent of whether the strong or weak trap@12# is used, since
the difference is one of an overall scaling of the oscillator
frequencies, and the results we use are independent of such a
scaling.! Figure 5 shows the result of a comparison of our
approximate result fore ~illustrated with diamonds! and the
exact result illustrated by the solid curve. Again the agree-
ment is quite good even for relatively large values ofe.
Figure 6 shows the comparison between our approximation
for the specific heat in~5.12! and the exact value found from
the harmonic-oscillator sums. The maximum occurs for
a.0.106. Figure 7 shows the ratio of our approximation to
the exact specific heat, and for comparison the result of using
the bulk expression. As for the isotropic oscillator calcula-
tions, the bulk expression shows a significant deviation from
the true result; whena.0.2 the bulk result is off by about
15%, whereas our approximation is within about 1% of the
true value. Figure 8 shows the ratio of the approximate par-
ticle numbers to the true value. Our result is seen to have
better agreement close to the specific heat maximum, but
both our result and the bulk result rapidly converge towards
the true value asa increases.

We can now see that the anisotropy has only a small
effect on the critical temperature. Using the frequencies
v15v25240p/A8 s21, and v35240p s21, with
a.0.106 we findTm.3.0931028 K as the temperature at
which the specific heat maximum occurs. This can be com-
pared with the temperature of 3.1331028 K found in the
isotropic case in Sec. IV. The bulk temperature@Eq. ~4.11!
still holds in the anisotropic case withv the geometric mean
of the frequencies# is about 3.4131028 K.

FIG. 5. The numerical result fore is plotted againsta5\(v11v21v3)/(3kT) for the anisotropic oscillator forN52000. The
frequencies are taken to bev1 /(2p)5v2 /(2p)542.4 Hz andv3 /(2p)5120 Hz. The diamonds show the result found from using our
approximation.
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FIG. 7. The ratio of our approximate specific heat to the exact value is shown with diamonds. The result found from using the bulk result
is shown with crosses.

FIG. 6. The exact value for the specific heat is shown as the solid curve, and our approximation as the diamonds.N52000 and the
frequencies are as in the preceding figure.
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VI. CONCLUSIONS

In conclusion, in this article we presented a detailed
analysis of several thermodynamical quantities for a system
of noninteracting spin-0 particles in a general harmonic-
oscillator confining potential trap. Although there is no phase
transition such as that occurring in the free unconfined boson
gas, it is possible to identify a temperature at which BEC
occurs by looking at the maximum in the specific heat. We
have seen that this temperature is nearly identical to the tem-
perature where the ground-state occupation starts to increase
considerably, the effect actually seen in the recent experi-
ments through the peak in the velocity distribution of the
sample.

Attempting to compare the results obtained here directly
with the experiments must be done with a certain degree of
caution. In the first place we have ignored interatomic inter-
actions, so that there is no distinction made between gases
with a positive scattering length@9,11#, and those with a
negative scattering length@10#. Secondly, it is perhaps not
quite so clear that the use of the grand canonical ensemble is
justified for systems with such a relatively small number of
particles@33#. With these caveats in mind, for the case of
rubidium we found the specific heat maximum to occur at
T.31 nK for 2000 particles. For the case of sodium, if we
useN52.53105 we find the specific heat maximum to occur
at T.1.16 mK. The results for the temperature found from
using the bulk approximation were very close to these val-
ues, so it is unlikely that the present experiments can distin-
guish between the bulk approximation, our approximation or
the exact value. It was apparent from our calculations that
the specific heat found from our approximation was much

closer to the exact result than the bulk approximation was.
Perhaps in future experiments it will be possible to provide a
more stringent test of the various approximations.

We now wish to mention the comparison between our
results and the density of states method used in Refs.@17,18#.
In this approach the authors separated off the ground-state
contribution for the particle number and treated the remain-
ing terms in the sum by approximating it with an integral
over the energy. The density of states was parametrized by

r~E!5
1

2

E2

~\v!3
1g

E

~\v!2
, ~6.1!

wherev5(v1v2v3)
1/3 andg is a dimensionless function of

the frequencies. In the isotropic caseg53/2, but the authors
@17,18# had to determineg numerically in the anisotropic
case. The bulk approximation we mentioned earlier consists
of ignoring the term ing. By contrast, the approximate
method we presented is entirely analytical with no numerical
evaluations required. By comparing the results of our calcu-
lation for the particle number with those of Refs.@17,18# we
can deduce an analytic value forg. We find

g5
1

2
v2S 1

v1v2
1

1

v2v3
1

1

v3v1
D . ~6.2!

This value has also been borne out by an independent evalu-
ation @34# of the density of states which in addition obtains
the next order correction to~6.1! in the anisotropic case.

Although the gases in the experiments are dilute, in order
to get a quantitatively more satisfactory picture for the recent

FIG. 8. The ratio of the ground-state occupation number found using approximation to the exact result is shown by the diamonds. The
ratio of the bulk specific heat to the exact value is shown by the crosses. The frequencies and particle numbers are the same as the previous
three figures.
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experiments, the vapor has to be treated as a weakly inter-
acting system. In the quantum-field-theory approach to BEC
this might be done in a systematic way@27#. One possibility
is to treat the interaction as a perturbation and calculate the
leading corrections to the free boson gas treated in the
present article. The detailed knowledge of the lowest order in
perturbation theory provided here is thus an important basis
for future developments in this direction. Another possibility
is to consider an effective theory for the ground state, its
occupation number being a very good indicator for the onset
of BEC.

After this paper was submitted for publication, another
independent calculation of BEC in harmonic-oscillator con-
fining potentials appeared@35#. This paper uses the Euler-
Maclaurin summation formula to evaluate the harmonic-
oscillator sums. The result is expressed in terms of
polylogarithms, much like the results found in our Appendix
D. One difference between this approach and ours is that the
authors of Ref.@35# introduce an effective fugacity which
means that the argument of their polylogarithms never be-
comes equal to unity. It is straightforward to modify the
approach we have discussed in Appendix D and obtain in an
easy way results which appear to be equivalent to those of
Ref. @35#.
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APPENDIX A: THE BARNES z FUNCTION

As we have seen, in order to determine the asymptotic
expansion of some thermodynamical quantities, we need
several properties of the Barnesz function @28,36#,

zB~s,aurW !5 (
mW 50

`

~a1mW •rW !2s, ~A1!

with rW a d-dimensional vector. In Eq.~3.5! we used the no-
tation zB(s,a,d) for rW51W . The residues ofzB(s,aurW) at
s51, . . . ,d and the values of the function ats52p,
pPN0 are most easily deduced using the representation as a
contour integral

zB~s,aurW !5
iG~12s!

2p E
C
dt~2t !s21

e2at

P i51
d ~12e2r i t!

,

~A2!

where the contourC is counterclockwise enclosing the posi-
tive real axis. The only possible pole occurs att50. For that
reason one might like to introduce the generalized Bernoulli
polynomials@37# through

e2at

P i51
d ~12e2r i t!

5
~21!d

P i51
d r i

(
n50

`

Bn
~d!~aurW !

~2t !n2d

n!
.

~A3!

In terms of these it is immediate that forn51, . . . ,d,

ReszB~n,aurW !5
~21!d1n

~n21!! ~d2n!!P i51
d r i

Bd2n
~d! ~aurW !

~A4!

and forpPN0,

zB~2p,aurW !5
~21!dp!Bd1p

~d! ~aurW !

P i51
d r i~d1p!!

. ~A5!

For the leading asymptotics of the thermodynamical quanti-
ties we need at most the first three residues in~A4!. These
are given explicitly by

ReszB~d,aurW !5
1

~d21!!P i51
d r i

,

ReszB~d21,aurW !5
( i51
d r i22a

2~d22!!P i51
d r i

,

ReszB~d22,aurW !

5
6a226a( i51

d r i1~( i51
d r i !

21( i , j51,i, j
d r i r j

12~d23!!P i51
d r i

.

~A6!

In addition to the above equation we needed only

zB~s,aurW !5
1

as
1O~a0!, ~A7!

which is obvious from the original sum~A1!. Using Eqs.
~A6! and ~A7! we found the asymptotic expansion for all
thermodynamical quantities.

APPENDIX B: ASYMPTOTICS FOR x!1, e!1
OF THE SUMS u1, S1, S2, AND S3

In this appendix we list the results used for the derivation
of the internal energy and the specific heat of the isotropic
harmonic-oscillator confining potential. We needed the fol-
lowing asymptotic expansions :
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u15 f ~0,4,1!

5
zR~4!

x4
1

~12e!zR~3!

x3
1
1

3

zR~2!

x2
1OS e

x2
,
1

xD ,
S15 f ~21,3,0!5

1

x2e2
1

zR~2!

x3
1OS lnxx2 D ,

S25 f ~21,4,1!5
zR~3!

x4
1

zR~2!

x3
1OS lnxx2 , e

x3D ,
S35 f ~21,5,2!

5
zR~4!

x5
1

zR~3!

2x4
2

ezR~3!

x4
2

1

12

zR~2!

x3
1OS lnxx2 , e

x3D .
These results lead, after some calculation, to Eqs.~4.4! and
~4.5!.

APPENDIX C: ASYMPTOTICS FOR x!1, e!1
OF THE SUMS ui , S1, S2,i , AND S3,i j

In this appendix we give the results used for the deriva-
tion of the asymptotics of several thermodynamical quanti-
ties. @See Eqs.~5.9!–~5.12!.#

First of all we need the analogous results to Eqs.~3.7! and
~3.9! for the anisotropic oscillator. Unfortunately for the an-
isotropic oscillator it is not possible to write all needed sums
in a unified form as done in Eq.~3.1!. For that reason we
have to list several results. The techniques are exactly the
same techniques as those employed in Sec III. We found for
l521,0

(
n51

`
e2nea

nlP j51
3 ~12e2xjn!

5 (
m51

mÞ12 l

3

G~m!zR~m1 l !ReszB~m,eauxW !

1G~12 l !$PPzB~12 l ,eauxW !

1@g1c~12 l !#ReszB~12 l ,eauxW !%

1zR~ l !zB~0,eauxW !1•••,

whereas forl51 one has

(
n51

`
e2nea

nP j51
3 ~12e2xjn!

5 (
m51

3

G~m!zR~11m!

3ReszB~m,eauxW !

1zB8~0,eauxW !1•••.

These results can be used for the calculation ofq, N, and
S1.

For ui andS2 ,i one needs

(
n51

`
e2nea2nxi

P j51
3 ~12e2xjn!

1

~12e2nxi !

5 (
m51

mÞ12 l

4

G~m!zR~m1 l !ReszB@m,ea1xi u~xW ,xi !#

1G~12 l !$PPzB@12 l ,ea1xi u~xW ,xi !#

3@g1c~12 l !#ReszB@12 l ,ea1xi u~xW ,xi !#%

1•••. ~C1!

Finally for S3,i j we need

(
n51

`
ne2nae2n~xi1xj !

P l51
3 ~12e2nxl !

1

~12e2nxi !

1

~12e2nxj !

5 (
m51
mÞ2

5

G~m!zR~m21!ReszB@m,ea1xi1xj u~xW ,xi ,xj !#

1PPzB@2,ea1xi1xj u~xW ,xi ,xj !#1ReszB@2,ea1xi

1xj u~xW ,xi ,xj !#1•••.

These results are enough to find the following expansions:

ui5
zR~4!

x1x2x3a
1

zR~3!

2x1x2x3
S 32

xi
a

22e D
1

zR~2!a

12x1x2x3
S 929

xi
a

1
x1x21x1x31x2x31xi

2

a2 D ,
S15

1

~ae!2
1

zR~2!

x1x2x3
1•••,

S2,i5
zR~3!

x1x2x3xi
1

zR~2!a

2x1x2x3xi
S 32

xi
a D1•••,

S3,i j5
zR~4!

x1x2x3xixj
1

zR~3!a

x1x2x3xixj
S 322

xi1xj
2a

2e D
1

zR~2!a2

12x1x2x3xixj
S 929

xi1xj
a

1
x1x21x1x31x2x31xi

21xj
213xixj

a2 D 1•••.

APPENDIX D: ASYMPTOTICS FOR x!1 FOR THE
ANISOTROPIC HARMONIC OSCILLATOR

As mentioned in Secs. III and IV, it is possible to obtain
an asymptotic expansion valid forx!1 without restricting
e to the range of small parameters. The way how to obtain
the approximation is described at the end of Sec. III. The
results analogous to Eqs.~3.7! and ~3.9! read
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(
n51
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n2 le2nea

P i51
3 ~12e2xin!

5(
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3

G~ i !ReszB~ i ,0uxW !Li l1 i~e
2ea!1•••,

(
n51
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n2 le2nea2nxi
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5 (
n51

4

G~n!ReszB@n,xi u~xW ,xi !#Li l1n~e
2ea!1•••,
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n51
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ne2nae2n~xi1xj !

~12e2nxi !~12e2nxj !P l51
3 ~12e2nxl !

5 (
n51

5

G~n!3ReszB@n,xi1xj u~xW ,xi ,xj !#Lin21~e
2ea!1•••. ~D1!

As a result, the following asymptotics for the thermodynamical quantities are derived:
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5

3

ax1x2x3
Li 4~e

2ea!1
9

2x1x2x3
Li 3~e

2ea!1
1

12ax1x2x3
~36a21x1x21x1x31x2x3!Li2~e

2ea!1•••,

C

k
5

1

x1x2x3
H 2

9Li3
2~e2ea!

Li2~e
2ea!

112Li4~e
2ea!J 1

a

x1x2x3
H 29Li3~e

2ea!1
27

2

Li1~e
2ea!Li3

2~e2ea!

Li2
2~e2ea! J 1•••.

This concludes the list of asymptotic expansions which we are going to give in the present article.
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