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Bose-Einstein condensation of atomic gases in a general harmonic-oscillator
confining potential trap
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We present an analysis of Bose-Einstein condensation for a system of noninteracting spin-0 particles in a
harmonic-oscillator confining potential trap. We discuss why a confined system of particles differs both quali-
tatively and quantitatively from an identical system which is not confined. One crucial difference is that a
confined system is not characterized by a critical temperature in the same way as an unconfined system such
as the free boson gas. We present the results of both a numerical and analytic analysis of the problem of
Bose-Einstein condensation in a general anisotropic harmonic-oscillator confining potential.
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[. INTRODUCTION 19]. The purpose of our paper is to examine the condensation
of bosons in a harmonic-oscillator potential in a detailed way
One of the most interesting properties of a system ofwvhich does not use the density of states approach of Refs.
bosons is that under certain conditions it is possible to havEl6—19. Unlike the situation for a boson gas with no exter-
a phase transition at a critical value of the temperature imal confining potential in free spa¢20], there does not exist
which all of the bosons can condense into the ground state. f Critical temperature which signals a phase transition. How-
is now well over 70 years since the phenomenon referred tgver, we will show that there is a temperature at which the
as Bose-Einstein condensatiBEC) was first predicted for specific heat has a maximum which can be identified as the
the ideal nonrelativistic Bose g&$,2]. Nowadays it is well  temperature at which BEC occur€A short report of our

known to happen if the spatial dimensiBre3. (See[3] for ~ 'esults was given in Ref21].)
the cas®=§pand[4] for ZeneraID ) (Seel3] The fact that a gas of bosofiseglecting interactionsn a

Until recently the best experimental evidence that BECharmonlc—osQllator potential dqes hot have a phase transition
at some critical temperature is already apparent from the

could occur in a real physical system was liquid helium, as S :
suggested originally by Londof5]. However although the early work of[15]. (This will also be shown below in a very

behavior of liauid heli t low t ¢ b i simple way) A similar situation occurs for a system of
ehavior o liquid hefilum at low temperatures can be qua"charged bosons in a homogeneous magnetic field; in three

tatively described by the free boson gas model, the detailedyia| dimensions BEC does not occur in the same way as
behavior deviates substantially from this simple model{s, the case where there is no magnetic figdd]. The same
Physically this is, of course, because the effects of interacys trye for bosons confined by spatial boundafi23]. (See
tions which are neglected in the free boson gas model argiso Ref.[24].) A general criterion to decide whether or not
important in liquid helium. More recently it was suggestedBEC occurs has been given recently by[2S], and it is easy
[6,7] that BEC could occur for excitons in certain types of to show that the criterion is not met for a system of bosons
nonmetallic crystalgsuch as CuCl, for exampleThere is  confined by a harmonic-oscillator potential.
now good evidence for this in a number of experimdiis Since the experiments of Reff9—11] are claiming to
An important development in the last year has been thebserve BEC, a natural question which arises concerns the
experimental attempts to observe BEC in very cold gases aéxact nature of the phenomenon. If BEC as found normally
rubidium[9], lithium [10], and sodiunj11]. This experimen- for the free boson gas is impossible for a system of bosons in
tal work has stimulated theoretical studies to try to under-a confining potential, then in what sense does BEC occur? A
stand the underlying physics of the situatiti2—14. The  natural criterion which has been used in systems of finite size
systems are very dilute and as a first approximation would beaas been to look at the maximum of the specific H&&.
expected to be well described by a boson gas model with nw/e will apply this criterion to the case of bosons confined by
interactions among the atoms. The atoms are confined ia harmonic-oscillator potential. Given the details of the
complicated magnetic traps which can be modeled byharmonic-oscillator potential trap, it is possible to calculate a
harmonic-oscillator potentials. There have been several stu¢tharacteristic temperature which can be compared with the
ies of BEC in harmonic-oscillator confining potentiglb—  values found in the experiments.
The paper is organized as follows. In Sec. Il we consider
a gas of bosons in an isotropic harmonic-oscillator potential.
:Electronic address: kirsten@tph100.physik.uni-leipzig.de Although the potentials present in the experiment are aniso-
Electronic address: d.j.toms@newcastle.ac.uk tropic, we start with this model because it is much easier
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technically and as we will see afterwards, the anisotropy hag<E, whereE, is the lowest-energy leveINormally the

not much influence on the critical temperature where the specritical temperature for BEC is the temperature at which
cific heat has its maximum. Thermodynamical quantities arg.=E,, which for the isotropic harmonic oscillator reads
given in terms of sums resulting from the grand partition u=(3/2)% w. It is now easy to see that BEC cannot occur in
function of the system. In Sec. Il we present the techniquehe same way for bosons confined in the harmonic-oscillator
of how to obtain approximate analytic results for all sumspotential as it does for bosons in free space. In the case of the
involved. These techniques are used in Sec. IV to derivdree boson gas in free space with no confining potential, as
simple expressions for the thermodynamical quantities whiclkthe temperature is lowered the chemical potentialin-
allow for a determination of the critical temperature and thecreases from negative values towards the valu@ldis is in
ground-state occupation number. Combining our analyticahgreement with the general resplt= E, quoted above since
techniques with numerical calculations, we present the dethe lowest-energy level is zero for the free boson gake
tailed behavior of the specific heat and other quantities ofjalue of the temperature at whigh=0 defines a critical
interest. In Sec. V we generalize our model to the example ofemperatureT, determined in terms of the particle density.
an anisotropic oscillator. Once more the detailed behavior oAt temperatures lower thaff,, u remains frozen at the
several quantities relevant for the recent experiments igalue x=0, and the number of particles found in excited
given. Appendixes A-D contain several technical details orstates is bounded. If the total number of particles exceeds
how to obtain the approximate results for all quantities ofthis bound then the only possibility is for the excess particles
interest. Finally, the conclusions summarize all important reto be found in the ground state, giving rise to BEC. This
sults, gives a brief comparison between our method and thatandard scenario is described[20] in some detail. The

of Refs.[17,18, and presents a short discussion of furtherphase transition which occurs is related to the breaking of the

work. U(1) gauge symmetry associated with the change of phase of
the Schrdinger field. We have discussed this in a recent
Il. THE ISOTROPIC HARMONIC-OSCILLATOR review [27].
POTENTIAL The origin of the different behavior between the confined

and the free Bose gas might be seen more clearly by consid-

For mathematical simplicity let us start with the case of anering the number of particles in the ground state with energy

isotropic harmonic—oscilla}tor potential. We will assume that 3/2)h. In addition to the dimensionless quantitywe in-

the system can b? dgscnped by a grand canonical ensemb[?oduce,u hw(3/2— €), the limit e— 0 corresponding to the

The grand potential is defined by limit of the chemical potential reaching its critical value. In
terms ofx ande, the number of particles in the ground state

—% In[1—z exp(— BEN)], (2.) s

where 8= (kT) 1, Ey are the energy levels, armk=ef* is
the fugacity in terms of the chemical potentjal It proves
convenient to expand the logarithm (B.1) to obtain

(2.5

Nground: e¥_1"

For e—0 we haveNg,,,q—, this being essentially the
reason that no BEC in the usual sense thakaches 0 at
q= nzl n EN: eXp(—NBEN). 2.2 some finite temperature might occur. For giweand particle
numberN it is clear from (2.5 that e>(1/x)In[(N+1)/N]
For an isotropic harmonic oscillator characterized by an anand thate can reach 0 only in the zero temperature limit or
gular frequency w the energy levels are given by in the limit N—o. However, as is also clear frof2.5), for
En nn,=fiw(ng+ny+ng+3/2), ny,nz,nzeNo. If we set  fixed particle numbeN, oncee is small enough, it is essen-
n,+n,+n;=k, wherek e Ny, then the energy levels may be tially only the ground state which is occupied. Lowering the
ordered in the wayE,=(k+3/2)hw with multiplicity temperature, which is the same as increasinghis will
(k+1)(k+2)/2. The sum oveN in (2.2) may be performed happen unavoidably as can be seen f(@W). The tempera-

to obtain ture at which the ground state starts to increase considerably
its occupation number is the most dramatic moment in the

* gnBu-3/2io) system. The extreme behavior is similar but not equal to a

Z n(1—e ™3 (2.3 phase transition. Although quantities are changing rapidly,

everything behaves smoothly; no discontinuities appear. The

where we have defined the dimensionless variabl@rgument presented here may be performed in a much more
x=fwl/(kT). The number of particles is given by general context using the setting describedB]. Further
N=g"%(dq/du)r ., which becomes discussion of this important point is postponed until we have
' presented our analytical analysis of the thermodynamical
©  @NB(p—3I2hw) quantities.
2 JEETSIEER (2.9 Let us continue with the internal energy of the system
which is given in terms of the grand potentialby

when(2.3) is used.
In order that the number of particles remains positive, it is U _[ Jd m 9

necessary foru<(3/2)hw. (More generally, we require 9 2.6
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In terms of the dimensionless quantitiegnd e, U reads

U aq (3/2—¢€) dq
TS T x 7e 2.7
w

Using the series fog given in(3) results in

3
%=§N+3U1, (2.8
where
up=>, e "X (1—e ™) "4 (2.9
n=1
In terms ofU, the specific heat reads
C= ( &U> (2.10
a2 N, w held fixed .

SinceN is held fixed when computinG, only u,; contributes
to the specific heat, and we find

Ju
Clk= —3x2(—1

I (2.11

) N, w held fixed

Once more due to fixell, alternatively one might use

E1:2

n=1 (1_e_nx)4,

e* enx

(2.12

which differs fromu, only by a multiple ofN. Continuing
with (2.11) one first finds

(‘9”1) S| 1+ —(ex) } 48,
. == T LEXIN,w | T 43,
24 N, w held fixed 20
(2.13

with

SZ:nZl ne—nex—nX(l_e—nX)—4’ (2_14)
and

83:;1 nefnex72n><(1_efnx>75_ (2_15)

Differentiating Eq. (2.4) with respect tox for fixed
N,w,[ d(ex)/ox] is determined. We find

( d(ex)
X

) = - 3§, (2.16)
N, o held fixed 1

where in addition tdS, and S; we introduced

[

S;= 2, ne "¥(1—e ™)3, (2.17
n=1

So putting the results of Eq$2.11), (2.13, and (2.16 to-
gether, we arrive at
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2
Sz} (2.18

C/k=3x2[483+ S,—3=—
St

Before we proceed with the numerical analysis of some of
the above thermodynamical quantities, we turn now to the
analytical treatment of these quantities for some range of
parametersx and e. Let us look at the relevant range of
parameters in the sodium experime(@ualitatively it will

be the same for the other experimenihere[11] we have
wl(27) =416 Hz if we use the geometric mean of the fre-
quencies. The relevant temperature range is aroundk2 It

is therefore seen, that the behavior of the thermodynamical
quantities for smalk is desired. A plausible approach is to
argue that fox<<1, it is justified to replace sums which have
arisen in the expansions above with integrals. Care must be
exercised with this to take a proper account of the density of
states(We will return to this in Sec. V).This is tantamount

to regarding the energy levels as continuous rather than dis-
crete. However, we have shown recently that the behavior of
thermodynamical systems with a discrete energy spectrum is
completely different from one with a continuous energy
spectrum. In the first case, no real BEC can occur whereas in
the second case it do¢&5]. (By real BEC, we mean that
there is a phase transition such as that which occurs in the
free boson gaslf the correct behavior for smak is desired,

one approach which is definitely safe is to deal with the exact
sums. The sums do not converge very rapidly for small
nor do they display in any transparent way the behavior at
small x. However, it is possible to convert the sums into
contour integrals, and by deforming the contours of integra-
tion in an appropriate way obtain at least asymptotic expan-
sions for some appropriate range of the parameters. The de-
tails of this procedure will be described in the following
section.

Ill. ANALYTICAL TREATMENT
OF HARMONIC-OSCILLATOR SUMS

Let us now describe in some detail the analytical treat-
ment of the sums appearing in the thermodynamical quanti-
ties. As one can see, all sums involved are of the form

®© —nex—mnx
e

f(l,k,m)= >

_ 3.1
n=1 n'(1—e ™)k 31

with different integral values fok,k,m. Let us consider the
range ofx<<1, which is actually fulfilled in the recent ex-
periments described below, and in additio’ 1 correspond-
ing to the range where a phase transition occurs in three-
dimensional free space and, as we will see, corresponding to
the range very close to the maximum of the specific heat.
Probably the best technique for the analysi$3o1) in the
mentioned range of parameters is the use of the Mellin-
Barnes integral representation. We are going to apply it in its
simplest form, making use of

1 c+ioo

e V=—r— dal'(a@)v ¢,

2 c—io

(3.2
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valid for Re&v>0 andceR, c>0. Equation(3.2) is easily
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k

proven by closing the contour to the left obtaining immedi- f(1,k,m)= E T'(n)x "¢r(1+n)Regz(n, e+m,k)

ately the power series expansion of expj. In order to
apply Eq.(3.2 write (3.2) in the form

f(I,k,m)=2 n-! 2 e Metmtipt . +iy]
n= i, =
- - 1 c+iw
= =1 _ —au—a
nzl " il,.Z,ik=o 27 Jemiw dal’(a)n”™*x
X[e+m+ig+---+i ] 3.3

n=1
+ {5(0m+ €,k) — (Inx) { 5(0,e+ m,k) + O(x),
(3.7

Reg ; being the residue of the Barnésunction, and(j its
derivative with respect te. [See Eq(3.5).] The residues and
values of the Barneg function are derived in Appendix A.
The leading important residues are

Now we would like to interchange the summation and inte-

gration in order to arrive at an expression in terms of known

¢ functions, in detail the Rieman function {x(s),

éR(S):nZl n—S,

(3.4

and a Barneg function[28],
{g(sak)= > [ig+---+igtal™s (35

ET i=

The basic properties of the Barnésfunction are summa-
rized in Appendix A. In order to allow for the interchange of

summations and integration one has to ensure the absolute

convergence of the resulting suf®9,30. This is certainly
true for Re>max(k,1—1) and one arrives at

1 c+ic
f(l,k,m)= ﬁfcqx dal'(a)x™ *{r(a+1){p(a,m+ €,k).
(3.6

This is a very suitable starting point for the analysis of cer-

tain properties of the suml,k,m). Closing the contour to
the right corresponds to the largeexpansion; closing it to
the left to the smalk expansion. To the right of the contour

the integrand in(3.6) has no poles, which means that the

largex behavior contains no inverse powerXxnOne might

show, however, that the contribution from the contour itself;
is not vanishing at infinity leading to exponentially damped

contributions forxx— o, the well-known behavior of partition
sums at low temperature.

As mentioned, this is not the range of interest for recent

experiments and we concentrate on the smdidéhavior thus

closing the contour to the left. Closing to the left there ap-

pear to be three different sources of polés, poles of
{p(a,m+¢€,k) for a=1, ... k; (see Appendix A (ii) pole
of {r(a+1) for a=1—1; (iii) poles ofI'(a) for a=—p,
p e Ng. Depending on the value dfthere might be a double
pole ata=1—1. In detail forl=0,—1,...,1-k, there is a
double pole from(i) and (ii); for 1=1,... e there is a
double pole fromii) and(iii). Collecting all poles is an easy
exercise for all values df. We will restrict ourselves to the
relevant values ofl for our problem, these being
1=1,0,—1.

Forl=1 we find

1
Reg”B(k,a,k)z (k——l)!’
k—2a
Res;‘jg(k—l,a,k)= M, (38)

6a%—6ak+ (k/2)(3k—1)

Regz(k—2,a,k)= 120k=3)]

Also the derivative of Ress(s,a,k) with respect tos at
s=0 might be determined in terms of derivatives of the Hur-
witz ¢ function, but the contributions are of subleading order
and will not be used here and thus are not presented.
For|=0,—1, the formula analogous 1®.7) reads

k
f(l,k,m)= > T(n)x "Zg(l+n)Res z(n,m+ e k)

n=1
n#1-1

+X I (1= {PPz(1—1,m+ €,k)
+[y—Inx+y(1-1)]Regz(1—1,m+¢,k)}
+r(NE5(0m+ €,k) +O(x), (3.9

PP,z denoting the finite part of 5, (x)=(d/dx)InT’(x) and
Pp(l)=—vy.

The presented asymptotics together wi#tv) allow one
to obtain the smalk ande behavior of the theory. In the next
section we list the asymptotic expansions of the various ther-
modynamical quantities. The needed sums are given in Ap-
pendix B for the convenience of the reader.
By changing slightly the procedure described previously,
it is also possible to obtain an expansion fog1 not re-
stricted toe<<1. To find this representation write instead of
Eqg. (3.3

*° e Nxe *© 1
f(l,k,m)= —
( ) nzl n iy, =0 2mi
c+ice
xf CdeT (a)n™ X" m+ig+---+i, ]9,
C—1x
(3.10
which is found by wusing Eg. (3.2 only for

exp(—=n{m+is+---+i]) and excluding the part expxe)
from the procedure. For the case tihat0, one has to treat
separately the zero mode="---i,=0. Closing the contour
once more to the left to obtain the<1 behavior, an expan-
sion in terms of the polylogarithm



4192 KLAUS KIRSTEN AND DAVID J. TOMS 54

_ =X C 12[r(4) 90r(3)  2¢r(2) 12e{r(3)
Lin(0=2, [ Bl) (=3 T2 t— T
is found. The basic properties of the polylogarithm may be  186%(r(2){r(3)  9€°(r(3)° N 9¢*(r(2)r(3)?
found in [31,32. For reasons of clarity the corresponding x3 x* x°
results are summarized in Appendix D, however only for the
anisotropic harmonic oscillator presented in Sec. V. The iso- +0 Inx,f). (4.5)
tropic case is easily extracted from Appendix D. Because our X

intention is to try to present simple analytical expressions we

will not use the expansion in polylogarithms, since by neces- , . .
sity this would involve numerical evaluation. This concludes the list of the asymptotic behavior Xeg1,

€<1, of the most important thermodynamic quantities con-
sidered here.
The corresponding expansions in terms of the polyloga-
rithm (see the end of Sec. )llare also easily obtained and
Having described in detail the application of Mellin- given in Appendix D. Once more the results for the isotropic
Barnes integral techniques for the approximate calculation dfiarmonic oscillator follow immediately from those for the
harmonic-oscillator sums, we are now prepared to presertnisotropic oscillator.
the results for all thermodynamical quantities of interest. The above results together with a numerical treatment of
First of all for the grand potential we hawp=1(1,3,0) and the thermodynamical quantities using their explicit represen-

IV. TEMPERATURE DEPENDENCE
OF THE THERMODYNAMICAL QUANTITIES

using Eq.(3.7) results in tations in form of the sums given in Sec. Il allows a very
detailed prescription over the whole temperature range of

(4 G -3 k(2 relevance for the recent experiments. As an illustration we
=3t 2 +— T 0O(nx,Ine). will first choose parameters pertinent to the rubidium experi-

(4.1) ment[9]. We chooseN= 2000 here. The aim is to compute
the chemical potential which is given by. [Recall that
For the number of particles we hate=f(0,3,0) and find un="hw(3/2—€).] This may be done by solvin@.4) for € as
a function ofx. [Recall thatx=% w/(kT) is the inverse tem-
{r(3) $-okR(2) 1 Inx perature in appropriate dimensionless uifthe numerical
=3 * 2 ex +O(7) . (42 result of this calculation is shown as the solid curve in Fig. 1.
As can be seen from this figure,undergoes a very rapid
It is also possible to present E@t.2) in a slightly different  decrease from values of the order of unity to values of the
way. As we have explained in some detail in Sec. I, a quanorder of 102 over a very small range of. After this sharp
tity of special interest is the number of particles in thedecreasee goes asymptotically to zero asincreasegor as
ground state, given b§2.5). Splitting N=Ngouna+ Nexcitea | decreases This contrasts with a real phase transition such
and using the same techniques as described in Sec. Ill, bas occurs in the free Bose gas whengould reach the value
now with i;=---=i,=0 excluded from the summation in e=0 at some nonzero temperature which could be identified
Eqg. (3.3 (this summation index actually corresponds exactlywith the critical temperature. Froii2.5) it can be seen that
to the ground staje the following asymptotic expansion is this sudden drop i is associated with a sudden rise in the

N

found, ground-state occupation number, and is therefore associated
with the onset of BEC.

(R(3) (3 —er(2) Inx Although the chemical potential has a sudden change, the

N=Ngroundat 3 2 + (—) (4.3 change happens in a completely smooth way; thus the iden-

tification of a specific critical temperature is problematic in

Equation(4.2) is very useful to determine as a function of ~this case. One approach, which has been used in finite-
N andx. This then leads with the help of E¢4.3) to the  Volume systems where similar behavior occes], is to
ground-state occupation number as a function dor fixed calculate the maximum of the specific heat and identify the

N). temperature at which the maximum occurs with the critical

Using u;=1(0,4,1) and, furthermore, Eq2.8), the as- temperature. In Fig_. 2 we iIIustratg_with a so[id curve the
ymptotic expansion of the internal energy reads result of a calculation of the specific heat using the exact
harmonic-oscillator sums. It is seen to have quite a sharp but

U 3k(4) (R(3)(9 13¢x(2) 3 smooth maximum at a valux,=0.0921. If we use

PO~ +T<§_ 1T T2 T 2xe w/(27)=60 Hz, as for the strong trap referred to in Ref.

[12], then the specific heat maximum occurs at the tempera-
€1 ture T=3.127x 10 8 K.
+0 X2 x| (4.4 We now turn from a numerical evaluation to the use of

our approximate analytical results detailed above. Because
The asymptotics fou, together with the asymptotics of our approximation assumed thatind e were both small we
S1,S,,S; needed for the analysis of the specific heat arevould not expect the results to apply fersx;,=0.0921
listed in Appendix B. After some calculation we find using since Fig. 1 shows that is already becoming quite large. If
(2.18 the following result: we definef to be the fraction of particles in the ground state,
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_exact —
° approximation ¢

€ for N=2000

| i i 1 i

0.09 0.095 0.1 0.105 0.11

FIG. 1. This shows as a function ofk=%«/(kT). The solid curve shows the result found from a numerical evaluation of the exact
harmonic-oscillator sums for the isotropic case for 2000. The diamonds show the result of using our analytic approximation.
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X

FIG. 2. The specific heat computed numerically for the isotropic harmonic oscillator is shown as the solid curve. The diamonds show the
result using our approximation. The units for the specific heat are in factors of the Boltzmann cdasfdre particle number is

N=2000. The maximum occurs for=0.0921. Our approximation breaks down foibelow the point where the specific heat maximum
occurs.
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1/3

Nground:fN’ (4.6 , 411

_FRB)
Xpulk™ N

where xp,=fo/(kTy,). Equation (4.9 holds for

(4.7  X=Xpuk- We have plotted the ratio oy, to the exact
specific heat as the crosses shown in Fig. 3. Although the
agreement between the bulk value and the exact value is
quite good near the specific heat maximum, it is off by about
25% whenx reaches the value 0.4. In contrast our approxi-
mation is off by less than 1%. Another feature of using the
bulk approximation is that the specific heat is found to be
discontinuous at the bulk temperature, in contrast to the
smooth behavior found in Fig. 2.

A final comparison we will make is for the ground-state
occupation number. In Fig. 4 the diamonds represent the

X, ~0.0921, the agreement between our approximation ank sult of using our approximation for the particle number and

the exact result breaks down. However, over the region e crosses the result of using the bulk value. Both results are

. . . .~ shown as a ratio with the exact value found from a numerical
where the specific heat maximum occurs, our approximation

for € is quite good. Asc increasegso that the temperature evaluation of the harmonic-oscillator sum. Close to the spe-
q good. " P cific heat maximum our results are off by about 10% and the
becomes less than the critical temperatuthe agreement

between our approximate value ferand the true value be- bulk results are off by around 300%. Asincreases, our
PP . result converges very rapidly towards the true value, whereas
comes better and better. Increasing values ofrrespond to

. . X . . . the convergence of the bulk results is slower. For laxge
an increasing fraction of particles in the ground state. F|gur%Oth approximations become indistinguishable

fl orS ho;:l]z tt?gt ttrh?a aglr e:r:e?;];'ggt\rl;ﬁgrlgsgl ap%?;';nitf valtue It is possible to obtain an approximate analytic expression
y ue vaiu : v Ven Ub 91 the BEC temperature and compare it to the bulk tempera-

valyes Ofe.ZQ'S' Given that we assumed<1 in our deri- ture. Suppose thatis close to the bulk value given i@.11)
vations, this is an unexpected result. and write

Since our approximate result feris good in the region
where the specific heat maximum occurs, we can have some X=Xpu( 1+ 7), 4.12
faith in our other approximate results feex,,=0.0921. In
Fig. 2 the diamonds illustrate the result of using our approxifor some smally. If we assumes<3/2, then from(4.8) we
mate resul{4.5 for the specific heat. Again the agreementijng
between the approximation and the exact result is seen to be

then from(2.5 we have

ex=In| 1+

m .
Using (4.3 this yields
(1-FN=LR(B)X >+ (53— €)Lr(2)x 2. (4.9

€ may be eliminated fron¥.8) by using(4.7). This results in
a cubic equation which determinasfor a givenf and N.
Oncex has been found is determined by4.7). We have
shown the result of this approximate evaluationeoés the
diamonds in Fig. 1. As expected, ongedecreases below

good up to the maximum. For valuesx£x,,, the approxi- 1 (1 (R(2) e
mation breaks down for the reason already mentioned. We 7=1=1) §f+2[§R(3)] N™7=). (4.13

have shown a more detailed comparison between our ap-
proximation for the specific heat and the true value in Fig. 37hjs result assumes thag,, is small, but makes no assump-
The diamonds illustrate the ratio of our result to the exactjon about the size of. Typically we find that for particle

value. Forx=~xp, our approximate result is within a few per- ;mpersN~10°— 10, at the point where the specific heat
cent of the true value , and far>x,, the agreement becomes ,5ximum occurs is a few percent. We can therefore say

better than 1%. (1—f)~'=1, which leads to
We can also compare our results to the bulk results ob-
tained by directly converting the harmonic-oscillator sums T—Touk 1 Lr(2)

into integrals as in Ref$16,19. (We will use the terminol-
ogy bulk rather than thermodynamic limit as in RE24].)

For the specific heat this amounts to just keeping the firsj we put f=0 this gives the result in Ref§17,18. For

term on the right-hand side 4.5 N=2000 it is easily seen that using the bulk value for the
_ _3 temperature is only about 10% higher than using the value
Coun/k=12LR(4)x. 49 Jetermined by the maximum of the specific heat. Both tem-
For the particle number the bulk result consists of dropping®@ratures approach one another as the particle number in-
the term inx~2 in (4.3 along with all subdominant terms, Creases. Thus as an e_stlmz_;lte of the critical t_emp_erature, the
taking use of the bulk value is quite a good approximation. How-
ever, as our results above show, care must be exercised in
Npuik=Nground™+ Lr(3)x 8. (4.10 using the bulk values for the particle number or specific heat.
To finish our discussion of the isotropic harmonic oscil-
A way of improving the bulk approximation was given in lator we wish to mention briefly some results for other
Refs.[17,18, and we will return to the relationship of this choices of particle number. We would expect that\Nafn-
improvement to our approach in Sec. VI. creases not only will the bulk approximation become better,
The bulk transition temperature is obtained by equatingout so will ours. We have done the calculations just de-
Nground to zero. This gives scribed forN=2x10% 2x10°, and 5<10°. Because the

- = -1/
T 3 +WN W 419
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3 + T T ] L] 1
§ approximation ¢
< 275 | . buk + |
il
2
S 25 + .
o +
€ 225} .
3 . *
< +
o
S 2 f " .
b= +
] +
Q +
g 175} +, i
% ++++
g 1.5 They . -
<] +
S | * + 4
g 1.25 + + . . N ]

o

§ 1} 00000000666000000000 ° ° ° o ® 2 ° o o 4
°
g ot -
x
o
2 05 | E
g
S
8 0.25 | 4
s

0 1 1 1 1 ]

0.09 0.095 0.1 0.105 0.11 0.115 0.12

FIG. 4. The ratio of the approximate to the exact ground-state particle number is shown. The diamonds illustrate the result of using our
approximation and the crosses denote the results found using the bulk approximation.



4196

resulting figures are similar to those already presented in the

caseN=2000 there is little point in showing them here. The

expectation of improved agreement between the approxima-

KLAUS KIRSTEN AND DAVID J. TOMS

ee]
Xi @ Nea—nx;

a ST (1-e 5" (1-e ™)

U= (56)

tions and the exact result is borne out. The specific heat

maximum occurs atx,,=0.0408 for N=2x10% at
Xm=0.0185 for N=2x10°, and at x,=0.0136 for

N=5x10°. These values correspond very closely to those

obtained using the approximate formutal4).

V. THE ANISOTROPIC HARMONIC-OSCILLATOR
POTENTIAL

After having described in detail the isotropic harmonic-

oscillator potential let us explain the new technical problems

one encounters when treating the anisotropic case. The ¢

culation parallels very much the one for the isotropic har-
monic oscillator and we can be brief. The energy eigenvalues

are given by

1

3
n1n2n3 Z , NjeNg. (5.1

As we will see in the following, it is useful to introduce the
dimensionless quantities:

3
_E o, a=hpQ.

Xi:hﬂlx)i iy

(.OIH

We then have

> 3
BEnln2n3: ;1 nix; + E

a.

In analogy to the harmonic oscillator we use, furthermore,
u=rQ(3—e€

to find
3

BEnynyn, = Bu=2, Xini-+ ae. (5.2

Continuing for the specific heat as done for the analysis of
the isotropic harmonic oscillator, we arrive at

c 3 3
K XS Z Js1 +,ZXS3“
3 3
+§1|lex83 ©.9
é/p/'th
@ ne nea
S = - - @
t E1H3 J(1—e X’
* ne Nea—nx 1
Su= 2, I (1-e " (1-e ™)’
and
* e Nea—n(xi+x) 1 1
53'“:2 3 —o—Xin — oo nx o XNy -
n=1 I{_1(1—e7%") (1—e"™) (1-e ")

The asymptotic expansions of all above quantities may be
obtained using the same techniques as for the harmonic os-
cillator described in Sec. lll. The only difference is that one
has to deal with the slightly more general function

{e(s,alx)= 2 (a+m-x)~s. (5.8
m=0

The asymptotic expansions for the thermodynamical quanti-

ties involves the residues of the functigg(s,a|r), the basic
properties of which are summarized in Appendix A. Using
once more the Mellin-Barnes integral representation in com-
plete analogy to Sec. lll, we arrived at the asymptotics for
Ui, S;, Sy, andSg;, . These are all summarized in Appendix

In terms of the dimensionless variables the grand potentiaC. We list here only the asymptotics of the physical quanti-

reads
e*néa
q 2 nH3 1(1 e—xn) (53)
For the particle number we have
e—r‘léa
N= 2, —3————=° 4
2 T e (5.4

With Egs.(5.3) and(5.4) one easily gets the internal energy,

3 3
=N+, u;, (5.5
2" &

hQ

where we defined

ties,
{r(4) {r(3)a (3
= + R
X1XoX3 XXXz |\ 2
LR(2)a? [ Xy Xo+ XX+ XoX3 3
* X1XpX3 120 2" 5.9
3 a3 1
_ &3 &2 (__E>+_+___’ 5.10
X1X2X3 X1X2X3 2 Ex
U 364 +3zR<3)(§_ , 8%=(2)a(1
ﬁQ—X1X2X3C¥ X1X2X3 2 € X1X2X3 2

1 X1Xo+X1X3+ XoX3
+

72 a?

(5.11
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FIG. 5. The numerical result foe is plotted againste=7%(w,+ w,+ w3)/(3kT) for the anisotropic oscillator foN=2000. The
frequencies are taken to e, /(27) = w,/(27)=42.4 Hz andw3/(27)=120 Hz. The diamonds show the result found from using our
approximation.

C 12¢r(4) 9¢r(3)a 9a2€?(r(3)? 9 (r(2)a? the rubidium experiment(The results shown are indepen-

K Xoox XOOXs  (XpXpXa)2 2 X0 dent of whether the strong or weak trfl?] is used, since

17273 17273 17273 17273 the difference is one of an overall scaling of the oscillator

o2 2.2 frequencies, and the results we use are independent of such a

_ 1 R2XT 12alp(3) 18a7e gR(Z)gR(S) scaling) Figure 5 shows the result of a comparison of our
12 Xx1X2X3 X1X2X3 (X1X2X3) approximate result foe (illustrated with diamondsand the

90t et (r(2) {r(3)? exact result illustrated by the solid curve. Again the agree-
. . (5.12 ment is quite good even for relatively large values eof

(X1X2X3) Figure 6 shows the comparison between our approximation

. . for the specific heat i5.12 and the exact value found from
The above asymptotic expansions are found to be a goo . : :
.the harmonic-oscillator sums. The maximum occurs for

approximation close to, but lower in temperature, the maxi- ~0.106. Figure 7 shows the ratio of our approximation to

mum of the specific heat. Once more we are able to preser%;f1 . . )
. : . the exact specific heat, and for comparison the result of using
a numerical as well as an analytical calculation of the rel-

- the bulk expression. As for the isotropic oscillator calcula-
evant guantities. , : L -
' . . . tions, the bulk expression shows a significant deviation from
Suppose that we defirfeto be the fraction of particles in : ~ )
the ground state as we did in Sec. IN is given by the true result; Whem—O.Z_ the_ bul_k re_su_lt is off by about
* "ground 15%, whereas our approximation is within about 1% of the
N —=(ev—1)"1. true value. Figure 8 shows the ratio of the approximate par-
groun ticle numbers to the true value. Our result is seen to have
From (5.10, noting that the term in 14«) arises from the better agreement close to the specific heat maximum, but
ground state, we find the number of particles in excited stateB0th our result and the bulk result rapidly converge towards

is given by the true value aw increases.
We can now see that the anisotropy has only a small
(O 1 (R(2)O?]) 1 1 1 effect on the critical temperature. Using the frequencies
O piwaws @ 3 (w1w2+w1w3+ 0y w1=w,=2407/\/8 s}, and w;=2407 s !,  with
a=0.106 we findT,,=3.09x 10 8 K as the temperature at
3 1 which the specific heat maximum occurs. This can be com-
X E_E) a? (5.13 pared with the temperature of 3430 8 K found in the

isotropic case in Sec. IV. The bulk temperat{iEs. (4.11)
We will illustrate the results for the case Nf=2000 as for still holds in the anisotropic case with the geometric mean
the isotropic harmonic oscillator using the frequencies forof the frequenciesis about 3.4k 108 K.
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three figures.

VI. CONCLUSIONS closer to the exact result than the bulk approximation was.

Perhaps in future experiments it will be possible to provide a

analysis of Several thermodynarmical Quaniies for & systorf1o"e SUNGeNt test of the various approximations.
Y y q y We now wish to mention the comparison between our

of noninteracting spin-0 particles in a general harmomc'results and the density of states method used in RETs18.

transition such as that occurring in the free unconfined bosc()-:‘lnn th|§ approach the aqthors separated off the ground—s;ate
gas, it is possible to identify a temperature at which BE f:ontr|but|op for the particle numper a_nd t.reayed the. remain-
OCCl,JI’S by looking at the maximum in the specific heat. we9 terms in the sum by apprommatmg it with an mtegral
have seen that this temperature is nearly identical to the tem o' the energy. The density of states was parametrized by
perature where the ground-state occupation starts to increase E2 E
considerably, the effect actually seen in the recent experi- p(E)== —3+y—,
ments through the peak in the velocity distribution of the 2 (ho) (hw)
sample. s ) ] ) )
Attempting to compare the results obtained here directlyVherew=(w;w,w03) "~ andy is a dimensionless function of
with the experiments must be done with a certain degree df'€ frequencies. In the isotropic cage: 3/2, but the authors
caution. In the first place we have ignored interatomic inter{17,18 had to determiney numerically in the anisotropic
actions, so that there is no distinction made between gasé@se. The bulk approximation we mentioned earlier consists
with a positive scattering lengtf®,11], and those with a ©f ignoring the term iny. By contrast, the approximate
negative scattering lengtii0]. Secondly, it is perhaps not method_ we presgnted is entirely gnalytlcal with no numerical
quite so clear that the use of the grand canonical ensemble @aluations required. By comparing the results of our calcu-
justified for systems with such a relatively small number oflation for the particle number with those of Ref$7,18 we
particles[33]. With these caveats in mind, for the case ofcan deduce an analytic value fgr We find
rubidium we found the specific heat maximum to occur at
T=31 nK for 2000 particles. For the case of sodium, if we
useN = 2.5x 10° we find the specific heat maximum to occur
atT=1.16 uK. The results for the temperature found from
using the bulk approximation were very close to these valThis value has also been borne out by an independent evalu-
ues, so it is unlikely that the present experiments can distination [34] of the density of states which in addition obtains
guish between the bulk approximation, our approximation otthe next order correction t.1) in the anisotropic case.
the exact value. It was apparent from our calculations that Although the gases in the experiments are dilute, in order
the specific heat found from our approximation was mucho get a quantitatively more satisfactory picture for the recent

(6.9

1 1 1 1
y= sz + + (6.2

01wy W3 W3]
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experiments, the vapor has to be treated as a weakly inter- gat (—1)d & _ (—tnd

acting system. In the quantum-field-theory approach to BEC g e 2 Bgd)(a|r)—'.

this might be done in a systematic wig7]. One possibility I7_(1—e™") {41 =0 n!

is to treat the interaction as a perturbation and calculate the (A3)

leading corrections to the free boson gas treated in the

present article. The detailed knowledge of the lowest order i terms of these it is immediate that for=1, ... d

perturbation theory provided here is thus an important basis

for future developments in this direction. Another possibility

is to consider an effective theory for the ground state, its _1yd+n

occupation number being a very good indicator for the onset  Res/z(n a|F)— (1)

of BEC. B (n—1)!(d—n)!TIL,r,
After this paper was submitted for publication, another

independent calculation of BEC in harmonic-oscillator con-

fining potentials appearef®5]. This paper uses the Euler- ang forpe N,,

Maclaurin summation formula to evaluate the harmonic-

oscillator sums. The result is expressed in terms of

polylogarithms, much like the results found in our Appendix

D. One difference between this approach and ours is that the

authors of Ref[35] introduce an effective fugacity which

means that the argument of their polylogarithms never be-

comes equal to unity. It is straightforward to modify the ) ) ) )
approach we have discussed in Appendix D and obtain in aﬁor the leading asymptotics of the thermodynamical quanti-

easy way results which appear to be equivalent to those dfeS We need at most the first three residue¢An). These
Ref. [35]. are given explicitly by

By (alr)

(A4)

(—1)%!BY (alr)
I ri(d+p)!

{s(—p.alr)= (A5)
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APPENDIX A: THE BARNES ¢ FUNCTION Reig(d—Z,aN)

As we have seen, in order to determine the asymptotic 6a2_6a2?:1ri+(Eid:1ri)2+2idj:1i<jrirj
expansion of some thermodynamical quantities, we need = 12d—3)me,r, — :
several properties of the Barnésunction 28,36, =t

(A6)
{B(s,a|F)= E (a+m- rs, (A1) In addition to the above equation we needed only
m=0
with r a d-dimensional vector. In Eq3.5) we used the no- 1 o
tation {x(s,a,d) for r=1. The residues off4(s,alr) at fs(s,alr)=<+0(), (A7)
s=1,...d and the values of the function a&=—p,
p e Ny are most easily deduced using the representationasa ] o i
contour integral which is obvious from the original surtAl). Using Egs.

(A6) and (A7) we found the asymptotic expansion for all
thermodynamical quantities.

. il(1-y9) g o1 -at
{p(s,alr) = L t(—t) TEANEETSUY
(A2) APPENDIX B: ASYMPTOTICS FOR x<1, e<1

OF THE SUMS uy, S;, Sy, AND S,

where the contou€ is counterclockwise enclosing the posi-  In this appendix we list the results used for the derivation
tive real axis. The only possible pole occurdat0. For that  of the internal energy and the specific heat of the isotropic
reason one might like to introduce the generalized Bernoullharmonic-oscillator confining potential. We needed the fol-
polynomials[37] through lowing asymptotic expansions :



u;=1(0,4,9)
(r(4) (1-€)lr(3) 1 ¢r(2) 1
<D OO 2D o[ )
1 2) nx
Sl—f( 1,3,0= 22+§F;( +O(7),

3 2
Sz=f(—1,4,])=%+%+

InX €
0(7?)
S;=1(-15.2

{r(4) N {r(3)

Tox> 2x*

Inx €
X< "X

€{r(3) _

X4

1 ¢r(2)
2 (

These results lead, after some calculation, to E4<) and

4.5.

APPENDIX C: ASYMPTOTICS FOR x<1, e<1
OF THE SUMS u;, S;, S,;, AND Sgj;

In this appendix we give the results used for the deriva-
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” e 1
ngl I_j(1-e 4" (1—e ™)

4

>

m=1
m#1—1

+T (1= D{PPg[ 1~ 1, ea+Xi|(X,X)]

X[y+y(1—1)Reg L 11, ea+x|(X,x) ]}
(CD

—Nea—nX;

T'(m){r(m+1)Res A m, e+ x| (X,X)]

4.,
Finally for S3;; we need

©

ne—nae—n(xi+xj) 1 1
I3, (1—e ™) (1—e ™) (1—e™ ™))

5
=mZ:1 I'(m){r(m—1)Res g m, ea+x+X;|(X,X; ,X})]

m#2

+ PPl 2,€a+ X+ X; |(x Xi X)) ]+ Res 5[ 2,ea+X;

X (X, %1, X)) ]+ - -

tion of the asymptotics of several thermodynamical quanti-

ties.[See Eqgs(5.9—(5.12.]
First of all we need the analogous results to E§s/) and
(3.9 for the anisotropic oscillator. Unfortunately for the an-

isotropic oscillator it is not possible to write all needed sums

in a unified form as done in Eq3.1). For that reason we

have to list several results. The techniques are exactly the
same techniques as those employed in Sec Ill. We found for

[=—1,0

©

>

n=1 nIH?:
3
> T(m){g(m+1)Reg 5(m,ealX)

Nea

e,
1(1_ e—xjn)

a1
+T(1-D{PPg(1—1,ealx)
+[y+¢(1-1)]Reg5(1-1,ealX)}
+Zr(NEHOealx) +- -,

whereas fol =1 one has

oo

)

3

=2 T

m=1

e—nea

nHJ (1—e™XM)

I'(m)Zr(1+m)

X Res 5(M, ear|X)
+ {50 ealX)+ -
These results can be used for the calculatiom,0fN, and

S;.
Foru; andS,,i one needs

These results are enough to find the following expansions:

{r(4) {r(3) X;
= 3———2¢
X1X2X3a' 2X1X2X3 o
2 Xi  XgXpT XgXg+ XpXg+ X2
+§R()a’ g_gliy XX 13223 al
12)(1X2X3 o o
I 1 CO N
Y (a€)? T XiXoXg '
_ {r(3) {r(2)a 3_ﬁ .
X1XoX3Xi  2X1XoX3X; @ '
Sy {r(4) {r(3a (3 xitX
T X XoXaXiXj X XoXgXiXj |2 2« €
{R(Z)az g_(\xi+xj
12¢1 XX 3Xi X; a

X1XoF X1 X3 XoX3+ X7 +XF + 3xixj) .\

a2

APPENDIX D: ASYMPTOTICS FOR x<1 FOR THE
ANISOTROPIC HARMONIC OSCILLATOR

As mentioned in Secs. Il and 1V, it is possible to obtain
an asymptotic expansion valid for<1 without restricting
€ to the range of small parameters. The way how to obtain
the approximation is described at the end of Sec. Ill. The
results analogous to Eg&.7) and (3.9 read
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3

n*|e*nea L .
S, e~ TRl 0L (e )+

4

n§=:1 (1_efnxi)l—['3:l(l_eijn) :n§=:1 F(n)ReiB[nvxi|(X=Xi)]|—i|+n(e7€a)+ Tty

n—Ie—nea—nxi

*© nefna57n(xi+xj) .
I(n) X Res N, X+ ;| (X% X)) ILin_p(€" )+ -+ (DD)
1

=1 (1—e ™) (1—e ™I (1-e ™) 3

5

As a result, the following asymptotics for the thermodynamical quantities are derived:

. _ 3 o . _ 3 az 1 X1X2+ X1X3+ XoX3 i _
q: L|4(e ea)+__L|3(e ea)+ _ + — le(e Ea)_|_...’
X1XoX3 2 X1XoX3 4 X1XoX3 12 X1XoX3
o 3 a a? 1 XiXp+XiXg+XoX3|
N= Liz(e™ )+ s ——Liy(e ) +| = - Lij(e )+,
X1XoX3 2 X1XoX3 4 X1XoX3 12 X1XoX3
U

9 1
Lij(e ¢¥)+ =———Liz(e %)+ —=———(36a’+ X Xp+ X1 X3+ XoX3)Li(€ %)+ - - -

fLQ B Ct’X1X2X3 2X1X2X3 12&X1X2X3

c 1 9Li§(e*m)+12L_ N
K XiXpXg|  Liy(e €) la(e7%)

Li —€ea L'Z —€ea
|—9|_i3(e‘““)+2—7 a(e "OLigle )]

X1XoX3 2 Lis(e <)

This concludes the list of asymptotic expansions which we are going to give in the present article.
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